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Abstract

In this paper we propose a definition for honest verifier quantum statistical zero-knowledge
interactive proof systems and study the resulting complexity class, which we denote QSZKHV.
We prove several facts regarding this class, including:

• The following problem is a complete promise problem for QSZKHV: given instructions for
preparing two mixed quantum states, are the states close together or far apart with respect to
the trace norm? This problem is a quantum generalization of the complete promise problem
of Sahai and Vadhan [34] for (classical) statistical zero-knowledge.

• Any polynomial-round honest verifier quantum statistical zero-knowledge proof system can
be simulated by a two-message (i.e., one-round) honest verifier quantum statistical zero-
knowledge proof system. Similarly, any polynomial-round honest verifier quantum statistical
zero-knowledge proof system can be simulated by a three-message public-coin honest verifier
quantum statistical zero-knowledge proof system.

• QSZKHV is closed under complement.

• QSZKHV ⊆ PSPACE. (At present it is not known if arbitrary quantum interactive proof
systems can be simulated in PSPACE, even for one-round proof systems.)

These facts establish close connections between classical statistical zero-knowledge and our def-
inition for quantum statistical zero-knowledge, and give some insight regarding the effect of this
zero-knowledge restriction on quantum interactive proof systems. The relationship between our
definition and possible definitions of general (i.e., not necessarily honest) quantum statistical
zero-knowledge are also discussed.

1 Introduction

In recent years there has been an effort to better understand the potential advantages offered by
computational models based on the laws of quantum physics as opposed to classical physics. Ex-
amples of such advantages include: polynomial-time quantum algorithms for factoring, computing
discrete logarithms, and various believed-to-be intractable group-theoretic and number-theoretic
problems [11, 22, 23, 24, 28, 35, 40]; information-theoretically secure quantum key-distribution
[8, 36]; and exponentially more efficient quantum than classical communication-complexity proto-
cols [33]. Equally important for understanding the power of quantum models are upper bounds and
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impossibility proofs, such as the containment of BQP in PP [2, 15], the impossibility of quantum bit
commitment [27], and the existence of oracles and black-box problems relative to which quantum
computers have limited power [1, 5, 6, 7, 15].

In this paper we consider the potential advantages of quantum variants of zero-knowledge proof
systems. Zero-knowledge proof systems were first defined by Goldwasser, Micali, and Rackoff [20]
in 1985, are have since been studied extensively in complexity theory and cryptography. Familiarity
with the basics of zero-knowledge proof systems is assumed in this paper. For a recent survey on
zero-knowledge, see Goldreich [16].

Several notions of zero-knowledge have been studied, but we will only consider statistical zero-
knowledge in this paper. Moreover, we will focus on honest verifier statistical zero-knowledge, which
means that it need only be possible for a polynomial-time simulator to approximate the view of a
verifier that follows the specified protocol (as opposed to a verifier that may intentionally deviate
from the specified protocol in order to gain knowledge). In the classical case it was proved by
Goldreich, Sahai and Vadhan [18] that any honest verifier statistical zero-knowledge proof system
can be transformed into a statistical zero-knowledge proof system against any verifier.

The class of languages having statistical zero-knowledge proof systems is denoted SZK; it is
known that SZK is closed under complement [32], that SZK ⊆ AM [4, 14], and that SZK has natural
complete promise problems [19, 34]. Several interesting problems such as Graph Isomorphism and
Quadratic Residuosity are known to be contained in SZK but are not known to be in BPP [17, 20].
For a comprehensive discussion of statistical zero-knowledge see Vadhan [38].

To our knowledge, no formal definitions for quantum zero-knowledge proof systems have previ-
ously appeared in the literature. However, the question of whether quantum information allows for
an extension of the class of problems having zero-knowledge proofs has been addressed by several
researchers. For example, one of the motivations for investigating the possibility of quantum bit
commitment is its applicability to zero-knowledge proof systems. The primary reason for the lack
of formal definitions seems to be that difficulties arise when classical definitions for zero-knowledge
are translated to the quantum setting in the most straightforward ways. For a further discussion
of these problems, see van de Graaf [21].

The goal of this paper is not to attempt to resolve these difficulties, or to propose a definition
for quantum zero-knowledge that is intended to be satisfying from a cryptographic point of view.
Rather, our goal is to study the complexity-theoretic aspects of a simple definition of quantum
zero-knowledge based on the notion of an honest verifier. Our primary motives for considering this
definition are:

• Our definition is likely to be weaker than any sensible definition for quantum statistical zero-
knowledge when the honest verifier assumption is absent. By this we mean that, with respect
to a wide range of possible definitions for general quantum statistical zero-knowledge, any
general quantum statistical zero-knowledge proof system would also satisfy our honest verifier
definition. Consequently, the upper bounds we prove on the power of honest verifier quantum
zero-knowledge proof systems also hold for any such general verifier definition.

• We hope that by investigating simple notions of quantum zero-knowledge we are taking steps
toward the study and understanding of more cryptographically meaningful formal definitions of
quantum zero-knowledge.

• We are interested in the effect of zero-knowledge type restrictions on the power of quantum
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interactive proof systems from a purely complexity-theoretic point of view. Indeed, we are able
to prove some interesting facts about quantum statistical zero-knowledge proofs that are not
known to hold for arbitrary quantum interactive proofs, such as containment in PSPACE and
parallelizability to two messages.

Our approach for studying a quantum variant of honest verifier statistical zero-knowledge paral-
lels the approach of Sahai and Vadhan [34] for the classical case, which is based on the identification
of a complete promise problem for the class SZK. We identify a complete promise problem for quan-
tum statistical zero-knowledge that generalizes Sahai and Vadhan’s complete promise problem to
the quantum setting. The problem, which we call the Quantum State Distinguishability problem,
may be informally stated as follows: given instructions for preparing two mixed quantum states,
are the states close together or far apart with respect to the trace norm? The trace norm is an
extension of the total variation or statistical difference norm to quantum states, and gives a natural
way of measuring distances between quantum states. By instructions for preparing a mixed quan-
tum state we mean the description of a quantum circuit that produces the mixed state on some
specified subset of its qubits, assuming all qubits are initially in the |0〉 state. The promise in this
promise problem guarantees that the two mixed states given are indeed either close together or far
apart.

Several facts about quantum statistical zero-knowledge proof systems and the resulting com-
plexity class, which we denote QSZKHV, may be derived from the completeness of this problem. In
particular, we prove that QSZKHV is closed under complement, that QSZKHV ⊆ PSPACE (which
is not known to hold for quantum interactive proof systems if the zero-knowledge condition is
dropped, even in the case of one-round proof systems), and that any honest verifier quantum sta-
tistical zero-knowledge proof system can be parallelized to a one-round honest verifier quantum
statistical zero-knowledge proof system. The one-round proof system may be taken to have expo-
nentially small completeness and soundness error, or alternately may be taken to be a proof system
in which the prover sends only one qubit to the verifier (in order to achieve completeness and
soundness error exponentially close to 0 and 1/2, respectively). We also prove that any problem
in QSZKHV has a three-message public-coin honest-verifier statistical zero-knowledge proof system,
wherein the verifier needs to send only a single coin-flip to the prover (again, in order to achieve
completeness and soundness error exponentially close to 0 and 1/2, respectively).

The remainder of the paper is organized as follows. In Section 2 we discuss relevant back-
ground information for the paper, including a brief discussion of the quantum formalism, quantum
circuits, and quantum interactive proof systems. In Section 3 we give our definition for honest
verifier quantum statistical zero-knowledge and for the Quantum State Distinguishability promise
problem. In Section 4 we describe honest verifier quantum statistical zero-knowledge protocols for
Quantum State Distinguishability and its complement, and in Section 5 we prove that any promise
problem having an honest verifier quantum statistical zero-knowledge proof system Karp-reduces to
Quantum State Distinguishability. In Section 6 we discuss some consequences of the completeness
of Quantum State Distinguishability for QSZKHV. We conclude with Section 7, which mentions
some open problems relating to this paper.
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2 Preliminaries

The purpose of this section is to review relevant background information for this paper, including
a discussion of some useful aspects of the quantum formalism, quantum circuits, and quantum
interactive proof systems. With the exception of quantum interactive proof systems this is done
primarily in order to make clear the notation that we will use and to provide references containing
more detailed discussions of these topics. The discussion of quantum interactive proof systems is
intended to provide a suitable introduction for readers already familiar with the study of (classical)
interactive proof systems.

2.1 The quantum formalism

Detailed discussions of the quantum formalism can be found in Nielsen and Chuang [31] and Kitaev,
Shen and Vyalyi [25].

Recall that a pure quantum state of an n-qubit quantum system can be represented as a unit
vector in the Hilbert space H that consists of all linear mappings from {0, 1}n to the complex
numbers. Corresponding to each pure state |ψ〉 ∈ H is a linear functional 〈ψ| that maps each vector
|φ〉 to the inner product 〈ψ|φ〉 (conjugate-linear in the first argument). A mixed state of a quantum
system is a state that may be described by a distribution on (not necessarily orthogonal) pure states.
A collection {(pk, |ψk〉)} such that 0 ≤ pk,

∑

k pk = 1, and each |ψk〉 is a pure state is called a
mixture: for each k, the system is in state |ψk〉 with probability pk. For a given mixture {(pk, |ψk〉)},
we associate a density matrix ρ having operator representation ρ =

∑

k pk|ψk〉〈ψk|. Necessary and
sufficient conditions for a given matrix ρ to be a density matrix (i.e., to represent some mixed
state) are (i) ρ must be positive semidefinite, and (ii) ρ must have unit trace. Two mixtures can be
distinguished (in a statistical sense) if and only if they yield different density matrices, and for this
reason we interpret a given density matrix ρ as being a canonical representation of a given mixed
state.

For a given Hilbert space H, let L(H) denote the set of linear operators on H, let D(H) denote
the set of positive semidefinite operators on H having unit trace (so that D(H) may be identified
with the set of mixed states of a given system), let U(H) denote the set of unitary operators on
H, and let P(H) denote the set of projection operators on H. (Here, and throughout this paper,
whenever we refer to some Hilbert space it is implicitly assumed that the Hilbert space is finite
dimensional.)

Given Hilbert spaces H and K, we define a mapping trK : L(H⊗K)→ L(H) as follows:

trKX =
n

∑

j=1

(I ⊗ 〈ej |)X(I ⊗ |ej〉),

where {|e1〉, . . . , |en〉} is any orthonormal basis of K. This mapping is known as the partial trace,
and has the following intuitive meaning: given a mixed state ρ ∈ D(H ⊗K) of a bipartite system
(meaning that the first part of the system corresponds to H and the second part to K), trK ρ is the
mixed state of the first part of the system obtained by discarding (or simply not considering) the
second part of the system. To say that a particular part of a quantum system is traced out means
that the partial trace is performed, removing this part of the system from consideration.

A purification of a mixed state ρ ∈ D(H) is any pure state |ψ〉 ∈ H⊗K for some Hilbert space
K such that trK |ψ〉〈ψ| = ρ. Such a purification always exists provided dim(K) ≥ rank(ρ). The
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following theorem concerning purifications is critical for the study of quantum interactive proof
systems. A proof may be found in Section 2.5 of Nielsen and Chuang [31].

Theorem 1 Let |φ〉, |ψ〉 ∈ H ⊗ K satisfy trK |φ〉〈φ| = trK |ψ〉〈ψ| = ρ for some ρ ∈ D(H). Then
there exists U ∈ U(K) such that (I ⊗ U)|φ〉 = |ψ〉.

For X ∈ L(H) define

‖X‖tr =
1

2
tr
√
X†X.

(For given positive semidefinite matrix A, recall that
√
A is the unique positive semidefinite matrix

that squares to give A.) Alternately, ‖X‖tr may be defined as one-half of the sum of the singular
values of X. The function ‖ · ‖tr is a norm called the trace norm, and generalizes the norm induced
by the statistical difference or total variation distance (i.e., one-half the ℓ1 norm). The trace norm
gives a useful way of measuring distances between mixed states. For any ρ, ξ ∈ D(H) we have
‖ρ− ξ‖tr = maxA trA(ρ− ξ), where the maximum is over all positive semidefinite A ∈ L(H) with
‖A‖ ≤ 1. This maximum value is always achieved by some projection A ∈ P(H).

Another way of discussing differences between mixed states, which turns out to be very useful for
studying quantum interactive proof systems, is given by the fidelity. Given two positive semidefinite
operators X,Y ∈ L(H), define the fidelity of Y and Y by

F (X,Y ) = tr

√√
X Y
√
X.

If ρ and ξ are identical, then F (ρ, ξ) = 1, while if ρ and ξ are perfectly distinguishable then
F (ρ, ξ) = 0. The fidelity does not, however, immediately give rise to a proper notion of distance,
but it is often more convenient to work with than the trace norm. It follows easily from the
definition that the fidelity is multiplicative with respect to tensor products: for any ρ1, ξ1 ∈ D(H)
and ρ2, ξ2 ∈ D(K) we have F (ρ1 ⊗ ρ2, ξ1 ⊗ ξ2) = F (ρ1, ξ1)F (ρ2, ξ2).

An alternate description of the fidelity is given by Uhlmann’s Theorem:

Theorem 2 (Uhlmann’s Theorem) Let ρ, ξ ∈ D(H), and let K be such that there exist purifi-
cations |φ0〉, |ψ0〉 ∈ H ⊗ K of ρ and ξ, respectively (i.e., trK |φ0〉〈φ0| = ρ and trK |ψ0〉〈ψ0| = ξ).
Then

F (ρ, ξ) = max
|φ〉,|ψ〉

|〈φ|ψ〉|,

where the maximum is over all purifications |φ〉, |ψ〉 ∈ H ⊗K of ρ and ξ, respectively.

A proof of this theorem can be found in Section 9.2.2 of Nielsen and Chuang [31].
Next, we mention an inequality concerning the fidelity that will be useful later.

Lemma 3 For any ρ, ξ, σ ∈ D(H), we have F (ρ, σ)2 + F (σ, ξ)2 ≤ 1 + F (ρ, ξ).

Proofs of this lemma appear in Refs. [29, 37].
Finally, the following theorem gives a useful relation between the trace norm and the fidelity

that will be used several times. A proof may be found in Section 9.2.3 of Nielsen and Chuang [31].

Theorem 4 For all ρ, ξ ∈ D(H) we have

1− F (ρ, ξ) ≤ ‖ρ− ξ‖tr ≤
√

1− F (ρ, ξ)2.

Additional facts concerning the trace norm and the fidelity will be discussed later as they are
needed.
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2.2 Quantum circuits

Quantum interactive proof systems are based on the quantum circuit model. Although this model
can be defined in a very general way that allows non-unitary quantum operations (such as mea-
surements) to be performed by quantum circuits, we will restrict our attention to the simpler and
more common model where only unitary gates are permitted. Nielsen and Chuang [31] contains a
detailed discussion of the unitary quantum circuit model, while a discussion of the more general
model (including a proof that the two models are equivalent in power) can be found in Aharonov,
Kitaev, and Nisan [3].

Although the unitary quantum circuit model has been shown to be equivalent in power to
the more general quantum circuit model, we hasten to add that our definition for honest verifier
quantum statistical zero-knowledge is based on the unitary quantum circuit model. We do not
have a proof that our definition is insensitive to the difference between unitary and non-unitary
quantum circuits, and our proof of the hardness of the Quantum State Distinguishability problem
for QSZKHV relies on the assumption that the verifier only applies unitary transformations.

We use the following notion of a uniform family of quantum circuits. A family {Qx} of quantum
circuits is said to be polynomial-time uniformly generated if there exists a deterministic procedure
that, on input x, outputs a description of Qx and runs in time polynomial in x. It is assumed that
the number of gates in any circuit is not more than the length of that circuit’s description (i.e.,
no compact descriptions of large circuits are allowed), so that Qx must have size polynomial in
|x|. We also assume that quantum circuits are composed of gates from some reasonable, universal,
finite set of (unitary) gates. By “reasonable” we mean, for instance, that gates cannot be defined
by matrices with non-computable, or difficult to compute, entries. In fact, it will be helpful later
to use the fact that any quantum circuit composed of gates from any reasonable set of basis gates
can be efficiently simulated by a quantum circuit consisting only of gates from a finite collection
whose corresponding matrices have only entries with rational real and imaginary parts. (See, for
instance, Section 4.5.3 in Nielsen and Chuang.) It should be noted that our notion of uniformity
is somewhat nonstandard, since we allow an input x to be given to the procedure generating the
circuits rather than just |x| written in unary (with x given as input to the circuit itself). This does
not change the computational power for the resulting class of quantum circuits, however, and we
find that this notion is more convenient than the usual notion of uniformity.

2.3 Quantum interactive proofs

Quantum interactive proofs were defined and studied in Refs. [26, 39]. As in the classical case,
a quantum interactive proof system consists of two parties, a prover with unlimited computation
power and a computationally bounded verifier. Quantum interactive proofs differ from classical
interactive proofs in that the prover and verifier may send and process quantum information.

Formally, a quantum verifier is a polynomial-time computable mapping V where, for each input
string x, V (x) is interpreted as an encoding of a k(|x|)-tuple (V (x)1, . . . , V (x)k(|x|)) of quantum
circuits. These circuits represent the actions of the verifier at the different stages of the protocol,
and are assumed to obey the properties of polynomial-time uniformly generated quantum circuits
as discussed in the previous section. The qubits upon which each circuit V (x)j acts are divided
into two sets: qV(|x|) qubits that are private to the verifier and qM(|x|) qubits that represent the
communication channel between the prover and verifier. The Hilbert space corresponding to the
qV(|x|) qubits representing the verifier’s private memory is denoted V and the space corresponding
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V1(x) V2(x) V3(x)

P1(x) P2(x)

verifier’s
private
qubits

message
qubits

prover’s
private
qubits

← output
qubit

Figure 1: Quantum circuit for a 4-message quantum interactive proof system

to the communication channel is denoted M. One of the verifier’s private qubits is designated as
the output qubit, which indicates whether the verifier accepts or rejects.

A quantum prover P is a function mapping each input x to an l(|x|)-tuple (P (x)1, . . . , P (x)l(|x|))
of quantum circuits. Each of these circuits acts on qM(|x|) + qP(|x|) qubits: qP(|x|) qubits that
are private to the prover and qM(|x|) qubits representing the communication channel. The Hilbert
space corresponding to the prover’s private qubits is denoted P. Unlike the verifier, no restrictions
are placed on the complexity of the mapping P , the gates from which each P (x)j is composed, or
on the size of each P (x)j , so in general we may simply view each P (x)j as an arbitrary unitary
transformation.

A verifier V and a prover P are compatible if for all inputs x we have (i) each V (x)i and P (x)j
agree on the number qM(|x|) of message qubits upon which they act, and (ii) k(|x|) = ⌊m(|x|)/2+1⌋
and l(|x|) = ⌊m(|x|)/2 + 1/2⌋ for some m(|x|) (representing the number of messages exchanged).
We say that V is an m-message verifier and P is an m-message prover in this case. Whenever we
discuss an interaction between a prover and verifier, we naturally assume they are compatible.

Given a verifier V , a prover P , and an input x, we define a quantum circuit (V (x), P (x)) acting
on q(|x|) = qV(|x|) + qM(|x|) + qP(|x|) qubits as follows. If m(|x|) is even, circuits

V (x)1, P (x)1, . . . , P (x)m(|x|)/2, V (x)m(|x|)/2+1

are applied in sequence, each to the qV(|x|) + qM(|x|) verifier/message qubits or to the qM(|x|) +
qP(|x|) message/prover qubits accordingly. This situation is illustrated in Figure 1 for the case
m(|x|) = 4. If m(|x|) is odd the situation is similar, except that the prover applies the first circuit,
so circuits P (x)1, V (x)1, . . . , P (x)(m(|x|)+1)/2, V (x)(m(|x|)+1)/2 are applied in sequence. Thus, it
is assumed that the prover always sends the last message (since there would be no point for the
verifier to send a message without a response). For readability we generally drop the arguments x
and |x| in the various functions/circuits described above when it is understood (e.g., we write Vj
and Pj to denote V (x)j and P (x)j for each j, and we write m to denote m(|x|)).

At a given instant, the state of the qubits in the circuit (V, P ) is a unit vector in the space
V ⊗M ⊗ P. Throughout this paper, we assume that operators acting on subsystems of a given
system are extended to the entire system by tensoring with the identity. For instance, for a 4-
message proof system as illustrated in Figure 1, the state of the system after all circuits have been
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applied is V3 P2 V2 P1 V1 |0q〉.
Now, for a given input x, the probability that the pair (V, P ) accepts x is defined to be the

probability that an observation of the verifier’s output qubit (in the {|0〉, |1〉} basis) yields the value
1, after the circuit (V (x), P (x)) is applied to a collection of q(|x|) qubits each initially in the |0〉
state. Formally, let Πacc ∈ P(V ⊗M) denote the projection onto states of the verifier’s qubits
and message qubits1 for which the accept qubit is set to 1. Thus, the probability of acceptance for
the proof system in Figure 1 is ‖ΠaccV3 P2 V2 P1 V1 |0q〉‖2. Define max accept(V (x)) (the maximum
acceptance probability of V (x)) to be the probability that (V, P ) accepts x maximized over all
possible m-message provers P .

A language A is said to have an m-message quantum interactive proof system with completeness
error εc and soundness error εs, where εc and εs may be functions of the input length, if the exists
an m-message verifier V such that (i) if x ∈ A then max accept(V (x)) ≥ 1 − εc(|x|), and (ii) if
x 6∈ A then max accept(V (x)) ≤ εs(|x|). We also say that (V, P ) is a quantum interactive proof
system for A with completeness error εc and soundness error εs if V satisfies these properties and P
is a prover that succeeds in convincing V to accept with probability at least 1−εc(|x|) when x ∈ A.

Various facts concerning quantum interactive proofs are proved in Kitaev and Watrous [26].
In particular, if we let QIP(m) denote the class of languages having quantum interactive proof
systems with m messages in total, then PSPACE ⊆ QIP(3) = QIP(poly) ⊆ EXP. Quantum
interactive proof systems are robust with respect to completeness and soundness errors.

3 Definitions

In this section we give our definition for honest verifier quantum statistical zero-knowledge and
discuss the relation of this definition to the classical definition. We also define the Quantum State
Distinguishability problem, which is discussed in later sections.

3.1 Honest verifier quantum statistical zero-knowledge

In the classical case, the zero-knowledge property concerns the distribution of possible conversa-
tions between the prover and verifier from the verifier’s point of view. In the quantum case, we
cannot consider the verifier’s view of the entire interaction in terms of a single quantum state in
any physically meaningful way, so instead we consider the mixed quantum state of the verifier’s
private qubits together with the message qubits at various times during the protocol. This gives a
reasonably natural way of characterizing the verifier’s view of the interaction.

It will be sufficient to consider the verifier’s view after each message is sent (since the verifier’s
views at all other times are easily obtained from the views after each message is sent by running
the verifier’s circuits). The zero-knowledge property will be that the mixed states representing the
verifier’s view after each message is sent should be approximable to within negligible trace distance
by a polynomial-size (uniformly generated) quantum circuit on accepted inputs. We formalize this
notion as follows.

First, given a collection {ρy} of mixed quantum states, we say that the collection is polynomial-
time preparable if there exists a polynomial-time uniformly generated family {Qy} of quantum

1It will be convenient later to have Πacc defined as a projection on V ⊗ M rather than V ⊗ M ⊗ P . Since we

implicitly tensor with the identity on P when we want to view any operator on V ⊗ M as acting on V ⊗ M ⊗ P ,

there is nothing lost in defining Πacc on V ⊗M in this way.
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circuits, each having a specified collection of output qubits, such that the following holds. For each
y, the state ρy is the mixed state obtained by running Qy with all input qubits initialized to the |0〉
state and then tracing out all non-output qubits. By {Qy} polynomial-time uniform, we mean that
there exists a polynomial time deterministic Turing machine that, on input y, outputs a description
of Qy.

Next, given a verifier V and a prover P , we define viewV,P (x, j) to be the reduced state of the
verifier and message qubits after j messages have been sent during an execution of the proof system
(V, P ) on input x. In other words, this is the state obtained by taking the state of the entire system
immediately after j messages have been sent and tracing out the prover’s private qubits.

Finally, given a verifier V and a prover P , we say that the pair (V, P ) is an honest verifier
quantum statistical zero-knowledge proof system for a language A if

1. (V, P ) is a quantum interactive proof system for A, and

2. there exists a polynomial-time preparable set {σx,j} and a negligible function δ such that

‖σx,j − viewV,P (x, j)‖tr < δ(|x|)

for every x ∈ A and each message number j.

As usual, δ negligible means that for every polynomial p, δ(n) < 1/p(n) for sufficiently large n. The
polynomial-time preparable set {σx,j} corresponds to the output of a polynomial-time simulator.
The completeness and soundness error of an honest verifier quantum statistical zero-knowledge
proof system are determined by the underlying proof system.

Finally we define QSZKHV (honest verifier quantum statistical zero-knowledge) to be the class
of languages having honest verifier quantum statistical zero-knowledge proof systems with com-
pleteness and soundness error at most 1/3. We note that sequential repetition of honest verifier
quantum statistical zero-knowledge proof systems reduces completeness and soundness error expo-
nentially while preserving the zero-knowledge property. Thus, we may equivalently define QSZKHV

to be the class of languages having honest verifier quantum statistical zero-knowledge proof systems
with completeness and soundness error at most 2−p(n) for any chosen polynomial p.

3.2 Notes on the definition

Aside from the obvious difference of quantum vs. classical information, our definition differs from
the standard definition for classical honest-verifier statistical zero-knowledge in the following sense.
In the classical case, the simulator randomly outputs a transcript representing the entire interaction
between the prover and verifier, while our definition requires only that the view of the verifier at
each instant can be approximated by a simulator. The main reason for this difference is that the
notion of a transcript of a quantum interaction is counter to the nature of quantum information—in
general, there is no physically meaningful way to define a transcript of a quantum interaction. For
instance, if a verifier tries to copy the value of every qubit it touches during the protocol in order
to produce such a transcript, this would be tantamount to the verifier performing measurements
that would likely spoil the properties of the protocol.

Thus, our definition is not a direct quantum analogue of the standard classical definition, and it
is not clear how to give such a direct analogue that is physically meaningful. However, rather than
trying to give a direct quantum analogue of the classical definition, our aim has been to provide a
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definition that (i) is weaker than as wide a range of definitions for general quantum statistical zero-
knowledge as possible (for the purposes of proving upper bounds), (ii) satisfies the intuitive notion
of honest verifier statistical zero-knowledge, and (iii) is as simple as possible. While our definition
is not a direct analogue of the classical definition, our results do suggest that our definition yields
a complexity class that is a natural quantum analogue of classical statistical zero-knowledge.

Finally, we reiterate at this point that our definition requires the verifier’s actions to be described
by unitary transformations rather than arbitrary quantum transformations. The condition that a
simulator must only approximate the view of the verifier at each instant is, in this sense, not as
weak as it might be for the general transformation case. From the point of view that our definition
should be weaker than any reasonable notion of general verifier quantum statistical zero-knowledge,
the restriction to unitary verifiers is not unnatural (since, at the very least, a cheating verifier could
simulate the honest verifier’s non-unitary transformations with unitary transformations).

3.3 Quantum state distinguishability

Recall that a promise problem consists of two disjoint sets Ayes, Ano ⊆ Σ∗. The associated compu-
tational task is as follows: we are given some x ∈ Ayes ∪Ano, and the goal is to accept if x ∈ Ayes

and to reject if x ∈ Ano. Thus, the input is promised to be an element of Ayes ∪ Ano, and no
requirement is made in case the input string is not in Ayes ∪ Ano. Ordinary decision problems are
a special case of promise problem where Ayes ∪ Ano = Σ∗. See Even, Selman, and Yacobi [13] for
further information on promise problems. Our above definition for QSZKHV is stated in terms of
decision problems, but may be rephrased in terms of promise problems in the straightforward way.

We will focus on the following promise problem, which is parameterized by constants α and β
satisfying 0 ≤ α < β ≤ 1. (We consider only a restricted version of this problem where α < β2.)

(α, β)-Quantum State Distinguishability ((α, β)-QSD)

Input: Quantum circuits Q0 and Q1 acting on m qubits and having k specified output qubits.

Promise: Let ρi denote the mixed state obtained by running Qi on state |0m〉 and discarding
(tracing out) the non-output qubits. Then either ‖ρ0 − ρ1‖tr ≥ β or ‖ρ0 − ρ1‖tr ≤ α.

Output: Accept when ‖ρ0 − ρ1‖tr ≥ β, and reject when ‖ρ0 − ρ1‖tr ≤ α.

4 Protocols for state distinguishability

In this section we give honest-verifier quantum statistical zero-knowledge protocols for the (α, β)-
QSD problem and its complement. As a consequence, we have that (α, β)-QSD and its complement
are in QSZKHV provided that α and β are constants satisfying α < β2.

4.1 Manipulating trace distance

Our protocols for (α, β)-QSD and its complement rely heavily on constructions for manipulating
trace distances between outputs of quantum circuits. These constructions were developed by Sahai
and Vadhan [34] in the classical case, and generalize to the quantum case with very few changes.
The following theorem describes the main consequence of the constructions.
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Theorem 5 Let α and β satisfy 0 ≤ α < β2 ≤ 1. Then there is a deterministic polynomial-
time procedure that, on input (Q0, Q1, 1

n) where Q0 and Q1 are descriptions of quantum circuits
specifying mixed states ρ0 and ρ1, outputs descriptions of quantum circuits (R0, R1) (each having
size polynomial in n and in the size of Q0 and Q1) specifying mixed states ξ0 and ξ1 satisfying the
following.

‖ρ0 − ρ1‖tr ≤ α ⇒ ‖ξ0 − ξ1‖tr ≤ 2−n,

‖ρ0 − ρ1‖tr ≥ β ⇒ ‖ξ0 − ξ1‖tr ≥ 1− 2−n.

The remainder of this subsection is devoted to a proof of this theorem.

Proposition 6 Let ρ0, ρ1 ∈ D(H) and ξ0, ξ1 ∈ D(K). Define

γ0 =
1

2
(ρ0 ⊗ ξ0) +

1

2
(ρ1 ⊗ ξ1),

γ1 =
1

2
(ρ0 ⊗ ξ1) +

1

2
(ρ1 ⊗ ξ0).

Then ‖γ0 − γ1‖tr = ‖ρ0 − ρ1‖tr ‖ξ0 − ξ1‖tr.

Proof. We have

‖γ0 − γ1‖tr =

∥

∥

∥

∥

1

2
(ρ0 ⊗ ξ0) +

1

2
(ρ1 ⊗ ξ1)−

1

2
(ρ0 ⊗ ξ1)−

1

2
(ρ1 ⊗ ξ0)

∥

∥

∥

∥

tr

=

∥

∥

∥

∥

1

2
(ρ0 − ρ1)⊗ (ξ0 − ξ1)

∥

∥

∥

∥

tr

= ‖ρ0 − ρ1‖tr · ‖ξ0 − ξ1‖tr

as required.

Lemma 7 There is a deterministic polynomial-time procedure that, on input (Q0, Q1, 1
r) where Q0

and Q1 are quantum circuits each having k specified output qubits, outputs (R0, R1), where R0 and
R1 are quantum circuits each having rk specified output qubits and satisfy the following. Letting
ρ0, ρ1, ξ0, and ξ1 denote the mixed states obtained by running Q0, Q1, R0, and R1 with all inputs
in the |0〉 state and tracing out the output qubits, we have ‖ξ0 − ξ1‖tr = ‖ρ0 − ρ1‖rtr.

Proof. The circuit R0 operates as follows: choose b1, . . . , br−1 ∈ {0, 1} independently and uni-
formly, set br = b1 ⊕ · · · ⊕ br−1, and output the state ρb1 ⊗ · · · ⊗ ρbr (by running Qb1, . . . , Qbr on r
separate collections of k qubits). The circuit R1 operates similarly, except br is flipped: randomly
choose b1, . . . , br−1 ∈ {0, 1} uniformly, set br = 1⊕b1⊕· · ·⊕br−1, and output the state ρb1⊗· · ·⊗ρbr .
In both cases, the random choices are easily implemented using the Hadamard transform, and the
construction of the circuits is straightforward. The required inequality ‖ξ0 − ξ1‖tr = ‖ρ−ρ1‖rtr
follows from Proposition 6 along with a simple proof by induction.

Lemma 8 Let ρ, ξ ∈ D(H) satisfy ‖ρ− ξ‖tr = ε. Then

1− e−kε2/2 < ‖ρ⊗k − ξ⊗k‖tr ≤ kε.

11



Proof. For the first inequality, we have

‖ρ⊗k − ξ⊗k‖tr ≥ 1− F (ρ⊗k, ξ⊗k) = 1− F (ρ, ξ)k ≥ 1−
(

√

1− ‖ρ− ξ‖2tr
)k

= 1− (1− ε2)k

2 = 1− (1− ε2)
1

ε2
· kε

2

2 > 1− e− kε
2

2 .

In order to prove the second inequality, first note that for arbitrary states σ, σ′, τ , and τ ′ we have

‖σ ⊗ σ′ − τ ⊗ τ ′‖tr ≤ ‖σ ⊗ σ′ − τ ⊗ σ′‖tr + ‖τ ⊗ σ′ − τ ⊗ τ ′‖tr
= ‖(σ − τ)⊗ σ′‖tr + ‖τ ⊗ (σ′ − τ ′)‖tr
= ‖σ − τ‖tr + ‖σ′ − τ ′‖tr.

Based on this fact, the second inequality follows easily by induction.

Lemma 9 There is a deterministic polynomial-time procedure that, on input (Q0, Q1, 1
r) where Q0

and Q1 are quantum circuits each having k specified output qubits, outputs (R0, R1), where R0 and
R1 are quantum circuits each having rk specified output qubits and satisfy the following. Letting
ρ0, ρ1, ξ0, and ξ1 denote the mixed states obtained by running Q0, Q1, R0, and R1 with all inputs
in the |0〉 state and tracing out the non-output qubits, we have

1− exp
(

−r
2
‖ρ0 − ρ1‖2tr

)

≤ ‖ξ0 − ξ1‖tr ≤ r ‖ρ0 − ρ1‖tr.

Proof. R0 and R1 are each simply obtained by running r independent copies of Q0 and Q1,
respectively. Thus ξi = ρ⊗ri for i = 0, 1. The bounds on ‖ξ0 − ξ1‖tr follow from Lemma 8.

Proof of Theorem 5. We assume Q0 and Q1 each act on m qubits and have k specified output
qubits for some choice of m and k.

Apply the construction in Lemma 7 to (Q0, Q1, 1
r), where r = ⌈log(8n)/ log(β2/α)⌉. The result

is circuits Q′
0 and Q′

1 that produce states ρ′0 and ρ′1 satisfying

‖ρ0 − ρ1‖tr < α ⇒ ‖ρ′0 − ρ′1‖tr < αr

‖ρ0 − ρ1‖tr > β ⇒ ‖ρ′0 − ρ′1‖tr > βr.

Now apply the construction from Lemma 9 to (Q′
0, Q

′
1, 1

s), where s = ⌊α−r/2⌋. This results in
circuits Q′′

0 and Q′′
1 that produce ρ′′0 and ρ′′1 such that

‖ρ0 − ρ1‖tr < α ⇒ ‖ρ′′0 − ρ′′1‖tr < αrα−r/2 = 1/2,

‖ρ0 − ρ1‖tr > β ⇒ ‖ρ′′0 − ρ′′1‖tr > 1− exp
(

−s
2
β2r

)

≥ 1− e−2n+1.

Finally, again apply the construction from Lemma 7, this time to (Q′′
0 , Q

′′
1, 1

n). This results in
circuits R0 and R1 that produce states ξ0 and ξ1 satisfying

‖ρ0 − ρ1‖tr < α ⇒ ‖ξ0 − ξ1‖tr < 2−n,

‖ρ0 − ρ1‖tr > β ⇒ ‖ξ0 − ξ1‖tr >
(

1− e−2n+1
)n

> 1− 2−n.

The circuits R0 and R1 have size polynomial in n and the size of Q0 and Q1 as required.
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Verifier:

Apply the construction of Theorem 5 to (Q0, Q1, 1
n) for n exceeding the length of the input (Q0, Q1).

Let R0 and R1 denote the constructed circuits, and ξ0 and ξ1 the associated mixed states. Choose
a ∈ {0, 1} uniformly and send ξa to the prover.

Prover:

Perform the optimal measurement for distinguishing ξ0 and ξ1. Let b be 0 if the measurement
indicates the state is ξ0, and 1 if the measurement indicates the state is ξ1. Send b to the verifier.

Verifier:

Accept if a = b and reject otherwise.

Figure 2: Protocol for QSD

4.2 Distance test

Now we describe a quantum statistical zero-knowledge protocol for (α, β)-QSD. The prover’s goal
in this case is to prove that the mixed states produced by the given circuits Q0 and Q1 are far
apart in the trace norm metric. The protocol is described in Figure 2, including a description of
the (honest) prover.

This protocol is identical in principle to the well-known Graph Non-isomorphism protocol of
Goldreich, Micali, and Wigderson [17] and Quadratic Non-residuosity protocol of Goldwasser, Mi-
cali, and Rackoff [20]. If the states are indeed far apart, the prover can determine which state was
sent by performing an appropriate measurement, while if the states are close together, the prover
cannot reliably tell the difference between the states because there does not exist a measurement
that distinguishes them. By requiring that the verifier first apply the construction of Theorem 5, an
exponentially small completeness error is achieved, which ensures that the zero-knowledge property
holds.

Based on this protocol, we have the following theorem.

Theorem 10 Let α and β satisfy 0 ≤ α < β2 ≤ 1. Then (α, β)-QSD ∈ QSZKHV.

Proof. First we discuss the completeness and soundness of the proof system, then prove that the
zero-knowledge property holds.

For the completeness property of the protocol, we assume that the prover receives one of ξ0 or
ξ1, where ‖ξ0 − ξ1‖tr > 1 − 2−n, and thus can distinguish the two cases with probability of error
bounded by 2−n by performing an appropriate measurement. Specifically, the prover can apply the
measurement described by orthogonal projections {Π0,Π1} where Π0 maximizes tr Π0(ξ0− ξ1) and
Π1 = I −Π0. This gives an outcome of 0 with probability at least 1− 2−n in case the verifier sent
ξ0 and gives an outcome of 1 with probability at least 1− 2−n in case the verifier sent ξ1. This will
cause the verifier to accept with probability at least 1− 2−n.

For the soundness condition, we assume the prover receives either ξ0 or ξ1 where ‖ξ0 − ξ1‖tr <
2−n, and then the prover returns a single bit to the verifier. There is no loss of generality in
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Verifier:

Apply the construction of Theorem 5 to (Q0, Q1, 1
n) for n exceeding the length of the input (Q0, Q1).

Let R0 and R1 denote the constructed circuits, and ξ0 and ξ1 the associated mixed states. Let t
be the number of qubits on which R0 and R1 act. Apply R0 to |0t〉 and send the prover only the
non-output qubits (that is, the qubits that would be traced-out to yield ξ0).

Prover:

Apply unitary transformation U (described below) to the qubits sent by the verifier, then send
these qubits back to the verifier.

Verifier:

Apply R†
1 to the output qubits of R0 (which were not send to the prover in the first message)

together with the qubits received from the prover. Measure the resulting qubits: accept if the
result is 0t, and reject otherwise.

Figure 3: Protocol for co-QSD

assuming that the bit sent by the prover is measured immediately upon being received by the
verifier, since this would not change the verifier’s decision to accept or reject. Thus, we may treat
this bit as being the outcome of a measurement of whichever state ξ0 or ξ1 was initially sent by
the verifier. Since the trace distance between these two states is at most 2−n, no measurement can
distinguish the states with bias exceeding 2−n. Consequently the prover has probability at most
1/2 + 2−n of correctly answering b̃ = b.

Finally, the zero-knowledge property is straightforward—the state of the verifier and message
qubits after the first message is obtained by applying V1 (the verifier’s first transformation), and the
state of the verifier and message qubits after the prover’s response is approximated by applying V1,
tracing out the message qubits, then setting b̃ to b. Since the completeness error is exponentially
small, this gives a negligible error for the simulator.

4.3 Closeness test

Next we give a protocol for the complement of (α, β)-QSD. Unlike the previous protocol this
protocol has no obvious classical analogue and relies on non-classical properties of quantum states.
A description of the protocol is given in Figure 3.

The correctness of the protocol is related to the following fact concerning bipartite quantum
states. Suppose that |φ〉 and |φ′〉 are pure quantum states in some tensor product space H⊗K such
that the two states give the same mixed state when the second system is traced-out: trK |φ〉〈φ| =
trK |φ′〉〈φ′| = ρ. Then by Theorem 1 there must exist a unitary operator U acting only on the
traced-out space K such that (I ⊗ U)|φ〉 = |φ′〉. In case ρ = trK |φ〉〈φ| and ρ′ = trK |φ′〉〈φ′| are not
identical, but are close together in the trace norm metric, an approximate version of this fact holds:
there exists a unitary operator U acting on K such that (I ⊗ U)|φ〉 and |φ′〉 are close in Euclidean
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norm. For the above protocol, the states |φ〉 and |φ′〉 are the states produced by R0 and R1, K is
the space corresponding to the qubits sent to the prover, and U corresponds to the action of the
prover. We formalize this argument in the proof of the following theorem.

Theorem 11 Let α and β satisfy 0 ≤ α < β2 ≤ 1. Then (α, β)-QSD ∈ co-QSZKHV.

The proof of this theorem will require the following lemma, which is the approximate version of
Theorem 1 mentioned previously.

Lemma 12 Let ρ, ξ ∈ D(H) satisfy F (ρ, ξ) ≥ 1 − ε and let |φ〉, |ψ〉 ∈ H ⊗ K be purifications of ρ
and ξ, respectively, i.e., trK |φ〉〈φ| = ρ and trK |ψ〉〈ψ| = ξ. Then there exists U ∈ U(K) such that

‖(I ⊗ U)|φ〉 − |ψ〉‖ ≤
√

2ε.

Proof. By Theorem 2 we have
F (ρ, ξ) = max

|φ0〉,|ψ0〉
|〈φ0|ψ0〉|,

where the maximum is over all purifications |φ0〉, |ψ0〉 ∈ K of ρ and ξ, respectively. Let |φ0〉 and
|ψ0〉 be pure states achieving this maximum, and assume without loss of generality that 〈φ0|ψ0〉 is
a nonnegative real number.

Since |φ〉 and |φ0〉 are both purifications of ρ, we have by Theorem 1 that there exists V ∈ U(K)
such that |φ0〉 = (I ⊗ V )|φ〉. Similarly, there exists W ∈ U(K) such that |ψ0〉 = (I ⊗W )|ψ〉.

Define U = V †W . Then

‖(I ⊗ U)|φ〉 − |ψ〉‖ = ‖(I ⊗W )|φ〉 − (I ⊗ V )|ψ〉‖ = ‖|φ0〉 − |ψ0〉‖ =
√

2− 2〈φ0|ψ0〉 ≤
√

2ε

as required.

Proof of Theorem 11. First let us consider the completeness condition. If (Q0, Q1) 6∈ (α, β)-
QSD then we have ‖ξ0 − ξ1‖tr < 2−n and thus F (ξ0, ξ1) > 1 − 2−n. The states R0|0t〉 and R1|0t〉
are purifications of ξ0 and ξ1, respectively, and consequently there exists a unitary transformation
U acting only on the non-output qubits of R0|0t〉 (i.e., the qubits sent to the prover) such that
‖(I⊗U)R0|0t〉−R1|0t〉‖ ≤ 2−(n−1)/2. This is the transformation U performed by the honest prover.
This causes the verifier to accept with probability

|〈0t|R†
1(I ⊗ U)R0|0t〉|2 ≥

(

1− 1

2
‖R1|0t〉 − (I ⊗ U)R0|0t〉‖2

)2

> 1− 2−n+1.

The soundness of the proof system may be proved as follows. Assume (Q0, Q1) ∈ (α, β)-QSD.
Then we have ‖ξ0 − ξ1‖tr > 1 − 2−n, and thus F (ξ0, ξ1) < 2−(n−1)/2. The verifier prepares R0|0t〉
and sends the non-output qubits to the prover. The most general action of the prover is to apply
some arbitrary unitary transformation to the qubits sent by the verifier along with any number of
its own private qubits, and then return some number of these qubits to the verifier. As usual, let
V and M denote the Hilbert spaces corresponding to the verifier’s qubits and the message qubits,
respectively, and let σ denote the mixed state of the verifier’s private qubits and the message qubits
immediately after the prover has sent its message. It must be the case that trM σ = ξ0, since the
reduced state of the verifier’s qubits cannot be modified by the prover, as the prover does not have
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access to these qubits. The verifier applies R†
1 and measures, which causes the verifier to accept

with probability

〈0t|R†
1σR1|0t〉 = F (R1|0t〉〈0t|R†

1, σ)2 ≤ F (trMR1|0t〉〈0t|R†
1, trM σ)2 = F (ξ1, ξ0)

2 < 2−n+1.

Finally, the zero-knowledge property is fairly straightforward. We define a simulator that out-
puts R0|0t〉 for the verifier’s view as the first message is being sent and R1|0t〉 for the verifier’s view
after the second message. The simulator is perfect for the first message, and has trace distance at
most 2−n+1 from the view of the verifier interacting with the prover defined above for the second
message.

4.4 Alternate public-coin closeness test

Okamoto [32] proved that any language having a classical interactive proof system that is statis-
tical zero-knowledge against an honest verifier also has a public-coin proof system that is statis-
tical zero-knowledge against an honest verifier. This turned out to be a key fact in the proof of
Goldreich, Sahai and Vadhan [18] that honest-verifier statistical zero-knowledge equals statistical
zero-knowledge (without the honest verifier assumption).

We prove that co-(α, β)-QSD, i.e., the complement of the (α, β)-QSD problem, has a public-coin
honest-verifier quantum statistical zero-knowledge proof system. As this problem is complete for
QSZKHV, as demonstrated in the next section, we have that any honest-verifier quantum statis-
tical zero-knowledge proof system can be transformed into a public-coin honest-verifier quantum
statistical zero-knowledge proof system. By a public-coin honest-verifier quantum statistical zero-
knowledge proof system, we mean that each of the verifier’s messages is given by a sequence of
fair coin-flips. We stress that the verifier’s messages are completely classical, and the verifier does
not need to perform any computation, quantum or classical, until after all messages have been
exchanged.

Our protocol only requires a single coin-flip on the part of the verifier (in order to achieve
exponentially small completeness error and soundness error exponentially close to 1/2). The down-
side of the public-coin proof system we present is that three messages are required rather than two
as for the previously presented proof system for this problem. In contrast to the classical case, the
proof that our proof system functions correctly and has the required zero-knowledge property is
easy, following from simple facts about quantum information. The protocol is described in Figure 4.
Based on this protocol, we have the following theorem.

Theorem 13 Let α and β satisfy 0 ≤ α < β2 ≤ 1. Then there exists a three-message public-coin
honest-verifier statistical zero-knowledge proof system for co-(α, β)-QSD.

Proof. The completeness of the proof system is essentially the same as in the proof of Theorem 11;
in case (Q0, Q1) 6∈ (α, β)-QSD the honest prover will convince the verifier to accept with probability
at least 1− 2−n+1.

Now suppose (Q0, Q1) ∈ (α, β)-QSD, so that ‖ξ0 − ξ1‖tr > 1 − 2−n, and thus F (ξ0, ξ1) <
2−(n−1)/2. Let the reduced density operator of the qubits sent by the prover to the verifier in the
first message be denoted σ. Then the maximum probability that the verifier can be made to accept
is

1

2
F (ξ0, σ)2 +

1

2
F (ξ1, σ)2.
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Prover:

Apply the construction of Theorem 5 to (Q0, Q1, 1
n) for n exceeding the length of the input (Q0, Q1).

Let R0 and R1 denote the constructed circuits, and ξ0 and ξ1 the associated mixed states. Let t be
the number of qubits on which R0 and R1 act. Apply R0 to |0t〉 and send the verifier the output
qubits (that is, send the verifier ξ0, and keep the qubits that purify this state).

Verifier:

Flip a fair coin and send the result to the prover. Denote the value of the coin-flip by b ∈ {0, 1}.
Prover:

If b = 1, apply the unitary transformation U (exactly as in the proof of Theorem 11) to the non-
output qubits of R0 that were not sent to the verifier in the first message, then send these qubits to
the verifier. If b = 0, send these qubits to the verifier without performing any operation on them.

Verifier:

The verifier also applies the construction of Theorem 5 as in the prover’s first step. Apply R†
b to

all of the qubits received from the prover (in both the first and second message) and measure them
in the standard basis: accept if the result is 0t, and reject otherwise.

Figure 4: Public-coin protocol for co-QSD

To see this, suppose first that b = 1. Let τ be the state of all of the qubits sent to the verifier.
Then the probability the verifier accepts is 〈0t|R†

1τR1|0t〉. Since tracing out the qubits of τ sent
by the prover in the second round gives σ and R1|0t〉 purifies ξ1, the probability of acceptance is
bounded by F (ξ1, σ)2 by Theorem 2.

In case b = 0 the maximum probability of acceptance is F (ξ0, σ)2, which follows by a similar
argument, and gives the claimed bound. Now, by Lemma 3 we have

1

2
F (ξ0, σ)2 +

1

2
F (ξ1, σ)2 ≤ 1

2
(1 + F (ξ0, ξ1)) ≤

1

2
+ 2−(n+1)/2.

Finally, for the zero-knowledge property, define a simulator as follows. Output ξ0 for the
verifier’s view after the first message is sent. In order to produce the view after the second and third
message, choose b ∈ {0, 1} uniformly and prepare R0|0t〉 or R1|0t〉 appropriately. The simulator
is perfect for the first and second message, and has negligible trace distance from the view of the
verifier interacting with the prover defined above for the third message.

5 QSZKHV–completeness of quantum state distinguishability

Given a promise problem B = (Byes, Bno), we say that B is complete for QSZKHV if (i) B ∈
QSZKHV, and (ii) for every promise problem A = (Ayes, Ano) ∈ QSZKHV there exists a polynomial-
time computable function f such that x ∈ Ayes ⇒ f(x) ∈ Byes and x ∈ Ano ⇒ f(x) ∈ Bno. In this
section we prove that (α, β)-QSD is a complete promise problem for QSZKHV.
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Figure 5: States ρ0, . . . , ρk−1 and ξ1, . . . , ξk for m = 4.

Theorem 14 Let α and β satisfy 0 < α < β2 < 1. Then (α, β)-QSD is complete for QSZKHV.

Before giving the proof of this theorem, we will describe the main intuition behind the proof. We
note that the main idea behind the proof is a familiar idea due to Fortnow [14] that has been used
several times to prove results concerning statistical zero-knowledge.

Since we have already proved that (α, β)-QSD and its complement are contained in QSZKHV

in the previous section, it will suffice to prove that co-(α, β)-QSD is hard for QSZKHV.
Suppose that we have a quantum interactive proof system (V, P ) for some promise problem A

that is statistical zero-knowledge against an honest verifier. Assume that the completeness and
soundness errors for this proof system are exponentially small; since sequential repetition can be
used to reduce error exponentially, there is no loss of generality in making this assumption. Let
m = m(|x|) denote the total number of messages sent in this protocol, and assume without loss
of generality that m is even. Let k = m/2 + 1, so that the verifier’s actions on a fixed input x
are described by circuits V1, . . . , Vk and the prover’s actions are described by circuits P1, . . . , Pk−1.
The case where m = 4 is illustrated in Figure 5.

Let ρ0, . . . , ρk−1 and ξ1, . . . , ξk correspond to the simulator’s approximation to the reduced
states of the verifier’s qubits together with the message qubits at various times during the protocol
as suggested by Figure 5. In the case that x ∈ Ayes, these states are therefore close to the actual
views of the verifier at these instants in the protocol, while there is no guarantee in case x ∈ Ano.

We can impose some restrictions on the simulator without loss of generality. First, we may of
course assume that ρ0 = |0 · · · 0〉〈0 · · · 0|, and that ξj = Vjρj−1V

†
j for j = 1, . . . , k (i.e., the simulator

prepares each ξj by first preparing ρj−1 and then applying Vj to this state). Lastly, we can assume
that the output qubit of ξk is set to 1 with certainty. If a given simulator does not satisfy this last
restriction, we can define a new simulator that produces ρk−1 according to the following procedure:
(i) produce some approximation ρ′k−1 by running the original simulator, (ii) apply Vk to this state,

(iii) replace the output qubit with a qubit in state |1〉, and (iv) apply V †
k to the resulting state to

give ρk−1. The output qubit of ξk = Vkρk−1V
†
k is therefore set to 1 with certainty. If x ∈ Ayes,

then the new simulator will produce an output that has negligible distance from the output of the
original simulator, and therefore the actual view of V , based on the fact that the proof system is
assumed to have exponentially small completeness error.
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Assume first that x ∈ Ayes. Since x ∈ Ayes, the simulator outputs states ρ0, . . . , ρk−1 and
ξ1, . . . , ξk that closely approximate the actual view of V . We see that in this case it must be that
trM ξj ≈ trM ρj for j = 1, . . . , k−1, since the prover cannot affect the reduced state of the verifier’s
qubits. Consequently, the two states

trM ρ1 ⊗ · · · ⊗ trM ρk−1

trM ξ1 ⊗ · · · ⊗ trM ξk−1
(1)

are close together (within negligible trace distance). Based on the description of the simulator, it is
possible to construct quantum circuits Q0 and Q1 that output the states trM ρ1⊗· · ·⊗trM ρk−1 and
trM ξ1 ⊗ · · · ⊗ trM ξk−1, respectively. The descriptions of the circuits Q0 and Q1 will (essentially)
be the instance of co-(α, β)-QSD produced by the reduction.

Now, assume that x ∈ Ano, and suppose we use the same method as above to get circuits Q0

and Q1. Since x ∈ Ano, however, we no longer have any guarantee that the states produced by these
circuits are close together. Indeed, our goal will be to prove that the states produced by Q0 and Q1

are necessarily far apart. Fortunately, this is not difficult; based on the assumption that no prover
can succeed in convincing the verifier to accept with high probability, we have that the states in
Eq. 1 are far apart given any choice of ρ0, . . . , ρk−1 and ξ1, . . . , ξk satisfying the various constraints
that are imposed on the output of the simulator. Proving this claim is the main technical part of
the proof, and corresponds to Lemma 15.

Finally, in order to achieve the required error bounds for co-(α, β)-QSD, the constructions used
to prove Theorem 5 are applied to (Q0, Q1), resulting in (R0, R1) that are elements of (α, β)-QSDno

or (α, β)-QSDyes appropriately.
We now proceed with a more formal proof of Theorem 14. Recall that we denote by Πacc the

projection onto states for which the verifier’s output qubit is set to 1 (accept), and in addition we
will denote by Πinit the projection onto the state for which all of the verifier and message qubits
are set to 0 (which is the initial state of these qubits before the protocol begins). These projections
are operators acting on V ⊗M, but by our convention they can also be viewed as operators acting
on V ⊗M⊗P by tensoring with the identity. We begin with the technical lemma needed to show
that the states in Eq. 1 are far apart for the case x ∈ Ano.

Lemma 15 Consider an m-message quantum interactive proof system for even m on some input
string for which the maximum acceptance probability is ε. Let V1, . . . , Vk denote the verifier’s circuits
(where k = m/2 + 1), let ρ0, . . . , ρk−1 be any mixed quantum states over V ⊗M, let ξj = Vjρj−1V

†
j

for j = 1, . . . , k, and assume that tr(Πinitρ0) = tr(Πacc ξk) = 1. Then

‖ trM ξ1 ⊗ · · · ⊗ trM ξk−1 − trM ρ1 ⊗ · · · ⊗ trM ρk−1‖tr ≥
(1−√ε)2
4(k − 1)

.

Proof. Let |φ0〉 ∈ V ⊗M⊗P be the state in which all of the verifier, message, and prover qubits
are set to 0. Since tr(Πinitρ0) = 1, |φ0〉 is necessarily a purification of ρ0. Let |φ1〉, . . . , |φk−1〉 ∈
V⊗M⊗P be arbitrary purifications of ρ1, . . . , ρk−1, and set |ψj〉 = Vj |φj−1〉 for j = 1, . . . , k. Since

ξj = Vjρj−1V
†
j for j = 1, . . . , k, each |ψj〉 is a purification of ξj.

Let δj = 1 − F (trM ξj, trM ρj) for j = 1, . . . , k − 1. It follows from Lemma 12 that for each j
there exists some unitary operator Pj acting on M⊗P such that ‖Pj |ψj〉 − |φj〉‖ ≤

√

2δj . Now,
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for each j = 1, . . . , k, we have

‖VjPj−1Vj−1 · · ·P1V1|φ0〉 − |ψj〉‖
= ‖Pj−1Vj−1 · · ·P1V1|φ0〉 − |φj−1〉‖
≤ ‖Pj−1Vj−1 · · ·P1V1|φ0〉 − Pj−1|ψj−1〉‖+ ‖Pj−1|ψj−1〉 − |φj−1〉‖
≤ ‖Vj−1 · · ·P1V1|φ0〉 − |ψj−1〉‖+

√

2δj−1,

and therefore

‖VkPk−1Vk−1 · · ·P1V1|φ0〉 − |ψk〉‖ ≤
k−1
∑

j=1

√

2δj .

Since tr(Πaccξk) = 1 we have ‖Πacc |ψk〉‖ = 1, and so

‖Πacc VkPk−1Vk−1 · · ·P1V1|φ0〉‖ ≥ 1−
k−1
∑

j=1

√

2δj .

Since ‖Πacc VkPk−1Vk−1 · · ·P1V1|φ0〉‖2 is bounded above by the acceptance probability of the proof
system, we have

k−1
∑

j=1

√

2δj ≥ 1−
√
ε. (2)

It remains to use Eq. 2 to put a lower bound on the quantity of interest, which can be done as
follows. The fidelity is multiplicative with respect to tensor products, so

F (trM ξ1 ⊗ · · · ⊗ trM ξk−1, trM ρ1 ⊗ · · · ⊗ trM ρk−1) =
k−1
∏

i=1

F (trM ξi, trM ρi) =
k−1
∏

i=1

(1− δi).

Subject to the constraint in Eq. 2, we have

k−1
∏

i=1

(1− δi) ≤
(

1− (1−√ε)2
2(k − 1)2

)k−1

≤ exp

(

−(1−√ε)2
2(k − 1)

)

≤ 1− (1−√ε)2
4(k − 1)

.

Therefore, by Theorem 4,

‖ trM ξ1 ⊗ · · · ⊗ trM ξk−1 − trM ρ1 ⊗ · · · ⊗ trM ρk−1‖tr ≥
(1−√ε)2
4(k − 1)

as required.

Proof of Theorem 14. Let A ∈ QSZKHV, and let (V, P ) be an honest verifier quantum statistical
zero-knowledge proof system for A with completeness and soundness error smaller than 2−n for
inputs of length n. Such a proof system exists, since sequential repetition reduces completeness
and soundness errors exponentially while preserving the zero-knowledge property of honest verifier
quantum statistical zero-knowledge proof systems. Let m = m(|x|) be the number of messages
exchanged by P and V . Without loss of generality we assume that the number of messages m is
even for all x, adding an initial move where the verifier sends some arbitrary state to the prover

20



if necessary. Thus, the verifier will apply transformations V1, . . . , Vk for k = m/2 + 1, and will
send the first message in the protocol. We let {σx,j} correspond to the mixed states output by the
simulator for (V, P ) as discussed in Section 2. The quantum circuits that produce the states {σx,j}
are used implicitly in the reduction.

First, we describe, for any fixed input x, the following quantum states:

1. Let ρ0 be the state in which all verifier and message qubits are in state |0〉.
2. Let ξk denote the state obtained by applying Vk to σx,m, discarding the output qubit,

and replacing it with a qubit in state |1〉.

3. Let ρi = σx,2i for i = 1, . . . , k − 2 and let ρk−1 = V †
k ξkVk.

4. Let ξi = Viρi−1V
†
i for i = 1, . . . , k − 1.

These states are illustrated in Figure 5 for the case m = 4 (meaning that these states will be close
approximations to the illustrated states given an input x ∈ Ayes). Let Q0 and Q1 be quantum
circuits that output states

γ0 = trM ρ1 ⊗ · · · ⊗ trM ρk−1

γ1 = trM ξ1 ⊗ · · · ⊗ trM ξk−1

respectively, assuming the input to these circuits is a suitable number of qubits in the |0〉 state.
Such circuits can be constructed in polynomial time based on V and on the simulator for (V, P ).

We claim that the following implications hold:

x ∈ Ayes ⇒ ‖γ0 − γ1‖tr < δ(|x|)
x ∈ Ano ⇒ ‖γ0 − γ1‖tr > c/k

where δ(|x|) is a negligible function (determined by the accuracy of the simulator for (V, P )) and
c > 0 is some constant. The second implication follows from Lemma 15. To prove the first
implication, consider states ρ′0, . . . , ρ

′
k−1 and ξ′1, . . . , ξ

′
k obtained precisely as in the description

of Q0 and Q1, except replacing σx,j with viewV,P (x, j), the actual view of the verifier V while
interacting with P , for each x and j. We necessarily have trM ξ′i = trM ρ′i for i = 1, . . . , k − 2.

Since measuring the output qubit of Vk viewV,P (x,m)V †
k gives 1 with probability at least 1− 2−|x|,

replacing the output qubit with a qubit in state |1〉 has a negligible effect on this state. Thus, the
trace distance between trM ρ′k−1 and trM ξ′k−1, and therefore between trM ρ′1 ⊗ · · · ⊗ trM ρ′k−1 and
trM ξ′1⊗· · ·⊗trM ξ′k−1, is negligible. Now, since the simulator deviates from viewV,P by a negligible
quantity on each input, the inequality

‖ trM ρ1 ⊗ · · · ⊗ trM ρk−1 − trM ξ1 ⊗ · · · ⊗ trM ξk−1‖tr < δ(|x|)

for some negligible δ(|x|) follows from the triangle inequality.
Finally, by applying the constructions from Lemmas 7 and 9 to (Q0, Q1) appropriately results

in circuits R0 and R1 that specify mixed states γ0 and γ1, respectively, such that (i) x ∈ Ayes ⇒
‖γ0 − γ1‖tr < α, and (ii) x ∈ Ano ⇒ ‖γ0 − γ1‖tr > β, for any chosen constants α, β ∈ (0, 1). Thus,
x ∈ Ayes implies (R0, R1) ∈ (α, β)-QSDno and x ∈ Ano implies (R0, R1) ∈ (α, β)-QSDyes.
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6 Consequences

Based on Theorems 10, 11, 13, and 14, the following corollaries are immediate.

Corollary 16 QSZKHV is closed under complement.

Corollary 17 For any language in QSZKHV there exists a two-message honest verifier quantum
statistical zero-knowledge proof system with exponentially small completeness and soundness error.

Corollary 18 For any language in QSZKHV there exists a two-message honest verifier quantum
statistical zero-knowledge proof system with exponentially small completeness error and soundness
error exponentially close to 1/2 in which the prover’s message to the verifier consists of a single
bit.

Corollary 19 For any language in QSZKHV there exists a three-message public coin honest verifier
quantum statistical zero-knowledge proof system with exponentially small completeness error and
soundness error exponentially close to 1/2 in which the verifier’s message consists of a single coin-
flip.

Finally, the fact that (α, β)-QSD can be shown to be in PSPACE yields the following corollary.

Corollary 20 QSZKHV ⊆ PSPACE.

In order to prove this Corollary, let us consider the following problem.

Trace Norm Approximation (TNA)

Input: An n× n matrix X (with entries having rational real and imaginary parts) and an
accuracy parameter 1k.

Output: A nonnegative rational number r satisfying | r − ‖X‖tr | < 2−k.

Proposition 21 TNA ∈ NC.

Proof. [Sketch] Consider the following algorithm.

1. Compute Y = XX†.

2. Compute the characteristic polynomial of Y (the coefficients will be real since Y is neces-
sarily Hermitian).

3. Calculate the n roots λ1, . . . , λn of the characteristic polynomial of Y to O(k + log n) bits
of precision.

4. Compute r = 1
2

∑n
j=1

√

λj , where each square root is approximated to O(k + log n) bits of
precision, and output r.

The output r is an approximation to one-half the trace of
√
XX†, which is ‖X‖tr. The approxi-

mation is correct to O(k) bits of precision as required. Each step can be performed in NC; simple
arithmetic operations and multiplication of matrices are well-known to be in NC, the fact that the
characteristic polynomial can be computed in NC was shown by Csanky [12], and polynomial root
approximation was shown to be in NC by Neff [30].
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Proof of Corollary 20. [Sketch] By Theorem 14 it suffices to show that (α, β)-QSD is in PSPACE.
Recall that for any function s(n) ≥ log n, NC(2s) denotes the class of languages computable by
space O(s)-uniform boolean circuits having size 2O(s) and depth sO(1) [10]. The class NC(2s) is
contained in DSPACE(sO(1)) [9]. Thus, it will suffice to prove that (α, β)-QSD is contained in
NC(2n).

Let (Q0, Q1) be an input pair of quantum circuits specifying density matrices (ρ0, ρ1) on k
qubits, and let n be the length of the description of the pair (Q0, Q1). Obviously we may assume
k ≤ n, the number of qubits m on which Q0 and Q1 act satisfies m ≤ n, and each of Q0 and Q1

contains at most n gates. We assume Q0 and Q1 are composed of gates that can be described by
unitary matrices having entries with rational real and imaginary parts (see Section 2.2). Thus, ρ0

and ρ1 correspond to N×N matrices where N ≤ 2n, and for each entry of ρ0 and ρ1 the numerators
and denominators of the real and imaginary parts are O(n)-bit integers.

For each i = 0, 1 it is possible to compute |ψi〉 = Qi|0m〉 (expressed as a 2m-dimensional
vector with rational real and imaginary parts) in NC(2n), simply by computing the product of the
matrices corresponding to each individual gate. (In fact, there are better ways to do this from
a complexity-theoretic standpoint [15], but this method is sufficient for our needs.) Once these
vectors are computed, it is possible to compute ρ0 − ρ1 in NC(2n) by constructing |ψ0〉〈ψ0| and
|ψ1〉〈ψ1|, performing the partial trace on the non-output qubits for each matrix (which involves
computing a sum of at most 2n matrices, each of which is obtained by multiplying |ψi〉〈ψi| on
the left and on the right by a 2k × 2m or 2m × 2k matrix, respectively, as in the definition of the
partial trace), and then computing the difference of the resulting matrices. Once we have ρ0 − ρ1,
we may use the method described in Proposition 21 to compute ‖ρ0 − ρ1‖tr in NC(2n) (which is
NC with respect to the size of ρ0 − ρ1). Since it is only required that the cases ‖ρ0 − ρ1‖tr ≤ α
and ‖ρ0 − ρ1‖tr ≥ β be discriminated, ‖ρ0 − ρ1‖tr need in fact only be computed to O(1) bits of
precision. This completes the proof.

7 Conclusion

In this paper we have given a definition for honest verifier quantum statistical zero-knowledge, and
studied the resulting complexity class QSZKHV. Figure 6 shows some relationships among this
class, other classes based on quantum interactive proofs, and a few other well-studied classes.

We conclude by mentioning a few open questions concerning quantum zero-knowledge.

• What are other possible definitions for quantum zero-knowledge, and how do they compare to
our definition? In particular, how does our definition for honest verifier quantum statistical
zero-knowledge compare to possible definitions for (not necessarily honest verifier) quantum
statistical zero-knowledge?

• What further relations among QSZKHV and other complexity classes can be shown? Almost
certainly the upper-bound of PSPACE on QSZKHV can be improved. Is it possible that NP ⊆
QSZKHV, or do unexpected consequences result from such an assumption?

• The Quantum State Distinguishability problem is natural from the perspective of quantum
information processing, but is rather unnatural outside of this scope. Are there more natural
problems that are candidates for problems in QSZKHV but not in SZK?
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