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While it is straightforward to simulate a very general class of random pro-

cesses space-efficiently by non-unitary quantum computations (e.g., quan-

tum computations that allow intermediate measurements to occur), it is not

currently known to what extent restricting quantum computations to be

unitary affects the space required for such simulations. This paper presents

a method by which a limited class of random processes—random walks on

undirected graphs—can be simulated by unitary quantum computations

in a space-efficient (and time-efficient) manner. By means of such simula-

tions, it is demonstrated that the undirected graph connectivity problem

for regular graphs can be solved by one-sided error quantum Turing ma-

chines that run in logspace and require a single measurement at the end

of their computations. It follows that symmetric logspace is contained in

a quantum analogue of randomized logspace that disallows intermediate

measurements.

1. INTRODUCTION

This paper addresses the problem of space-efficient quantum simulations of prob-

abilistic computations. We take as our model of computation the quantum Turing

machine, where we assume measurements may not occur during the computation,

and that a single measurement (yielding one of the results: accept or reject) takes

place at the end of the computation. While it has been shown that restricting

measurements in this way does not affect computational power with respect to

time-bounded computation [1], it is not known if this restriction affects computa-

tional power in the space-bounded case. Indeed, while it can easily be shown that a

quantum machine running in logspace, for instance, that allows local measurements

at any point in its computation can simulate a given logspace probabilistic compu-

tation, it is not known if this can be done in the case where measurements are not

1Partially supported by Canada’s Nserc. Part of this work was performed while the author
was at the University of Wisconsin–Madison Computer Sciences Department under the support
of NSF grant CCR-95-10244.
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allowed during the computation. The apparent difficulty in simulating probabilis-

tic computations with space-bounded quantum machines in this restricted setting

by means of the most straightforward technique (i.e., directly simulating coin-flips

with appropriately defined quantum transformations) lies in the problem of reusing

the space required for each coin-flip, of which there may be a number exponential

in the space-bound.

Our primary motivation for investigating this issue is as follows. Arguably the

most “natural” definitions for quantum variants of classical space-bounded classes

are based on a non-unitary quantum computational model in which measurements

during the computation are permitted—a priori there is no clear physical reason

to disallow measurements during a computation, and from such definitions we have

the desirable property that the resulting quantum classes generalize their classi-

cal counterparts. However, the assumption that any such quantum computation

can be performed without intermediate measurements (if it is a valid assumption)

would likely be a powerful tool for analyzing the given quantum classes for the

simple reason that a unitary quantum computation can be inverted, while in gen-

eral a non-unitary computation cannot. For instance, the “tidy” subroutine calling

technique of Bennett, Bernstein, Brassard, and Vazirani [5] relies on the ability to

invert computations, and it is not clear that such a technique can be applied to

non-unitary computations. Strangely, even the (apparently) much simpler class of

classical probabilistic computations seems difficult to simulate by unitary quantum

computers in the space-bounded case, as mentioned above.

Another source of motivation for our inquiry comes from Landauer’s Principle

[10], and is based on the fact that unitary quantum computations are reversible,

whereas non-unitary computations in general are not. Landauer’s Principle may

be informally stated as follows: reversible computations can be performed without

expenditure of heat, while any irreversible computation step necessarily generates

some amount of thermal energy proportional to kT (see Bennett [4] for further

information regarding thermodynamic issues of computation). While existing com-

puters generate heat far in excess of this amount, it is nevertheless interesting to

consider heat generation (in conjunction with some space bound) as a resource

for the purpose of classifying problems. For example, given a particular problem

and space-bound, we may ask what the minimal amount of heat is that must be

dissipated for the problem to be solved by a quantum machine running in the

given space-bound. If the computation is unitary, we may say the required heat

dissipation is constant, while a non-unitary computation may necessarily require

non-constant (e.g., polynomial) heat dissipation.

In order to discuss this further, let us focus on logarithmic space bounds in partic-

ular. Consider a quantum analogue of the class RL, which we may call QRL. This is

the class of languages that can be recognized by quantum Turing machines running

in logspace that have one-sided error and allow intermediate measurements.2 As

our focus will in fact be on the unitary variant of this class that disallows inter-

mediate measurements (which we call UQRL), we will not give a formal definition

2In this paper we will only consider space-bounded classes for which the underlying (quantum
or probabilistic) machines halt absolutely, or equivalently have finite worst-case running time for
each input. See Saks [15] for information on the importance of this restriction.
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for QRL in this paper. If it is the case that UQRL is properly contained in QRL,

this suggests that certain tasks require heat generation to be solved in (quantum)

logspace. If it is the case that RL is not contained in UQRL, this suggests that

some logspace randomized computations must necessarily produce heat.

In this paper we prove that quantum Turing machines can simulate a limited

class of random processes—random walks on regular, undirected graphs—in a time-

efficient and space-efficient manner without relying on measurements during the

computation. A random walk on a regular, undirected graph G of degree d is a

Markov chain defined as follows: the states of the Markov chain correspond to the

vertices of G, and the transition probability from vertex u to vertex v is defined

to be 1/d in case v is adjacent to u, and 0 otherwise. While this leaves open the

more general question of whether it is possible to simulate arbitrary probabilistic

computations in this way, random walks on graphs are an important class of random

processes from the standpoint of complexity theory and have had a number of

important applications. From the perspective of this paper, perhaps the most

important application of random walks in complexity theory is due to Aleliunas,

Karp, Lipton, Lovász and Rackoff [2], who used random walks to show that the

undirected graph connectivity (USTCON) problem is in RL. Since USTCON is

complete for symmetric logspace (SL) with respect to logspace reductions [12], the

relation SL ⊆ RL follows.

We define the d-regular undirected graph connectivity problem (d-USTCON) to

be the variant of USTCON in which the graph in question is regular of a fixed

degree d:

d-USTCON

Instance: A regular, undirected graph G = (V,E) of degree d and s, t ∈ V .

Question: Are s and t connected in G?

For d ≥ 3, d-USTCON is SL-complete, as a straightforward reduction shows

USTCON ≤log
m d-USTCON.

By considering suitable quantum variants of random walks on graphs we prove

d-USTCON ∈ UQRL. This is done in two steps: we first show d-USTCON can

be solved with one-sided error (unitary) logspace quantum Turing machines having

considerably worse acceptance probability than 1/2 for positive instances, and then

demonstrate that UQRL is robust with respect to acceptance probabilities.

The most space-efficient known deterministic algorithm for d-USTCON requires

space O((log n)4/3) [3], which suggests the problem can be solved with constant

heat dissipation in space O((log n)4/3) (as DSPACE(s) = reversible-DSPACE(s)

for any space bound s [11]). The fact d-USTCON ∈ UQRL suggests that in fact

the problem can be solved in space O(log n) with constant heat dissipation by a

quantum computer.

Given that d-USTCON ∈ UQRL, the following theorem may be proved by noting

that UQRL is closed with respect to ≤log
m -reductions.

Theorem 1.1. SL ⊆ UQRL.
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Symmetric logspace is closed under complementation [14], which, together with

Theorem 1.1, implies SL ⊆ UQRL ∩ co-UQRL.

From our technique to simulate classical random walks with logspace quantum

Turing machines, we obtain the following somewhat stronger result: given an undi-

rected, regular graph G and a vertex u, in polynomial time and logarithmic space

we may approximate a uniform superposition over all vertices in the connected

component of u in G with high probability and with a high degree of accuracy.

Possibly this fact may be of use for developing efficient space-bounded quantum

algorithms for other graph problems.

In a previous paper [16], we have developed various tools for proving relation-

ships among space-bounded quantum and classical complexity classes. As we use

some of these tools in the present paper, the reader may wish to consult [16] for

further details. It should be noted that in the abovementioned paper we define

complexity classes in terms of machines that allow a restricted class of measure-

ments during their computations: after each step the internal state of the quantum

Turing machine is observed, yielding one of the results accept, reject, or continue.

(Alternately this may be formulated by allowing for an output tape that is observed

after each step.) The computation continues until one of the results accept or reject

is obtained. As in the classical case, we may define a notion of halting absolutely

for such computations; a computation halts absolutely if it has finite worst-case

running time. We proved that any logspace quantum Turing machine allowing for

these limited intermediate measurements that halts absolutely can be simulated by

one in which no intermediate measurements occur, and under the assumption that

the running time in the single-measurement case is a logspace time-bound (i.e., the

running time of some deterministic logspace Turing machine) the converse holds as

well. Thus, the notion of a logspace quantum computation not allowing measure-

ments during the computation and the notion of a logspace quantum computation

that halts absolutely (with respect to measurements of the accept/reject/continue

type during the computation) are equivalent.

The remainder of this paper has the following organization. In Section 2 we re-

view relevant facts concerning space-bounded quantum computation. In Section 3

we define a number of quantum operators and prove a lemma regarding these oper-

ators that will be useful in Section 4, which contains the construction of quantum

Turing machines for simulating classical random walks on d-regular graphs. In Sec-

tion 5 we address the issue of the robustness of UQRL with respect to error bounds,

and in Section 6 we show that UQRL is closed with respect to ≤log
m -reducibility.

These facts, along with the machine constructed in Section 4, allows us to prove

Theorem 1.1. Section 7 contains some concluding remarks.

2. SPACE-BOUNDED QTMS

We begin by briefly discussing some relevant facts concerning space-bounded

quantum computation; for further information see [16]. For background on quan-

tum computation more generally, we refer the reader to Bernstein and Vazirani [6]

and Berthiaume [7], and for classical space-bounded computation see Saks [15].

The model of computation we use is the quantum Turing machine (QTM). Our

QTMs have two tapes: a read-only input tape and a work tape. The input and
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work tape alphabets are denoted Σ and Γ, respectively. The internal states of a

QTM are partitioned into two sets: accepting states and rejecting states.

As usual, the behavior of a QTM is determined by a transition function. There

are strict conditions the transition function of a QTM must satisfy, as the evolution

of a QTM must correspond to a unitary operator on the Hilbert space spanned by

classical configurations of the machine (see [6, 16] for further discussion).

In order to define the language accepted by a particular QTM M , we associate

with M a function T specifying the number of steps for which M is to be run

on each input. The probability that a pair (M,T ) accepts a given string x is the

probability that an accepting state results if the internal state of M on input x is

measured, given that the machine has run for precisely T (x) steps. A QTM M runs

in logspace with respect to a given T if there exists a function f(n) = O(log n) such

that, for every input x, the position of the work tape head of M is never outside

the range [−f(|x|), f(|x|)] with nonzero amplitude during the first T (x) steps of the

computation of M on x.

The class UQRL consists of all languages A for which there exists a QTM M and

a function T such that the following hold:

1. There exists a logspace DTM MT such that on each input x, MT runs for

precisely T (x) steps (T is a logspace time-bound, for short).

2. M runs in logspace with respect to T .

3. If x ∈ A, then (M,T ) accepts x with probability at least 1/2.

4. If x 6∈ A, then (M,T ) accepts x with probability 0.

This definition is equivalent to the definition of RQHSPACE(log n) given in [16],

stated in terms of QTMs allowing observations of the accept/reject/continue type

on each step. Note also that the class UQRL does not change if we restrict T

to depend only on the length of x. In Section 5 we show that the value 1/2 in

the above definition for UQRL may be replaced by any function f(|x|) satisfying

1/g(|x|) ≤ f(|x|) ≤ 1 − 2−g(|x|) for some polynomial g(|x|) > 0. Substituting PTM

for QTM in this definition yields the class RL.

We will describe quantum Turing machines using pseudo-code in a manner typ-

ical for classical Turing machine descriptions. Computations will be composed of

transformations of two types: quantum transformations and reversible transforma-

tions, both necessarily inducing unitary operators on the associated Hilbert space.

Quantum transformations will consist of a single step, so it will be trivial to argue

that each quantum transformation can be performed as claimed. For reversible

transformations, we rely on the result of Lange, McKenzie, and Tapp [11], which

implies that any logspace deterministic computation can be simulated reversibly in

logspace. However, because the interference patterns produced by a given QTM

depend greatly upon the precise lengths of the various computation paths compris-

ing that machine’s computation, we must take care to insure that these lengths are

predictable in order to correctly analyze machines. In the remainder of this section,

we discuss reversible transformations somewhat more formally, and state a theorem

based on the main result of [11] that will simplify our analyses greatly.

For a given space-bound f and work tape alphabet Γ, define Wf(|x|)(Γ) to be the

set of all mappings of the form w : Z → Γ taking the value # (blank) outside the

interval [−f(|x|), f(|x|)] (i.e., those mappings representing the possible contents of
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the work tape of a machine on input x having work tape alphabet Γ and running in

space f). By a reversible transformation, we mean a one-to-one and onto mapping

of the form Φ : Wf(|x|)(Γ) →Wf(|x|)(Γ) for some f , x and Γ.

Let M be a deterministic Turing machine having internal state set Q, which

includes an initial state q0 and a final state qf , and work tape alphabet Γ′ ⊇ Γ.

For w ∈Wf(|x|)(Γ), define c(q, w) to be that configuration of M for which the work

tape contents are described by w, the input and work tape heads are scanning the

squares indexed by 0, and the internal state is q. We say thatM on input x performs

transformation Φ on Wf(|x|)(Γ) if the following holds: if M on input x is placed

in configuration c(q0, w) for any w ∈ Wf(|x|)(Γ), then there exists t = t(x,w) such

that if M is run for precisely t steps, it will then be in configuration c(qf ,Φ(w)).

Furthermore, at no time prior to step number t is the internal state of M equal

to qf . Naturally, we say that t is the number of steps required for M on x to

perform Φ. If the work tape head of M never leaves the region indexed by numbers

in the range [−g(|x|), g(|x|)] during this process, we say that M on x performs

transformation Φ in space g.

Theorem 2.1. Let f(n) = O(log n) and let M be a deterministic Turing machine

that, on each input x, performs reversible transformation Φx on Wf(|x|)(Γ) in space

O(log |x|). Then there exists a reversible Turing machine M ′ that, on each input x,

performs Φx on Wf(|x|)(Γ) in space O(log |x|). Furthermore, the number of steps

required for M ′ to perform Φx depends only on x and not on the particular argument

of Φx.

The proof of this theorem is based on the main result of [11], with added con-

sideration paid to the number of steps required for transformations. See [16], along

with [11], for details.

3. QUANTUM OPERATORS

In this section we define some operators and prove a lemma that will be used in

the analysis of the machines presented in the next section. Throughout this section,

assume G = (V,E) is an undirected, regular graph of degree d that is not necessarily

connected. The operators we define act on the Hilbert space H = ℓ2(V ×V ), i.e., the

classical states of our space are ordered pairs of vertices of G. Let n = |V |, m = |E|,
and for each u ∈ V define S(u) = {v ∈ V : {u, v} ∈ E} and B(u) = S(u) ∪ {u}.
Each operator we consider is linear: we define the action of operators on the basis

{|u, v 〉 : u, v ∈ V } and extend them to H by linearity.

First, define F as follows:

F |u, v 〉 =











|u, v 〉 − 2

d+ 1

∑

v′∈B(u)

|u, v′ 〉 v ∈ B(u)

|u, v 〉 v 6∈ B(u).

We now verify that F is both unitary and hermitian. Define

|ψu 〉 =
1√
d+ 1

∑

v∈Bu

|u, v 〉
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for each u ∈ V , and note that {|ψu 〉 : u ∈ V } is an orthonormal set. We may

rewrite F as

F = I − 2
∑

u∈V

|ψu 〉〈ψu |,

from which it is immediate that F = F † and FF † = I. The operator F is related

to the operator D defined on ℓ2({0, . . . , d}) as follows:

D|a〉 = |a〉 − 2

d+ 1

d
∑

b=0

|b〉.

Up to a sign change, this is the “diffusion” operator used in the Grover quantum

searching technique [9].

Next, define X as follows.

X =
∑

u,v∈V

|v, u〉〈u, v|.

The operator X simply exchanges the vertices u and v. Clearly X is both unitary

and hermitian.

Finally, define P as follows.

P =
∑

u∈V

|u, u〉〈u, u|.

The operator P is the projection onto the subspace of H spanned by “self-loops”.

Lemma 3.1. Let G = (V,E) be a regular graph of degree d ≥ 2, let F , X and P

be as defined above, define Q = P F X F P , and let k ≥ d(d+1)2n2 log (1/ǫ)
8 for given

ǫ > 0. For each u ∈ V , let Gu = (Vu, Eu) denote the connected component of G

containing u, and write nu = |Vu|. Then for every u ∈ V we have

∥

∥

∥

∥

∥

Qk|u, u〉 − 1

nu

∑

v∈Vu

|v, v〉
∥

∥

∥

∥

∥

< ǫ.

Proof. First, note that

Q|u, u〉 =

(

1 − 2

d+ 1

)2

|u, u〉+

(

2

d+ 1

)2
∑

v∈S(u)

|v, v〉 (1)

for each u ∈ V , and that Q|u, v 〉 = 0 for u 6= v. If we consider a (classical)

random walk on G in which the probability to move from any given node to each

of its neighbors is (2/(d + 1))2 and the probability to remain on each node is

(1 − 2/(d + 1))2, we see that an operator for such a walk has a form very similar

to (1). Note however that the quantities in (1) represent amplitudes rather than

probabilities.
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Now let us analyze the behavior of this walk. For given u ∈ V we have that

v 6∈ Vu implies 〈v, v|Ql |u, u〉 = 0 for l = 1, and a simple induction shows that this

holds for any l ≥ 1. For each u, define Pu to be a projection operator as follows:

Pu =
∑

v∈Vu

|v, v〉〈v, v|.

Defining Qu = PuQPu, we therefore have Ql
u|u, u〉 = Ql|u, u〉 for l ≥ 0. Note that

Qu is hermitian: Q†
u = (PuPFXFPPu)† = PuPFXFPPu = Qu, following from

the fact that Pu, P , F , and X are hermitian.

Let A denote the adjacency matrix of Gu and let fA denote the characteristic

polynomial of A. By (1), we determine that fQu
, the characteristic polynomial of

Qu, satisfies

fQu
(z) = z(n2−nu) det

(

zI −
(

1 − 2

d+ 1

)2

I −
(

2

d+ 1

)2

A

)

= z(n2−nu)

(

2

d+ 1

)2nu

det

(

(d+ 1)2z − (d− 1)2

4
I −A

)

= z(n2−nu)

(

2

d+ 1

)2nu

fA

(

(d+ 1)2z − (d− 1)2

4

)

.

Letting λ1 ≥ λ2 ≥ · · · ≥ λnu
be the eigenvalues of A, we see thatQu has eigenvalues

µj =
4λj + (d− 1)2

(d+ 1)2
,

for j = 1, . . . , nu, as well as eigenvalues µj = 0 for j = nu + 1, . . . , n2. Note

that the eigenvalues of A (and hence the eigenvalues of Qu) are real since A is

symmetric. Since Gu is connected and regular of degree d, we have λ1 = d, λj < d

for j = 2, . . . , nu, and λnu
≥ −d (see, e.g., Biggs [8], page 14). Furthermore, it

follows from Lovász and Winkler [13] that λj ≤ d− 2
dn2

u

, for j = 2, . . . , nu. Hence

µ1 = 1, and

|µj | ≤ 1 − 8

d(d+ 1)2n2
u

(2)

for j = 2, . . . , nu.

Next, define |φ1 〉 = 1√
nu

∑

u∈Vu
|u, u〉, and note that |φ1 〉 is an eigenvector of

Qu corresponding to the eigenvalue µ1 = 1. As Qu is hermitian, we may choose

eigenvectors |φ2 〉, . . . , |φn2 〉 corresponding to eigenvalues µ2, . . . , µn2 in such a way

that {|φ1 〉, . . . , |φn2 〉} is an orthonormal basis of H. Letting cj = 〈φj |u, u〉 for

j = 1, . . . , n2, we may write |u, u〉 =
∑n2

j=1 cj |φj 〉, and thus

Ql
u|u, u〉 =

nu
∑

j=1

cjµ
l
j |φj 〉
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for l ≥ 1. Consequently,

∥

∥

∥

∥

∥

Ql
u|u, u〉 −

1

nu

∑

v∈Vu

|v, v〉
∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

nu
∑

j=2

cjµ
l
j |φj 〉

∥

∥

∥

∥

∥

∥

2

=

nu
∑

j=2

|cj |2|µj |2l ≤
(

1 − 8

d(d+ 1)2n2
u

)2l

. (3)

Since k ≥ d(d+1)2n2 log (1/ǫ)
8 , for every u we have

(

1 − 8

d(d+ 1)2n2
u

)k

≤
(

1 − 8

d(d+ 1)2n2

)k

< ǫ,

following from the fact that (1 − 1/x)x < 1/e for x ≥ 1. Thus

∥

∥

∥

∥

∥

Qk
u|u, u〉 −

1

nu

∑

v∈Vu

|v, v〉
∥

∥

∥

∥

∥

< ǫ

follows by (3). As Qk|u, u〉 = Qk
u|u, u〉, this completes the proof.

It should be noted that for certain graphs it suffices to choose a much smaller value

of k than given in the above theorem. For instance, graphs with large conductance

(see Lovász and Winkler [13]) require a much smaller value of k; as the second-

largest eigenvalue of a regular graph with conductance Φ is at most d − dΦ2

8 , we

will have |µj | ≤ 1 − dΦ2

2(d+1)2 instead of equation (2), and thus taking k such that

k ≥ 2(d+1)2 log(1/ǫ)
dΦ2 is sufficient.

By taking ǫ = 1
2n in Lemma 3.1, we obtain the following corollary.

Corollary 3.1. Let G = (V,E) be a regular graph of degree d ≥ 2 with s, t ∈ V ,

let Q be as defined in Lemma 3.1, and let k ≥
⌈

d(d+ 1)2n2 log(2n)/8
⌉

. If s and t

are connected in G, then

∣

∣〈 t, t |Qk|s, s〉
∣

∣

2 ≥ 1

4n2
,

and otherwise
∣

∣〈 t, t |Qk|s, s〉
∣

∣

2
= 0.

4. QTM CONSTRUCTION AND ANALYSIS

We now construct, for each fixed d ≥ 2, a logspace QTM solving d-USTCON that

operates with one-sided error. Although the QTMs we construct have somewhat

poor probabilities of acceptance for positive instances of d-USTCON, it will be

demonstrated in the next section that these machines may be modified to yield

logspace QTMs for d-USTCON having sufficiently small one-sided error to prove

d-USTCON ∈ UQRL.

Lemma 4.1. For d ≥ 2, there exists a quantum Turing machine M and a logspace

time-bound T such that M runs in logspace with respect to T and operates as follows.
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For any input (G, s, t), where G = (V,E) is a regular, undirected graph of degree

d, s, t ∈ V , and s is connected to t in G, (M,T ) accepts with probability at least
1

4|V |2 , and for all other inputs (M,T ) accepts with probability zero.

Proof. The work tape of M will consist of four tracks, one for each of the

following variables: u, v, b and c. Each variable will contain an integer, with

the exception of v, which will store either an integer or a single symbol in the set

{0, . . . , d}. Integers are assumed to be encoded as strings over the alphabet {0′, 1′},
taken to be disjoint from {0, . . . , d}. We make the assumption that each integer

has exactly one encoding and that 0 is encoded by the empty string. Note that this

implies u, v, b and c are all initially set to 0, as the work tape initially contains

only blanks. Vertices of G are assumed to be labeled by integers having length at

most logarithmic in the input size, and each vertex has a unique label. When u or

v contains an integer, this integer is to be interpreted as the label of a vertex.

The execution of M is described as follows:

Algorithm 1 (Description of QTM M for Lemma 4.1).

1. Reject if the input does not encode (G, s, t) for G undirected and regular

of degree d.

2. Copy s to u and v.

3. Loop with starting/stopping condition “b=0”:

4. If v ∈ B(u), replace v with the symbol in {0, . . . , d} corresponding to

its index in B(u) modulo d+ 1.

5. If v ∈ {0, . . . , d}, perform transformation D (defined in Section 3) on v.

6. Invert step 4.

7. Exchange u and v.

8. If v ∈ B(u), replace v with the symbol in {0, . . . , d} corresponding to

its index in B(u) modulo d+ 1.

9. If v ∈ {0, . . . , d}, perform transformation D on v.

10. Invert step 8.

11. If u 6= v, increment c modulo d(d+ 1)2n3 + 1.

12. Increment b modulo d(d+ 1)2n3.

13. End loop

14. If c = 0 and u = t, then accept, else reject.

For each of the steps described in Algorithm 1 we may define an appropriate

reversible or quantum transformation corresponding to the action described. Each

transformation is to maintain the invariant that all tracks contain strings having

no embedded blanks and having leftmost symbol stored in the work tape square

indexed by 0. The quantum transformations are steps 5 and 9. These transfor-

mations require a single step and involve only the symbol in square 0 of the track

corresponding to v. The remaining transformations are reversible transformation-

s. It is straightforward to show that each such transformation may be performed

by a DTM running in space O(log n) in the manner described in Section 2 for a

suitable space-bound f(n) = O(log n). (It is for this reason that we increment c

modulo d(d+ 1)2n3 +1 instead of simply incrementing c in step 11, and similar for



QUANTUM SIMULATIONS OF RANDOM WALKS 11

incrementing b in step 12, although the same effects results; each transformation

must be defined on a bounded region of the work tape). We note that the quan-

tity d(d + 1)2n3 is somewhat arbitrary in steps 11 and 12; any quantity at least

⌈d(d + 1)2n2 log(2n)/8⌉ suffices. The loop may be implemented reversibly in the

manner described in [16]. By Theorem 2.1, it follows that each reversible step in

Algorithm 1 may be performed reversibly in logspace, requiring time depending

only on the input (G, s, t) and not on the particular contents of the work tape of M

when the step is performed. This implies that each step in Algorithm 1 may be

viewed as requiring unit time, insofar as the analysis of the machine is concerned.

When we say accept or reject, we naturally mean enter an accepting or rejecting

state, as appropriate. It is straightforward to define a function T , as in the defini-

tion of UQRL, so that the observation of M takes place after the correct number of

steps in order to yield acceptance or rejection accordingly. It is also straightforward

to show that M runs in logspace with respect to this T .

Now we analyze the computation ofM on a given input (G, s, t). When describing

superpositions of M , we will restrict our attention to the variables u, v, b and c;

since we will only care about superpositions between the transformations described

above, all other aspects of M (specifically, tape head positions and internal state)

are deterministic. It will be most convenient to express such superpositions in

terms of classical states of the form |u, v 〉|c〉|b〉 for u, v ∈ V , c, b ∈ Z, which may

be interpreted as being equivalent to classical states the form |u, v, c, b〉.
Assume that M does not reject during step 1, so that G is regular of degree d

and undirected. After step 2 is performed, the superposition of M is |s, s〉|0〉|0〉.
Now the loop starting at step 3 is performed. After one iteration of the loop, the

superposition of M is (Q|s, s〉) |0〉|1〉+ |ξ1,1 〉|1〉|1〉, where Q is defined in Section 3

and |ξ1,1 〉 is some vector (that we do not care about, as it will not affect our analy-

sis). More generally, after j < d(d+ 1)2n3 iterations of the loop, the superposition

is

(

Qj |s, s〉
)

|0〉|j 〉 +
∑

c≥1

|ξc,j 〉|c〉|j 〉,

and after k = d(d+ 1)2n3 iterations, the superposition is

(

Qk|s, s〉
)

|0〉|0〉 +
∑

c≥1

|ξc,0 〉|c〉|0〉.

At this point, the loop terminates, so that upon completion of step 14 the proba-

bility of accepting is
∣

∣〈t, t|Qk|s, s〉
∣

∣

2
. By Lemma 3.1, we conclude that M accepts

(G, s, t) with probability at least 1
4n2 in case s is connected to t, and probability 0

otherwise.

5. AMPLIFYING ACCEPTANCE PROBABILITIES

The complexity class RL is robust with respect to the probability with which

positive instances are accepted: the probability 1/2 in the definition of RL may

be replaced by any function f(|x|) satisfying 1/g(|x|) ≤ f(|x|) ≤ 1 − 2−g(|x|) for

g(|x|) > 0 a polynomial. It is not immediate that the analogous fact holds for
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UQRL; repeated simulation of a given QTM computation requires that the sim-

ulated machine be in its initial configuration at the start of each simulation, but

resetting this machine to its initial configuration constitutes an irreversible action

that cannot be performed by the quantum machine performing the simulation. In

this section, however, we prove that this fact does indeed hold.

Lemma 5.1. Let M be a QTM and let T be a logspace time-bound such that

M runs in logspace with respect to T . Let p(x) denote the probability that (M,T )

accepts x. Then for any polynomial f , there exists a QTM Mf and a logspace time-

bound Tf such that Mf runs in logspace with respect to Tf and (Mf , Tf ) accepts

each input x with probability

1 − (1 − p(x))(1 − 2p(x))2f(|x|).

Proof. Given M , T , and f as in the statement of the theorem, we let Mf be a

quantum Turing machine functioning as described by the following algorithm:

Algorithm 2 (Description of QTM Mf for Lemma 5.1).

1. Repeat the following f(|x|) + 1 times:

2. Simulate the computation of M on x for T steps.

3. If M accepts x, increment a modulo f(|x|) + 2.

4. Invert step 2.

5. If the current configuration of M is not the initial configuration, and if

a = 0, multiply the current amplitude by -1 (i.e., perform a conditional

phase shift based on a and the current configuration of M).

6. End loop

7. Accept if a 6= 0, otherwise reject.

The machine Mf will store an encoding of some configuration of M on its work

tape, as well as an integer a, initially equal to zero. For each step in Algorithm 2,

a sequence of reversible and quantum transformations may be defined that have the

described effects. We will not describe in detail how this may be done, as this has

been discussed in [16]. Each required transformation can be performed in logspace,

so that we may assume Mf runs in logspace. It may also be assumed that each

step in Algorithm 2 requires a number of steps depending only on the input and

not on any other aspect of the computation path being followed. An appropriate

logspace time-bound Tf can be defined so that the observation occurs when step 7

has finished, yielding acceptance or rejection appropriately.

We now determine the probability that (Mf , Tf ) rejects. Let us denote by E

the unitary operator corresponding to running M for T steps. Since the counter a

is incremented modulo f(|x|) + 2 at most f(|x|) + 1 times, we may determine the

probability (Mf , Tf ) rejects by examining the superposition of M represented by

the state of Mf projected onto the space spanned by classical configurations for

which a = 0.

Initially, the state of M represented by Mf is |c0 〉, for c0 the initial configuration

of M . The first iteration of step 2 maps this state to |ψ 〉 = E|c0 〉. Let us write
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|ψ 〉 = |ψacc 〉 + |ψ⊥
acc 〉, where |ψacc 〉 denotes the projection of |ψ 〉 onto the space

spanned by accepting configurations ofM . During step 3, a is incremented ifM is in

an accepting configuration. Since we are interested in that part of the superposition

for which a = 0, step 3 effectively projects the superposition of M represented by

Mf onto state |ψ⊥
acc 〉.

Now we consider the sequence of steps 4, 5, 2, 3, which are at this point performed

f(|x|) times. The effect of each iteration of this sequence of steps is that |ψ⊥
acc 〉 is

mapped to (1− 2p(x))|ψ⊥
acc 〉, where still our attention is restricted to the subspace

on which a = 0. This may be argued as follows. First, the effect of step 4 is to map

|ψ⊥
acc 〉 to E†|ψ⊥

acc 〉. Since

〈c0 |E†|ψ⊥
acc 〉 = 〈ψ⊥

acc |E|c0 〉 = 1 − p(x),

we may write E†|ψ⊥
acc 〉 = (1 − p(x))|c0 〉 + |ξ〉, where |ξ〉 satisfies 〈ξ|c0〉 = 0. Step

5 maps this state to (1 − p(x))|c0 〉 − |ξ〉, and step 2 maps this resulting state to

(2 − 2p(x))|ψacc 〉 + (1 − 2p(x))|ψ⊥
acc 〉. Finally, step 3 effectively projects this state

onto the space of non-accepting configurations, yielding (1 − 2p(x))|ψ⊥
acc 〉.

Therefore f(|x|) iterations of steps 4, 5, 2, 3 have th effect of mapping |ψ⊥
acc 〉 to

(1− 2p(|x|))f(|x|)|ψ⊥
acc 〉. During the last iteration of the loop, steps 4 and 5 do not

affect the norm of this vector, and hence (Mf , Tf ) rejects with probability

∥

∥

∥
(1 − 2p(|x|))f(|x|)|ψ⊥

acc 〉
∥

∥

∥

2

= (1 − p(x))(1 − 2p(x))2f(|x|)

and accepts otherwise, which completes the proof.

By Lemmas 4.1 and 5.1, we may now conclude d-USTCON ∈ UQRL.

6. CLOSURE OF UQRL UNDER ≤LOG

M
-REDUCTIONS

Given that d-USTCON ∈ UQRL, to prove Theorem 1.1 it suffices to show that

for any A satisfying A ≤log
m d-USTCON we have A ∈ UQRL. It is, however, quite

straightforward to prove the following stronger claim.

Lemma 6.1. Let A and B be languages satisfying A ≤log
m B and B ∈ UQRL.

Then A ∈ UQRL.

Proof. Let TB be a logspace time-bound and let MB be a QTM that runs in

logspace with respect to TB and recognizesB in the sense of the definition of UQRL.

Without loss of generality we make the assumption that the transition function of

MB is specified by a collection of unitary operators {Vσ} and mappings Di and

Dw as described in [16] (similar to unidirectionality as described in [6]); that is,

whenever a given input symbol σ is being scanned, transformation Vσ is applied

to the current internal state and work tape symbol pair, then the tape heads are

moved according to Di and Dw, which are functions of the (new) internal state.

Let f ∈ FL satisfy x ∈ A if and only if f(x) ∈ B for each x.

We define a QTM MA and a logspace time-bound TA such that MA runs in

logspace with respect to TA and recognizes A (in the UQRL sense) as described by

the following algorithm.
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Algorithm 3 (Description of QTM MA for Lemma 6.1).

1. Loop with starting/stopping condition “t = 0”:

2. Compute σ = f(x)hi
.

3. Swap the contents of τ with whw
.

4. Perform transformation Vσ on the pair (q, τ).

5. Invert step 3.

6. Invert step 2.

7. Adjust hi and hw appropriately according to Di(q) and Dw(q).

8. Increment t modulo TB(f(x)).

9. End loop

10. Accept if q is an accepting state of MB, and reject otherwise.

We assume the work tape of MA consists of 6 tracks, one for each of the variables

hi, hw, w, σ, τ , and t. The variables hi, hw and t are integers (representing the input

tape head location, the work tape head location, and the number of steps in a given

computation of MB), and are represented as in the machine for Lemma 3.1. The

variable w represents the contents of the work tape of MB, and σ and τ represent

single symbols in the input or work tape alphabet ofMB, respectively. The variable

q may be viewed as being part of the internal state of MA. (We may also view σ

and τ in this way, although this requires a slight variant on Theorem 2.1 when

defining reversible transformations for each step as mentioned below.) Initially we

have that hi = 0, hw = 0, σ = #, τ = #, w contains all blanks, and t = 0. Let the

initial state of MA be such that the computation of MA begins with q being the

initial state of MB.

Similar to the previous QTM constructions, reversible logspace transformation-

s and quantum transformations may be defined for each step in Algorithm 3,

and the loop may be implemented reversibly. By Theorem 2.1 each step may

therefore be viewed as requiring unit time, independent of each particular com-

putation path. Letting TA(x) be the number of steps required for MA to reach

step 10, it is clear that MA simulates precisely the computation of MB on input

f(x), and therefore accepts x with the same probability that MB accepts f(x).

7. CONCLUDING REMARKS

We have shown that logspace quantum Turing machines can simulate a limited

class of probabilistic computations without relying on measurements during the

computation. This leaves open the question of whether probabilistic computations

can be simulated efficiently by unitary space-bounded quantum machines (e.g.,

is RL contained in UQRL?), and more generally whether arbitrary non-unitary

space-bounded quantum computations can be simulated by unitary space-bounded

quantum computations.

We have defined in this paper quantum processes that attempt to mimic classical

random walks on graphs. There are a number of ways in which to define quantum

walks on graphs having properties quite different from classical random walks. It

may be interesting to consider possible applications of such processes to quantum

complexity theory.
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