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hard Clevez John WatrousxDepartment of Computer S
ien
eUniversity of CalgaryCalgary, Alberta, Canada T2N 1N4Abstra
tWe obtain the strongest separation between quantum and 
lassi
al query 
omplexity knownto date|spe
i�
ally, we de�ne a bla
k-box problem that requires exponentially many queriesin the 
lassi
al bounded-error 
ase, but 
an be solved exa
tly in the quantum 
ase with asingle query (and a polynomial number of auxiliary operations). The problem is simple tode�ne and the quantum algorithm solving it is also simple when des
ribed in terms of 
ertainquantum Fourier transforms (QFTs) that have natural properties with respe
t to the algebrai
stru
tures of �nite �elds. These QFTs may be of independent interest, and we also investigategeneralizations of them to non
ommutative �nite rings.1 Introdu
tionShor's algorithm [18℄ for fa
toring integers in polynomial-time on a quantum 
omputer evolvedfrom a series of quantum algorithms in the query model. This model appears to be useful forexploring the 
omputational power of quantum information. In the query model, the input datais embodied in a bla
k-box and the goal is to eÆ
iently dedu
e some property of the bla
k-box.EÆ
ien
y is measured in terms of the number of queries made to the bla
k-box. A se
ondarymeasure of eÆ
ien
y is also 
onsidered: the number of auxiliary operations that must be performedto generate the input to the queries and pro
ess the output. We will impli
itly require that thenumber of auxiliary operations s
ales polynomially with the number of bits/qubits input to ea
hquery.The �rst instan
e of a quantum algorithm outperforming a 
lassi
al algorithm in the querymodel was due to Deuts
h [10℄, where a quantum algorithm is able to solve a 2-bit query problemwith one query (see also [7℄), whereas any 
lassi
al algorithm for the problem requires two queries.(A k-bit query is one that takes k bits/qubits as input and returns k bits/qubits as output.) Thiswas extended by Deuts
h and Jozsa [11℄, who de�ned an (n + 1)-bit query problem that 
an besolved exa
tly with one query by a quantum algorithm whereas it requires 
(2n) queries to solveexa
tly 
lassi
ally. In spite of the apparent strength of this separation, the problem is only hardin the 
lassi
al setting if the algorithm must be exa
t, meaning that no probability of error istolerated. A bounded-error algorithm is one that is allowed to err, provided that for any bla
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instan
e its error probability is bounded below some 
onstant smaller than 1=2. There is a 
lassi
alalgorithm that solves the problem in [11℄ with bounded error using only O(1) queries.Subsequent work by Bernstein and Vazirani [3℄ in
luded an (n + 1)-bit query problem that
an be solved exa
tly with a quantum algorithm making one query, whereas any bounded-error
lassi
al algorithm for it requires n queries. They also showed that a re
ursively de�ned version ofthis problem results in a �(n)-bit query problem whose exa
t quantum and bounded-error 
lassi
alquery 
omplexities are O(n logn) and n
(log n), respe
tively. This was improved by Simon [19℄, whogives a fairly simple O(n) vs. 
(2n=2) bounded-error quantum vs. bounded-error 
lassi
al queryseparation. Brassard and H�yer [5℄ later showed that the problem 
onsidered by Simon 
an in fa
tbe solved exa
tly in the quantum setting with O(n) queries.When 
ast in the query model, Shor's fa
toring algorithm 
an be viewed as an extension ofSimon's work|it is a quantum algorithm that solves a 3n-bit query problem with bounded-errorwith O(1) quantum queries, while any 
lassi
al algorithm for this problem requires 
(2n=3=pn)queries (the lower bound is proved in [6℄).What is the sharpest quantum vs. 
lassi
al query 
omplexity separation possible? For problemsthat 
an be solved exa
tly with a single quantum query, it appears that the maximum 
lassi
albounded-error query 
omplexity previously-known for su
h a problem is n [3℄. However, if theeÆ
ien
y and performan
e of the quantum algorithm are relaxed to allow O(1) queries and abounded-error result then there is a problem whose 
lassi
al bounded-error query 
omplexity isexponential [18, 6℄.Presently, we show that the best of the above two s
enarios is possible by exhibiting a 2n-bitquery problem su
h that:� In the quantum setting, a single query suÆ
es to solve the problem exa
tly. Moreover, theauxiliary operations are very simple; they 
onsist of O(n) Hadamard gates followed by O(n2)
lassi
al gate operations that 
an o

ur after a measurement is made.� In the 
lassi
al setting, 
(2n=2) queries to the bla
k-box are ne
essary to solve the problemwith bounded error.The problem that a
hieves the above, whi
h we 
all the hidden linear stru
ture problem, is de�nedover the �eld GF (2n) as follows. Assume elements of the �nite �eld GF (2n) are identi�ed withstrings in the set f0; 1gn. Let � be an arbitrary permutation on GF (2n) and let r 2 GF (2n).De�ne the bla
k-box B as 
omputing the mapping from GF (2n) � GF (2n) to itself de�ned asB(x; y) = (x; �(y + sx)). The goal of the query problem is to determine the value of s.It should be noted that this problem is related to, but di�erent from, the hidden linear fun
tionproblem 
onsidered by Boneh and Lipton [4℄. In our problem, the linear stru
ture o

urs over the�eld GF (2n) (and involves the multipli
ative stru
ture of GF (2n)), whereas for the hidden linearfun
tion problem of Boneh and Lipton the linear stru
ture is of 
ertain periodi
 fun
tions from theadditive group Zk to some arbitrary range. This does not result in the quantum vs. 
lassi
al query
omplexity separation that we obtain.It should also be noted that our hidden linear stru
ture problem is a spe
ial 
ase of the hiddensubgroup problem de�ned by Brassard and H�yer [5℄ and Mos
a and Ekert [17℄. (This relationshipwas pointed out to us by Hallgren [14℄.) However, using standard te
hniques for the hidden subgroupproblem results in a quantum algorithm solving the hidden linear stru
ture problem with �(n)queries, as opposed to a single query as required by our algorithm.Finally, one may also 
onsider a variant of our hidden linear stru
ture problem de�ned over a�nite ring (su
h as Z2n) rather than a �eld. However, the exponential 
lassi
al query 
omplexity2



lower bound depends on the �eld stru
ture and does not always hold for �nite rings. For example,in the 
ase of Z2n, the 
lassi
al query 
omplexity is n+1 rather than exponential (this is explainedin se
tion 3).Our single-query quantum algorithm for the hidden linear stru
ture problem is based on anextension of the quantum Fourier transform (QFT) to �nite �elds whose behavior has naturalproperties with respe
t to the �eld stru
ture. This QFT is motivated and de�ned in se
tion 2,where an eÆ
ient quantum algorithm for it is also given. The quantum algorithm and 
lassi
allower bound for the hidden linear stru
ture problem are given in se
tion 3. In se
tion 4, the QFTis generalized to rings of matri
es over �nite �elds.Related work. Van Dam and Hallgren have independently proposed a de�nition for QFTsover �nite �elds that is similar to ours, and have applied these transforms in the 
ontext of bla
k-box problems 
alled the \shifted quadrati
 
hara
ter problems". Their work �rst appeared as [9℄and the preliminary version of this paper appeared as [2℄.2 Quantum Fourier transforms for �nite �eldsIn this se
tion we propose a de�nition for quantum Fourier transforms over �nite �elds, whosebehavior has natural properties with respe
t to a given �eld's stru
ture. We also show how to
ompute these transformations eÆ
iently.We assume the reader is familiar with basi
 
on
epts regarding �nite �elds and 
omputationsover �nite �elds (see, for instan
e, [8, 12, 16℄). As usual, we let GF (q) denote the �nite �eldhaving q = pn elements for some prime p. We assume that an irredu
ible polynomial f(Z) =Zn �Pn�1j=0 ajZj over GF (p) is �xed, and that elements of GF (q) are represented as polynomialsover GF (p) modulo f in the usual way. We will write x = (x0; : : : ; xn�1) to denote the �eldelement 
orresponding to x0 + x1Z + � � � + xn�1Zn�1, and we identify x with the 
olumn ve
tor~x = [x0; : : : ; xn�1℄T.De�nition 2.1 Let � : GF (q) ! GF (p) be any nonzero linear mapping (viewing elements ofGF (q) as n dimensional ve
tors over GF (p) as above). Then we de�ne the quantum Fouriertransform (QFT) over GF (q) relative to � (denoted Fq;�) as follows. For ea
h x 2 GF (q),Fq;� : jxi 7! 1pq Xy2GF (q)!�(xy)jyifor ! = e2�i=p, and let Fq;� be extended to arbitrary quantum states by linearity.A natural 
hoi
e for � is the tra
e, sin
e this gives a transform independent of the 
hoi
e of f .However, we will not require this property, and so we allow � to be arbitrary. It should be notedthat, for any prime q, the above Fourier transform is essentially identi
al in form to the 
onventional
y
li
 Fourier transform modulo q.An important property of these transformations is illustrated in Figure 1, where F denotes theQFT and the two-register gate labeled by s 2 GF (q) denotes the mapping jxijyi 7! jxijy + sxi.Let us refer to the latter gate as a 
ontrolled-ADDs gate, with its �rst input 
alled the 
ontrolregister and its se
ond input 
alled the target register. The property illustrated in the �gure willbe referred to as the 
ontrol/target inversion property. In words, 
onjugating a 
ontrolled-ADDsgate by F 
 F y swit
hes its 
ontrol and target registers. In the spe
ial 
ase of GF (2), F is theHadamard gate and the two-qubit gate is the 
ontrolled-NOT gate (when s = 1).3



kvsF yF FF y � vksFigure 1: The 
ontrol/target inversion property.Theorem 1 For q = pn and any nonzero linear mapping � : GF (q)! GF (p), Fq;� is unitary andsatis�es the 
ontrol/target inversion property of Figure 1.Proof: First let us show that F yq;�Fq;�jxi = jxi for every x 2 GF (q). We haveF yq;�Fq;�jxi = F yq;� 1pq Xy2GF (q)!�(xy)jyi = 1q Xy2GF (q) Xz2GF (q)!�(xy)��(yz)jzi= Xz2GF (q)0�1q Xy2GF (q)!�(y(x�z))1A jzi = jxi;following from the fa
t that �(w) must be uniformly distributed over GF (p) as w ranges over GF (q)(sin
e � is linear and not identi
ally zero).Next let us verify that the 
ontrol/target inversion property holds, namely that for As and Bsde�ned by Asjxijyi = jxijy + sxi and Bsjxijyi = jx+ syijyi we have(F yq;� 
 Fq;�)As(Fq;� 
 F yq;�) = Bs:To prove this relation holds, let us de�nej xi = Fq;�jxi = 1pq Xy2GF (q)!�(xy)jyifor ea
h x 2 GF (q), and note that for Pw de�ned by Pwjxi = jx+ wi we havePwj �xi = 1pq Xy2GF (q)!��(xy)jy + wi = 1pq Xy2GF (q)!��(xy�xw)jyi = !�(xw)j �xi:Now, for ea
h x; y 2 GF (q) we have(F yq;� 
 Fq;�)As(Fq;� 
 F yq;�)jxijyi = (F yq;� 
 Fq;�)As0� 1pq Xz2GF (q)!�(xz)jzij �yi1A= (F yq;� 
 Fq;�)0� 1pq Xz2GF (q)!�(xz)!�(ysz)jzij �yi1A= (F yq;� 
 Fq;�)j x+syij �yi= jx+ syijyi= Bsjxijyi4
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Figure 2: Equivalent 
ir
uits for Fq;�as required.Next we des
ribe quantum 
ir
uits for performing Fq;� and analyze their 
omplexity. Let C(p; ")denote the minimum size of a quantum 
ir
uit approximating the quantum Fourier transformmodulo p to within a

ura
y ". Note that C(p; 0) 2 O(p2 log p) [1℄ and, for " > 0, C(p; ") 2O(log p log log p+ log p log 1=") when " 2 
(1=p) [13℄.Theorem 2 For q = pn and any nonzero linear mapping � : GF (q) ! GF (p), Fq;� 
an beperformed with a

ura
y " by a quantum 
ir
uit of size O(n2(log p)2) + nC(p; "=n).Thus, when p = 2 (or any 
onstant), the QFT 
ir
uit size is O(n2) in the exa
t 
ase.Proof of Theorem 2: For any 
hoi
e of � (linear and nonzero), there exists a uniquely determinedn� n matrix M� over GF (p) su
h that �(xy) = ~xTM�~y. We show how to eÆ
iently obtain su
h amatrix M� expli
itly for any given � below. The quantum 
ir
uit performing Fq;� will depend onM�, and we note that M� must be invertible.We haveFq;�jxi = 1pq Xy2GF (q)!~xTM�~yjyi = 1pq Xy2GF (q)!~xT~yjM�1� ~yi = 1pq Xy2GF (q)!(MT�~x)T~yjyi:From this we 
on
lude thatFq;� =M�1� (Fp 
 � � � 
 Fp) = (Fp 
 � � � 
 Fp)MT� ;where Fp denotes the usual quantum Fourier transform modulo p and, for A 2 fM�1� ;MT� g, weidentify A with the reversible operation that maps ea
h j~xi to jA~xi. This relation is illustrated inFigure 2.The upper bound of O(n2(log p)2) + nC(p; "=n) now follows from the observation that in orderto implement Fq;� with a

ura
y " it suÆ
es to implement ea
h 
ir
uit for Fp with a

ura
y "=n(
ontributing nC(p; "=n) gates to the �nal 
ir
uit) and to implement the 
ir
uit for multipli
ationby either MT� or M�1� exa
tly. Let A 2 fM�1� ;MT� g. Multipli
ation of an n-dimensional ve
torv by A 
an be done with O(n2) arithmeti
 operations in GF (p), ea
h of whi
h 
an be performedby a 
ir
uit of size O((log p)2), resulting in a 
ir
uit of size O(n2(log p)2). In order to implementthis transformation reversibly within the same size bound, it suÆ
es to be able to invert the
omputation in this size bound. Inverting this 
omputation is simply multipli
ation by A�1, whi
h5




an be performed in pre
isely the same size bound. (Note that the 
ir
uit itself does not needto invert A, but rather information about A and A�1 is pre-
omputed and \hard-
oded" into theappropriate 
ir
uit for Fq;�.)Now let us return to the question of determining the matrix M� 
orresponding to a given �.First, note that multipli
ation of �eld elements satis�es(z0; : : : ; zn�1) = (x0; : : : ; xn�1) � (y0; : : : ; yn�1)where zi = ~xTBi~y (1)for a 
ertain sequen
e of n� n matri
es B0; : : : ; Bn�1 over GF (p).Let us expli
itly 
onstru
t a sequen
e B0; : : : ; Bn�1 that satis�es Eq. 1. To do this, it will behelpful to review the notion of Hankel matri
es. An n�n Hankel matrix A is a matrix of the formA = 266666664 t0 t1 t2 � � � tn�1t1 t2 t3 � � � tnt2 t3 t4 � � � tn+1... ... ... . . . ...tn�1 tn tn+1 � � � t2n�2
377777775 : (2)That is, the \anti-diagonals" ea
h 
ontain only one element (or, equivalently, A[i; j℄ depends onlyon i+ j). The Hankel matrix in Eq. 2 will be denoted Hankel(t0; t1; : : : ; t2n�2).Re
all that we have Zn � n�1Xj=0 ajZj (mod f(Z));where f is as des
ribed at the beginning of the 
urrent se
tion. Write a(0)j = aj for j = 0; : : : ; n�1.We will a
tually need numbers a(k)j (for j = 0; : : : ; n� 1, k = 0; : : : ; n� 2) su
h thatZn+k � n�1Xj=0 a(k)j Zj (mod f(Z)):These numbers are easy to obtain. De�ne an n� n matrix V as follows:V = 2666664 0 0 � � � 0 a01 0 � � � 0 a10 1 � � � 0 a2... ... . . . ... ...0 0 � � � 1 an�1

3777775Then ha(k)0 ; : : : ; a(k)n�1iT = V k [a0; : : : ; an�1℄T = V k+1 [0; : : : ; 0; 1℄T :Finally, we 
an des
ribe the matri
es B0; : : : ; Bn�1. For ea
h i = 0; : : : ; n� 1,Bi = Hankel�Æ0;i; Æ1;i; : : : ; Æn�1;i; a(0)i ; a(1)i ; : : : ; a(n�2)i � :6



(Here, Æi;j is the Krone
ker-Æ symbol.) A straightforward 
omputation reveals that this 
hoi
e forB0; : : : ; Bn�1 satis�es Eq. 1. It is also not hard to show that these matri
es B0; : : : ; Bn�1 are theonly matri
es satisfying Eq. 1, and that ea
h Bi is ne
essarily invertible.Now, sin
e � : GF (q) ! GF (p) is linear and not identi
ally zero, we must have �(x) =Pn�1i=0 �ixi for ea
h x 2 GF (q) for some 
hoi
e of �0; : : : ; �n�1 2 GF (p) (not all 0). At this pointwe see that �(xy) = ~xTM�~y for M� =Pn�1i=0 �iBi. Equivalently, we haveM� = Hankel �0; : : : ; �n�1; n�1Xi=0 �ia(0)i ; : : : ; n�1Xi=0 �ia(n�2)i ! :In the previous theorem, we have ignored the issue of 
ir
uit uniformity. However, it followsfrom the proof that ea
h 
ir
uit for Fq;� 
an be generated in polynomial time under a similarassumption on the 
ir
uits for performing Fp.3 The hidden linear stru
ture problemFor a prime power q, de�ne the hidden linear stru
ture problem over GF (q) as follows. In the
lassi
al version, one is given a bla
k-box that maps (x; y) 2 GF (q) � GF (q) to (x; �(y + sx)),where � is an arbitrary permutation on the elements of GF (q) and s 2 GF (q). Analogously, in thequantum 
ase, one is given a bla
k-box performing the unitary transformation that maps jxijyi(x; y 2 GF (q)) to jxij�(y + sx)i. The goal is to determine the value of s.In this se
tion, we give a sharp quantum vs. 
lassi
al query 
omplexity separation for thehidden linear stru
ture problem. First, in the 
lassi
al 
ase, 
(pq) queries are ne
essary to solvethis problem, even with bounded error. Se
ond, in the quantum 
ase, a single quantum query issuÆ
ient to solve the hidden linear stru
ture problem exa
tly, provided that one 
an 
ompute theQFTs Fq;� and F yq;�. In the 
ase where q = 2n, the QFT 
an be performed exa
tly with onlyO(n2) basi
 operations (Hadamard gates and 
ontrolled-NOT gates). The result is a single-queryexa
t quantum algorithm to extra
t s with O(n2) auxiliary operations. Moreover, in this 
ase thealgorithm 
an be streamlined so as to 
onsist of O(n) Hadamard gates, the single query, and O(n2)
lassi
al post-pro
essing after a measurement is made. In the 
ase where q is an n-bit prime, ourresults are weaker, sin
e the best pro
edure that we are aware for performing the QFT exa
tly inthat 
ase is O(p2 log p) = O(n4n).It should be noted that if the �nite �elds are relaxed to �nite rings then, for the analogoushidden linear stru
ture problem, the quantum vs. 
lassi
al 
lassi
al query 
omplexity separationmay be mu
h weaker. This is be
ause the 
lassi
al query 
omplexity of the problem 
an be
omemu
h smaller. For example, for the ring Z2n, there is a simple 
lassi
al pro
edure solving the hiddenlinear stru
ture problem with only n+1 queries. It begins by querying (0; 0) and (2n�1; 0), yielding�(0) and �(s2n�1) respe
tively. If �(0) = �(s2n�1) then s is even; otherwise s is odd. Thus, twoqueries redu
e the number of possibilities for s by a fa
tor of 2. If s is even then the next queryis (2n�2; 0), yielding �(s2n�2), whi
h determines whether s mod 4 is 0 or 2. If s is odd then thenext query is (2n�2; 2n � 2n�2), yielding �(2n � 2n�2 + s2n�2), whi
h determines whether s mod 4is 1 or 3. This pro
ess 
an be 
ontinued so as to dedu
e s after n + 1 queries. For this reason,our attention is fo
used on the hidden linear stru
ture problem over �elds (though we do 
onsiderQFTs for some non
ommutative rings in the next se
tion).We pro
eed with the 
lassi
al lower bound. 7



Theorem 3 
(pq) queries are ne
essary to solve the hidden linear stru
ture problem over GF (q)within error probability 12 .Proof: The lower bound proof is similar to that for Simon's problem [19℄. First, by a game-theoreti
 argument [20℄, it suÆ
es to 
onsider deterministi
 algorithms where the input data, em-bodied by the values of s and �, is probabilisti
. Set both s 2 GF (q) and � (a permutation onGF (q)) randomly, a

ording to the uniform distribution. Consider the information obtained abouts after k queries (x1; y1); : : : ; (xk; yk) (without loss of generality, the queries are all distin
t). If, forsome i 6= j, the outputs of the ith and jth queries 
ollide in that �(yi + sxi) = �(yj + sxj), thenyi + sxi = yj + sxj, whi
h implies that the value of r 
an be determined ass = yi � yjxj � xi (3)(note that xj � xi 6= 0, sin
e this would imply that (xi; yi) = (xj ; yj)). On the other hand, if thereare no 
ollisions among the outputs of all k queries then all that 
an be dedu
ed about s is thats 6= yi � yjxj � xi (4)for all 1 � i < j � k. This leaves q� k(k� 1)=2 values for s, whi
h are equally likely by symmetry.Now, 
onsider the probability of a 
ollision o

urring at the kth query given that no 
ollisionshave o

urred in the previous k � 1 queries. After the �rst k � 1 queries, there remain at leastq� (k� 1)(k� 2)=2 > q� k2=2 possible values of s, equally likely by symmetry. Of these values, atmost k�1 indu
e a 
ollision between the kth query and one of the k�1 previous queries. Therefore,the probability of a 
ollision o

urring at the kth query is at mostk � 1q � k2=2 � 2k2q � k2 : (5)It follows that the probability of a 
ollision o

urring at all during the �rst l queries is boundedabove by lXk=1 2k2q � k2 � l22q � l2 : (6)If this probability is to be greater than or equal to 1=2 then l2=(2q � l2) � 1=2, whi
h implies thatl �p2q=3 2 
(pq): (7)Next, we des
ribe the quantum algorithm.Theorem 4 For a given �eld GF (q), if Fq;� and F yq;� 
an be performed for some nonzero linearmapping � then a single query is suÆ
ient to solve the hidden linear stru
ture problem exa
tly.Proof: The quantum pro
edure is to initialize the state of two GF (q)-valued registers to j0ij1i(where 0 and 1 are respe
tively the additive and multipli
ative identities of the �eld) and performthe following operations (where F = Fq;�): 8



1. Apply F 
 F y.2. Query the bla
k box.3. Apply F y 
 F .Then the state of the �rst register is measured.Tra
ing through the evolution of the state of the registers during the exe
ution of the abovealgorithm, the state after ea
h step is:1. (F j0i)(F yj1i)2. (F jsi)(U�F yj1i)3. jsi(FU�F yj1i)The transformation from step 1 to step 2 follows from the 
ontrol/target inversion property, asshown in �gure 1. It is 
lear that the output of the algorithm is s.As mentioned previously, the transformation F2n;� for any � is parti
ularly simple, and yieldsthe following algorithm.1. Initialize the state of two GF (2n)-valued registers to the (
lassi
al) state j0ijM�~1i.2. Apply a Hadamard transform to ea
h qubit of ea
h register.3. Query the bla
k-box.4. Apply a Hadamard transform to ea
h qubit of ea
h register.5. Measure the �rst register, yielding an n-bit string z.6. Classi
ally, 
ompute (MT� )�1~z.The result will be s.4 Extension to RingsIt is natural to generalize the 
on
ept of 
ontrolled addition as we have seen it to rings in general.So, one might ask whether, for all rings, there exist operations 
orresponding to \quantum Fouriertransforms" in the sense that they perform 
ontrol/target inversion on 
ontrolled-addition gatesover that ring. While we do not know the answer to this question, we will show that for any
ommutative ring R where su
h a Fourier transform exists, it is possible to de�ne quantum Fouriertransforms for the non
ommutative ring of m�m matri
es over R.Let us introdu
e some notation. In this se
tion, all matri
es are understood to be squarematri
es. Given an m2 array of quantum registers fEijg over a 
ommutative ring R, we asso
iatethe state jxiji with the register Eij. We also identify the m�m matrix X given byX = 26664 x11 x12 : : : x1mx21 x22 : : : x2m... ... . . . ...xm1 xm2 : : : xmm 377759



with the produ
t statejXi = mOi=1 mOj=1 jxiji = jx11ijx12i : : : jx1mijx21i : : : jxmmiof the states of the registers. We then make the following de�nition.De�nition 4.1 Let FR be a quantum Fourier transform over a 
ommutative ring R. Then wede�ne the quantum Fourier transform over Rm�m by the following mapping for ea
h matrix X =(xij) 2 Rm�m: FR;m : jXi 7! mOi=1 mOj=1 FRjxjii:That is, the quantum Fourier transform of jXi is performed by applying the Fourier transform FRindependently to all the quantum registers used to represent X, and transposing those registers (ortheir states) within the register array.Multipli
ation in matrix rings over R will, in general, be non-
ommutative. Therefore, inworking with matri
es, we must distinguish between left and right multipli
ation when de�ningthe 
ontrolled addition operators. We de�ne left-
ontrolled addition with parameter S (denoted byCS�) and right-
ontrolled addition with parameter S (denoted by C�S) by the following a
tion onbasis states: CS� : jXijY i 7! jXijY + SXi C�S : jXijY i 7! jXijY +XSiAs well, we introdu
e left and right 
ontrolled addition operators with the roles of the target and
ontrol registers reversed:DS� : jXijY i 7! jX + SY ijY i D�S : jXijY i 7! jX + Y SijY iAs the order of multipli
ation be
omes important for rings in general, we �nd it reasonable tomake the following expansion of the de�nition of 
ontrol/target inversion: a gate G performs
ontrol/target inversion on 
ontrolled addition gates over a given ring if the following equalityholds: (Gy 
G)CS�(G
Gy) = D�S :That is, in addition to the roles of target and 
ontrol being inter
hanged, the manner of multipli-
ation (left or right) is swit
hed. In the 
ase where the ring is 
ommutative, this redu
es to thede�nition given previously (see Figure 1). We will now show that the quantum Fourier transformFR;m de�ned above has this property for m�m matri
es over R, when FR is de�ned and has the
ontrol/target inversion property on R.For input matri
es X and Y over R, we denotejXi = mOi=1 mOj=1 jxiji jY i = mOi=1 mOj=1 jyijiLet Eij represent the register whi
h stores the state jxiji, and Fij represent the register whi
hstores the state jyiji. De�ne the operator Aijik(s) as a 
ontrolled-ADDs gate whi
h operates on a
ontrol register Eik and a target register Fij , and Bijik(s) as a 
ontrolled-ADDs gate whi
h operates10



on a 
ontrol register Fik and a target register Eij . Then we 
an de
ompose CS� as the followingprodu
t of operators: CS� = mYi=1 mYj=1 mYk=1Aikij (skj)This 
an be easily veri�ed by testing the e�e
t of this produ
t on the ij-th target register, where wesee that the e�e
t (for basis states) is to add the term xikskj for ea
h 1 � k � m. Control/targetinversion is expressed for these gates in the following manner:(FRy
m2 
 FR
m2)Aikij (skj)(FR
m2 
 FRy
m2) = Bikij (skj):Here, the quantum Fourier transforms 
an
el one another out on all registers ex
ept the ij-th targetregister and the ik-th 
ontrol register, where 
ontrol/target inversion o

urs.Using this de
omposition, and applying quantum Fourier transforms to the individual registersbefore and after this produ
t of gates in the same manner as above, we obtain:(FRy
m2 
 FR
m2)CS�(FR
m2 
 FRy
m2)= mYi=1 mYj=1 mYk=1Bikij (skj) = mYi=1 mYk=1 mYj=1Bikij (skj) = mYi=1 mYj=1 mYk=1Bijik(sjk) = DST�That is, the roles of the 
ontrol and target registers are reversed, and although the manner ofmultipli
ation is un
hanged, the parameter matrix S is transposed.Note that the quantum Fourier transform FR;m on m�m matri
es over R 
an be de
omposedinto an appli
ation of FR on ea
h element of the matrix, and transposing the matrix (denoted bythe operator Tm), in any order:FR;m = (FR
m2)Tm = Tm(FR
m2):Clearly, TmTm = Im (the identity m�m matrix). Then, we 
an verify that FR;m performs 
on-trol/target inversion on 
ontrolled addition gates over Rm�m:(F yR;m 
 FR;m)CS�(FR;m 
 F yR;m)jXijY i= (Tm 
 Tm)(F yR
m2 
 FR
m2)CS�(FR
m2 
 F yR
m2)(Tm 
 Tm)jXijY i= (Tm 
 Tm)DST�jXTijY Ti= (Tm 
 Tm)jXT + STY TijY Ti= jX + Y SijY i= D�S jXijY i;whi
h is what we wished to show.As for extending the hidden linear stru
ture problem to arbitrary rings, it is not 
lear forwhi
h rings R an exponential separation 
an be a
hieved. The ability to perform 
ontrol/targetinversion for this problem when R = GF (pn)m�m (for example) indi
ates that the problem 
an11



be solved in one query in the quantum 
ase, but we do not have strong 
lassi
al lower bounds forthis 
ase. However, there do exist rings, su
h as GF (pn)�GF (pn), where exponential separation
an be shown, building on the proof for GF (pn); thus, the strong separation in the 
ase of �nite�elds is not an isolated 
ase. Considering the proofs of the 
lassi
al upper bound for Zpn and lowerbound for GF (pn), it seems plausible that rings exhibiting a strong separation will have very fewzero divisors, or little additive stru
ture among the zero divisors. Both of these statements hold forGF (pn)�GF (pn), whi
h has a ratio of O(1=pn) zero divisors among its elements, and whi
h onlyhas two ideals whi
h have only a trivial interse
tion.A
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