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Abstract

Let ® be a super-operator, i.e., a linear mapping of the férni.(F) — L(G) for finite dimensional
Hilbert spacesF andG. This paper considers basic properties of the super-aperatms defined by
|1P]lq—p = sup{||2(X)|,/IIX|lq : X # 0}, induced by Schatten norms for< p,q < oco. These
super-operator norms arise in various contexts in the stidyantum information.

In this paper it is proved that b is completely positive, the value of the supremum in the dtefim
of ||®||,—p is achieved by a positive semidefinite operatbranswering a question recently posed by
King and Ruskai [9]. However, for any choice pfe [1, oo, there exists a super-operatbthat is the
differenceof two completely positive, trace-preserving super-ofmsasuch that all HermitiaX fail to
achieve the supremum in the definition|d@||, .

Also considered are the properties of the above norms farsojperators tensored with the identity
super-operator. In particular, it is proved that foralk 2, ¢ < 2, and arbitrary®, the norm||®||,—.,,
is stable under tensoring with the identity super-operator, meaning thét|,—, = ||® ® I|/;—,. For
1 < p < 2, the norm||®|,_,, may fail to be stable with respect to tensoribgvith the identity super-
operator as just described, Hi ® I||:—,, is stable in this sense fdrthe identity super-operator on
L(H) for dim(H) = dim(F). This generalizes and simplifies a proof due to Kitaev [18} #stablished
this fact for the casp = 1.

1 Introduction

Super-operators, which are linear mappings from squareigestto square matrices, play an important
role in quantum information theory. For instance, discpgtgsical changes in quantum systems, such as
computations and noise, are represented by completelyiygosace preserving super-operators. Another
example is the partial transpose, which is a non-positiyeisoperator that is very important in the theory
of entanglement. This paper concerns basic propertieslata of norms defined on super-operators.

Let 7 and G be finite-dimensional complex vector spaces, and.lgf,G) denote the vector space
consisting of all linear mappings froti to G. We will write L(F) as shorthand foL(F, F). The space
L(F,G) is an inner product space with respect to the inner proddateteby (X, Y) = tr XY

For any real numbep > 1, the Schattemp-norm is a norm of.(F) defined by

1
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foreveryX e L(F), where|X| = v X*X. Equivalently,||X]|,, is the usuap-norm of the vector of singular
values ofX. Also let
X0 = lim |1

which is equivalent to the usual operator normof
The spacél'(F, G) consists of all super-operatogsof the form® : L(F) — L(G). Forl < p,q < o0,
define the nornj - ||,—, onT(F,G) as

[2(X)]lp
| @|q—p = sSUP ——,
P s 11Xl

and let||®||’Z, be defined similarly, except only taking the supremum oventitéan operators:

q—p
[2(X)]|
|@|f,, = sup Tp-
x=x-20 [ Xllq

Obviously||®||,, < ||®]|,—p, and strict inequality may occur for some choicesbof, andq. The case
whereg = 1 is of particular importance in quantum information theanyd we simply writg|®||,, to denote
[@]1-p-

The above norms, and variants of these norms, arise in @liffarontexts in quantum information the-
ory. For instance, given two completely positive, tracesgrving super-operatotls, and®,, the quantity
|®o — @11 represents one way of measuring the distance betwgeand ®;. By a simple convexity

argument,

1@ — @1[l" = max{||@o(|¥)(¢]) — L1(l¥) (D1 = )] =1},

and so this quantity characterizes the maximum probalwfigistinguishing the outputs @, and®, over
all pure state inputs. Kitaev [10] observed that this norssesses some undesirable properties when used to
characterize distance in this way. In particular, this n@mot stable with respect to taking tensor products
with identity super-operators, i.e., there exist choiaesdbmpletely positive trace-preservidg and® for
which

[ — @1 < [|@0 @1 — &y @ I,

where I denotes the identity super-operator over some “ancillaicep Operationally, this implies that
distinguishing super-operatos, and ®; may become easier if one appliés or ®; to one part of an
initially entangled bipartite system. To remedy this ditoa Kitaev defined a stabilized version of the
1-norm as follows:

[@llo = [|® @ I

Here I denotes the identity super-operator on a space of dimemrsjoal to that of the input space &f
Tensoring® with the identity operator on a larger space cannot incrégasenorm. The nornj| - || has
some remarkable properties, and has found use in variousxtsrsuch as in the study of quantum circuits,
error correction, and quantum interactive proof systems.

Amosov, Holevo, and Werner [2] considered the quarjwf (and other related quantities) of a given
completely positive trace-preserving super-operét@s a measure of its highest output purity, and conjec-
tured that this quantity is multiplicative for completelggitive ®:

?
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This conjecture was later refuted by Werner and Holevo [@Bpf> 4.79 - - -, but its status for smalleris
still unknown. The truth of the conjecture (1) forc [1, 1+¢) for positives would have major consequences
in qguantum information theory. In particular, it would ingghe strong superadditivity of the entanglement
of formation [3], which is equivalent to three other centdditivity conjectures in quantum information
theory [12].

Much of the recent work concerning the above conjecture basskd on proving the conjecture for
special classes of completely positive super-operators) as the case where one of the super-operators
is a depolarizing channel [1], a unital qubit channel [7],aor entanglement-breaking channel [8]. King
and Ruskai [9] proved the above conjecture for the specisd ofp = 2 when one of the super-operators
satisfies a certain technical condition that implies mlittigivity for some interesting examples of channels.

Statement of results

Although the above super-operator norms have been coadigeeviously in the context of quantum in-
formation theory, many very basic questions about them haparently not been addressed. The purpose
of this paper is to investigate some of these basic questansto prove various properties of the norms

|®||q—p and||® || . The following facts are proved.

1. If ® is completely positive, the value of the supremum in the defim of |®|/,—, iS achieved by
a positive semidefinite operatdf, and thereforg|®||,—, = ||®||Z.,. This holds for all choices of
p,q € [1, 0], answering a question posed by King and Ruskai [9].

2. For any choice op € [1, o], there exists a super-operatbrthat is the difference of two completely
positive, trace-preserving super-operators such th&tathnitian X fail to achieve the supremum in the
definition of || ®||;_.,. Therefore, item 1 does not extend to differences of coralyigiositive super-
operators even for the cage= 1.

3. Forallp > 2, ¢ < 2, and arbitrary®, the norm||®||,_.,, is stable under tensoring with the identity
super-operator, i.el|®|;—p = [|® @ I||g—p-

4. Forl < p < 2, the norm||®||;_,, may fail to be stable with respect to tensorigwith the identity
super-operator as described in item 3, piit® I||;_., is stable in this sense fdrthe identity super-
operator orL(H) for dim(H) = dim(F). This generalizes and simplifies a proof of Kitaev [10] that
established this fact for the cage= 1. (Independently, Gilchrist, Langford, and Nielsen [6] @aiven
a proof of a closely related fact based on a similar princjiple

Included in the conclusion section of the paper are a fewtouesthat may represent helpful challenge
problems for readers interested in learning more abouetbgger-operator norms.

2 Preliminaries

In this section we will briefly discuss some of the notatioedign this paper and review some previously
known facts that will be used. The books of Bhatia [4] and &#itaShen, and Vyalyi [11] may be helpful
as general references for the topics discussed in this papgmmay be consulted for proofs of facts not
explicitly referenced.

All vector spaces considered will be assumed to be finiteedsional vector spaces over the complex
numbers, and this assumption will not be made explicit Haea(This is the case of primary interest in
guantum information theory.) Vector spaces will be dendgdcripted letters such &, G, etc. As already
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mentioned in the introduction, for givef andg the space&.(F,G), L(F), andT(F, G) are the spaces of
all linear maps from to G, from F to itself, and fromL(F) to L(G), respectively. Elements & (F,G)
will be referred to as super-operators.

A super-operatod € T(F,G) is positive if ®(X) is positive semidefinite wheneve¥ is positive
semidefinite, and is completely positivelif® I, € T(F ® H,G ® H) is positive for all choices of the
spacel. Here, I1,3 denotes the identity super-operator mappiri@?) to itself. (The identity operator
from F to itself is denoted £.) It is known thatd € T(F,G) is completely positive if and only if there exist
mappingsA, ..., Ay € L(F,G) for someN e N such thatb(X) = S A; X A* for all X € L(F).
An arbitrary super-operatob € T(F,G) can be expressed 8§ .X) = Zf\il A; X B} forall X € L(F)
for some choice of4,,..., Ay, B1,...,By € L(F,G) for someN < N. In both cases one may take
N = dim(F) - dim(G) without loss of generality.

Recall that the singular value decomposition implies tbaahy A € L(F,G) of rankr, it is possible
to construct orthonormal sef$u, ), ..., |u,)} C Fand{|v1),...,|v.)} C G, and positive real numbers
$1,- .-, 8, that satisfy

A= silvi) (uil.
=1

It is typical to order the singular values in decreasing arde > s > --- > s, > 0. The sum may also
be taken over a larger range and zero included as a singuisg wden it is notationally convenient. The
singular value decomposition may be applied to a bipartitentum state in a similar way, although it is
typically called the Schmidt decomposition in this contefor any ) € G ® F, one may write

lY) = ZSH%HUD
=1
for {|uy),...,|u.)} C F,{|lv1),...,|v.)} C G, andsy,...,s, precisely as above.

The Schattep-norm of A satisfies| Al|, = (s} + -+ + sP)/P for 1 < p < oo and || Ao = s1. It
follows that || A||, < ||Al|; wheneverp > ¢. The normg| - ||1, || - ||2, and|| - || are commonly called the
trace norm, the Frobenius norm, and the operator norm, anali@rnately denotefl- |, || - | =, and|| - ||.
In this paper, however, we will simply writ- ||, for whatever value o is appropriate.

For a giverp € [1, o], letp* € [1, oo] be defined by the equation

1
p P
It is the case that
[ X|lp = sup{[(Y, X)[ : ¥ € L(F), [Y]p» =1} )

for every X € L(F). Arelated fact is that ifX, Y € L(F) are any two operators ande [1, oo}, then
(X V) < 1X ]l Y

p*:
Suppose
X =Y Xi; @il
]

Up to a permutation of rows and columns,may be viewed as a block matrix with block§ ;. Then for
p € [1,2] we have

> 1Xigl7 < IXI1
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and forp € [2, oo] we have
X165 < > 11Xl
i\
This fact was proved by Bhatia and Kattaneh [5].

The norms||®[|;—p, @[, = [|®]i—p, [|2])",, and || @[} = [|@[|{", of & € T(F,G), for any
choice ofp, ¢ € [1, o], have been defined in the introduction. The singular valeem@osition along with
convexity of norms implies that for an arbitrary super-aper® < T(F, G), the valug|®||,, is achieved by
|®(Ju)(v|)||, for some choice of unit vectots), |v) € F. Using the spectral decomposition in place of
the singular value decomposition, we have

DY = (1D (|u)(ul)[1E

for some unit vectofu) € F.
For spacesF, G, andH, and any completely positive super-operatoe T(F, G), it holds that

@) = 12 @ Il

for all p € [1, oc]. This fact was proved by Amosov, Holevo, and Werner [2].

3 Hermitian super-operator norms

This section focuses on the difference betwgeh,_.,, and||®||Z,  for different classes of super-operators

. It is obvious that without any restrictions dn the quantitieg|®||,—, and ||®[|Z,  can differ signif-
icantly. For instance, leF andG be two-dimensional spaces both having standard Ha8js|1)}, and
let

@(X) = [0){0]X[1)(0].

Then||®||,—, = 1 (for all choices ofp, q € [1, oc]), while [ @[, = 271/4 < 1 for ¢ < co. Forg = oo,
consider

B(X) = 510)(01X10){0] + £]0){1]X[1) 0]

Then||®||oo—p = 1 while ||| =1/v/2 (for all p € [1, 0]).
King and Ruskai [9] raised the question of whether a strietjirality |||, < [|®]|,—, may occur for

some choice 0p, ¢ € [1, oo] when® is completely positive. We prove that this is not possible.

Theorem 1 Let® € T(F,G) be completely positive. Then for allg € [1, oo,

12]lg—p = @],
The following lemma establishes an inequality from whicis theorem will follow.

Lemma2 LetA,,..., Ay, Bi,...,By € L(F,G) be linear mappings and l& € T(F,G) be given by

N
O(X) =) AXB]
=1
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forall X € L(F). Define®, ®r € T(F,G) as
N N
OL(X) =) AiXA;, ®p(X)=) BXB
i=1 1=1

Then

[@llg—p < IR,/ I1RIL,
for any choice op, ¢ € [1, o¢].

Proof. Let X € L(F) andY € L(G) satisfy|| X ||, = ||Y]|, = 1, and let

X:ZSZ‘UZ><UZ’ and Y:th]wj>(wj\
i=1 j=1
be singular value decompositions &fandY'. Let X1, Xr € L(F) andYz, Yr € L(G) be defined as

n n

m m
Xp =Y siluid(wil, Xp=> silvi)(vil, Yo=Y tilw)(wil, Yo=Y tilx;){x].

i=1 i=1 i=1 i=1

Equivalently, X; = vXX*, Xgr = vVX*X, Y, = VYY" andYz = VY*Y. Each of these operators is
positive semidefinite. AX, X, and X share the same singular valuss. . ., s,, we have

IX2llq = 1 XRllg = [ X1lg = 1,

and similarly
1Yz

p* = HYR

p* = ”Y”p* =1L
Now,

n

m N
(Y, @(X))| = ZZZSitj<wj\Ak\ui>(Ui!B;}k\xj>

i=1 j=1 k=1

n m

n m N N
J DD D st <%’A’“W>QJ > DD sity agl Belvi)

IN

i=1 j=1 k=1 i=1 j=1 k=1

= VYL, 2L(XL)V/ (YR, ®r(XR))
< V1oLl /Ierli,.

The first inequality follows from the Cauchy-Schwarz indiyaand the second follows from Eq. 2 along
with the fact thatX; and Xr are Hermitian. Taking the supremum over all choicesXoaind Y with
| X|lq = [|Y ]|, = 1 proves the lemma. |

It should be noted thab; and ®r as defined in the previous lemma may depend on the choice of
Aq,..., Ay andBy,..., By for a given®, and so they are not well-defined given odly

Proof of Theorem 1. As @ is completely positive, we may write(X) = Zf\il A; X A} for some choice
of Ay,..., Ax € L(F,G). We then haved;, = & = ®, and s0|®|,—, < ||®||ZL,, by Lemma 2. |

q—p
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The previous theorem suggests the following question: undiat conditions or does it hold that
|®|lg—p = \|<I>||q_)p For example, ifb is the difference of two completely positive super-opestds it
necessary thai®||,—, = ||<I>\|q_)p We prove that this is not a sufficient condition. Our coustamples
are restricted to the case where- 1.

Proposition 3 For any choice op € [1, o] there exist completely positive trace-preserving sugesrators
P, P, € T(F,G) such that
1@ — @1l < [[o — D1l -

Proof. For1 < p < oo, the proposition is quite straightforward. LEtandg both have dimension 2, Idi,
be the identity super-operator, and det be defined by, (X) = @I. For any unit vectofy)) € F,

211 = o) (1) — a9} () = [9) (W] — 5T

has two singular values both equal to 1/2, and tﬁmﬂf = 21/P/2 < 1. However, for orthogonal unit
vectors| ) and|6), @ (|v)(¢]) = |¥)(¢|, which implies|| ®||, = 1.

For p = 1 our counter-example is slightly more complicated. Ztbe a space of dimension 2
and letG be a space of dimension 4. The standard bases of these spiides written {|0),|1)} and
{10),11),]2),|3)}, respectively. Define unit vectots-), |—) € F as

1 1
|+) = :7§|0>'+ ;7§|1>

1 1
|—) ::;7§|0>“;7§|1%

and definedg, ®; € T(]-" G) by
@0(X) =  (10) (01X]0)0] + [1)(+X|+) (1] + [2){1[X[1) (2] +[3)(~|X|-)(3])

©1(X) = 5 (0)(LXJO] + [1) (= |X] =) (L] + [2)(0]X|0) (2] + [3)(+|X|+)(3])

[\>|)—~l\Dl

for eachX € L(F). Itis evident thatb, and®; are completely positive and trace-preserving. Finally, le
b =Py — Py.
For any unit vectofy) € F we have

() (w]) = 5 (10[¥)* = [(1]w)[?) [0)(0] +
(ICL[)* = [(0l)[?) 2)(2] +

({12 = (=) ) [1)(1]
({1 = (= 1)?) 13)(3],

l\'>|P—‘l\3|>—\
N o =

and thus
12w} DI = [019) = KLDIP| + [+ = K= [9)P].
No choice of a unit vectoty)) € F can simultaneously satisfy bot(0[)|* — [(1|¢)*| = 1 and
[[{(+]1)]? = [{(=[¥)|*| = 1, which implies||®(|1)(«[) ||y < 2. However, if we define
0
f’ )+ \f\ )

f|> \f|>

| 0) =

| O) =



and consider ) _ ) ‘
(| O)(O ) = 510)(0] + 511)(1] - 512)(2] - 513)(3],

then we see thatd (| ©)(O |)||; = 2. This implies||®||! < ||®|; as claimed. |

4 Stabilizations of super-operator norms

In this section we consider norms of super-operators tedswith the identity super-operator. Suppose
® € T(F,G) is an arbitrary super-operator, akflis a vector space with dimension at least 2. fer[1,2)
it may happen that®||, < ||® ® Ir,)|l,- In particular, forF andH spaces of dimension and7" € L(F)
representing matrix transposition with respect to anyatiimal basis ofF, we have||T'||, = 1 while
n2/p
I1T @ I llp = —— > 1

Forp > 2, however, this phenomenon does not occur. More generhifystatement holds for any choice
of ¢ < 2in place ofg = 1.

Theorem 4 Let F, G, and’H be finite dimensional spaces and {ete T(F,G) be an arbitrary super-
operator. Then fop > 2 andq < 2,

H(I)”q—m = H(I) ® [L(H)”q—m'

Proof. It suffices to prove thaf®([,—, > [|® @ I1,3)llq—p, @s the reverse inequality is straightforward.
Recall thaty* is defined by the equatiotyp + 1/p* = 1, which implies thap* < 2.
LetX € L(F @ H) andY € L(G ® H) satisfy|| X ||, = [|Y||,» = 1. Write

k k
X=3 Xijeli(jl and Y =73 Yi;i)|
i,j=1 i,j=1

for k = dim(H) andX; ; € L(G), Y;; € L(F) for1 <i,j < k. Asp*, ¢ € [1,2] we have
S IXil2 < IX[2=1 and Y (Vi3 < Y)2 =1
,J ,J

as noted in Section 2. Now,

(Y, (® @ Ip,0))(X))| = Z (Vi ®(Xiy))

i?j

< S Wil (X2 )

i’j
< N1@llg—p Y 1¥isllp 11X 50l

4J
2 [ 1%
0,

<1 @llg—p, |11y
ij
< [19]lg—p-



Taking the supremum over aif with ||Y[|,- = 1 establishes thal(® © I1,))(X)|l, < [|®]|4—, for all X
with [ X |, = 1, and thug|® @ I1,3)llq—p < ||®]|4—p @S required. n

Although the previous theorem is not true in the case 2 andg = 1, there is a limit to the possible
increase as the dimension Hf increases. In particular, the increase cannot contings #fe dimension
of H reaches that of the input spage Kitaev [10] proved this fact for the cage= 1. The next theorem
generalizes this fact to gll. (Of course this fact follows trivially from Theorem 4 fpr> 2, but the proof
works for arbitraryp.)

Theorem 5 Let F, G, H, and K be finite-dimensional spaces witfm(#) > dim(K) = dim(F), and let
® € T(F,G) be an arbitrary super-operator. Then for alle [1, oo],

12 @ Illy = 12 © Il and (1@ @ Iyl = 19 @ gl

Proof. We have that
12 @ I llp = 1@ @ Iy (lu) (vl
for some choice of unit vectotts), |v) € F ® H. Fix such a choice ofu) and|v), and let

n

|u) :Zsi\wiﬂy, and |v) Zt |zi)|2i)

i=1
be Schmidt decompositions pf) and|v), wheren = dim(F) = dim(K). Then

(@ @ I (3) ) (Ju) (v Zsty (lwi){z;]) © yi) (2]

7]

Let{]i) : i =1,...,n} represent an orthonormal basistofand defind/, V' € L(H, K) as

U=>_li)u| and V=3 i)zl
1=1 =1

The mapping€/*U andV*V are projections onto the spaces spannefyby. . .., |y,) and|z1),...,|zn),
respectively. It therefore follows thiU|| = ||V ||cc = 1 and that/ @ U*U andI @ V*V act trivially on
|u) and|v), respectively. We then have
1© @ Iy llp = [[(@ @ I (L @ U)|u) (oI @ V)|

> [T @U@ & I (T U)u)(|(I @ V)T @ V)|,

= |(® @ I ) (I @ U*U)|u><v|([ @ VV),

= [[(® @ I (lu) (D],

= ||® @ I Hp'

To prove||® @ Iy ||F = ||® @ Iyl the same argument applies, using the additional assumptio

|u) = |v) (and thereford/ = V). |



5 Conclusion

The purpose of this paper has been to investigate supeatoperorms induced by Schatten norms, and to
establish some basic properties of these norms. Possiliieatpns of these facts have not been considered
in this paper, but the study of these norms is justifiablergiteir connections to fundamental open problems
in quantum information theory. We conclude with some qoestiabout these norms that may be helpful

stimulating further research on this topic.

1. For an arbitrary super-operatbre T(F,G) and an arbitrary spacd, we have
12 ® Il < 2Ll 19kl

where®;, and®  satisfy the conditions of Lemma 2. Fpr= 1 anddim(#) > dim(F) it in fact holds
that

1© @ Iy lIF = mf{l|@ll1]|® R},

where the infimum is over all possibie;, and® i satisfying the required conditions. (This follows by
an alternate characterization of tfe ||, norm proved by Kitaev [10].) Does this fact hold for any (or
all) values ofp > 1?

2. We have proved that # € T(F,G) anddim(H) > dim(F), then

1D @ I llp = 12 @ Iner llp-

Is it the case that
1D @ I lg—p = |2 @ Ir7)llg—p
for 1 < ¢ < p? This equality is not true in general for> p.

3. If & € T(F,G) is completely positive, thefi®|, = ||® ® I||, for I the identity super-operator on an
arbitrary space. Does this hold fp||,—., versus||® ® I||,—, for 1 < ¢ < p? Forg < 2 andp > 2
we have shown that this holds (even without the completesjtive condition), while again equality is
easily seen not to be true for> p.
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