On the Complexity of Simulating Space-Bounded
Quantum Computations

John Watrous
Department of Computer Science
University of Calgary
Calgary, Alberta, Canada

February 2, 2004

Abstract

This paper studies the space-complexity of predicting the long-term behavior of a class of
stochastic processes based on evolutions and measurements of quantum mechanical systems.
These processes generalize a wide range of both quantum and classical space-bounded compu-
tations, including unbounded error computations given by machines having algebraic number
transition amplitudes or probabilities. It is proved that any space s quantum stochastic process
from this class can be simulated probabilistically with unbounded error in space O(s), and
therefore deterministically in space O(s?).

1 Introduction

Let s be a space-constructible function that satisfies s(n) € Q(logn). Savitch’s Theorem [Sav70]
gives the following relation between deterministic and nondeterministic space-bounded classes:

NSPACE(s) C DSPACE(s?);

a quadratic increase in space compensates for any advantage of nondeterministic computation
over deterministic computation. A similar relation holds if nondeterministic computation is re-
placed with probabilistic computation, even if the probabilistic computation has unbounded error

and no restrictions on running time [BCP83), [[un85]. Specifically,
PrSPACE(s) € DSPACE(s?).

One expects the same sort of relation to hold when probabilistic computation is replaced by quan-
tum computation, and proving this fact for the most general class of space-bounded quantum
computations possible is the purpose of this paper.

A quantum computational analogue of the above relation was proved for a restricted class
of quantum computations in [Wat99]. The restrictions on the sorts of quantum computations for
which the relation was proved can be informally stated as follows: (i) the measurements permitted
in the quantum computations were of a restricted type, and (ii) all transition amplitudes of the
machine performing the quantum computation were required to be rational numbers.

The first of these restrictions is a somewhat artificial restriction. Unlike the time-bounded set-
ting in which general measurements can be efficiently simulated by machines allowing only very
restricted measurements [AKNOS], the effect of such restrictions in the space-bounded case are

not well-understood. For instance, it is not even known whether quantum machines can simu-
late ordinary probabilistic Turing machines in the presence of such restrictions for bounded-error
computations. These restrictions are completely removed in this paper—our results hold for the
most general type of measurements permitted by the standard model of quantum information.

The second restriction is relaxed to allow any algebraic number amplitudes. The primary mo-
tivation for extending the above result to quantum machines with algebraic number amplitudes
rather than just rational amplitudes is that algebraic amplitudes arise naturally in many quan-
tum algorithms, so to restrict amplitudes to be rational seems unnatural. For example, one of the
simplest and most commonly used quantum operations is the Hadamard transform, which gives
transition amplitudes +1/+1/2. While it has been shown that restricting amplitudes to be rational
as opposed to algebraic numbers has no effect in the case of polynomial-time bounded-error com-
putations [ADHO97], no such result is known to hold for space-bounded quantum computations.
The problem one encounters when trying to apply the methodology used in the time-bounded
case to the space-bounded case is that accurate approximations of algebraic numbers would need
to be obtained using very limited space. This problem of obtaining sufficiently accurate approxi-
mations of algebraic numbers in limited space is not solved in this paper; informally speaking, we
will use probabilistic approximations of algebraic numbers to circumvent this problem.

A second reason for considering algebraic transition amplitudes is simply that it is an interest-
ing complexity-theoretic question to consider the effect of the choice of amplitudes or probabilities
on the computational power of quantum or probabilistic machines. It is well-known that allowing
uncomputable numbers as amplitudes or probabilities can allow quantum or probabilistic ma-
chines to decide uncomputable languages. What is the effect on computational power for other
choices of amplitudes or probabilities? For example, suppose that « is a real, algebraic number
contained in the interval [0, 1], and suppose L, is a language that depends in some way on «. It is
not unreasonable to imagine that giving a probabilistic Turing machine access to a coin that comes
up heads with probability precisely a could allow the language L, to be decided more efficiently
than with just a fair coin, particularly in the unbounded error setting. For the case of algebraic am-
plitudes/probabilities and unbounded-error space-bounded computations, however, our results
imply that no advantage can be gained in this way.

Stated in its most general form, the main result of this paper concerns the complexity of sim-
ulating a specific type of stochastic process called a selective quantum process. Quantum com-
putations arising from space-bounded quantum Turing machines and bounded-width quantum
circuits (subject to certain uniformity conditions) are special cases of selective quantum processes.
In order to demonstrate how the main result may be applied, we will consider a variant of the
quantum Turing machine model that allows measurements during its computation. The specific
way we choose to define quantum Turing machines in this paper can be viewed as a hybrid of the
quantum Turing machine and quantum circuit models; this model will be discussed informally in
this section and formalized later in Section 2.3

Our quantum Turing machines can be viewed as ordinary classical Turing machines aug-
mented with a quantum tape (whose squares contain qubits) along with an internal quantum
register of finite size. The classical part of the machine functions as an ordinary Turing machine,
but in addition determines the quantum operations performed on the qubits in the internal quan-
tum register and on the quantum tape. The position of the tape head that scans the quantum tape
will be classical, so the effect of the computation on the quantum tape is similar to the action of
a quantum circuit on a collection of qubits. The quantum operations may produce measurement
results that are visible to the classical part of the machine and may influence its future actions. We
assume the classical finite state control includes an accepting and a rejecting state that determines
the outcome of the computation.

The quantum operations performed by a quantum Turing machine can be described by collec-
tions of matrices in a standard way known as the operator-sum representation. We will discuss
this representation in detail in Section Our Turing machines will be restricted to performing
only those quantum transformations that can be described in this way by matrices whose entries
are algebraic numbers. (This is what is meant by saying that the machine has algebraic transition
amplitudes.)

For any space-bound s we will define a complexity class PrQSPACE, (s) as follows. A lan-
guage L is in PrQSPACE, (s) if and only if there exists a quantum Turing machine as described
above that, on each input x, visits at most O(s(|x|)) tape squares on its work tape and on its qubit
tape, and operates as follows: if x € L, then the machine accepts with probability strictly larger
than 1/2, while if x ¢ L the machine accepts with probability at most 1/2. (Similar to the defi-
nition of quantum Turing machines, a more formal definition of this class appears in Section Z3])
The following theorem is obtained.

Theorem 1. For any space-constructible function s(n) € Q(logn), we have
PrQSPACEp (s) = PrSPACE(s).

Corollary 2. For any space-constructible function s(n) € Q(logn), we have
PrQSPACE (s) C DSPACE(s?).

The main techniques used in this paper have been developed in previous papers on classical
space-bounded computation [[AO96, [un85]]. In particular we rely on the theory of GapL
functions, which were first defined by [AQ96] as a logarithmic space variant of the GapP functions
of [EFK94]. GapL functions will allow us to indirectly perform computations on matrices that
govern the quantum computations or quantum processes being considered in a space-efficient
manner. GapP functions were used in this way in the quantum setting by [FR99]. Properties of
GapL functions are also exploited to handle algebraic transition amplitudes. It is shown that any
real algebraic number can be efficiently approximated by a ratio of GapL functions, which allows
the algebraic amplitudes to be incorporated into the general method.

The remainder of this paper is organized as follows. In Section@we discuss relevant facts from
classical space-bounded complexity and quantum information. This section includes a definition
of selective quantum processes and a more formal discussion of the quantum Turing machine
model described above. Section Bl is devoted to proving that real algebraic numbers can be ap-
proximated by ratios of GapL functions. In Section Hl this fact is used to prove a technical lemma
that abstracts the problem of simulating space-bounded quantum processes to a problem con-
cerning infinite series of matrix powers. This lemma is then applied in Section Bl to the problem of
simulating selective quantum processes. Finally, in Section @ these results are applied to the quan-
tum Turing machine model we define in order to obtain Theorem [l We conclude with Section[Z
which briefly mentions some possible directions for further research on space-bounded quantum
computation.

2 Definitions and Background Information

2.1 Space-bounded complexity and GapL functions

In this section we review some facts concerning space-bounded complexity. It is assumed the
reader is already familiar with deterministic, nondeterministic, and probabilistic Turing machines,

3

and with the basics of space-bounded computation. However, we will take a moment to re-
view particular definitions for deterministic, nondeterministic, and probabilistic Turing machines,
which will serve to make our assumptions more precise and to help illustrate the relation of our
definition of quantum Turing machines to classical Turing machines. For background information
on space-bounded computation, we suggest the survey paper of [Sak96].

We will be primarily concerned with Turing machines that test membership in languages, as
opposed to Turing machines that compute functions. For the moment let us restrict our attention
to Turing machines that test language membership. Such Turing machines will have two tapes:
a read only input tape and a read/write work tape, both two-way infinite. (When we discuss
quantum Turing machines later in Section L3 there will be an additional quantum tape.) Let
2 denote the input alphabet and I' the work tape alphabet for a given Turing machine, and let
Q denote the set of internal states. The blank symbol # is assumed to not be included in the
input and work tape alphabets. The initial state is g;,;, and there are two special halting states
Gacer Grej € Q\{qinit } that indicate acceptance and rejection of the computation, respectively.

The transition function of a deterministic Turing machine has the form

8 (Q\{duce, G }) x (ZU{#}) x (TU{#}) — Q x (TU{#}) x {~1,0,+1}?
while the transition function of a nondeterministic or probabilistic Turing machine has the form

8+ (Q\{4uce, drej}) x (ZU{#}) x (TU{#}) — P (Qx (TU{#}) x {~1,0,+1})

(where P(-) denotes the power set). For the nondeterministic and probabilistic cases, it is required
that [6(s,o, T)| € {1,2}. The interpretations of such transition functions is the usual one. In the
nondeterministic case the restriction |6(s, o, T)| € {1,2} means that either one or two nondeter-
ministic choices is available at each step, and in the probabilistic case it means that transition
probabilities are restricted to be in the set {1/2,1}.

A Turing machine M runs in space s if the following conditions hold for every computation
path of the computation on every input string x € ¥*.

1. The input tape head never leaves the region contained inclusively between the tape square
immediately preceding the first input symbol and the tape square immediately following
the last input symbol.

2. The work tape head never moves to the left of its initial position and moves fewer than s(|x|)
squares to the right of its initial location. (This implies that the total number of work tape
squares visited is at most s(|x|).)

It should be mentioned that in the probabilistic case this definition of space-usage is problem-
atic when studying non-space-constructible space bounds; see [Gil77] for further details. We
will only be concerned with space bounds s that are space-constructible, and moreover satisfy
s(n) € Q(logn).

Definition 3. A language L is in DSPACE(s) if and only if there exists a deterministic Turing
machine M running in space O(s) that accepts every input string x € L and does not accept any
input string x & L.

A language L is in NSPACE(s) if and only if there exists a nondeterministic Turing machine
M running in space O(s) that satisfies the following. For every input string x € L there exists a
computation path of M on input x leading to acceptance, and for every input string x ¢ L there
are no computation paths of M on x leading to acceptance.

A language L is in PrSPACE(s) if and only if there exists a probabilistic Turing machine M
running in space O(s) that satisfies the following. For every input string x € L the probability that
M accepts x is greater than 1/2, and for every input string x ¢ L the probability that M accepts x
is at most 1/2.

The following abbreviations are used for classes based on logarithmic space-bounds:

L = DSPACE(log),
NL = NSPACE(log),
PL = PrSPACE(log).

In the previous definition no restrictions have been placed on whether or not M halts along
all computation paths; rejection and running forever are equivalent for the purposes of this def-
inition. However, these particular classes are robust in this sense, meaning that one can impose
the additional constraint that M has no infinite computation paths on any input without changing
the classes. This is not necessarily the case for all space-bounded classes—see [Sak96] for a further
discussion of this issue.

As mentioned above, one may also consider Turing machines that compute functions as op-
posed to testing language membership. In this case, the machine is equipped with an additional
output tape that is one-way infinite, write-only, and whose tape head may not move left. It will
only be necessary for us to consider a very restricted type of such machines: they will be deter-
ministic, have output alphabet {0,1}, and run in logarithmic space. The output is interpreted
as a nonnegative integer written in binary, and the output tape does not contribute to the space-
usage of the machine. A function f : ¥* — IN = {0,1,2,...} is said to be in FL if there exists a
deterministic Turing machine that halts on all inputs and outputs f(x) on input x for all x € £*.

Next we briefly review the notion of counting complexity, which has its origins in the work
of [VaI79] and has had several applications in complexity theory, including in quantum comput-
ing [FGHP99, [FR99]. For further information on counting complexity, see the survey of [[Far97].
Counting complexity was applied to space-bounded computation in [AO96].

Consider a nondeterministic Turing machine M running in logarithmic space. On each input x
there is some number of computation paths that lead to accepting configurations and some num-
ber of paths that lead to rejecting configurations. Denote these numbers by #M(x) and #M(x),
respectively. For the purposes of the following definition we restrict our attention to nondeter-
ministic machines having a finite number of computation paths on every input. (Equivalently we
may say that #M(x) is undefined if M has infinitely accepting paths on input x, and similar for
#M(x) and the number of rejecting paths.)

Definition 4. A function f : £* — Z is a GapL function (f € GapL) if and only if there exists a
logarithmic space nondeterministic Turing machine M such that f(x) = #M(x) — #M(x) for every
input x.

The following theorem was proved by [AO96].

Theorem 5. Let L C X*. Then L € PL ifand only if there exists f € GapL such that x € L < f(x) >0
for every x € X*.

Other space-bounded complexity classes can be characterized in terms of GapL functions in a
similar way, but we will only need the GapL characterization of PL in this paper.

One of the attractive features of the class of GapL functions is that it possesses strong closure
properties, which can be very helpful for showing that certain problems are contained in PL (or
other complexity classes characterized by GapL functions).

5

Theorem 6. Let f € GapL, let ¢ € FL, and let p be an integer polynomial. Define functions a, b, and c as
follows:

p(lx)) p(lx])
o) = f3), b=) fod) and e =[] feui)

Then a, b, and c are in GapL.

Note that any integer function computable in logarithmic space is therefore necessarily a GapL
function: FL C GapL.

Remark 7. In Theorem[fl and elsewhere in this paper, two standard conventions are being applied:
(i) the number i is encoded as a string using binary notation, and (ii) f(x,i) is shorthand for
f((x,i)), where (-,-) is any standard pairing function suitable for discussing logarithmic space
bounded computations. A similar convention is applied whenever a GapL function takes more
than two input strings.

Finally, the following theorem due to [AAMO03]], which establishes a close relationship between
GapL functions and the determinant function, will be a key fact for our main result.

Theorem 8. Let f € GapL and let p be a positive integer polynomialﬂ For each x € X* let A(x) be a
p(|x]) x p(|x|) matrix defined as A(x)[i,]] = f(x,i,]), and define g(x) = det(A(x)). Then g§ € GapL.

2.2 Selective quantum processes

In this section we state the definition of selective quantum processes that will be used throughout
the paper. For background on quantum information see, for instance, and [NC00]. Our
definition of selective quantum operations is implicit in [BDET98]] and [NC97].

Suppose that we have a finite set S that we associate with the classical states of a given system.
For example, in the case of quantum circuits the set S may be the set of all 0-1 assignments to the
wires at some particular level in the circuit, while in the case of quantum Turing machines S may
be the set of all configurations of the machine subject to some given space-bound. Quantum states
of such a system are represented by density matrices, which are positive semidefinite matrices in
C>*5 having unit trace. We will denote the set of all such density matrices by D(C5*%).

A selective quantum operation is a mapping that takes as input a density matrix p € D(C>*%)
and outputs a probability distribution over pairs of the form (7, p;), where 7 is a symbol from
some alphabet A and p; € D(C°*%). We refer to T as the classical output of the operation; this
may be the result of some measurement performed on p, but this is not the most general situation.
In order to be physically realizable (in an idealized sense), a selective quantum operation £ must
be described by a collection

{Ar,kZTEA,lgkgm}gCSxS

(where m is an arbitrary positive integer) that satisfies the constraint

) f At A =1 (1)

TeA k=1

1By a positive integer polynomial we mean an integer polynomial p such that p(1) is a positive integer for every
nonnegative integer 7.

To such a collection of matrices we associate a function p, : D(C°*%) — [0,1] and a (partial)
function ®; : D(C>*%) — D(C%*%) as follows:

p<(p) = Tr(Z AT,kPAi,k>
k=1

1 m
P - A ipAr,.
T(p) PT(P) k:Z:l KOk

(In case p(p) = 0, P(p) is undefined.) Now, on input p, the output of the selective quantum
operation £ described by {A.x : T € A, 1 < k < m} is defined to be (7, ®.(p)) with probability
pr(p) for each T € A. The constraint[[limplies that 0 < p(p) and }_; p-(p) = 1 for any density
matrix p, and furthermore that each ®.(p) is a density matrix whenever p-(p) > 0.

It will be helpful to also associate with { A, } a function ¥ for each T € A as follows:

m
Ye(p) = Z AT,kPAi,k'
k=1

Each ¥ (p) is just an unnormalized version of ®(p), i.e., a positive semidefinite matrix whose
trace may be less than 1. It will simplify matters when calculating unconditional probabilities to
consider these functions.

Finally, a selective quantum process is a stochastic process {R1, Ry, ...}, where each R; is a ran-
dom object (taking values in A) whose values correspond to the classical outputs of a selective
quantum operation. Specifically, a selective quantum operation £ and an initial density matrix
Pinit induce a selective quantum process {R1, Ry, ...} as follows: for each n and each sequence
(t1,...,Tn) € A", the probability that Ry, ..., R, take values 73, . . ., T, is the probability that, if the
selective quantum operation £ is iterated n times given initial state p;,;, the resulting classical out-
puts will be Ty, ..., T,. The probability that R, takes a particular value 7,, depends on the values
taken by Ry, ..., R,_1 in the following way:

Pr [Rn = Tn’Rl =17,...,Ry_1 = Tnfl] = Pz, (q)'rn_l ©---0 q)T1 (Pinit)) .
Equivalently, we have

Pr[Ri =11,..., Ry =Ty = Tr(¥, 0+ - - 0 ¥y (Pinit))-

2.3 Space-bounded quantum Turing machines

In this section we define a variant of the quantum Turing machine model that allows measure-
ments and other non-unitary quantum operations to be performed during a computation, and is
appropriate for studying space-bounded computation. This model was described informally in
Section[ll The model we define is different from previously defined quantum Turing machines,
and is perhaps more accurately viewed as a hybrid between the quantum Turing machine model
and the quantum circuit model. The main purpose of defining this model is to illustrate how the
main technical results of this paper concerning simulation of selective quantum processes apply
to a specific machine model.

A quantum Turing machine will essentially be a classical, deterministic Turing machine (hav-
ing a read-only input tape and a read /write work tape), along with a quantum tape and a finite
internal quantum register. The quantum tape squares each store one qubit. (One could of course

consider higher-dimensional quantum systems instead of qubits, but for simplicity we will re-
strict the quantum tape to contain qubits.) In addition to having a classical internal state, a quan-
tum Turing machine will have a special measurement register, which is to be viewed as being
classical—this register will store results of measurements of the quantum part of the machine.

Each step of a quantum Turing machine will consist of two phases: a quantum phase and a
classical phase. In the quantum phase, some selective quantum operation is applied to the qubits
in the internal quantum register together with the qubit being scanned on the quantum tape. This
selective quantum operation will produce a classical output that is written to the measurement
register, with the previous contents being overwritten. The second phase is the classical phase,
which functions essentially as for an ordinary deterministic Turing machine. The contents of the
measurement register may influence the machine’s behavior in the classical phase. All movement
of tape heads occurs in the classical phase, so the positions of all tape heads, including the quan-
tum tape head, are classical.

More formally, a quantum Turing machine M is specified as follows. First, M has a finite set
of internal (classical) states Q, an input tape alphabet %, and a work tape alphabet I'. In addition
there is some set A of possible states of the measurement register, with the elements of A coinciding
with the possible outputs of the selective quantum operations performed during the computation.
As in the case of classical Turing machines, there are two halting states g,.c and g,,;; contained in
Q, as well as an initial state. The quantum phase of each step is determined by a collection

{€1q € Q}

of selective quantum operations indexed by the states of M, with the particular operation per-
formed on a given step being the one indexed by the internal state g of the machine at that instant.
Each operation &; acts on K + 1 qubits, where K is some fixed number representing the number
of qubits in the internal quantum register. As stated above, the output alphabet of all of these
operations is A. The classical phase of each step is determined by a transition function é having
the form

0+ (Q\{Gace, Grej}) ¥ (EU{#}) x (TU{#}) x A — Qx (TU{#}) x {~1,0,+1}°

The interpretation of the transition function is as follows. Suppose at some instant the internal
state of M is g, the symbols being scanned on the input tape and the work tape are ¢ € ¥ and
rt € I, respectively, and the measurement register contains T € A. Let

(g, 7', dy,dp,d3) = 6(q,0,7, 7).

Then the machine executes the following actions: (i) change the internal state to g, (ii) write 77’ on
the work tape, and (iii) move the input tape head, work tape head, and qubit tape head according
to di, dp, and d3, respectively. Thus, the classical phase works just like an ordinary deterministic
Turing machine, except that the contents of the measurement register can influence the action
taken.

The initial configuration of a quantum Turing machine is as follows. The input tape head is
scanning the blank tape square immediately to the left of the first input symbol, the work tape
contains all blanks, and each qubit on the qubit tape is in the zero state. (Because the work tape
and qubit tape are two-way infinite, the starting location of the heads on these tapes is relative
and need not be specified.) The internal state of the machine is the initial state, and similar to
the quantum tape the K qubits in the internal quantum register are set to the zero state. The
symbol in the measurement register is some arbitrarily chosen element of A. (This choice does not

affect the computation, as this symbol is immediately overwritten by the first quantum operation.
However, we wish to have a well-defined initial configuration of any quantum Turing machine,
which includes the contents of the measurement register, so it is necessary to make this arbitrary
choice.)

The space required for a quantum Turing machine computation is defined similarly to the
classical case. (The quantum tape head location is classical, and therefore requires no special
consideration when defining space-usage.) A quantum Turing machine M runs in space s if the
following holds for every input string x € X*:

1. The input tape head never leaves the region contained inclusively between the tape square
immediately preceding the first input symbol and the tape square immediately following
the last input symbol.

2. The work tape head never moves to the left of its initial position and moves fewer than s(|x|)
squares to the right of its initial location.

3. The quantum tape head never moves to the left of its initial position and moves fewer than
s(|x|) squares to the right of its initial location.

Definition 9. A language A C X* is in PrQSPACEp, (s) if and only if there exists a quantum Turing
machine M running in space O(s) that satisfies the following conditions: (i) for each x € £*, M
accepts x with probability exceeding 1/2 if and only if x € A, and (ii) all selective quantum
operations of M are algebraic (i.e., have operator-sum representations consisting of matrices of
algebraic numbers).

3 GapL approximable numbers

In this section we define a class of numbers that can be efficiently approximated by ratios of GapL
functions, and show that this class includes all real algebraic numbers.

Definition 10. Let « € R. We say « is GapL approximable if there exist f, ¢ € GapL such that for all
n > 0 we have g(1") # 0 and
‘f (1*)
)

g(1"

Theorem 11. Let « be any real algebraic number. Then « is GapL approximable.

—al <27

The main idea of the proof of this theorem is to use Newton’s Method. The proof relies on the
following lemma.

Lemma 12. Let ug and uy be bivariate integer polynomials and let ag and ay be integers. Then there exists
f € GapL such that

f(ln,c) _ { Ue (f (1[11/21,0),]6(1(;1/2],1)) n> 2

ac n=1
foralln > 0and c € {0,1}.

Proof. We will define a logarithmic space nondeterministic Turing machine M such that
f(1%,¢) = #M;(1",c) —#M;(1",)

9

satisfies the recurrence in the statement of the lemma.
Write

uc(x,y) = Z ucli,]-xiyj.

0<i,j<d

To simplify the presentation of My, we define M, and M,;; for c € {0,1}, 0 < i,j < d to be
nondeterministic Turing machines that take no input and satisfy

#M, —#M. = a. and #M.;;j —#M;j = uc;;.
The execution of My is as follows.
DESCRIPTION OF My
Input: (17, ¢c).

1. k<« [logn].

2. z+ 1L

3. Call procedure P on input c.

4. If z =1 then accept, otherwise reject.

Procedure P

Input: c.

5. Ifk =0 then

6 Simulate M.. If M, rejects then z «+ —z.

7. else

8. Guessi,j € {0,...,d}.

9. Simulate M,,;;. If M,,; ; rejects then z « —z.
10. k«—k—1.

11. Repeat i times: Call procedure P on input 0.

12. Repeat j times: Call procedure P on input 1.
13. k—k+1.

The variables k and z are global, while i, j, and any auxiliary variables needed by procedure P are
local. As i, j, and all required auxiliary variables are constant in size, My will need to store only a
constant amount of information for each level of the recursion. As the recursion will have depth
at most logarithmic in 1, M requires space O(log 1) to implement the recursion. Because each of
the machines M. and M, ;; require only constant space, it follows that My may be taken to run in
space O(logn).

Now let us analyze the computation of M. Each execution of procedure P causes the com-
putation of My to branch along several computation paths, each path having the effect of either
leaving z unchanged or replacing z with —z. Let v (k, ¢) denote the number of computation paths
induced by calling P on input ¢ and global value k that leave z unchanged, let 7~ (k, ¢) denote the
number of computation paths induced by calling P on input ¢ and global value k that result in z
being replaced by —z, and define r(k,c) = r*(k,c¢) —r~(k,c). Note that we have

#M(1",c) —#M;(1",c) = r([logn],c).
As [log[n/2]] = [logn] — 1 for any integer n > 2, it remains to prove that the function r obeys

the recurrence
k—1,0),r(k—1,1 k>1
o) — { (1= 1,0)r(k = 11) k2
ac k=0.

10

In case k = 0, procedure P on input ¢ induces #M, computation paths that do not modify z and
#M, paths that replace z with —z, and thus 7(0,c) = a.. Now suppose k > 1 and assume as an
inductive hypothesis that the number of paths induced by P on input b that do not change z (re-
place z with —z) when k is replaced by k — 1 is described by r* (k — 1,b) (r— (k — 1, b), respectively)
for each b € {0,1}. For each pair i,j that may be guessed (on line number 8), it follows from
the binomial theorem that the number of computation paths induced by the remaining portion of
P(c) that have the effect of leaving z unchanged minus the number of paths that replace z by —z
is given by uc;;r(k —1,0)" r(k — 1,1)/. We therefore conclude that

¢) =Y ugjr(k—1,0)r(k—1,1) = uc(r(k—1,0),r(k—1,1))
i

for k > 1, which completes the proof. O

Proof. Proof of Theorem [Tl Clearly 0 is GapL approximable, so consider the case & # 0. Let

p(x) = pax’ + -+ po

be an integer polynomial such that p(a) = 0, and assume without loss of generality that « is not a
zero of the derivative of p, i.e., p'(a) # 0.

Lemma [[2 will allow us to use Newton’s Method to approximate « by GapL functions. We
have that there exist positive constants ¢ and K, where ¢ and ¢K are at most 1/2, such that for
xo € (x —¢,a+¢) and
p(xi)

p'(x)’

X1 = Xk —

the inequality
[tk — af < Kl —af?

is satisfied for all k > 0. Thus we have
|xe — | < 22

for every k > 0.
Define

d
ug(x,y) = Z(J—l)px]y

d

ur(x,y) = Y jpid tytt,
] 1

and note that
w(x,y) _x plx/y)

m(xy) vy px/y)
Letag,a; € Z, a1 # 0, be such that |« — ag/a;1| < ¢. By Lemma[[2 there exists f € GapL such that

fa210)
arny) e e (fie)

am2L1)) - famL) (L

AT

£%,0) uo(£(117,0), f
F5D) ~ w(fA2T,0), f

11

forn >2,and f(1,0)/f(1,1) = ag/a;. Consequently

]

ey | <2 <2

for every n > 1. We may now define g,/ € GapL that satisfy

sy = { S0 721

ag n=>0
and 17,1 >1
h1") = { £§ . Z;o,
so that (1"
‘h(l”) —a| <27
for all n > 0. Therefore we have that « is GapL approximable. O

4 A matrix problem in probabilistic logspace

The purpose of this section is to state and prove Lemma [[4 which states that a particular matrix
problem can be solved in PL. In the section following this one, this problem is related to the
problem of simulating logarithmic-space quantum computations.

We start this section by defining a class of families of matrices whose entries are linear combi-
nations of a finite set of algebraic numbers and where the coefficients are ratios of GapL functions.
Lemma [4 concerns such families of matrices, and in addition families of matrices of this type will
play an important role in our simulation of space-bounded processes in later sections.

Definition 13. Let p be a positive integer polynomial and for each x € X* let M, be a p(|x|) %
p(|x|) matrix. The collection of matrices { My} is said to have a GapL , -description if there exist
GapL functions 2 and b and a finite collection {7, ...,a,} of algebraic numbers such that

forevery x € ¥*and 1 <i,j < p(|x|).

The elements of a family of matrices { M, } having a GapL ,-description may, in general, have
complex entries. In this section, however, we will be working just over the real numbers.

Lemma 14. Let p be a positive integer polynomial and assume, for each x € X*, My is a p(|x|) x p(|x|)
real matrix having eigenvalues bounded by 1 in absolute value for which the series Yy~ ML[p(|x]),1]
converges. If the collection { M.} has a GapL ,-description, then the language

{x ex Y Mip(]x|),1] > 0}

is in PL.

12

Before giving the proof of Lemma [[4] we will outline briefly the main idea of the proof. Our
goal will be to define a GapL function F(x) such that

F(x)>0 < Y Mi[p(|x]),1] >0. 2)

t>0

By Theorem[this will imply that the language in the statement of the lemma is in PL.
Under the assumption that M, has eigenvalues bounded in absolute value by 1 and the series
Y >0 ML[p(|x|),1] converges, we have

Y Milp([x)), 1] = im(I — zMy) ™ [p(|x]), 1]
>0 z—1

3)
det((I — zM,)) (
— (_\1+p(lxD) 1 (Lp(x1)

(=1) lim det(I—zMy)

Here, the notation (I — zMy) p(|x|)) means the (p(|x|) —1) x (p(|x]) — 1) matrix obtained by
removing row number 1 and column number p(|x|) from I — zM,.

Equation B will allow us to define a GapL function F for which Bl holds. The principle facts
used to construct such a function F are (i) that the entries of M, can be approximated by ratios of
GapL functions, following from the fact that {M,} has a GapL , -description along with the fact
that the algebraic numbers can be approximated by ratios of GapL functions; (ii) the determinants
can be handled using Theorem § and (iii) the limit can be approximated by substituting for z a
value very close to 1.

Although this construction is simple in principle, the details of the construction are somewhat
technical. The main difficulty is that a correct determination of the sign of Y_;~o M%[p(|x|),1] will
require a sufficiently accurate approximation. Because we are working in the unbounded error
setting, the only source we have for obtaining bounds on the required accuracy are properties of
algebraic numbers. This is the purpose of Lemma [[@stated below. Informally, when this lemma is
used in the proof of Lemma [[4} it will imply two things: (i) the quantity }_;~o M%[p(|x]), 1] cannot
be “too close” to zero if it is nonzero, and (ii) the values substituted for z and « do not need to be
“too close” to 1 and the true value of , respectively, to get a sufficiently accurate approximation
to determine the sign of }_,~.o M4 [p(|x]), 1].

Now let us move on to the actual proof of Lemma [[4 which occupies the remainder of this
section. The proof will require a definition and a few technical lemmas, which follow. (It should
be mentioned that no attempt has been made to optimize the parameters in these lemmas or
their proofs. Instead we have chosen the various parameters in a way that makes the required
arithmetic as simple and transparent as possible.)

Definition 15. For any univariate polynomial u(x) = Z]- ujxj or bivariate polynomial u(x,y) =
Yij Mi,jxiyj we define ||u|| to be the largest coefficient of u in absolute value, i.e., max;{|u;|} or
max; i{|u; |}, respectively.

Lemma 16. For any real algebraic number « there exist positive integer constants Cy and Cy such that the
following holds. Forall N > 1, if u and v are bivariate integer polynomials such that deg(u), deg(v) < N,

lull, |o]| < 2N, and lim,_ E g exists (taking a finite value), then

u(w, z) B 2—C1N2 > 2—C1N2'
z—1v(w, z) -

13

Furthermore, for any real numbers wg and zo satisfying |« — ag| < 27CN gpd 1 —27CN* <z < 1we
have v(wp,zo) # 0 and

lim u(e,z) B u(eo, zo) < 9-CIN?.
=1 0(w,z) (g, zo)
Lemma 17. Let u and v be polynomials and let z and ¢ satisfy 0 < & < |v(0)| and |z| < ‘ g Then we
have |v(z)| > 6/2 and
u(0) u(z)| _ 8llul [l 2]
v(0) v(z)| — 52 '
Proof. As |v(0)| < ||v|| we have |z| < 1/4. Thus,
‘ ‘ 5
[0(z)] = |vo+ Y 07| = [[0(0)] = Y [ojl - 2/ | > [0(0)] — 2z o]l > 3,
=1 =1
and
u(0) u(z) |u(0)v(z) — v(0)u(z)]
v(0) o(z) [0(0) v(2)]
2 ,
< 5 Z(uovj — vouj)z!
i>1
8ljull ||v
< Sl || o] 2|
as claimed. O

Theorem 18 (Mahler). Let f and g be integer polynomials of degree d¢ and dg, respectively, and let a
satisfy f(a) = 0and g(a) # 0. Then

3(2)] > !

(dp+dg=DUIFI1% gl ~* (Jal - [a] + 1)

Proof. A proof can be found on pages 4446 of [Mah61]]. O

Proof of Lemma We may write
u(a,1—2z) Zu] /' and o(a,1-2) Zv]

for integer polynomials u; and v;, 0 < j < N, satisfying deg(u;), deg(v;) < N and ||u;|, [|v;]| <
22N For 0 < j < N we have

uj(a)] < HMJHZIDCIZ <22V(1+ [a)Y,

and similarly [o;(a)] < 22N (1 + |a|)V.

14

The assumption that lim,_,; % exists implies that v(«, z) is not identically zero for all values

of z, so there must be some choice of j for which v;(a) # 0. Fix k = min{j : v;(«) # 0}. As the
limit takes a finite value, we conclude that ug(a) = - - - = uy_1(a) = 0, and that

lim u(a,z) ug(a)
—10(a,z) vr(a)’

By taking f to be any integer polynomial of which « is a zero in Theorem [[§ we may conclude
that there exists a positive constant C3 (depending on «) such that [u;(«)| > 2-GN* whenever
uj(a) # 0, and similarly, [v;(a)| > 2-GN* whenever vj(a) # 0. Without loss of generality we may
assume that C3 is an integer with C3 > 3 +log, (1 + |«|). Thus

2—(:3N2

a2 A+)N

Ok ()

> 272C3N2

whenever 1 () # 0. Define C; = 2C3 +1. As 2 CN* < %2_2C3N2, we have

ug (@) _p-CIN?

> -GN
o (w) N

which proves the first part of the lemma.
Now we move on to the second part of the lemma. Choosing C; = 6 C3 + 7 will suffice, as we
now show. Define

a(z) =z %u(n,1—2) and b(z) =z %0(a,1 - 2).
From the discussion above, a and b are integer polynomials,

u(a,z) a(0)

N o(a,z) b(0)

and
u(a,1—z) a(z)

o(a,1—2z) b(z)
for all values of z for which v(a, 1 — z) # 0. Note that deg(a), deg(b) < N, |a||, ||b]] < 2N, and
6(0)| = |og(a)| > 27GN", Applying Lemma [Z with § = 2-GN’ we conclude that if 0 < & <
2~ (CH+2N? then [b(E)| > %2*C3N2 and

a(0) @‘ < QUGN

b(0) b(S)
It follows that if & < 27N 2, then
a(0) _ @‘ 1N
b(0) b(g)]| 2

Now suppose that & < 2-&N * has been fixed. Define

c(y) =ula+y1-¢) and d(y) =ov(x+y1-7).

15

Then deg(c), deg(d) < N and ||c|, ||d]] < (N +1)22N(1 + |a|)N < 25N, Noting that |d(0)| =
lo(a,1—=&)| = |b(&)] > %2_C3N2, we may again apply Lemma[[7] this time with § = %2_C3N2. If 5
is any real number with |57| < 223N’ then d(y7) # 0 and

“\V) < (4C3+5 N2 .
7(0) dwﬁ—z y

Consequently, if || < 2-%N” then

At this point we have

Cu(wz) wetn1=9)|_ | ulwz) ulw1-9| |u(e1-8 uatnl-g
llf}v(tx,z) _U(Dé—|—17,1—§)‘§ llir} o(a,z) v(a,1—¢) + v(a,1—¢) (a+1n,1-20)
| 2@, |0t

b(0) b(5)| 1d(0) d(n)
<2 GN*
which completes the proof. O

Proof. Proof of Lemmal[ALet {«y,...,a,} be a finite collection of algebraic numbers and let a and
b be GapL functions such that

for every x € X* and 1 < i,j < p(|x|). Because each matrix M, is real, we may assume without
loss of generality that a4, ..., a, are real, for otherwise we may simply take the real part of each of
these numbers.

For the given collection {1, ..., a,} of algebraic numbers, there exists a single real algebraic
number «, an integer k, and integer polynomials ¢, ..., ¢, such that

@1()

A = k

for 1 < I < n. This is because the field Qlas, ..., a,] is a finite degree separable extension of
the rationals, and therefore Q[a] = Qay, ..., a,] for some algebraic number a—see, for example,
[[sa%4] for a proof of this fact. Letting d be the degree of the minimal polynomial of &, it may be
assumed that deg(¢;) < d for 1 <[< n. Define bivariate integer polynomials wj, ..., w, as

wy(y,z) =24 pi(y/z)

for 1 <1 < n. It follows that deg(w;) < d. Note thatd, k, ¢1,..., ¢, and wy, ..., w, are indepen-

dent of the input x.
Define
pUxD) p(Ix]) n
Dx) =k [] I b(x,i,j,1)
i=1 j=1 I1=1

By Theorem [l we may conclude that D € GapL. Let A(y) be a p(|x|) x p(]x|) matrix defined by

Ax(y) i ol],l)]Ey)

1:1 x l 1

At this point y is a variable that will momentarily take the value of an approximation to «. Notice
that Ay(a) = D(x)My, and that A(y)[i,j] is an integer polynomial in y for each x € X* and
1<i,j < p(Jx)).

Next, for each x € X* define bivariate integer polynomials 1, and vy as follows:

ur(y,z) = (=)D D(x) det((D(x) I =z Ar(y)) (1,p(x))))-
ve(y,z) = det(D(x)I—zA(y)).

It follows from the fact that D(x)I — zA,(y) is a matrix of polynomial size whose entries are
constant-degree polynomials that there exists a positive integer polynomial N such that

deg (i), deg(vx) < N(|x|)

and |Juyl], [|[ox|| < 2NU¥D for all x € £*. Given that M, has eigenvalues bounded by 1 in absolute
value and the sum Y ;o M%[p(|x|), 1] converges for each x, we have

uy(a,z) i (
= lim(I —
21 Uy (, 2) zlg}(M) p(J) 1 ;M p(x1).1

By Lemma ([there exist positive integer constants C; and C; such that
0y (zxo,l — 2= CN(lx)) £0,

Y Mi[p(|x]),1 2-CIN(Ix)* | > p=CIN(Ix)* (4)

t>0

and

0, (ao,l _ 2—c2N(\x\>2>

Mt
;0 ([, 1 0y (o, 1 — 2-CN(R?)

< 2~ GiN([x])? (5)

whenever |ay — a| < 2-N(**, Define v(|x|) = C,N(|x|)2. By Theorem B and Theorem [there
exist GapL functions f and g such that
FAC DI I
v([x[)

for every x € X*.
Next, define

h(x,i,j) Z (HHHb x, 7,7,) a(x,i,j,1)w (f <1V(|X|)) .8 (11/(\96\)))

I#LF AL

for 1 < i,j < p(|x]). Here, the products involving i’ and j are over all values in the range
{1,...,p(]x])} not equal to i and j, respectively, and the product involving I’ is over all values in

17

the range {1,...,n} not equal to I. Let H, denote the p(|x|) x p(|x|) matrix defined by H,[i,] =

h(x,i,j). We have that
d 1V(|x|))
— (¢ (1+03D Fa)
He= (g (1)) A, <g(1v(x>) |
By Theorem @ we may conclude that # € GapL. Continuing on, define

d
r(xij) = D) (g (1100))" 2001) — (200 1) (i),
and let Ry be the p(|x|) x p(|x|) matrix defined by R,[i,j| = r(x,i,j). We have

R, = D(x) <g (1v<\x\>)>d2v<|x|>1 (240D —1)H,.
By Theorem@ r € GapL. Next, define
U) = ()" DD () (5 (1400)) 20D det((Ry) 1),
V(x) = det(Ry).
By Theorem@ and TheoremB U, V € GapL. Finally, define
F(x) = 20N () V(x) — (V ()2

By Theoreml@ F € GapL.
It remains to show that for every x € £* (with |x| > 2), F(x) > 0 if and only if

Y Mi[p(|x|),1] > 0.
t>0

It may be verified that

o = (e ()’ 29) "™ o Sy -2

V(x) = <<g (1“(">))d2V<|x|>>p(lxl) O (fg—ﬂ;i;n - 2v(x)> .

Thus we have V(x) # 0. Furthermore F(x) > 0 if and only if

U(x)
V(x)

and

< 2-CiN(x)?

which is equivalent to
Uy (’uz, 1— 2V(\XD)

~ 2~ GIN(|x])?,
vy (@, 1—2v(I*D)
ByHBand B the inequality @holds if and only if
Y Mip(|x]),1] >0,

t>0

as required.

18

(6)

5 Simulation of quantum processes

In the previous section it was shown that a particular matrix problem can be solved in probabilistic
logarithmic space. The purpose of this section is to demonstrate that this fact can be used to solve
a related problem concerning selective quantum processes.

Definition [introduced the notion of a GapL , -description of a family of matrices. A similar
notion for selective quantum operations is described in the next definition.

Definition 19. Let p be a positive integer polynomial and for each x € X* let £, be a selective
quantum operation acting on p(|x|) x p(|x|) density matrices and having classical output set A.
The collection of operations {&,} is said to have a GapL ,-description if there exists a positive
integer polynomial m, GapL functions a and b, and a finite collection {a,...,a,} of algebraic
numbers such that each operation &y is described by the p(|x|) x p(|x|) matrices

{Arg:Tten 1<k<m(x|)}

given by
" a(x,t,ki,j,1)
Ackli j) ; b(x,t,k,i,j,1)oq
foreveryx e X5, 1€ A, 1 <k <m(|x|),and 1 <1i,j < p(|x]).

Theorem 20. Let p be a positive integer polynomial and for each x € X* let &, be a selective quantum
operation acting on p(|x|) x p(|x|) density matrices and having output set A, and let py be a p(|x|) x
p(|x|) density matrix. Assume the collection of operations {E, } and the collection of density matrices {py }
have GapL p -descriptions. Let {Ry1, Ry, ...} be the selective quantum process induced by & and py.
Then for any 1y € A and any real algebraic number P, the language {x € X* : Pr[3t: Ry; = ©] > B}
is in PL.

This theorem implies that a wide range of logarithmic-space quantum computations can be sim-
ulated classically in the unbounded error setting. It will be demonstrated in the next section how
this theorem applies to the particular quantum Turing machine model defined in Section 23

The first step in proving Theorem PO will be to note that the selective quantum operations and
density matrices underlying a given selective quantum process may be assumed to be real.

Proposition 21. Let & be a selective quantum operation described by matrices { A} C CN*N et p €
CN*N pe g density matrix, and let {R1, Ry, ...} be the selective quantum process induced by & and initial
state p. Define real matrices {Byy} C R*N*2N gnd & € R2N*2N g follows:

Bexl2i — 1,2 — 1] = R(Ack[i, j])
Boil2i — 1,2]]) = S(Acxlij])
Bx[2i,2] — 1] = =S (Awli, f])
B x[2,2]] = R(Ax[i, f])

and
¢[2i —1,2j = 1] = 3 R(p[i, f])
¢[2i —1,2j] = 3 S(pli,j])
¢[2i,2j —1] = =3 3(pli, f])
&[2i,2j] = 3 R(pli, f])

Then {By} describes a selective quantum operation, ¢ is a density matrix, and this pair also induces the
selective quantum process {R1, Ry, .. .}.

19

Proof. This is a straightforward computation. O

Next, recall that for N x N matrices A and B, the Kronecker product A ® B is an N2 x N2
matrix determined by the formula

(A®B)[(io —1)N +1i1, (jo — 1)N + ja] = Alio, jo] B[ir, ja]

for 1 <'iy,i1,jo,j1 < N. Also, the mapping vec from N x N matrices to N? dimensional (column)
vectors is defined as follows:
vec(A)[(i—1)N +j] = Ali, j]

for1 <i,j < N. One may view vec(A) as the column vector obtained by stacking the rows of A
on top of one another. Obviously vec is a linear mapping. For N x N matrices A, B, and C we have

vec(ABC) = (A ® CT)vec(B)

and Tr (ATB) = vec(A)Tvec(B).

The Kronecker product and the vec mapping allow one to describe selective quantum processes
in a form that more closely resembles an ordinary Markov chain (although the underlying matrix
will of course not be a stochastic matrix in this case). The following lemma gives such a description
that is convenient for proving Theorem 2T

Lemma 22. Let { A} C CN*N describe a selective quantum operation with output set A, let p € CN*N
be a density matrix, and let {Rq, Ra, ...} be the induced selective quantum process. Let p be any complex
number, let Ty € A, and define an (N? +2) x (N? + 2) matrix M as follows:

0 0 0

wep) ¥ L A& A 0
M = T£1 k

N
—B vec (Z A"T’g,kATo,k> 0
k

Then all eigenvalues of M are bounded in absolute value by 1. Furthermore, we have M[N? +2,1] = —f
and
M'"™HN?+2,1] =Pr[Ry # 1,..., Ri-1 # To, Ri = 1]

for every t > 1.

The following lemma will be used in the proof of LemmaP2 The lemma can be found in [TD00];
we include a proof for completeness.

Lemma 23. Let Ay, ..., Ay be N x N matrices such that Y ;' Ay Ay < I (i.e., such that I — Y311 A Ag
is positive semidefinite). Then) ' | Ay ® Ay has eigenvalues bounded by 1 in absolute value.

Proof. Define

m
Y(X) =) AXA{
k=1

forall X € CN*N. The condition Y J* ; A; A < Iimplies Tr(¥ (X)) < Tr(X) whenever X is positive
semidefinite.

20

Suppose that v is an eigenvector of Y} ; Ay ® Ay with eigenvalue A, and let B be the N x N
matrix with vec(B) = v. Then

vec(¥(B)) = vec (i AkBAZ> = (i Ay ®A_k> vec(B) = Avec(B),
k=1 k=1

which implies that ¥ (B) = AB. Because ¥Y(X*) = ¥(X)* for every X, we also have ¥(B*) = AB*.
Now, as B # 0, there exists a unit vector u such that u*Bu # 0. Define

C = (u"B*u) B+ (u*Bu) B*.

Because C is Hermitian, there exists some ¢ > 0 such that I 4 €C is positive semidefinite.
For any positive integer t the mapping Yt =Yo-..-0VY (ttimes) is linear, completely positive,
and cannot increase trace of positive semidefinite matrices. Thus

0 <u ' (I+eC)u <Tr(¥(I+eC)) <Tr(I+eC).
(The important fact is that the upper bound is independent of t.) However,
WY+ eClu = w ¥ (Du+2eR (A') |u*Bul®.
Because u*¥!(I)u > 0 and both ¢ and |u*Bu/|? are positive, it follows that [A| < 1. O

Proof. Proof of LemmaP2 Because { A, x} describes a selective quantum operation we have

ZZA;I{AT'I{ — I
T k

and thus
Z ZAiLk’,kAT,k S I
T#T k
Therefore, by Lemma[Z3 all eigenvalues of
Z Z Ar,k ® A—T,k (7)
T£T k

are bounded by 1 in absolute value. As any nonzero eigenvalue of M must also be an eigenvalue
of [4 the eigenvalues of M are bounded by 1 in absolute value as well.
For each 7 € A define ¥; as

Yo(X) =) AckXAL,
T

for every X € CN*N_Fort > 1 we have

T t-1
MTUN? +2,1] = wvec (Z A;k'o,kATo,k> (Y Y Ap® A—Tk> vec(p)
k

T#T k
= Z Tr(TTOOTTt_IO'.'OTfl(p))

T, T—1€EA\{ 10}
= Z PI‘[Rl :Tlr"'/Rt—l :Tt—ert :T()]
T],...,Tt_leA\{To}

= PI‘[Rl 7'é T, - - ~/Rt—1 7& T(),Rt = T()].

It is obvious that M[N? +2,1] = — B, and so the lemma is proved. O

21

Now we have all of the required pieces to prove Theorem P

Proof. Proof of Theorem P Following from the fact that the sets {&£,} and {py} have GapL,-
descriptions, we may assume that we have a positive integer polynomial m, a finite collection
{a1,...,a,} of algebraic numbers, and GapL functions 4, b, ¢, and d such that each operation &, is
described by the p(|x|) x p(|x|) matrices {A.x : T€ A, 1 <k <m(|x|)} given by

n

(x, T,k i,j,1)
Auilid) = Vg ek 0

foreveryx e X, 1€ A, 1 <k <m(]x]),and 1 <1i,j < p(|x|), and

forevery x € X* and 1 < i,j < p(|x|). Here, we are assuming (without loss of generality) that
the same set {ay,...,a,} is used in the GapL , -descriptions of both {&£,} and {p,}. We may also
assume without loss of generality that {€,} and {p.} are real by Lemma 2] and therefore that
{a1,...,a,} are real algebraic numbers. (If {£,} and {p,} are not real, then a simple modification
of a, b, ¢, and d allows the real and imaginary parts of «ay,...,a, to be combined in a manner
consistent with Lemma 2Z11)

Let M, be the (p(|x])> +2) x (p(|x|)? + 2) matrix described in Lemma P2 for each input x.
Using Theorem Bt is routine to define GapL functions f and g such that

n+1

foz],
= g(x, i, 0)

where we write a,, 1 = B in order to simplify notation. By Lemma 2 we see that the series

Y Mip(1x)* +2,1]

t>0

must converge, as the sum is —f plus a sum over probabilities of mutually exclusive events. More-
over, Lemma P2 implies that
Pr[3t: Ryt =1) > B

if and only if
Y Milp(|x])*+2,1] > 0.
=
As the family { My} has a GapL ,-description, the theorem now follows from Lemma [4 O

6 Simulating space-bounded quantum computations

In this section, we apply Theorem Ellto the quantum Turing machine model defined in SectionZ3
This will establish Theorem [which is restated here for convenience.

Theorem [l For any space-constructible function s(n) € Q)(logn), we have

PrQSPACE (s) = PrSPACE(s).

22

It should be stressed at this point that although the application of Theorem 20 to the quantum
Turing machine model defined in Section 2.3 of course requires one to focus on specifics of this
model, this application is fairly routine—we claim that essentially any other “reasonable” model
of space-bounded quantum computation can be handled using the same general method. The
purpose of discussing the specific quantum Turing machine model defined previously is mainly
intended to demonstrate this idea.

6.1 Logarithmic space-bounds

We first prove Theorem [l for the special case where s(n) is logarithmic in 7. In Section &2 this fact
is extended to arbitrary space-constructible space bounds using a standard padding argument.

Theorem 24. PrQSPACE (log) = PL.

Proof. Let L C X* be any language in PrQSPACE j (log), and let M be a quantum Turing machine
running in space s(n) € O(logn) that recognizes L and satisfies the properties of DefinitionPl The
notation of Section 3 will be used to describe the various parts of M as needed; for example, the
state set of M is Q, the classical transition function of M is §, and the quantum operations of M are
given by {&; : q € Q}. Each operation &, is determined by a collection

{A§7):reA,1gkgmo})
of 2K+1 x 2K+ 1 matrices with algebraic number entries.

We will construct, for each input x, a selective quantum operation ¥y and an initial state py
as follows. Each operation F, will have 3 possible outputs, accept, reject, and running, and the
selective quantum process {Ry1, Ry, ...} induced by F, and p, will represent the computation
of M on input x in the following sense:

Pr[Ry = accept] = Pr[M accepts x after t or fewer steps],
Pr[Ry; = reject] = Pr[M rejects x after t or fewer steps],
Pr[Ry; = running] = Pr[M is still running on input x after ¢ steps].

Thus
Pr[M accepts x| = Pr[3t : Ry = accept].

The assumptions on M stated above will imply that the selective quantum operation F, and the
initial state p, will satisfy the assumptions of Theorem P01 Taking f = 1/2 will therefore allow us
to conclude that L € PL.

The operation F will act on density matrices whose entries correspond to space s(|x|) classical
configurations of M. For each input string x, let Sy be a set defined as follows:

Se=Qx{0,1} x Ax (TU{#})**) x {0,13D 5 {o0,..., x| +1} x {1,...,s(|x[)}2

The elements of S, represent space s(|x|) classical configurations of M in the following way: ¢ =
(9,y,7T,w,z,h1,hy, h3) represents the configuration of M for which the internal state is g € Q, the
classical state of the quantum register is y € {0,1}X, the measurement register contains T € A, the
s(|x|) squares on the work tape that are reachable in a space s(|x|) computation are described by
w € (T'U {#})*(*), the classical state of the s(|x|) qubits on the quantum tape that are reachable
in a space s(|x|) computation are described by z € {0,1}*(*), and the locations of the input tape
head, the work tape head, and the quantum tape head are given by 5, i, and h3. At any point in

23

the computation of M on input x, the mixed quantum state of M can be represented by a density
matrix p € D(C5*5).

The operation F, will describe one step in the evolution of M on input x. Each step consists
of a quantum phase, which is determined by the operations {£, : q € Q}, and a classical phase,
which is determined by the classical transition function é.

We begin with the quantum phase. The operations {&; : g € Q} act on a finite portion of M;
specifically, on the K qubits in the internal quantum register and the qubit being scanned on the
quantum tape. Each operation &, is described by the collection of 2K*1 x 2K+1 matrices as in B
We need to show how these constant-size matrices translate to matrices indexed by Sy specifying
the global evolution of M on input x. This is routine, but somewhat cumbersome with regard to
notation. It can be done as follows.

For each ¢ € Sy, let state(c) € Q denote the internal state of M in configuration ¢, and let
qubits(c) € {0,1}**! denote the length K + 1 binary string representing the classical state of the
qubits in the internal quantum register together with the qubit being scanned on the qubit tape in
configuration c. For example, if ¢ = (q,y, T, w, z, 1, hy, h3), then state(c) = g and qubits(c) = yzp,.
For any string u € {0,1}X*! and any symbol T € A, let replace, _(c) denote the element of Sy
obtained by replacing the classical state of the K qubits in the quar{tum register by the first K bits
of u, replacing the classical state of the qubit being scanned on the quantum tape by the last bit of
u, and replacing the contents of the measurement register by 7. Foreach t € Aand 1 < k < my
define B € C5+*5x as follows.

B, 4ld,c] = { Agsrltate(c)) [qubits(d), qubits(c)] if rqupits(a),(c) = 4

0 otherwise.

We have
which follows from the fact that

foreach g € Q.
Now, the matrices
{Br,k TEN 1<k mo} C CSx%Sx

represent the quantum part of each step in the following way: if the mixed state of M is p € C5*5x
and the quantum phase of a computation step is performed, the resulting mixed state will be

) B 0B} .
T,k

(The collection {Bx : T € A, 1 < k < mg} is not interpreted as inducing a selective quantum
operation in this case—there is no classical output for this operation.)

The second phase of each computation step is the classical phase. We need to do essentially
the same thing we did for the quantum phase of each step. Because the classical part of each step
is deterministic, this phase is simpler to describe. The three possible outputs accept, reject, and
running will be handled as well.

The transition function J determines, for any fixed input x, a unique successor for each ¢ € S.
(If the internal state is a halting state, then the successor of a configuration is defined to be itself.)

24

Write ¢ -, d whenever d is the successor of ¢ with respect to this function for input x. Define three
sets Juce, Jrejs Jrun C Sx X Sy as follows:

Jae = {(c,d) : ¢ty d, disaccepting}
Jrj = {(c,d) : ckyd,disrejecting}
Jrun = {(C/ d) sy d, (C/ d) € Jace U]rej}-

Let E. s denote the matrix with a 1 in the (c, d) entry and 0 in all other entries.

The global evolution for the classical phase can be described in terms of the matrices {E. ;} for
pairs (c,d) in Jyec, Jrej, and Jpy in a fairly straightforward way. It will, however, be more convenient
for us to combine these matrices with the matrices {B, s} describing the quantum phase directly.
For each pair (c,d) € Sy x Sy, define

c B Ed,cBT,k if (C, d) € Jace
accept,(cd,T k) T 0 otherwise,

N [EuBo i) €y
reject,(c,d,T,k) 0 Otherwise,

c . B Ed,cBr,k if (C, d) € Jrun
running,(c,d,Tk) = 0 otherwise,

and let F, be the selective quantum operation given by the collection
{Cv,(c,d,r,k) : v € {accept, reject, running}, (¢, d, T,k) € Sy x Sy x A x {1,... ,mo}})

The operation F, acts on S, x Sy density matrices and corresponds to one step in the evolution of
M as described above.

The initial density matrix p, is much simpler to describe; we let p, = E.. for c the initial
configuration of M.

Because s is logarithmic, |S,| is bounded by p(|x|) for some positive integer polynomial p.
Choose such a polynomial p, and also let m be a positive integer polynomial such that

m(|x]) > mo |A]]S:[2 +1

for all x € X*.

Next, associate with each element of S, an integer in the range {1,...,|S|} by ordering the
elements of S, lexicographically within each coordinate, where the finite sets Q, I, A, etc., are
ordered arbitrarily. (It is not crucial to use this specific ordering—any numbering that is compu-
tationally simple will do.) Extend each of the matrices C,, (4 as well as p, to p(|x|) x p(|x])
matrices by respecting this numbering and assigning the value 0 to entries with indices outside of
the range {1,...,|S«|}.

In a similar manner, associate a unique integer in the range {1, ..., m(|x|)} with each 4-tuples
(c,d, T,k) € Sy x Sy x A x {1,...,mp}, and relabel the matrices

{Caccept,(c,d,r,k)}/ {Creject,(c,d,r,k)}/ and {Crunning,(c,d,r,k)}

as
{Caccept,l}/ {Creject,l}/ and {Crunning,l}/

25

forl =1,...,mg|A||Sx|? by respecting this numbering. In order to ensure that we have a selective
quantum operation we must add an additional matrix

- 1 ifi=j>|S
Caceept 1],]] = { 0 otherwise ’
for I = myg|A||S¢[* + 1. Finally, let C,; be the zero matrix for all remaining values of v €
{accept, reject, running} and I € {1,...,m(|x|)}.
It is, at this point, routine to observe that {F,} and {p.} (after these re-labellings and exten-
sions) have GapL , -descriptions. The finite collection of algebraic numbers are those numbers

appearing as entries of the matrices {A(qu}, and the coefficients of these numbers are given by
ratios of GapL functions. (In this case, in fact, these coefficients only take values 0 and 1, and can
be given by an FL function.) This completes the proof. O

6.2 General space-bounds

Finally, we use Theorem P4 to prove Theorem[Il This proof is based on a standard padding argu-
ment. Readers interested in a more general discussion of this method are referred to Section 6.4 of

[WIWB6].

Proof. Proof of Theorem [[l Let L € PrQSPACE, (s) and let M; be a quantum Turing machine
running in space O(s) that witnesses this fact.
Define a new language Ly as follows:

Liog = {x0125(""” ‘ xe L} .

(If the symbols 0 and 1 are not elements of the alphabet over which L is a language, they can be
replaced by different symbols or Ljog can be defined over a larger alphabet—it does not make any
difference to the proof.) We have that L;,, € PrQSPACE4 (log). To see this, define a new quantum
Turing machine M, as follows. The machine M, first processes the input (classically), looking for

the suffix 012"

simulate M; on the prefix x, accepting or rejecting accordingly. If the suffix 0 12" is not present,
M, rejects. The presence of the suffix can easily be determined in logarithmic space, using the
fact that s(|x|) is space-constructible along with the fact that the machine M, can be programmed
to reject when it would otherwise try to use more than some appropriate logarithmic amount of
space.

As Li,g € PrQSPACE 4 (log), it follows from Theorem PA that L., € PL.

Finally, we need to argue that Lj,; € PLimplies L € PrSPACE(s). This is essentially the reverse
of the argument above that Lj,; € PrQSPACE} (log). Let M3 be an ordinary probabilistic Turing
machine recognizing Ly in logarithmic space. We want to define a new probabilistic Turing

' If this suffix is present, it stores the starting location of this suffix so that it may

machine My that, on input x, simulates M3 on the input x 0 12, Using the space-constructibility
of s this is again routine. The machine M, marks off s(|x|) + 1 squares on its work tape, which
allows it to count up to 25(*) 4-2. This counter can be used in the simulation of M3 on input
2012 to store the location of the input tape head of M3 when it is in the region to the right of

the string x; otherwise My uses its own input tape, which contains just x. The amount of space
needed for this simulation is O(s), and thus L € PrSPACE(s). O

26

7 Conclusion

It has been demonstrated in this paper that quantum computation and classical probabilistic com-
putation are essentially equivalent in the unbounded error, space bounded setting, which implies
that quantum computations can be simulated deterministically with a quadratic increase in space.
This result requires the quantum machines being simulated to have algebraic number transition
amplitudes, but places no restrictions on the sorts of measurements or other non-unitary opera-
tions permitted during their computations.

Perhaps the most interesting direction for future work on space-bounded quantum computa-
tion regards bounded-error quantum computations (that halt absolutely, i.e., halt with certainty
after some finite number of steps). We conclude with two open questions along these lines.

1. Can a bounded-error quantum Turing machine running in space s be simulated determinis-
tically in space O(s>~¢) for some constant ¢ > 0?

2. Give an example of a natural combinatorial problem that can be solved in logarithmic space
by a bounded-error quantum Turing machine that is not known to be solvable by a bounded
error classical probabilistic Turing machine in logarithmic space.

Acknowledgements

I'would like to thank Richard Cleve for the description of selective quantum processes that appears
in Section 2] Eric Allender for a helpful discussion on GapL functions, and Marcus Schaefer
and Pradyut Shah for their suggestions regarding the proof of Theorem [[1l This research was
supported by Canada’s NSERC.

References

[AAMO3] E. Allender, V. Arvind, and M. Mahajan. Arithmetic complexity, Kleene closure, and
formal power series. Theory of Computing Systems, 36:303-328, 2003.

[ADH97] L. Adleman, J. DeMarrais, and M. Huang. Quantum computability. SIAM Journal on
Computing, 26(5):1524-1540, 1997.

[AKN98] D. Aharonov, A. Kitaev, and N. Nisan. Quantum circuits with mixed states. In Pro-
ceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pages 20-30,
1998.

[AO96] E. Allender and M. Ogihara. Relationships among PL, #L, and the determinant. RAIRO
— Theoretical Informatics and Applications, 30:1-21, 1996.

[BCP83] A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well-endowed rings
and space-bounded probabilistic machines. Information and Control, 58:113-136, 1983.

. Bruss, D. DiVincenzo, A. Ekert, C. Fuchs, C. Macchiavello, and J. Smolin. Optima

[BDE*98] D. B D. DiVi A. Ekert, C. Fuchs, C. Macchiavell d J. Smolin. Optimal
universal and state-dependent quantum cloning. Physical Review A, 57(4):2368-2378,
1998.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of Computer
and System Sciences, 48:116-148, 1994.

27

[FGHP99] S. Fenner, F. Green, S. Homer, and R. Pruim. Determining acceptance possibility for

[For97]

[FR99]

[Gil77]

[Isa94]

[Jun85]

[KSV02]

[Mah61]
[NC97]

[NCO00]

[Sak96]

[Sav70]

[TDOO]

[Val79]

[Wat99]

[WW86]

a quantum computation is hard for the polynomial hierarchy. Proceedings of the Royal
Society, London A, 455:3953-3966, 1999.

L. Fortnow. Counting complexity. In L. Hemaspaandra and A. Selman, editors, Com-
plexity Theory Retrospective 11, pages 81-107. Springer, 1997.

L. Fortnow and J. Rogers. Complexity limitations on quantum computation. Journal of
Computer and System Sciences, 59(2):240-252, 1999.

J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on
Computing, 6(4):675-695, 1977.

I. M. Isaacs. Algebra: a Graduate Course. Brooks/Cole, 1994.

H. Jung. On probabilistic time and space. In Proceedings of the 12th International Collo-
quium on Automata, Languages and Programming, volume 194 of Lecture Notes in Computer
Science, pages 310-317. Springer-Verlag, 1985.

A. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum Computation, volume 47 of
Graduate Studies in Mathematics. American Mathematical Society, 2002.

K. Mahler. Lectures on Diophantine Approximations, volume 1. Cushing Malloy, 1961.

M. Nielsen and C. Caves. Reversible quantum operations and their application to tele-
portation. Physical Review A, 55(4):2547-2556, 1997.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2000.

M. Saks. Randomization and derandomization in space-bounded computation. In
Proceedings of the 11th Annual IEEE Conference on Computational Complexity, pages 128—
149, 1996.

W. Savitch. Relationships between nondeterministic and deterministic tape complexi-
ties. Journal of Computer and System Sciences, 4:177-192, 1970.

B. Terhal and D. DiVincenzo. On the problem of equilibration and the computation
of correlation functions on a quantum computer. Physical Review A, 61: article 022301,
2000.

L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189-201, 1979.

J. Watrous. Space-bounded quantum complexity. Journal of Computer and System Sci-
ences, 59(2):281-326, 1999.

K. Wagner and G. Wechsung. Computational Complexity. Mathematics and Its Applica-
tions. D. Reidel Publishing Company, 1986.

28

	Introduction
	Definitions and Background Information
	Space-bounded complexity and GapL functions
	Selective quantum processes
	Space-bounded quantum Turing machines

	GapL approximable numbers
	A matrix problem in probabilistic logspace
	Simulation of quantum processes
	Simulating space-bounded quantum computations
	Logarithmic space-bounds
	General space-bounds

	Conclusion

