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ABSTRACTIn this paper we give a polynomial-time quantum algorithmfor 
omputing orders of solvable groups. Several other prob-lems, su
h as testing membership in solvable groups, testingequality of subgroups in a given solvable group, and test-ing normality of a subgroup in a given solvable group, re-du
e to 
omputing orders of solvable groups and thereforeadmit polynomial-time quantum algorithms as well. Our al-gorithm works in the setting of bla
k-box groups, whereinnone of these problems have polynomial-time 
lassi
al algo-rithms. As an important byprodu
t, our algorithm is ableto produ
e a pure quantum state that is uniform over theelements in any 
hosen subgroup of a solvable group, whi
hyields a natural way to apply existing quantum algorithmsto fa
tor groups of solvable groups.
1. INTRODUCTIONThe fo
us of this paper is on quantum algorithms forgroup-theoreti
 problems. Spe
i�
ally we 
onsider �nitesolvable groups, and give a polynomial-time quantum al-gorithm for 
omputing orders of solvable groups. Naturallythis algorithm yields polynomial-time quantum algorithmsfor testing membership in solvable groups and several otherrelated problems that redu
e to 
omputing orders of solvablegroups. Our algorithm is also able to produ
e a uniform purequantum state over the elements in any 
hosen subgroup of asolvable groups, whi
h yields a natural way of applying 
er-tain quantum algorithms to fa
tor groups of solvable groups.For instan
e, we des
ribe a method by whi
h existing quan-tum algorithms for abelian groups may be applied to abelianfa
tor groups of solvable groups, despite the fa
t that thefa
tor groups generally do not satisfy an important require-ment of the existing quantum algorithms|namely, that el-ements have unique, su

in
t 
lassi
al representations.We will be working within the 
ontext of bla
k-box groups,wherein elements are uniquely en
oded by strings of some�Resear
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given length n and the group operations are performed by abla
k-box (or group ora
le) at unit 
ost. Bla
k-box groupswere introdu
ed by Babai and Szemer�edi [7℄ in 1984 andhave sin
e been studied extensively [1, 2, 3, 4, 5, 6, 9℄. AnyeÆ
ient algorithm that works in the 
ontext of bla
k-boxgroups of 
ourse remains eÆ
ient whenever the group ora
le
an be repla
ed by an eÆ
ient pro
edure for 
omputing thegroup operations. In the bla
k-box group setting it is prov-ably impossible to 
ompute order 
lassi
ally in polynomialtime, even for abelian groups [7℄.Essentially all previously identi�ed problems for whi
hquantum algorithms o�er exponential speed-up over the bestknown 
lassi
al algorithms 
an be stated as problems regard-ing abelian groups. In 1994, Shor [36℄ presented polynomialtime quantum algorithms for integer fa
toring and 
omput-ing dis
rete logarithms, and these algorithms generalize ina natural way to the setting of �nite groups. Spe
i�
ally,given elements g and h in some �nite group G it is possible,in quantum polynomial time, to �nd the smallest positiveinteger k su
h that h = gk, provided there exists su
h a k.In 
ase h is the identity one obtains the order of g, to whi
hthere is a randomized polynomial-time redu
tion from fa
-toring when the group is the multipli
ative group of integersmodulo the integer n to be fa
tored. It should be noted thatwhile the group G need not ne
essarily be abelian for thesealgorithms to work, we may view the algorithms as takingpla
e in the abelian group generated by g.Shor's algorithms for integer fa
toring and dis
rete loga-rithms were subsequently 
ast in a di�erent group-theoreti
framework by Kitaev [29, 30℄. This framework involves aproblem 
alled the Abelian Stabilizer Problem, whi
h maybe informally stated as follows. Let k and n be positive inte-gers, and 
onsider some group a
tion of the additive abeliangroup Zk on a set X � �n, where the group a
tion 
an be
omputed eÆ
iently. The problem, whi
h 
an be solved inquantum polynomial time, is to 
ompute a basis (in Zk) ofthe stabilizer (Zk)x of a given x 2 X. Appropriate 
hoi
eof the group a
tion allows one to solve order �nding anddis
rete logarithms for any �nite group as above. In this
ase, the group G in question 
orresponds to the set X andthe group a
tion of Zk on X is determined by the groupstru
ture of G.Kitaev's approa
h was further generalized by Brassardand H�yer [12℄, Jozsa [27℄, and Mos
a and Ekert [33℄, whoformulated the Hidden Subgroup Problem. (See also H�yer[24℄.) The Hidden Subgroup Problem may be informallystated as follows. Given a �nitely generated group G andan eÆ
iently 
omputable fun
tion f from G to some �nite



set X su
h that f is 
onstant and distin
t on left-
osets ofa subgroup H of �nite index, �nd a generating set for H.Mos
a and Ekert showed that Deuts
h's Problem [16℄, Si-mon's Problem [37℄, order �nding and 
omputing dis
retelogarithms [36℄, �nding hidden linear fun
tions [11℄, testingself-shift-equivalen
e of polynomials [21℄, and the AbelianStabilizer Problem [29, 30℄ 
an all be solved in polynomialtime within the framework of the Hidden Subgroup Problem.In the bla
k-box group setting, the Hidden Subgroup Prob-lem 
an be solved in quantum polynomial time wheneverG is abelian, as demonstrated by Mos
a [32℄. Mos
a alsoproved that several other group-theoreti
 problems regard-ing abelian bla
k-box groups 
an be redu
ed to the HiddenSubgroup Problem, and thus 
an be 
omputed in quantumpolynomial time as well. For instan
e, given a 
olle
tionof generators for a �nite abelian bla
k-box group, one 
an�nd the order of the group, and in fa
t one 
an de
omposethe group into a dire
t produ
t of 
y
li
 subgroups of primepower order, in polynomial time.1 (See also Cheung andMos
a [13℄ for further details.)The Hidden Subgroup Problem has been 
onsidered in thenon-abelian 
ase, although with limited su

ess (see Ettingerand H�yer [17℄, Ettinger, H�yer, and Knill [18℄, Grigni,S
hulman, Vazirani, and Vazirani [20℄, Hallgren, Russell,and Ta-Shma [23℄, Ivanyos, Magniez, and Santha [26℄, andR�otteler and Beth [35℄). Quantum polynomial-time algo-rithms for �nding non-abelian hidden subgroups are knownfor only limited 
lasses of �nite groups|most notably, there
ent paper of Ivanyos, Magniez, and Santha [26℄ givesquantum polynomial-time algorithms based on an algorithmof Beals and Babai [9℄ for solving 
ertain spe
ial 
ases of thisproblem. The Non-abelian Hidden Subgroup Problem is ofparti
ular interest as it relates to the Graph IsomorphismProblem; Graph Isomorphism redu
es to a spe
ial 
ase ofthe Hidden Subgroup Problem in whi
h the groups in ques-tion are the symmetri
 groups. Beals [8℄ has shown thatquantum analogues of Fourier transforms over symmetri
groups 
an be performed in polynomial time, although thusfar this has not proven to be helpful for solving the GraphIsomorphism Problem.In this paper we move away from the Hidden SubgroupProblem and 
onsider other group-theoreti
 problems fornon-abelian groups|in parti
ular we 
onsider solvablegroups. Our main algorithm �nds the order of a givensolvable group and, as an important byprodu
t, produ
esa quantum state that approximates a uniform superpositionover the elements of the given group.Theorem 1. There exists a quantum algorithm operat-ing as follows (relative to an arbitrary group ora
le). Givengenerators g1; : : : ; gm su
h that G = hg1; : : : ; gmi is solv-able, the algorithm outputs the order of G with probabilityof error bounded by " in time polynomial in mn+ log(1=")(where n is the length of the strings representing the gener-ators). Moreover, the algorithm produ
es a quantum state� that approximates the state jGi = jGj�1=2Pg2G jgi witha

ura
y " (in the tra
e norm metri
).1This is interesting from the standpoint of 
omputationalnumber theory sin
e, assuming the Generalized RiemannHypothesis, it follows that there is a polynomial-time quan-tum algorithm for 
omputing 
lass numbers of imaginaryquadrati
 number �elds|a problem often 
onsidered as a
andidate for a problem harder than integer fa
toring. SeeCohen [15℄ for information about 
omputing 
lass numbers.

Several other problems redu
e to the problem of 
omput-ing orders of solvable groups, in
luding membership test-ing in solvable groups, testing equality of subgroups in agiven solvable group, and testing that a given subgroup ofsome solvable group is normal. Thus, these problems 
an besolved in quantum polynomial time as well.Sin
e any subgroup of a solvable group is solvable, ouralgorithm 
an be applied to any subgroup H of a solvablegroupG in order to obtain a 
lose approximation to the statejHi. One appli
ation of being able to eÆ
iently prepareuniform superpositions over subgroups of solvable groups isthat it gives us a simple way to apply existing quantumalgorithms for abelian groups to abelian fa
tor groups ofsolvable groups, despite the fa
t that we do not have unique
lassi
al representations for elements in these fa
tor groups.This method is dis
ussed further in Se
tion 4.While bla
k-box group algorithms are appealing be
auseof their generality, it is natural to ask if the algorithms de-s
ribed in this paper give polynomial-time algorithms forany problems in the standard (no ora
les) model that are notknown to have polynomial-time 
lassi
al algorithms. Exam-ple of su
h problems 
an be obtained by 
onsidering groupsof invertible matri
es over �nite �elds. For instan
e, let Fbe a �nite �eld of 
hara
teristi
 p, and 
onsider the problemof �nding the order of G = hg1; : : : ; gki for given elementsg1; : : : ; gk 2 GL(n; F) under the assumption that G is solv-able. The most eÆ
ient 
lassi
al algorithm known for thisproblem is due to Luks [31℄, and runs in time polynomial inthe input size plus the largest prime other than p dividingjGj. Our quantum algorithm solves this problem in polyno-mial time without dependen
e on the primes dividing jGj.Moreover, our algorithm gives polynomial-time solutions torelated problems regarding fa
tor groups of su
h solvablematrix groups as des
ribed in Se
tion 4.Arvind and Vinod
handran [1℄ have shown that severalproblems regarding solvable groups, in
luding membershiptesting and order veri�
ation, are low for the 
omplexity
lass PP, whi
h means that an ora
le for these problemsis useless for PP 
omputations. Fortnow and Rogers [19℄proved that any problem in BQP is low for PP, and thus wehave obtained an alternate proof that membership testingand order veri�
ation for solvable groups are both low forPP. It is left open whether some of the other problems provedlow for PP by Arvind and Vinod
handran have polynomial-time quantum algorithms. An interesting example of su
ha problem is testing whether two solvable groups have anontrivial interse
tion.Very re
ently, after a preliminary version of the presentpaper appeared, Ivanyos, Magniez, and Santha [26℄ showedhow an algorithm of Beals and Babai [9℄ 
an be 
ombinedwith a quantum algorithm for the (Abelian) Hidden Sub-group Problem to obtain polynomial-time quantum algo-rithms for several group theoreti
 problems, in
luding 
om-puting orders of solvable groups as well as several problemsnot 
onsidered in the present paper. In addition, they 
om-bine their method with our te
hnique for preparing uniformsuperpositions over solvable subgroups to obtain polynomial-time quantum algorithms for other problems regarding fa
-tor groups. Unlike the approa
h of Ivanyos, Magniez, andSantha, our algorithm is self-
ontained and 
ompletely ele-mentary (not relying on a statisti
al analysis of the 
lassi�-
ation of �nite simple groups, in parti
ular).The remainder of this paper has the following organiza-



tion. In Se
tion 2 we review ne
essary ba
kground infor-mation for this paper, in
luding a dis
ussion of bla
k-boxgroups in the 
ontext of quantum 
ir
uits and other infor-mation regarding 
omputational group theory. Se
tion 3des
ribes our quantum algorithm for �nding the order of asolvable group as stated in Theorem 1, and Se
tion 4 dis-
usses other problems that 
an be solved by adapting thisalgorithm. We 
on
lude with Se
tion 5, whi
h mentionssome open problems.
2. PRELIMINARIESIn this se
tion we review information regarding 
omputa-tional group theory that is required for the remainder of thepaper. We assume the reader is familiar with the theory ofquantum 
omputation, and spe
i�
ally with the quantum
ir
uit model, so we will not review this model further ex-
ept to dis
uss bla
k-box groups in the 
ontext of quantum
ir
uits. The reader not familiar with quantum 
ir
uits isreferred to Nielsen and Chuang [34℄. We also assume thereader is familiar with the basi
 
on
epts of group theory(see, for example, Isaa
s [25℄).Given a group G and elements g; h 2 G we de�ne the 
om-mutator of g and h, denoted [g; h℄, as [g; h℄ = g�1h�1gh, andfor any two subgroups H;K � G we write [H;K℄ to denotethe subgroup of G generated by all 
ommutators [h; k℄ withh 2 H and k 2 K. The derived subgroup of G is G0 = [G;G℄,and we write G(0) = G;G(j) = (G(j�1))0; for j � 1:A group G is said to be solvable if G(m) = f1g (the group
onsisting of just one element) for some value of m. Anequivalent way to de�ne what it means for a (�nite) groupto be solvable is as follows. A �nite group G is solvable ifthere exist elements g1; : : : ; gm 2 G su
h that if we de�neHj = hg1; : : : ; gji for ea
h j, thenf1g = H0 / H1 / � � � / Hm = G:Note that Hj+1=Hj is ne
essarily 
y
li
 in this 
ase for ea
hj. Given an arbitrary 
olle
tion of generators for a solvablegroup G, a polynomial-length sequen
e g1; : : : ; gm as above
an be found via a (
lassi
al) Monte Carlo algorithm in poly-nomial time [6℄ (dis
ussed in more detail below). It is impor-tant to note that we allow the possibility that Hj = Hj+1for some values of j in referen
e to this 
laim.We will be working in the general 
ontext of bla
k-boxgroups, whi
h we now dis
uss. In a bla
k-box group, ea
helements is uniquely en
oded by some binary string, andwe have at our disposal a bla
k-box (or group ora
le) thatperforms the group operations on these en
odings at unit
ost. For a given bla
k-box group, all of the en
odings areof a �xed length n, whi
h is the en
oding length. Thus, abla
k-box group with en
oding length n has order boundedabove by 2n. Note that not every binary string of lengthn ne
essarily 
orresponds to a group element, and we mayimagine that our group ora
le has some arbitrary behaviorgiven invalid en
odings. (Our algorithms will never querythe ora
le for invalid group element en
odings given validinput elements). When we say that a parti
ular group orsubgroup is given (to some algorithm), we mean that a setof strings that generate the group or subgroup is given.

Sin
e we will be working with quantum 
ir
uits, we mustdes
ribe bla
k-box groups in this setting. Correspondingto a given bla
k-box group G with en
oding length n is aquantum gate UG a
ting on 2n qubits as follows:UGjgijhi = jgijghi:Here we assume g and h are valid group elements|in 
aseany invalid en
oding is given, UG may a
t in any arbitraryway so long as is remains reversible. The inverse of UG a
tsas follows: U�1G jgijhi = jgijg�1hi:When we say that a quantum 
ir
uit has a

ess to a groupora
le for G, we mean that the 
ir
uit may in
lude the gatesUG and U�1G for some UG as just des
ribed. More gener-ally, when we are dis
ussing uniformly generated families ofquantum 
ir
uits, a group ora
le 
orresponds to an in�nitesequen
e of bla
k-box groups G1; G2; : : : (one for ea
h en-
oding length), and we allow ea
h 
ir
uit in the uniformlygenerated family to in
lude gates of the form UGn and U�1Gnfor the appropriate value of n.As noted by Mos
a [32℄, the gates UG and U�1G above
an be approximated eÆ
iently if we have a single gate VGa
ting as follows on 3n qubits:VGjgijhijxi = jgijhijx� ghi;again where we assume g and h are valid group elements(and x is arbitrary). Here, x� gh denotes the bitwise XORof the string x and the string en
oding the group elementgh. This 
laim follows from the fa
t that given the gateVG, we may �nd the order of any element g using Shor'salgorithm, from whi
h we may �nd the inverse of g. On
ewe have this, te
hniques in reversible 
omputation due toBennett [10℄ allow for straightforward simulation of UG andU�1G . Sin
e it is simpler to work dire
tly with the gates UGand U�1G , however, we will assume that these are the gatesmade available for a given bla
k-box group.Now we return to the topi
 of solvable groups, and reviewsome known fa
ts about solvable groups in the 
ontext ofbla
k-box groups. First, with respe
t to any given groupora
le, if we are given generators g1; : : : ; gm of en
odinglength n, it is possible to test whether G = hg1; : : : ; gmiis solvable via a polynomial time (in nm) Monte Carlo al-gorithm [6℄. Moreover, the same algorithm 
an be used to
onstru
t (with high probability) generators g(j)1 ; : : : ; g(j)k ,for j = 0; : : : ; n� 1 and where k = O(n), su
h that G(j) =hg(j)1 ; : : : ; g(j)k i. At this point we noti
e (under the assump-tion that G is solvable) that by relabeling the elementsg(n�1)1 ; : : : ; g(n�1)k ; g(n�2)1 ; : : : ; g(n�2)k ; : : : ; g(0)1 ; : : : ; g(0)k ;as h1; : : : ; hkn (in the order given) we have the following. IfHj = hh1; : : : ; hji for j = 0; : : : ; kn, thenf1g = H0 / H1 / � � � / Hkn = G:This follows from the fa
t that G(j) /G(j�1) for ea
h j, andfurther that G(j�1)=G(j) is ne
essarily abelian. The fa
tthat ea
h fa
tor group Hj=Hj�1 is 
y
li
 will be importantfor our quantum algorithm in the next se
tion.The problem of 
omputing the order of a group 
annot besolved 
lassi
ally in polynomial time in the bla
k-box settingeven for abelian (and therefore for solvable) groups [7℄.



3. COMPUTING ORDERS OF SOLVABLE
GROUPSIn this se
tion we des
ribe our quantum algorithm for�nding the order of a given solvable bla
k-box group G andpreparing a uniform superposition over the elements of G.We assume we have elements g1; : : : ; gm 2 G su
h that ifwe de�ne Hj = hg1; : : : ; gji for ea
h j, thenf1g = H0 / H1 / � � � / Hm = G: (1)We allow the possibility that Hj = Hj+1 for some values ofj. The existen
e of su
h a 
hain is equivalent to the solvabil-ity of G, and given an arbitrary 
olle
tion of generators of Gsu
h a sequen
e 
an be found via a Monte Carlo algorithm inpolynomial time as dis
ussed in the previous se
tion. Cal
u-lation of the orders of the fa
tor groups in this 
hain revealsthe order of G; ifr1 = jH1=H0j; : : : ; rm = jHm=Hm�1j;then jGj =Qmj=1 rj .The 
al
ulation of the orders of the fa
tor groups is basedon the following idea. Suppose we have several 
opies of thestate jHi for some subgroup H of G, where jHi denotes theuniform superposition over the elements of H:jHi = 1pjHjXh2H jhi:Then using a simple modi�
ation of Shor's order �ndingalgorithm we may �nd the order of g with respe
t to H,whi
h is the smallest positive integer r su
h that gr 2 H,for any g 2 G. In 
ase H = Hj�1 = hg1; : : : ; gj�1i andg = gj for some j, this order is pre
isely rj = jHj=Hj�1j.Sin
e this requires that we have several 
opies of jHj�1iin order to 
ompute ea
h rj , we must demonstrate how thestate jHj�1i may be eÆ
iently 
onstru
ted. In fa
t, the 
on-stru
tion of the states jH0i; jH1i; : : : is done in 
onjun
tionwith the 
omputation of r1; r2; : : : ; in order to prepare sev-eral 
opies of jHji it will be ne
essary to 
ompute rj , andin turn these 
opies of jHji are used to 
ompute rj+1. This
ontinues up the 
hain until rm has been 
omputed andjHmi has been prepared. More spe
i�
ally, we will beginwith a large (polynomial) number of 
opies of jH0i (whi
hare of 
ourse trivial to prepare), use some relatively smallnumber of these states to 
ompute r1, then 
onvert the restof the 
opies of jH0i to 
opies of jH1i using a pro
edure de-s
ribed below. We 
ontinue up the 
hain in this fashion, forea
h j using a relatively small number of 
opies of jHj�1i to
ompute rj , then 
onverting the remaining 
opies of jHj�1ito 
opies of jHji.In subse
tions 3.1 and 3.2 we dis
uss the two 
omponents(
omputing the rj values and 
onverting 
opies of jHj�1ito 
opies of jHji) individually, and in subse
tion 3.3 we de-s
ribe the main algorithm that 
ombines the two 
ompo-nents. The following notation and 
onventions will be usedin these subse
tions. Given a �nite group G and a subgroupH of G, for ea
h element g 2 G de�ne rH(g) to be thesmallest positive integer r su
h that gr 2 H (whi
h we havereferred to as the order of g with respe
t toH). For any posi-tive integerm and k 2 Zm we write em(k) to denote e2�ik=m.For any �nite set S we write jSi = jSj�1=2Pg2S jgi. Finally,whenever we refer to an observation of some quantum reg-ister, it is assumed that the observation takes pla
e in thestandard (
omputational) basis.

3.1 Finding orders with respect to a subgroupOur method for 
omputing the order of an element g withrespe
t to a subgroup H (i.e., 
omputing the rj values) isessentially Shor's order �nding algorithm, ex
ept that webegin with one of the registers initialized to jHi, and dur-ing the algorithm this register is reversibly multiplied by anappropriate power of g. In short, initializing one of the reg-isters to jHi gives us an easy way to work over the 
osetsof H, the key properties being (i) that the states jgiHi andjgjHi are orthogonal whenever gi and gj are elements in dif-ferent 
osets of H (and of 
ourse jgiHi = jgjHi otherwise),and (ii) we will not need to be able to re
ognize whi
h 
osetwe are in (or even look at the 
orresponding register at all)to be able to 
ompute the order of g with respe
t to H
orre
tly.Now we des
ribe the method in more detail. However,sin
e the analysis is almost identi
al to the analysis of Shor'salgorithm, we will not dis
uss the analysis in detail and in-stead refer the reader to Shor [36℄ and to other sour
es inwhi
h analyses of 
losely related te
hniques are given in de-tail [14, 29℄.We assume we are working over a bla
k-box group G withen
oding length n, and that a quantum register R has beeninitialized to state jHi for H some subgroup of G. For giveng we are trying to �nd r = rH(g), whi
h is the smallestpositive integer su
h that gr 2 H. Let A be a quantumregister whose basis states 
orrespond to ZN for N to be
hosen later, and assume A is initialized to state j0i.Similar to Shor's algorithm, we (i) perform the quantumFourier transform modulo N (QFTN ) on A, (ii) reversiblyleft-multiply the 
ontents of R by ga, for a the number 
on-tained in A, and (iii) perform QFTyN on A. Multipli
ationby ga 
an easily be done reversibly in polynomial time usingthe group ora
le along with repeated squaring. The state ofthe pair (A;R) is now1N Xa2ZN Xb2ZN eN (�ab)jbijgaHi:Observation of A yields some value b 2 ZN; we will havewith high probability that b=N is a good approximation tok=r (with respe
t to \modulo 1" distan
e), where k is ran-domly distributed in Zr. Assuming N is suÆ
iently large,we may �nd relatively prime integers u and v su
h thatu=v = k=r with high probability via the 
ontinued fra
tionmethod|
hoosing N = 22n+O(log(1=")) allows us to deter-mine u and v with probability 1 � ". Now, to �nd r, werepeat this pro
ess O(log(1=")) times and 
ompute the least
ommon multiple of the v values, whi
h yields r with prob-ability at least 1� ".
3.2 Creating uniform superpositions over sub-

groupsNext we des
ribe how several 
opies of the state jHi maybe 
onverted to several 
opies of the state jhgiHi. We as-sume g normalizes H (i.e., gH = Hg, implying that hgiH isa group and that H / hgiH) and further thatr = rH(g) = jhgiH=Hjis known. For the main algorithm this 
orresponds to 
on-verting the 
opies of jHj�1i to 
opies of jHji. We note thatthis is the portion of the algorithm that apparently requires



the normal subgroup relations in (1), as the assumption thatg normalizes H is essential for the method.Spe
i�
ally, for suÆ
iently large l, l 
opies of jHi are 
on-verted to l � 1 
opies of jhgiHi with high probability; thepro
edure fails to 
onvert just one of the 
opies. We assumethat we have registers R1; : : : ;Rl, ea
h in state jHi. LetA1; : : : ;Al be registers whose basis states 
orrespond to Zr,and assume A1; : : : ;Al are ea
h initialized to j0i. For ea
hi = 1; : : : ; l do the following: (i) perform QFTr on registerAi, (ii) reversibly left-multiply the 
ontents of Ri by gai ,where ai denotes the 
ontents of Ai, and (iii) again performQFTr on Ai. Ea
h pair (Ai;Ri) is now in the state1r Xai2Zr Xbi2Zr er(aibi)jbiijgaiHi:Now, measureA1; : : : ;Al, denoting the results by b1; : : : ; bl.Let j ii denote the resulting (normalized) state of Ri forea
h i, i.e., j ii = 1pr Xai2Zr er(aibi)jgaiHi:Now we hope that at least one of the values bi is rela-tively prime to r; this fails to happen with probability atmost " whenever l 2 
((log log r)(log 1=")). Assuming weare in this 
ase, 
hoose k su
h that bk is relatively primeto r. We will use j ki to \
orre
t" the state in ea
h of theremaining registers Ri, i 6= k, by doing the following: re-versibly multiply the 
ontents of Rk by f
, where f denotesthe group element 
ontained in Ri and 
 is any integer sat-isfying 
 � bib�1k (mod r). We 
laim at this point that Ri
ontains the state jhgiHi and Rk is un
hanged (i.e., still
ontains j ki). To see this, 
onsider an operator Mgjh thatmultiplies the 
ontents of Rk by gjh (for arbitrary h 2 H).As g normalizes H we haveMgjhj ki = 1pr Xak2Zr er(akbk)jgj+akHi= 1pr Xak2Zr er((ak � j)bk)jgakHi= er(�jbk)j ki;whi
h shows that the state j ki is an eigenve
tor of Mgjhwith asso
iated eigenvalue er(�jbk). Thus, after performingthe above multipli
ation, the state of the pair (Ri;Rk) is1prjHj Xai2ZrXh2H er(aibi)jgaihiM(gaih)
 j ki= 1prjHj Xai2ZrXh2H er(aibi � aibib�1k bk)jgaihij ki= 1prjHj Xai2ZrXh2H jgaihij ki= jhgiHi j ki:This pro
edure is repeated for ea
h value of i 6= k and thenRk is dis
arded; this results in l � 1 
opies of jhgiHi asdesired.It should be noted that it is not really ne
essary thatone of the bi values is relatively prime to r, but a more
ompli
ated pro
edure is ne
essary in this 
ase. Sin
e wealready have a polynomial-time algorithm without the more
ompli
ated pro
edure, we will not dis
uss it further.

3.3 The main algorithmAs above, we assume we have elements g1; : : : ; gm 2 Gsu
h that for Hj = hg1; : : : ; gji for ea
h j, we havef1g = H0 / H1 / � � � / Hm = G:De�ning rj = rHj�1 (gj) = jHj=Hj�1j for ea
h j we havejGj =Qmj=1 rj . Consider the algorithm in Figure 1. Here, kis a parameter to be 
hosen later.Prepare k(m+ 1) 
opies of the state jH0i, where H0 = f1g.Do the following for j = 1; : : : ;m:Using k � 1 of the 
opies of jHj�1i, 
omputerj = rHj�1 (gj) (and dis
ard these k � 1 states).Use one of the 
opies of jHj�1i to 
onvert theremaining 
opies of jHj�1i to 
opies of jHji.End of for loop.Output Qmj=1 rj .Figure 1: Algorithm to 
ompute the order of a solv-able group GIt is 
lear that the algorithm operates 
orre
tly assumingthat ea
h evaluation of rj is done without error, and thatthe 
opies of jHj�1i are 
onverted to 
opies of jHji withouterror on ea
h iteration of the loop. To have that the algo-rithm works 
orre
tly with high probability in general, wemust simply 
hoose parameters so that the error in all ofthese steps is small. If we want the entire pro
ess to workwith probability of error less than ", we may perform the
omputations of ea
h of the rj values su
h that ea
h 
om-putation errs with probability at most "=(2m), and for ea
hj the 
opies of jHj�1i are 
onverted to 
opies of jHji with er-ror at most "=(2m). Thus, 
hoosing k = O((log n)(logm="))suÆ
es. In time polynomial in mn+log(1=") we may there-fore a
hieve probability of error " by 
hoosing k polynomialin mn+log(1=") and 
omputing the rj values with suÆ
ienta

ura
y.A similar 
hoi
e of parameters allows jGi to be approx-imated with a

ura
y " in the tra
e-norm metri
 in timepolynomial in mn and log(1="), as 
laimed in Theorem 1.
4. OTHER PROBLEMSIn this se
tion we dis
uss other problems regarding solv-able groups that 
an be solved in quantum polynomial timewith the help of our main algorithm. First we dis
uss mem-bership testing and other problems that easily redu
e to
omputing order. We then we dis
uss the general te
hniquefor 
omputing over fa
tor groups of solvable groups.
4.1 Membership testing and simple reductions

to order findingSuppose we are given elements g1; : : : ; gk and h in somebla
k-box group. Clearly h 2 hg1; : : : ; gki if and only ifjhg1; : : : ; gkij = jhg1; : : : ; gk; hij. Thus, if hg1; : : : ; gk; hi issolvable, then the question of whether h 2 hg1; : : : ; gki 
anbe 
omputed in quantum polynomial time. Sin
e there isa 
lassi
al algorithm for testing solvability, it is really only



ne
essary that hg1; : : : ; gki is solvable; if hg1; : : : ; gki is solv-able but hg1; : : : ; gk; hi is not, then 
learly h 62 hg1; : : : ; gki.Several other problems redu
e to order 
omputation ormembership testing in solvable groups. A few examples aretesting whether a given solvable group is a subgroup of an-other (given g1; : : : ; gk and h1; : : : ; hl, is it the 
ase thathh1; : : : ; hli � hg1; : : : ; gki?), testing equality of two solv-able groups (given g1; : : : ; gk and h1; : : : ; hl, is it the 
asethat hg1; : : : ; gki = hh1; : : : ; hli?), and testing whether agiven group is a normal subgroup of a given solvable group(given g1; : : : ; gk and h1; : : : ; hl, is hh1; : : : ; hli normal inhg1; : : : ; gki?). To determine if hh1; : : : ; hli is a subgroupof hg1; : : : ; gki, we may test that jhh1; : : : ; hl; g1; : : : ; gkij =jhg1; : : : ; gkij (or we may test that ea
h hj is an elementof hg1; : : : ; gki separately), to test equality we verify thathg1; : : : ; gki � hh1; : : : ; hli and hh1; : : : ; hli � hg1; : : : ; gki,and to test normality we verify that g�1i hjgi 2 hh1; : : : ; hlifor ea
h i and j (as well as hh1; : : : ; hli � hg1; : : : ; gki). SeeBabai [3℄ for more examples of problems redu
ing to order
omputation.In another paper [38℄ we have shown that there exist su
-
in
t quantum 
erti�
ates for various group-theoreti
 prop-erties, in
luding the property that a given integer dividesthe order of a group (i.e., given an integer d and generatorsg1; : : : ; gk in some bla
k-box group, where G = hg1; : : : ; gkiis not ne
essarily solvable, verify that d divides jGj). Wenote here that our quantum algorithm for 
al
ulating or-ders of solvable groups 
an be used to prove the existen
eof su

in
t 
lassi
al 
erti�
ates for this property. Supposewe are given d and g1; : : : ; gk as above. Then a 
lassi
al
erti�
ate for the property that d divides jGj may 
onsist ofdes
riptions of p-subgroups of G for the primes p dividing d.More spe
i�
ally, suppose d = pa11 � � � pamm for distin
t primesp1; : : : ; pm. Then for ea
h prime power pajj , the 
erti�
atewill in
lude a des
ription of some subgroup of G having or-der pajj . If pajj indeed divides jGj there will exist su
h asubgroup, whi
h is ne
essarily solvable sin
e all groups ofprime power order are solvable. Thus, the order of ea
hgiven p-subgroup 
an be found using the order 
al
ulationalgorithm. Sin
e G is not ne
essarily solvable, however, test-ing that ea
h of the given p-subgroups is really a subgroup ofG might not be possible with our algorithm. However, the
erti�
ate may also in
lude proofs of membership for ea
hof the generators of the p-subgroups in G. (See Babai andSzemer�edi [7℄ for details on proofs of membership.)
4.2 Computing over abelian factor groupsFor abelian bla
k-box groups, many group-theoreti
 prob-lems 
an be solved in polynomial time on a quantum 
om-puter. For instan
e, given generators for an abelian bla
k-box group G with en
oding length n, we may 
ompute primepowers q1; : : : ; qm su
h thatG �= Zq1�� � ��Zqm in quantumpolynomial time. Furthermore, there exists an isomorphism� : G ! Zq1 � � � � � Zqm su
h that for any h 2 G, �(h)may be 
omputed in time polynomial in n. Consequently,
omputing the order of an abelian group, testing isomor-phism of abelian groups, and several other problems 
an beperformed in quantum polynomial time [13, 24, 32℄.We may apply these te
hniques for problems about abeliangroups to problems about solvable groups by working overfa
tor groups. To illustrate how this may be done, 
onsiderthe following problem. Suppose we have a solvable groupG given by generators g1; : : : ; gk, and furthermore that we

have generators h1; : : : ; hl for a normal subgroup H of Gsu
h that G=H is abelian. We may hope to determine thestru
ture of G=H using the te
hnique for abelian groupsmentioned above, i.e., we wish to 
ompute prime powersq1; : : : ; qm su
h that G=H �= Zq1 � � � � � Zqm. However,a 
ompli
ation arises sin
e we do not have unique 
lassi
alrepresentations for elements of G=H, and so we 
annot ap-ply the te
hnique dire
tly. Instead, we will rely on the fa
tthat we may eÆ
iently 
onstru
t 
opies of the state jHiin polynomial time in order to work over the fa
tor groupG=H. Assume that r1 = order(g1); : : : ; rk = order(gk)have already been 
omputed using Shor's algorithm, and letN = l
m(r1; : : : ; rk). The algorithm des
ribed in Figure 2will allow us to solve the problem.Prepare register R in state jHi using the algorithm fromSe
tion 3.Initialize registers A1; : : : ;Ak ea
h in state 1pN PN�1a=0 jai.Reversibly (left-)multiply the 
ontents of register Rby ga11 � � � gakk , where ea
h aj denotes the 
ontents ofregister Aj .For j = 1; : : : ; k, perform the quantum Fourier transformmodulo N on register Aj .Observe A1; : : : ;Ak.Figure 2: Quantum subroutine used for determiningthe stru
ture of G=H.To analyze this algorithm, let us de�ne f : ZkN ! G=Has f(a1; : : : ; ak) = ga11 � � � gakk H. The mapping f is a homo-morphism withker(f) = f(a1; : : : ; ak) 2 ZkN j ga11 � � � gakk 2 Hg:Let ker(f)? denote the set of all (b1; : : : ; bk) 2 ZkN su
h thatPkj=1 ajbj � 0 (mod N) for all (a1; : : : ; ak) 2 ker(f). Wehave that ker(f)? �= G=H, and in fa
t f is an isomorphismwhen restri
ted to ker(f)?. A straightforward analysis re-veals that observation of A1; : : : ;Ak will give a random el-ement in ker(f)?.Thus, running the algorithm in Figure 2 O(k) times re-sults in a generating set for ker(f)? with high probability.Letting B be a matrix whose 
olumns are the randomly gen-erated elements of ker(f)?, we may determine the numbersq1; : : : ; qm in polynomial time by 
omputing the Smith nor-mal form of B (see Kannan and Ba
hem [28℄ and Hafnerand M
Curley [22℄ for polynomial-time algorithms for 
om-puting Smith normal forms).This method for working over fa
tor groups 
an be appliedto other problems. In general, we may represent elementsin a fa
tor group G=H by quantum states of the form jgHi.Two states jgHi and jg0Hi are of 
ourse identi
al when-ever gH = g0H, and are orthogonal otherwise. Multipli
a-tion and inverses work as expe
ted|for UG as in Se
tion 2we have UGjgHijg0Hi = jgHijgg0Hi and U�1G jgHijg0Hi =jgHijg�1g0Hi. (This requires H /G.) Hen
e this gives us anatural way to represent elements of fa
tor groups by quan-tum states.



5. CONCLUSIONWe have given a polynomial-time quantum algorithm for
al
ulating the order and preparing a uniform superpositionover a given solvable group, and shown how this algorithmmay be used to solve other group-theoreti
 problems regard-ing solvable groups in polynomial time.There are several other problems about solvable bla
k-box groups for whi
h we do not have polynomial-time algo-rithms. Examples in
lude Group Interse
tion (given gener-ating sets for two subgroups of a solvable bla
k-box group,do the subgroups have a nontrivial interse
tion?) and CosetInterse
tion (de�ned similarly). See Babai [3℄ for more ex-amples of group-theoreti
 problems we may hope to solve inquantum polynomial time in the solvable bla
k-box groupsetting.Another interesting question is whether there existpolynomial-time quantum algorithms for similar problemsfor arbitrary (not ne
essarily solvable) �nite groups. There
ent work of Ivanyos, Magniez, and Santha [26℄ representsprogress in this dire
tion.
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