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Abstract

Let Φ be a super-operator, i.e., a linear mapping of the formΦ : L(F) → L(G) for finite dimensional
Hilbert spacesF andG. This paper considers basic properties of the super-operator norms defined by
‖Φ‖q→p = sup{‖Φ(X)‖p/‖X‖q : X 6= 0}, induced by Schatten norms for1 ≤ p, q ≤ ∞. These
super-operator norms arise in various contexts in the studyof quantum information.

In this paper it is proved that ifΦ is completely positive, the value of the supremum in the definition
of ‖Φ‖q→p is achieved by a positive semidefinite operatorX , answering a question recently posed by
King and Ruskai [9]. However, for any choice ofp ∈ [1,∞], there exists a super-operatorΦ that is the
differenceof two completely positive, trace-preserving super-operators such that all HermitianX fail to
achieve the supremum in the definition of‖Φ‖1→p.

Also considered are the properties of the above norms for super-operators tensored with the identity
super-operator. In particular, it is proved that for allp ≥ 2, q ≤ 2, and arbitraryΦ, the norm‖Φ‖q→p

is stable under tensoringΦ with the identity super-operator, meaning that‖Φ‖q→p = ‖Φ ⊗ I‖q→p. For
1 ≤ p < 2, the norm‖Φ‖1→p may fail to be stable with respect to tensoringΦ with the identity super-
operator as just described, but‖Φ ⊗ I‖1→p is stable in this sense forI the identity super-operator on
L(H) for dim(H) = dim(F). This generalizes and simplifies a proof due to Kitaev [10] that established
this fact for the casep = 1.

1 Introduction

Super-operators, which are linear mappings from square matrices to square matrices, play an important
role in quantum information theory. For instance, discretephysical changes in quantum systems, such as
computations and noise, are represented by completely positive trace preserving super-operators. Another
example is the partial transpose, which is a non-positive super-operator that is very important in the theory
of entanglement. This paper concerns basic properties of a class of norms defined on super-operators.

Let F andG be finite-dimensional complex vector spaces, and letL(F ,G) denote the vector space
consisting of all linear mappings fromF to G. We will write L(F) as shorthand forL(F ,F). The space
L(F ,G) is an inner product space with respect to the inner product defined by〈X,Y 〉 = trX∗Y .

For any real numberp ≥ 1, the Schattenp-norm is a norm onL(F) defined by

‖X‖p = (tr |X|p)
1

p
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for everyX ∈ L(F), where|X| =
√
X∗X . Equivalently,‖X‖p is the usualp-norm of the vector of singular

values ofX. Also let
‖X‖∞ = lim

p→∞
‖X‖p,

which is equivalent to the usual operator norm ofX.
The spaceT(F ,G) consists of all super-operatorsΦ of the formΦ : L(F) → L(G). For1 ≤ p, q ≤ ∞,

define the norm‖ · ‖q→p onT(F ,G) as

‖Φ‖q→p = sup
X 6=0

‖Φ(X)‖p

‖X‖q
,

and let‖Φ‖H
q→p be defined similarly, except only taking the supremum over Hermitian operators:

‖Φ‖H
q→p = sup

X=X∗ 6=0

‖Φ(X)‖p

‖X‖q
.

Obviously‖Φ‖H
q→p ≤ ‖Φ‖q→p, and strict inequality may occur for some choices ofΦ, p, andq. The case

whereq = 1 is of particular importance in quantum information theory,and we simply write‖Φ‖p to denote
‖Φ‖1→p.

The above norms, and variants of these norms, arise in different contexts in quantum information the-
ory. For instance, given two completely positive, trace-preserving super-operatorsΦ0 andΦ1, the quantity
‖Φ0 − Φ1‖H

1 represents one way of measuring the distance betweenΦ0 andΦ1. By a simple convexity
argument,

‖Φ0 − Φ1‖H
1 = max{‖Φ0(|ψ〉〈ψ|) − Φ1(|ψ〉〈ψ|)‖1 : ‖|ψ〉‖ = 1},

and so this quantity characterizes the maximum probabilityof distinguishing the outputs ofΦ0 andΦ1 over
all pure state inputs. Kitaev [10] observed that this norm possesses some undesirable properties when used to
characterize distance in this way. In particular, this normis not stable with respect to taking tensor products
with identity super-operators, i.e., there exist choices for completely positive trace-preservingΦ0 andΦ1 for
which

‖Φ0 − Φ1‖H
1 < ‖Φ0 ⊗ I − Φ1 ⊗ I‖H

1 ,

whereI denotes the identity super-operator over some “ancilla” space. Operationally, this implies that
distinguishing super-operatorsΦ0 andΦ1 may become easier if one appliesΦ0 or Φ1 to one part of an
initially entangled bipartite system. To remedy this situation Kitaev defined a stabilized version of the
1-norm as follows:

‖Φ‖♦ = ‖Φ ⊗ I‖1.

HereI denotes the identity super-operator on a space of dimensionequal to that of the input space ofΦ.
TensoringΦ with the identity operator on a larger space cannot increaseits 1-norm. The norm‖ · ‖♦ has
some remarkable properties, and has found use in various contexts such as in the study of quantum circuits,
error correction, and quantum interactive proof systems.

Amosov, Holevo, and Werner [2] considered the quantity‖Φ‖H
p (and other related quantities) of a given

completely positive trace-preserving super-operatorΦ as a measure of its highest output purity, and conjec-
tured that this quantity is multiplicative for completely positiveΦ:

‖Φ ⊗ Ψ‖H
p

?
= ‖Φ‖H

p ‖Ψ‖H
p . (1)
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This conjecture was later refuted by Werner and Holevo [13] for p ≥ 4.79 · · · , but its status for smallerp is
still unknown. The truth of the conjecture (1) forp ∈ [1, 1+ε) for positiveεwould have major consequences
in quantum information theory. In particular, it would imply the strong superadditivity of the entanglement
of formation [3], which is equivalent to three other centraladditivity conjectures in quantum information
theory [12].

Much of the recent work concerning the above conjecture has focused on proving the conjecture for
special classes of completely positive super-operators, such as the case where one of the super-operators
is a depolarizing channel [1], a unital qubit channel [7], oran entanglement-breaking channel [8]. King
and Ruskai [9] proved the above conjecture for the special case ofp = 2 when one of the super-operators
satisfies a certain technical condition that implies multiplicativity for some interesting examples of channels.

Statement of results

Although the above super-operator norms have been considered previously in the context of quantum in-
formation theory, many very basic questions about them haveapparently not been addressed. The purpose
of this paper is to investigate some of these basic questions, and to prove various properties of the norms
‖Φ‖q→p and‖Φ‖H

q→p. The following facts are proved.

1. If Φ is completely positive, the value of the supremum in the definition of ‖Φ‖q→p is achieved by
a positive semidefinite operatorX, and therefore‖Φ‖q→p = ‖Φ‖H

q→p. This holds for all choices of
p, q ∈ [1,∞], answering a question posed by King and Ruskai [9].

2. For any choice ofp ∈ [1,∞], there exists a super-operatorΦ that is the difference of two completely
positive, trace-preserving super-operators such that allHermitianX fail to achieve the supremum in the
definition of ‖Φ‖1→p. Therefore, item 1 does not extend to differences of completely positive super-
operators even for the caseq = 1.

3. For allp ≥ 2, q ≤ 2, and arbitraryΦ, the norm‖Φ‖q→p is stable under tensoringΦ with the identity
super-operator, i.e.,‖Φ‖q→p = ‖Φ ⊗ I‖q→p.

4. For1 ≤ p < 2, the norm‖Φ‖1→p may fail to be stable with respect to tensoringΦ with the identity
super-operator as described in item 3, but‖Φ ⊗ I‖1→p is stable in this sense forI the identity super-
operator onL(H) for dim(H) = dim(F). This generalizes and simplifies a proof of Kitaev [10] that
established this fact for the casep = 1. (Independently, Gilchrist, Langford, and Nielsen [6] have given
a proof of a closely related fact based on a similar principle.)

Included in the conclusion section of the paper are a few questions that may represent helpful challenge
problems for readers interested in learning more about these super-operator norms.

2 Preliminaries

In this section we will briefly discuss some of the notation used in this paper and review some previously
known facts that will be used. The books of Bhatia [4] and Kitaev, Shen, and Vyalyi [11] may be helpful
as general references for the topics discussed in this paper, and may be consulted for proofs of facts not
explicitly referenced.

All vector spaces considered will be assumed to be finite-dimensional vector spaces over the complex
numbers, and this assumption will not be made explicit hereafter. (This is the case of primary interest in
quantum information theory.) Vector spaces will be denotedby scripted letters such asF , G, etc. As already
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mentioned in the introduction, for givenF andG the spacesL(F ,G), L(F), andT(F ,G) are the spaces of
all linear maps fromF to G, from F to itself, and fromL(F) to L(G), respectively. Elements ofT(F ,G)
will be referred to as super-operators.

A super-operatorΦ ∈ T(F ,G) is positive if Φ(X) is positive semidefinite wheneverX is positive
semidefinite, and is completely positive ifΦ ⊗ IL(H) ∈ T(F ⊗H,G ⊗ H) is positive for all choices of the
spaceH. Here,IL(H) denotes the identity super-operator mappingL(H) to itself. (The identity operator
fromF to itself is denotedIF .) It is known thatΦ ∈ T(F ,G) is completely positive if and only if there exist
mappingsA1, . . . , AN ∈ L(F ,G) for someN ∈ N such thatΦ(X) =

∑N
i=1AiXA

∗
i for all X ∈ L(F).

An arbitrary super-operatorΦ ∈ T(F ,G) can be expressed asΦ(X) =
∑N

i=1AiXB
∗
i for all X ∈ L(F)

for some choice ofA1, . . . , AN , B1, . . . , BN ∈ L(F ,G) for someN ∈ N. In both cases one may take
N = dim(F) · dim(G) without loss of generality.

Recall that the singular value decomposition implies that for anyA ∈ L(F ,G) of rankr, it is possible
to construct orthonormal sets{|u1〉, . . . , |ur 〉} ⊂ F and{|v1〉, . . . , |vr 〉} ⊂ G, and positive real numbers
s1, . . . , sr, that satisfy

A =

r
∑

i=1

si|vi〉〈ui |.

It is typical to order the singular values in decreasing order: s1 ≥ s2 ≥ · · · ≥ sr > 0. The sum may also
be taken over a larger range and zero included as a singular value when it is notationally convenient. The
singular value decomposition may be applied to a bipartite quantum state in a similar way, although it is
typically called the Schmidt decomposition in this context—for any |ψ〉 ∈ G ⊗ F , one may write

|ψ〉 =
r

∑

i=1

si|vi〉|ui〉

for {|u1〉, . . . , |ur 〉} ⊂ F , {|v1〉, . . . , |vr 〉} ⊂ G, ands1, . . . , sr precisely as above.
The Schattenp-norm ofA satisfies‖A‖p = (sp

1 + · · · + sp
r)1/p for 1 ≤ p < ∞ and‖A‖∞ = s1. It

follows that‖A‖p ≤ ‖A‖q wheneverp ≥ q. The norms‖ · ‖1, ‖ · ‖2, and‖ · ‖∞ are commonly called the
trace norm, the Frobenius norm, and the operator norm, and are alternately denoted‖ · ‖tr, ‖ · ‖F , and‖ · ‖.
In this paper, however, we will simply write‖ · ‖p for whatever value ofp is appropriate.

For a givenp ∈ [1,∞], let p∗ ∈ [1,∞] be defined by the equation

1

p
+

1

p∗
= 1.

It is the case that
‖X‖p = sup{|〈Y,X〉| : Y ∈ L(F), ‖Y ‖p∗ = 1} (2)

for everyX ∈ L(F). A related fact is that ifX,Y ∈ L(F) are any two operators andp ∈ [1,∞], then

|〈X,Y 〉| ≤ ‖X‖p ‖Y ‖p∗ .

Suppose
X =

∑

i,j

Xi,j ⊗ |i〉〈j |.

Up to a permutation of rows and columns,X may be viewed as a block matrix with blocksXi,j . Then for
p ∈ [1, 2] we have

∑

i,j

‖Xi,j‖2
p ≤ ‖X‖2

p

4



and forp ∈ [2,∞] we have

‖X‖2
p ≤

∑

i,j

‖Xi,j‖2
p.

This fact was proved by Bhatia and Kattaneh [5].
The norms‖Φ‖q→p, ‖Φ‖p = ‖Φ‖1→p, ‖Φ‖H

q→p, and‖Φ‖H
p = ‖Φ‖H

1→p of Φ ∈ T(F ,G), for any
choice ofp, q ∈ [1,∞], have been defined in the introduction. The singular value decomposition along with
convexity of norms implies that for an arbitrary super-operatorΦ ∈ T(F ,G), the value‖Φ‖p is achieved by
‖Φ(|u〉〈v|)‖p for some choice of unit vectors|u〉, |v〉 ∈ F . Using the spectral decomposition in place of
the singular value decomposition, we have

‖Φ‖H
p = ‖Φ(|u〉〈u|)‖H

p

for some unit vector|u〉 ∈ F .
For spacesF , G, andH, and any completely positive super-operatorΦ ∈ T(F ,G), it holds that

‖Φ‖H
p = ‖Φ ⊗ IL(H)‖H

p

for all p ∈ [1,∞]. This fact was proved by Amosov, Holevo, and Werner [2].

3 Hermitian super-operator norms

This section focuses on the difference between‖Φ‖q→p and‖Φ‖H
q→p for different classes of super-operators

Φ. It is obvious that without any restrictions onΦ, the quantities‖Φ‖q→p and‖Φ‖H
q→p can differ signif-

icantly. For instance, letF andG be two-dimensional spaces both having standard basis{|0〉, |1〉}, and
let

Φ(X) = |0〉〈0|X|1〉〈0|.
Then‖Φ‖q→p = 1 (for all choices ofp, q ∈ [1,∞]), while ‖Φ‖H

q→p = 2−1/q < 1 for q < ∞. Forq = ∞,
consider

Φ(X) =
1

2
|0〉〈0|X|0〉〈0| +

i

2
|0〉〈1|X|1〉〈0|.

Then‖Φ‖∞→p = 1 while ‖Φ‖H
∞→p = 1/

√
2 (for all p ∈ [1,∞]).

King and Ruskai [9] raised the question of whether a strict inequality‖Φ‖H
q→p < ‖Φ‖q→p may occur for

some choice ofp, q ∈ [1,∞] whenΦ is completely positive. We prove that this is not possible.

Theorem 1 LetΦ ∈ T(F ,G) be completely positive. Then for allp, q ∈ [1,∞],

‖Φ‖q→p = ‖Φ‖H
q→p.

The following lemma establishes an inequality from which this theorem will follow.

Lemma 2 LetA1, . . . , AN , B1, . . . , BN ∈ L(F ,G) be linear mappings and letΦ ∈ T(F ,G) be given by

Φ(X) =

N
∑

i=1

AiXB
∗
i
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for all X ∈ L(F). DefineΦL,ΦR ∈ T(F ,G) as

ΦL(X) =

N
∑

i=1

AiXA
∗
i , ΦR(X) =

N
∑

i=1

BiXB
∗
i .

Then
‖Φ‖q→p ≤

√

‖ΦL‖H
q→p

√

‖ΦR‖H
q→p

for any choice ofp, q ∈ [1,∞].

Proof. LetX ∈ L(F) andY ∈ L(G) satisfy‖X‖q = ‖Y ‖p∗ = 1, and let

X =

n
∑

i=1

si|ui〉〈vi | and Y =

m
∑

j=1

tj|wj 〉〈xj |

be singular value decompositions ofX andY . LetXL,XR ∈ L(F) andYL, YR ∈ L(G) be defined as

XL =

n
∑

i=1

si|ui〉〈ui |, XR =

n
∑

i=1

si|vi〉〈vi |, YL =

m
∑

i=1

ti|wi〉〈wi |, YR =

m
∑

i=1

ti|xi〉〈xi |.

Equivalently,XL =
√
XX∗, XR =

√
X∗X, YL =

√
Y Y ∗, andYR =

√
Y ∗Y . Each of these operators is

positive semidefinite. AsX,XL, andXR share the same singular valuess1, . . . , sn, we have

‖XL‖q = ‖XR‖q = ‖X‖q = 1,

and similarly
‖YL‖p∗ = ‖YR‖p∗ = ‖Y ‖p∗ = 1.

Now,

|〈Y,Φ(X)〉| =

∣

∣

∣

∣

∣

∣

n
∑

i=1

m
∑

j=1

N
∑

k=1

sitj〈wj |Ak |ui〉〈vi |B∗
k |xj 〉

∣

∣

∣

∣

∣

∣

≤

√

√

√

√

n
∑

i=1

m
∑

j=1

N
∑

k=1

sitj |〈wj |Ak |ui〉|2
√

√

√

√

n
∑

i=1

m
∑

j=1

N
∑

k=1

sitj |〈xj |Bk |vi〉|2

=
√

〈YL,ΦL(XL)〉
√

〈YR,ΦR(XR)〉

≤
√

‖ΦL‖H
q→p

√

‖ΦR‖H
q→p.

The first inequality follows from the Cauchy-Schwarz inequality, and the second follows from Eq. 2 along
with the fact thatXL andXR are Hermitian. Taking the supremum over all choices ofX andY with
‖X‖q = ‖Y ‖p∗ = 1 proves the lemma.

It should be noted thatΦL and ΦR as defined in the previous lemma may depend on the choice of
A1, . . . , AN andB1, . . . , BN for a givenΦ, and so they are not well-defined given onlyΦ.

Proof of Theorem 1. As Φ is completely positive, we may writeΦ(X) =
∑N

i=1AiXA
∗
i for some choice

of A1, . . . , AN ∈ L(F ,G). We then haveΦL = ΦR = Φ, and so‖Φ‖q→p ≤ ‖Φ‖H
q→p by Lemma 2.
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The previous theorem suggests the following question: under what conditions onΦ does it hold that
‖Φ‖q→p = ‖Φ‖H

q→p? For example, ifΦ is the difference of two completely positive super-operators, is it
necessary that‖Φ‖q→p = ‖Φ‖H

q→p? We prove that this is not a sufficient condition. Our counter-examples
are restricted to the case whereq = 1.

Proposition 3 For any choice ofp ∈ [1,∞] there exist completely positive trace-preserving super-operators
Φ0,Φ1 ∈ T(F ,G) such that

‖Φ0 − Φ1‖H
p < ‖Φ0 − Φ1‖p .

Proof. For1 < p ≤ ∞, the proposition is quite straightforward. LetF andG both have dimension 2, letΦ0

be the identity super-operator, and letΦ1 be defined byΦ1(X) = tr(X)
2 I. For any unit vector|ψ〉 ∈ F ,

Φ(|ψ〉〈ψ|) = Φ0(|ψ〉〈ψ|) − Φ1(|ψ〉〈ψ|) = |ψ〉〈ψ| − 1

2
I

has two singular values both equal to 1/2, and thus‖Φ‖H
p = 21/p/2 < 1. However, for orthogonal unit

vectors|ψ〉 and|φ〉, Φ(|ψ〉〈φ|) = |ψ〉〈φ|, which implies‖Φ‖p = 1.
For p = 1 our counter-example is slightly more complicated. LetF be a space of dimension 2

and letG be a space of dimension 4. The standard bases of these spaces will be written {|0〉, |1〉} and
{|0〉, |1〉, |2〉, |3〉}, respectively. Define unit vectors|+〉, |−〉 ∈ F as

|+〉 =
1√
2
|0〉 +

1√
2
|1〉

|−〉 =
1√
2
|0〉 − 1√

2
|1〉,

and defineΦ0,Φ1 ∈ T(F ,G) by

Φ0(X) =
1

2
(|0〉〈0|X|0〉〈0| + |1〉〈+|X|+〉〈1| + |2〉〈1|X|1〉〈2| + |3〉〈−|X|−〉〈3|) ,

Φ1(X) =
1

2
(|0〉〈1|X|1〉〈0| + |1〉〈−|X|−〉〈1| + |2〉〈0|X|0〉〈2| + |3〉〈+|X|+〉〈3|)

for eachX ∈ L(F). It is evident thatΦ0 andΦ1 are completely positive and trace-preserving. Finally, let
Φ = Φ0 − Φ1.

For any unit vector|ψ〉 ∈ F we have

Φ(|ψ〉〈ψ|) =
1

2

(

|〈0|ψ〉|2 − |〈1|ψ〉|2
)

|0〉〈0| + 1

2

(

|〈+|ψ〉|2 − |〈−|ψ〉|2
)

|1〉〈1|

+
1

2

(

|〈1|ψ〉|2 − |〈0|ψ〉|2
)

|2〉〈2| + 1

2

(

|〈−|ψ〉|2 − |〈−|ψ〉|2
)

|3〉〈3|,

and thus
‖Φ(|ψ〉〈ψ|)‖1 =

∣

∣|〈0|ψ〉|2 − |〈1|ψ〉|2
∣

∣ +
∣

∣|〈+|ψ〉|2 − |〈−|ψ〉|2
∣

∣ .

No choice of a unit vector|ψ〉 ∈ F can simultaneously satisfy both
∣

∣|〈0|ψ〉|2 − |〈1|ψ〉|2
∣

∣ = 1 and
∣

∣|〈+|ψ〉|2 − |〈−|ψ〉|2
∣

∣ = 1, which implies‖Φ(|ψ〉〈ψ|)‖1 < 2. However, if we define

| �〉 =
1√
2
|0〉 +

i√
2
|1〉

| 	〉 =
1√
2
|0〉 − i√

2
|1〉
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and consider

Φ(| �〉〈	 |) =
1

2
|0〉〈0| + i

2
|1〉〈1| − 1

2
|2〉〈2| − i

2
|3〉〈3|,

then we see that‖Φ(| �〉〈	 |)‖1 = 2. This implies‖Φ‖H
1 < ‖Φ‖1 as claimed.

4 Stabilizations of super-operator norms

In this section we consider norms of super-operators tensored with the identity super-operator. Suppose
Φ ∈ T(F ,G) is an arbitrary super-operator, andH is a vector space with dimension at least 2. Forp ∈ [1, 2)
it may happen that‖Φ‖p < ‖Φ⊗ IL(H)‖p. In particular, forF andH spaces of dimensionn andT ∈ L(F)
representing matrix transposition with respect to any orthonormal basis ofF , we have‖T‖p = 1 while

‖T ⊗ IL(H)‖p =
n2/p

n
> 1.

For p ≥ 2, however, this phenomenon does not occur. More generally, this statement holds for any choice
of q ≤ 2 in place ofq = 1.

Theorem 4 Let F , G, andH be finite dimensional spaces and letΦ ∈ T(F ,G) be an arbitrary super-
operator. Then forp ≥ 2 andq ≤ 2,

‖Φ‖q→p = ‖Φ ⊗ IL(H)‖q→p.

Proof. It suffices to prove that‖Φ‖q→p ≥ ‖Φ ⊗ IL(H)‖q→p, as the reverse inequality is straightforward.
Recall thatp∗ is defined by the equation1/p + 1/p∗ = 1, which implies thatp∗ ≤ 2.

LetX ∈ L(F ⊗H) andY ∈ L(G ⊗H) satisfy‖X‖q = ‖Y ‖p∗ = 1. Write

X =

k
∑

i,j=1

Xi,j ⊗ |i〉〈j | and Y =

k
∑

i,j=1

Yi,j ⊗ |i〉〈j |

for k = dim(H) andXi,j ∈ L(G), Yi,j ∈ L(F) for 1 ≤ i, j ≤ k. As p∗, q ∈ [1, 2] we have
∑

i,j

‖Xi,j‖2
q ≤ ‖X‖2

q = 1 and
∑

i,j

‖Yi,j‖2
p∗ ≤ ‖Y ‖2

p∗ = 1

as noted in Section 2. Now,

∣

∣〈Y, (Φ ⊗ IL(H))(X)〉
∣

∣ =

∣

∣

∣

∣

∣

∣

∑

i,j

〈Yi,j,Φ(Xi,j)〉

∣

∣

∣

∣

∣

∣

≤
∑

i,j

‖Yi,j‖p∗‖Φ(Xi,j)‖p

≤ ‖Φ‖q→p

∑

i,j

‖Yi,j‖p∗‖Xi,j‖q

≤ ‖Φ‖q→p

√

∑

i,j

‖Yi,j‖2
p∗

√

∑

i,j

‖Xi,j‖2
q

≤ ‖Φ‖q→p.
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Taking the supremum over allY with ‖Y ‖p∗ = 1 establishes that‖(Φ ⊗ IL(H))(X)‖p ≤ ‖Φ‖q→p for all X
with ‖X‖q = 1, and thus‖Φ ⊗ IL(H)‖q→p ≤ ‖Φ‖q→p as required.

Although the previous theorem is not true in the casep < 2 andq = 1, there is a limit to the possible
increase as the dimension ofH increases. In particular, the increase cannot continue after the dimension
of H reaches that of the input spaceF . Kitaev [10] proved this fact for the casep = 1. The next theorem
generalizes this fact to allp. (Of course this fact follows trivially from Theorem 4 forp ≥ 2, but the proof
works for arbitraryp.)

Theorem 5 LetF , G, H, andK be finite-dimensional spaces withdim(H) ≥ dim(K) = dim(F), and let
Φ ∈ T(F ,G) be an arbitrary super-operator. Then for allp ∈ [1,∞],

‖Φ ⊗ IL(H)‖p = ‖Φ ⊗ IL(K)‖p and ‖Φ ⊗ IL(H)‖H
p = ‖Φ ⊗ IL(K)‖H

p .

Proof. We have that
‖Φ ⊗ IL(H)‖p = ‖(Φ ⊗ IL(H))(|u〉〈v|)‖p

for some choice of unit vectors|u〉, |v〉 ∈ F ⊗H. Fix such a choice of|u〉 and|v〉, and let

|u〉 =

n
∑

i=1

si|wi〉|yi〉 and |v〉 =

n
∑

i=1

ti|xi〉|zi〉

be Schmidt decompositions of|u〉 and|v〉, wheren = dim(F) = dim(K). Then

(Φ ⊗ IL(H))(|u〉〈v|) =
∑

i,j

sitjΦ(|wi〉〈xj |) ⊗ |yi〉〈zj |.

Let {|i〉 : i = 1, . . . , n} represent an orthonormal basis ofK and defineU, V ∈ L(H,K) as

U =

n
∑

i=1

|i〉〈yi | and V =

n
∑

i=1

|i〉〈zi |.

The mappingsU∗U andV ∗V are projections onto the spaces spanned by|y1〉, . . . , |yn〉 and|z1〉, . . . , |zn〉,
respectively. It therefore follows that‖U‖∞ = ‖V ‖∞ = 1 and thatI ⊗ U∗U andI ⊗ V ∗V act trivially on
|u〉 and|v〉, respectively. We then have

‖Φ ⊗ IL(K)‖p ≥
∥

∥(Φ ⊗ IL(K))((I ⊗ U)|u〉〈v|(I ⊗ V ∗))
∥

∥

p

≥
∥

∥(I ⊗ U∗)(Φ ⊗ IL(K))((I ⊗ U)|u〉〈v|(I ⊗ V ∗))(I ⊗ V )
∥

∥

p

=
∥

∥(Φ ⊗ IL(H))((I ⊗ U∗U)|u〉〈v|(I ⊗ V ∗V ))
∥

∥

p

=
∥

∥(Φ ⊗ IL(H))(|u〉〈v|)
∥

∥

p

= ‖Φ ⊗ IL(H)‖p.

To prove‖Φ ⊗ IL(H)‖H
p = ‖Φ ⊗ IL(K)‖H

p , the same argument applies, using the additional assumption
|u〉 = |v〉 (and thereforeU = V ).
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5 Conclusion

The purpose of this paper has been to investigate super-operator norms induced by Schatten norms, and to
establish some basic properties of these norms. Possible applications of these facts have not been considered
in this paper, but the study of these norms is justifiable given their connections to fundamental open problems
in quantum information theory. We conclude with some questions about these norms that may be helpful
stimulating further research on this topic.

1. For an arbitrary super-operatorΦ ∈ T(F ,G) and an arbitrary spaceH, we have

‖Φ ⊗ IL(H)‖2
p ≤ ‖ΦL‖p ‖ΦR‖p,

whereΦL andΦR satisfy the conditions of Lemma 2. Forp = 1 anddim(H) ≥ dim(F) it in fact holds
that

‖Φ ⊗ IL(H)‖2
1 = inf{‖ΦL‖1‖ΦR‖1},

where the infimum is over all possibleΦL andΦR satisfying the required conditions. (This follows by
an alternate characterization of the‖ · ‖♦ norm proved by Kitaev [10].) Does this fact hold for any (or
all) values ofp > 1?

2. We have proved that ifΦ ∈ T(F ,G) anddim(H) ≥ dim(F), then

‖Φ ⊗ IL(H)‖p = ‖Φ ⊗ IL(F)‖p.

Is it the case that
‖Φ ⊗ IL(H)‖q→p = ‖Φ ⊗ IL(F)‖q→p

for 1 ≤ q ≤ p? This equality is not true in general forq > p.

3. If Φ ∈ T(F ,G) is completely positive, then‖Φ‖p = ‖Φ ⊗ I‖p for I the identity super-operator on an
arbitrary space. Does this hold for‖Φ‖q→p versus‖Φ ⊗ I‖q→p for 1 ≤ q ≤ p? Forq ≤ 2 andp ≥ 2
we have shown that this holds (even without the completely positive condition), while again equality is
easily seen not to be true forq > p.
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