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ABSTRACT

In this paper we give a polynomial-time quantum algorithm
for computing orders of solvable groups. Several other prob-
lems, such as testing membership in solvable groups, testing
equality of subgroups in a given solvable group, and test-
ing normality of a subgroup in a given solvable group, re-
duce to computing orders of solvable groups and therefore
admit polynomial-time quantum algorithms as well. Our al-
gorithm works in the setting of black-box groups, wherein
none of these problems have polynomial-time classical algo-
rithms. As an important byproduct, our algorithm is able
to produce a pure quantum state that is uniform over the
elements in any chosen subgroup of a solvable group, which
yields a natural way to apply existing quantum algorithms
to factor groups of solvable groups.

1. INTRODUCTION

The focus of this paper is on quantum algorithms for
group-theoretic problems. Specifically we consider finite
solvable groups, and give a polynomial-time quantum al-
gorithm for computing orders of solvable groups. Naturally
this algorithm yields polynomial-time quantum algorithms
for testing membership in solvable groups and several other
related problems that reduce to computing orders of solvable
groups. Our algorithm is also able to produce a uniform pure
quantum state over the elements in any chosen subgroup of a
solvable groups, which yields a natural way of applying cer-
tain quantum algorithms to factor groups of solvable groups.
For instance, we describe a method by which existing quan-
tum algorithms for abelian groups may be applied to abelian
factor groups of solvable groups, despite the fact that the
factor groups generally do not satisfy an important require-
ment of the existing quantum algorithms namely, that el-
ements have unique, succinct classical representations.

We will be working within the context of black-boz groups,
wherein elements are uniquely encoded by strings of some
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given length n and the group operations are performed by a
black-box (or group oracle) at unit cost. Black-box groups
were introduced by Babai and Szemerédi 7] in 1984 and
have since been studied extensively [1, 2, 3, 4, 5, 6, 9]. Any
efficient algorithm that works in the context of black-box
groups of course remains efficient whenever the group oracle
can be replaced by an efficient procedure for computing the
group operations. In the black-box group setting it is prov-
ably impossible to compute order classically in polynomial
time, even for abelian groups [7].

Essentially all previously identified problems for which
quantum algorithms offer exponential speed-up over the best
known classical algorithms can be stated as problems regard-
ing abelian groups. In 1994, Shor [36] presented polynomial
time quantum algorithms for integer factoring and comput-
ing discrete logarithms, and these algorithms generalize in
a natural way to the setting of finite groups. Specifically,
given elements g and h in some finite group G it is possible,
in quantum polynomial time, to find the smallest positive
integer k such that h = ¢g”, provided there exists such a k.
In case h is the identity one obtains the order of g, to which
there is a randomized polynomial-time reduction from fac-
toring when the group is the multiplicative group of integers
modulo the integer n to be factored. It should be noted that
while the group G need not necessarily be abelian for these
algorithms to work, we may view the algorithms as taking
place in the abelian group generated by g.

Shor’s algorithms for integer factoring and discrete loga-
rithms were subsequently cast in a different group-theoretic
framework by Kitaev [29, 30]. This framework involves a
problem called the Abelian Stabilizer Problem, which may
be informally stated as follows. Let k and n be positive inte-
gers, and consider some group action of the additive abelian
group Z* on a set X C X", where the group action can be
computed efficiently. The problem, which can be solved in
quantum polynomial time, is to compute a basis (in Zk) of
the stabilizer (Z*), of a given & € X. Appropriate choice
of the group action allows one to solve order finding and
discrete logarithms for any finite group as above. In this
case, the group G in question corresponds to the set X and
the group action of Z* on X is determined by the group
structure of G.

Kitaev's approach was further generalized by Brassard
and Hgyer [12], Jozsa [27], and Mosca and Ekert [33], who
formulated the Hidden Subgroup Problem. (See also Hgyer
[24].) The Hidden Subgroup Problem may be informally
stated as follows. Given a finitely generated group G and
an efficiently computable function f from G to some finite



set X such that f is constant and distinct on left-cosets of
a subgroup H of finite index, find a generating set for H.
Mosca and Ekert showed that Deutsch’s Problem [16], Si-
mon’s Problem [37], order finding and computing discrete
logarithms [36], finding hidden linear functions [11], testing
self-shift-equivalence of polynomials [21], and the Abelian
Stabilizer Problem [29, 30] can all be solved in polynomial
time within the framework of the Hidden Subgroup Problem.
In the black-box group setting, the Hidden Subgroup Prob-
lem can be solved in quantum polynomial time whenever
G is abelian, as demonstrated by Mosca [32]. Mosca also
proved that several other group-theoretic problems regard-
ing abelian black-box groups can be reduced to the Hidden
Subgroup Problem,; and thus can be computed in quantum
polynomial time as well. For instance, given a collection
of generators for a finite abelian black-box group, one can
find the order of the group, and in fact one can decompose
the group into a direct product of cyclic subgroups of prime
power order, in polynomial time.' (See also Cheung and
Mosca [13] for further details.)

The Hidden Subgroup Problem has been considered in the
non-abelian case, although with limited success (see Ettinger
and Hgyer [17], Ettinger, Hpyer, and Knill [18], Grigni,
Schulman, Vazirani, and Vazirani [20], Hallgren, Russell,
and Ta-Shma [23], Ivanyos, Magniez, and Santha [26], and
Rotteler and Beth [35]). Quantum polynomial-time algo-
rithms for finding non-abelian hidden subgroups are known
for only limited classes of finite groups—most notably, the
recent paper of Ivanyos, Magniez, and Santha [26] gives
quantum polynomial-time algorithms based on an algorithm
of Beals and Babai [9] for solving certain special cases of this
problem. The Non-abelian Hidden Subgroup Problem is of
particular interest as it relates to the Graph Isomorphism
Problem; Graph Isomorphism reduces to a special case of
the Hidden Subgroup Problem in which the groups in ques-
tion are the symmetric groups. Beals [8] has shown that
quantum analogues of Fourier transforms over symmetric
groups can be performed in polynomial time, although thus
far this has not proven to be helpful for solving the Graph
Isomorphism Problem.

In this paper we move away from the Hidden Subgroup
Problem and consider other group-theoretic problems for
non-abelian groups—in particular we consider solvable
groups. Our main algorithm finds the order of a given
solvable group and, as an important byproduct, produces
a quantum state that approximates a uniform superposition
over the elements of the given group.

THEOREM 1. There exists a quantum algorithm operat-
ing as follows (relative to an arbitrary group oracle). Given
generators gi, ... ,gm such that G = {g1,... ,gm) is solv-
able, the algorithm outputs the order of G with probability
of error bounded by € in time polynomial in mn + log(1/e)
(where n is the length of the strings representing the gener-
ators). Moreover, the algorithm produces a quantum state
p that approzimates the state |G) = |G|~Y/* 3 lg) with
accuracy € (in the trace norm metric).

geqG

!This is interesting from the standpoint of computational
number theory since, assuming the Generalized Riemann
Hypothesis, it follows that there is a polynomial-time quan-
tum algorithm for computing class numbers of imaginary
quadratic number fields a problem often considered as a
candidate for a problem harder than integer factoring. See
Cohen [15] for information about computing class numbers.

Several other problems reduce to the problem of comput-
ing orders of solvable groups, including membership test-
ing in solvable groups, testing equality of subgroups in a
given solvable group, and testing that a given subgroup of
some solvable group is normal. Thus, these problems can be
solved in quantum polynomial time as well.

Since any subgroup of a solvable group is solvable, our
algorithm can be applied to any subgroup H of a solvable
group G in order to obtain a close approximation to the state
|H). One application of being able to efficiently prepare
uniform superpositions over subgroups of solvable groups is
that it gives us a simple way to apply existing quantum
algorithms for abelian groups to abelian factor groups of
solvable groups, despite the fact that we do not have unique
classical representations for elements in these factor groups.
This method is discussed further in Section 4.

While black-box group algorithms are appealing because
of their generality, it is natural to ask if the algorithms de-
scribed in this paper give polynomial-time algorithms for
any problems in the standard (no oracles) model that are not
known to have polynomial-time classical algorithms. Exam-
ple of such problems can be obtained by considering groups
of invertible matrices over finite fields. For instance, let F
be a finite field of characteristic p, and consider the problem
of finding the order of G = (g¢1,...,gx) for given elements
gi,---, 9k € GL(n,F) under the assumption that G is solv-
able. The most efficient classical algorithm known for this
problem is due to Luks [31], and runs in time polynomial in
the input size plus the largest prime other than p dividing
|G|. Our quantum algorithm solves this problem in polyno-
mial time without dependence on the primes dividing |G|.
Moreover, our algorithm gives polynomial-time solutions to
related problems regarding factor groups of such solvable
matrix groups as described in Section 4.

Arvind and Vinodchandran [1] have shown that several
problems regarding solvable groups, including membership
testing and order verification, are low for the complexity
class PP, which means that an oracle for these problems
is useless for PP computations. Fortnow and Rogers [19]
proved that any problem in BQP is low for PP, and thus we
have obtained an alternate proof that membership testing
and order verification for solvable groups are both low for
PP. It is left open whether some of the other problems proved
low for PP by Arvind and Vinodchandran have polynomial-
time quantum algorithms. An interesting example of such
a problem is testing whether two solvable groups have a
nontrivial intersection.

Very recently, after a preliminary version of the present
paper appeared, Ivanyos, Magniez, and Santha [26] showed
how an algorithm of Beals and Babai [9] can be combined
with a quantum algorithm for the (Abelian) Hidden Sub-
group Problem to obtain polynomial-time quantum algo-
rithms for several group theoretic problems, including com-
puting orders of solvable groups as well as several problems
not considered in the present paper. In addition, they com-
bine their method with our technique for preparing uniform
superpositions over solvable subgroups to obtain polynomial-
time quantum algorithms for other problems regarding fac-
tor groups. Unlike the approach of Ivanyos, Magniez, and
Santha, our algorithm is self-contained and completely ele-
mentary (not relying on a statistical analysis of the classifi-
cation of finite simple groups, in particular).

The remainder of this paper has the following organiza-



tion. In Section 2 we review necessary background infor-
mation for this paper, including a discussion of black-box
groups in the context of quantum circuits and other infor-
mation regarding computational group theory. Section 3
describes our quantum algorithm for finding the order of a
solvable group as stated in Theorem 1, and Section 4 dis-
cusses other problems that can be solved by adapting this
algorithm. We conclude with Section 5, which mentions
some open problems.

2. PRELIMINARIES

In this section we review information regarding computa-
tional group theory that is required for the remainder of the
paper. We assume the reader is familiar with the theory of
quantum computation, and specifically with the quantum
circuit model, so we will not review this model further ex-
cept to discuss black-box groups in the context of quantum
circuits. The reader not familiar with quantum circuits is
referred to Nielsen and Chuang [34]. We also assume the
reader is familiar with the basic concepts of group theory
(see, for example, Isaacs [25]).

Given a group G and elements g, h € G we define the com-
mutator of g and h, denoted [g, h], as [g,h] = g~ 'h~'gh, and
for any two subgroups H, K < G we write [H, K] to denote
the subgroup of G generated by all commutators [h, k] with
h € H and k € K. The derived subgroup of G is G’ = [G, G],

and we write
G =g,
GY = (GU-IY | for j > 1.

A group G is said to be solvable if G™ = {1} (the group
consisting of just one element) for some value of m. An
equivalent way to define what it means for a (finite) group
to be solvable is as follows. A finite group G is solvable if
there exist elements gi,...,gm € G such that if we define
H; ={g1,...,9;) for each j, then

{1} =Ho <«Hi1 <« <H, =G.

Note that Hjy1/H; is necessarily cyclic in this case for each
j. Given an arbitrary collection of generators for a solvable
group G, a polynomial-length sequence g1,... ,gm as above
can be found via a (classical) Monte Carlo algorithm in poly-
nomial time [6] (discussed in more detail below). It is impor-
tant to note that we allow the possibility that H; = Hj4:
for some values of j in reference to this claim.

We will be working in the general context of black-box
groups, which we now discuss. In a black-box group, each
elements is uniquely encoded by some binary string, and
we have at our disposal a black-box (or group oracle) that
performs the group operations on these encodings at unit
cost. For a given black-box group, all of the encodings are
of a fixed length n, which is the encoding length. Thus, a
black-box group with encoding length n has order bounded
above by 2". Note that not every binary string of length
n necessarily corresponds to a group element, and we may
imagine that our group oracle has some arbitrary behavior
given invalid encodings. (Our algorithms will never query
the oracle for invalid group element encodings given valid
input elements). When we say that a particular group or
subgroup is given (to some algorithm), we mean that a set
of strings that generate the group or subgroup is given.

Since we will be working with quantum circuits, we must
describe black-box groups in this setting. Corresponding
to a given black-box group G with encoding length n is a
quantum gate Ug acting on 2n qubits as follows:

Ucl|g)lh) = |9)lgh).

Here we assume g and h are valid group elements in case
any invalid encoding is given, Ug may act in any arbitrary
way so long as is remains reversible. The inverse of Ug acts
as follows:

Ug'lg)h) = |g)lg~"h).

When we say that a quantum circuit has access to a group
oracle for G, we mean that the circuit may include the gates
Ug and U(;l for some Ug as just described. More gener-
ally, when we are discussing uniformly generated families of
quantum circuits, a group oracle corresponds to an infinite
sequence of black-box groups G1,Ga,... (one for each en-
coding length), and we allow each circuit in the uniformly
generated family to include gates of the form Ug, and Ué:
for the appropriate value of n.

As noted by Mosca [32], the gates Ugs and Ual above
can be approximated efficiently if we have a single gate Vg
acting as follows on 3n qubits:

gh)|z) = 1g)|h)|= & gh),

again where we assume g and h are valid group elements
(and z is arbitrary). Here, x @ gh denotes the bitwise XOR
of the string = and the string encoding the group element
gh. This claim follows from the fact that given the gate
Ve, we may find the order of any element g using Shor’s
algorithm, from which we may find the inverse of g. Once
we have this, techniques in reversible computation due to
Bennett [10] allow for straightforward simulation of U and
U(jl. Since it is simpler to work directly with the gates Ug
and Ual, however, we will assume that these are the gates
made available for a given black-box group.

Now we return to the topic of solvable groups, and review
some known facts about solvable groups in the context of
black-box groups. First, with respect to any given group
oracle, if we are given generators gi,...,gm of encoding
length n, it is possible to test whether G = (g1,...,gm)
is solvable via a polynomial time (in nm) Monte Carlo al-
gorithm [6]. Moreover, the same algorithm can be used to
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construct (with high probability) generators g’ ... ,g,(cj),
for j=0,...,n—1 and where k = O(n), such that GY) =
(ggj), - 7g,(j)). At this point we notice (under the assump-

tion that G is solvable) that by relabeling the elements

n—1 n—1 n—2 n—2 0 0
gg )1"'749]5: )795 )1"'749]5: )7"'795 )7191((‘ )1
as hi,... , hg, (in the order given) we have the following. If
H; = (h1,... ,h;) for j=0,...,kn, then

{1} =Ho <H; <« --- «Hy, =G.

This follows from the fact that GY? «GYU~Y for each j, and
further that GY ™Y /GY is necessarily abelian. The fact
that each factor group H;/H;_1 is cyclic will be important
for our quantum algorithm in the next section.

The problem of computing the order of a group cannot be
solved classically in polynomial time in the black-box setting
even for abelian (and therefore for solvable) groups [7].



3. COMPUTING ORDERS OF SOLVABLE
GROUPS

In this section we describe our quantum algorithm for
finding the order of a given solvable black-box group G and
preparing a uniform superposition over the elements of G.

We assume we have elements g1, ... ,gm € G such that if
we define H; = (g1,...,g;) for each j, then

{1} =Ho «Hi <« <H, =G. (1)

We allow the possibility that H; = H;41 for some values of
j. The existence of such a chain is equivalent to the solvabil-
ity of G, and given an arbitrary collection of generators of G
such a sequence can be found via a Monte Carlo algorithm in
polynomial time as discussed in the previous section. Calcu-
lation of the orders of the factor groups in this chain reveals
the order of G; if

ry = |fI1/ro|7
then |G| =TI/, rj-

j=1

The calculation of the orders of the factor groups is based
on the following idea. Suppose we have several copies of the
state |H) for some subgroup H of G, where |H) denotes the

uniform superposition over the elements of H:

1
H)=— h).
)= = >

heH

y Tm = ‘Hm/Hm*1|7

Then using a simple modification of Shor’s order finding
algorithm we may find the order of g with respect to H,
which is the smallest positive integer r such that ¢" € H,
for any g € G. In case H = Hj_, = {(g1,...,9j—1) and
g = g; for some j, this order is precisely r; = |[H;/H;_1]|.

Since this requires that we have several copies of |H;_1)
in order to compute each r;, we must demonstrate how the
state |H;_1) may be efficiently constructed. In fact, the con-
struction of the states |Ho), |H1),... is done in conjunction
with the computation of 71,72, ...; in order to prepare sev-
eral copies of |H;) it will be necessary to compute r;, and
in turn these copies of |H;) are used to compute r;4+1. This
continues up the chain until r,, has been computed and
|H..) has been prepared. More specifically, we will begin
with a large (polynomial) number of copies of |Ho) (which
are of course trivial to prepare), use some relatively small
number of these states to compute 71, then convert the rest
of the copies of |Ho) to copies of |[H1) using a procedure de-
scribed below. We continue up the chain in this fashion, for
each j using a relatively small number of copies of |H;_1) to
compute r;, then converting the remaining copies of |Hj_1)
to copies of |Hj).

In subsections 3.1 and 3.2 we discuss the two components
(computing the r; values and converting copies of |H;_1)
to copies of |H;)) individually, and in subsection 3.3 we de-
scribe the main algorithm that combines the two compo-
nents. The following notation and conventions will be used
in these subsections. Given a finite group G and a subgroup
H of G, for each element g € G define ry(g) to be the
smallest positive integer r such that ¢" € H (which we have
referred to as the order of g with respect to H). For any posi-
tive integer m and k € Z,, we write en (k) to denote e2mik/m,
For any finite set S we write |S) = |S|~!/? > ges |9). Finally,
whenever we refer to an observation of some quantum reg-
ister, it is assumed that the observation takes place in the
standard (computational) basis.

3.1 Finding orders with respect to a subgroup

Our method for computing the order of an element g with
respect to a subgroup H (i.e., computing the r; values) is
essentially Shor’s order finding algorithm, except that we
begin with one of the registers initialized to |H), and dur-
ing the algorithm this register is reversibly multiplied by an
appropriate power of g. In short, initializing one of the reg-
isters to |H) gives us an easy way to work over the cosets
of H, the key properties being (i) that the states |g* H) and
|g” H) are orthogonal whenever g’ and ¢’ are elements in dif-
ferent cosets of H (and of course |g" H) = |g H) otherwise),
and (ii) we will not need to be able to recognize which coset
we are in (or even look at the corresponding register at all)
to be able to compute the order of g with respect to H
correctly.

Now we describe the method in more detail. However,
since the analysis is almost identical to the analysis of Shor’s
algorithm, we will not discuss the analysis in detail and in-
stead refer the reader to Shor [36] and to other sources in
which analyses of closely related techniques are given in de-
tail [14, 29].

We assume we are working over a black-box group G with
encoding length n, and that a quantum register R has been
initialized to state |H) for H some subgroup of G. For given
g we are trying to find r = rg(g), which is the smallest
positive integer such that ¢" € H. Let A be a quantum
register whose basis states correspond to Zy for IV to be
chosen later, and assume A is initialized to state |0).

Similar to Shor’s algorithm, we (i) perform the quantum
Fourier transform modulo N (QFTy) on A, (ii) reversibly
left-multiply the contents of R by ¢g“, for a the number con-
tained in A, and (iii) perform QFT;’V on A. Multiplication
by g% can easily be done reversibly in polynomial time using
the group oracle along with repeated squaring. The state of
the pair (A, R) is now

= 3 en(-ab)pylg .

a€Z N bEL N

Observation of A yields some value b € Zy; we will have
with high probability that /N is a good approximation to
k/r (with respect to “modulo 1”7 distance), where k is ran-
domly distributed in Z,. Assuming N is sufficiently large,
we may find relatively prime integers u and v such that
u/v = k/r with high probability via the continued fraction
method—choosing N = 227+000s(l/=)) 4llows us to deter-
mine u and v with probability 1 — . Now, to find r, we
repeat this process O(log(1/¢)) times and compute the least
common multiple of the v values, which yields r with prob-
ability at least 1 —e¢.

3.2 Creating uniform superpositions over sub-
groups

Next we describe how several copies of the state |H) may
be converted to several copies of the state [(g)H). We as-
sume g normalizes H (i.e., gH = Hg, implying that (g)H is
a group and that H < (g)H) and further that

r=ru(g) = (9)H/H|

is known. For the main algorithm this corresponds to con-
verting the copies of |H;_1) to copies of |H;). We note that
this is the portion of the algorithm that apparently requires



the normal subgroup relations in (1), as the assumption that
g normalizes H is essential for the method.

Specifically, for sufficiently large [, I copies of |H) are con-
verted to | — 1 copies of |(g)H) with high probability; the
procedure fails to convert just one of the copies. We assume
that we have registers Ri,... ,Ry, each in state |H). Let
A, ..., A; beregisters whose basis states correspond to Z,
and assume Ay,...,A; are each initialized to |0). For each
it =1,...,l do the following: (i) perform QFT, on register
A;, (ii) reversibly left-multiply the contents of R; by g,
where a; denotes the contents of A;, and (iii) again perform
QFT, on A;. Each pair (A;,R;) is now in the state

% D> en(aibi)|bi)lg H).

a;€Lrb; €Ly

Now, measure A, ..., A;, denoting the results by b1, ... , b;.
Let |¢);) denote the resulting (normalized) state of R; for
each ¢, i.e.,

1 .
[Yi) = 7 ai%;,,er(aibmg H).

Now we hope that at least one of the values b; is rela-
tively prime to r; this fails to happen with probability at
most & whenever | € Q((loglogr)(log1/e)). Assuming we
are in this case, choose k such that by is relatively prime
to r. We will use |¢);) to “correct” the state in each of the
remaining registers R;, ¢ # k, by doing the following: re-
versibly multiply the contents of Rx by f¢, where f denotes
the group element contained in R; and c is any integer sat-
isfying ¢ = b;b, ' (modr). We claim at this point that R
contains the state |[(g)H) and Ry is unchanged (i.e., still
contains |1y)). To see this, consider an operator M;, that
multiplies the contents of Ry by g?h (for arbitrary h € H).
As g normalizes H we have

Myali) = 2= 3 erlaxbolg’ " H)
ay €Ly
= 2 % ella- il )
ap €%y
= er(_]bk)‘wk>)

which shows that the state |¢;) is an eigenvector of M,
with associated eigenvalue e, (—jby). Thus, after performing
the above multiplication, the state of the pair (R;, Ry) is

1 .
D D enlabi)lg® h) Mgei nye [vhi)
VT|H| a; €%, he H

= 3 S ot — aibiby b g B )
r|H| a; €%, he H
1 )

- N
T X Ll

= [(g)H) ).

This procedure is repeated for each value of i # k and then
R, is discarded; this results in [ — 1 copies of |[(g)H) as
desired.

It should be noted that it is not really necessary that
one of the b; values is relatively prime to r, but a more
complicated procedure is necessary in this case. Since we
already have a polynomial-time algorithm without the more
complicated procedure, we will not discuss it further.

3.3 The main algorithm

As above, we assume we have elements g1, ...
such that for H; = (gu,...

{1}:H0<1H1<1---

s9m € G
,g;) for each j, we have

< H, =G.

Defining r; = ru;_,(g;) = |Hj/H;-1| for each j we have
|G| =[I;Z, rj. Consider the algorithm in Figure 1. Here, k
is a parameter to be chosen later.

Prepare k(m + 1) copies of the state |[Ho), where Hyo = {1}.
Do the following for j =1,...  m:

Using k — 1 of the copies of |H;_1), compute
rj =rm;_,(g;) (and discard these k — 1 states).

Use one of the copies of |H;_;) to convert the
remaining copies of |H;_1) to copies of |Hj;).

End of for loop.
Output [, ;.

Figure 1: Algorithm to compute the order of a solv-
able group G

It is clear that the algorithm operates correctly assuming
that each evaluation of r; is done without error, and that
the copies of |H;_1) are converted to copies of |H;) without
error on each iteration of the loop. To have that the algo-
rithm works correctly with high probability in general, we
must simply choose parameters so that the error in all of
these steps is small. If we want the entire process to work
with probability of error less than e, we may perform the
computations of each of the r; values such that each com-
putation errs with probability at most €/(2m), and for each
j the copies of |[H;_1) are converted to copies of |H;) with er-
ror at most £/(2m). Thus, choosing k = O((log n)(log m/¢))
suffices. In time polynomial in mn +log(1/e) we may there-
fore achieve probability of error £ by choosing k polynomial
in mn+log(1/¢e) and computing the r; values with sufficient
accuracy.

A similar choice of parameters allows |G) to be approx-
imated with accuracy ¢ in the trace-norm metric in time
polynomial in mn and log(1/¢), as claimed in Theorem 1.

4. OTHER PROBLEMS

In this section we discuss other problems regarding solv-
able groups that can be solved in quantum polynomial time
with the help of our main algorithm. First we discuss mem-
bership testing and other problems that easily reduce to
computing order. We then we discuss the general technique
for computing over factor groups of solvable groups.

4.1 Membershiptesting and simple reductions
to order finding

Suppose we are given elements gi,...,gr and h in some
black-box group. Clearly h € (g1,...,gx) if and only if
|(gl7 I agk” = |(gla s Gk h)| Thus, if (917 cee agk7h> is
solvable; then the question of whether h € (g1,...,gx) can
be computed in quantum polynomial time. Since there is
a classical algorithm for testing solvability, it is really only



necessary that (gi,..., gk) is solvable; if (g1, ... , gr) is solv-
able but (g1,... , gk, h) is not, then clearly h & (g1, ... , gx)-

Several other problems reduce to order computation or
membership testing in solvable groups. A few examples are
testing whether a given solvable group is a subgroup of an-
other (given gi,...,gx and hi,..., h;, is it the case that
(h1,y...,h) < {g1,...,9k)7), testing equality of two solv-
able groups (given g1,...,gx and hi,..., h;, is it the case
that (gi,...,9k) = (hi,...,h;)?), and testing whether a
given group is a normal subgroup of a given solvable group
(given g1,...,9x and hi,... h;, is (h1,...,h;) normal in
(g1,---,9%)7). To determine if (h1,...,h;) is a subgroup
of (g1,...,gr), we may test that |[(h1,... ,hi,g91,... k)| =
[{g91,-..,9x)| (or we may test that each h; is an element
of (g1,...,gk) separately), to test equality we verify that
(gl7"' 7gk> S <h17"' 1hl> and (hla"' 7hl> S (gl7"' 7gk>1
and to test normality we verify that g; 'h;gi € (h1,...,h;)
for each 7 and j (as well as (h1,... ,h) < {(g1,...,9k)). See
Babai [3] for more examples of problems reducing to order
computation.

In another paper [38] we have shown that there exist suc-
cinct quantum certificates for various group-theoretic prop-
erties, including the property that a given integer divides
the order of a group (i.e., given an integer d and generators
g1,---,9gk in some black-box group, where G = (g1, ... , gk)
is not necessarily solvable, verify that d divides |G|). We
note here that our quantum algorithm for calculating or-
ders of solvable groups can be used to prove the existence
of succinct classical certificates for this property. Suppose
we are given d and gi,...,gr as above. Then a classical
certificate for the property that d divides |G| may consist of
descriptions of p-subgroups of G for the primes p dividing d.
More specifically, suppose d = pJ* - - - p» for distinct primes
P1,--- ,Pm. Then for each prime power p;j, the certificate
will include a description of some subgroup of G having or-
der p;j. If pjj indeed divides |G| there will exist such a
subgroup, which is necessarily solvable since all groups of
prime power order are solvable. Thus, the order of each
given p-subgroup can be found using the order calculation
algorithm. Since G is not necessarily solvable, however, test-
ing that each of the given p-subgroups is really a subgroup of
G might not be possible with our algorithm. However, the
certificate may also include proofs of membership for each
of the generators of the p-subgroups in G. (See Babai and
Szemerédi [7] for details on proofs of membership.)

4.2 Computing over abelian factor groups

For abelian black-box groups, many group-theoretic prob-
lems can be solved in polynomial time on a quantum com-
puter. For instance, given generators for an abelian black-
box group G with encoding length n, we may compute prime
powers qi, . .. ,qm such that G = Zg,, X+ - xXZ,,, in quantum
polynomial time. Furthermore, there exists an isomorphism
0:G — Zg, X+ X Zg,, such that for any h € G, 6(h)
may be computed in time polynomial in n. Consequently,
computing the order of an abelian group, testing isomor-
phism of abelian groups, and several other problems can be
performed in quantum polynomial time [13, 24, 32].

We may apply these techniques for problems about abelian
groups to problems about solvable groups by working over
factor groups. To illustrate how this may be done, consider
the following problem. Suppose we have a solvable group
G given by generators g,... , gk, and furthermore that we

have generators hi,...,h; for a normal subgroup H of G
such that G/H is abelian. We may hope to determine the
structure of G/H using the technique for abelian groups
mentioned above, i.e., we wish to compute prime powers
qi,... ,qm such that G/H = Zg X - - X Zg,,. However,
a complication arises since we do not have unique classical
representations for elements of G/H, and so we cannot ap-
ply the technique directly. Instead, we will rely on the fact
that we may efficiently construct copies of the state |H)
in polynomial time in order to work over the factor group
G/H. Assume that r1 = order(gi), ..., rr = order(gx)
have already been computed using Shor’s algorithm, and let
N =lecm(ry,...,7%). The algorithm described in Figure 2
will allow us to solve the problem.

Prepare register R in state |H) using the algorithm from
Section 3.

Initialize registers A1,... , Ay each in state \/l—ﬁ S a).

Reversibly (left-)multiply the contents of register R
by ¢! - gp*, where each a; denotes the contents of
register A;.

For j =1,... ,k, perform the quantum Fourier transform
modulo N on register A;.

Observe A, ..., Ay.

Figure 2: Quantum subroutine used for determining
the structure of G/H.

To analyze this algorithm, let us define f : 2% — G/H

as f(a1,...,ar) =gy -+ gy* H. The mapping f is a homo-
morphism with

ker(f) = {(a1,... ,a) € Zi |g{* - gi* € H}.
Let ker(f)" denote the set of all (b, ... ,by) € Z% such that

S5 ajb; = 0 (mod N) for all (a1,...,ax) € ker(f). We
have that ker(f)* = G/H, and in fact f is an isomorphism
when restricted to ker(f)*. A straightforward analysis re-
veals that observation of Ay,... Ay will give a random el-
ement in ker(f)™".

Thus, running the algorithm in Figure 2 O(k) times re-
sults in a generating set for ker(f)* with high probability.
Letting B be a matrix whose columns are the randomly gen-
erated elements of ker(f)™, we may determine the numbers
q1, ... ,qm in polynomial time by computing the Smith nor-
mal form of B (see Kannan and Bachem [28] and Hafner
and McCurley [22] for polynomial-time algorithms for com-
puting Smith normal forms).

This method for working over factor groups can be applied
to other problems. In general, we may represent elements
in a factor group G/H by quantum states of the form |gH).
Two states |gH) and |g'H) are of course identical when-
ever gH = g'H, and are orthogonal otherwise. Multiplica-
tion and inverses work as expected—for Ug as in Section 2
we have Uc|gH)|g'H) = |gH)|gg'H) and Ug'|gH)|g'H) =
lgH)|g™'g'H). (This requires H < G.) Hence this gives us a
natural way to represent elements of factor groups by quan-
tum states.




5. CONCLUSION

We have given a polynomial-time quantum algorithm for
calculating the order and preparing a uniform superposition
over a given solvable group, and shown how this algorithm
may be used to solve other group-theoretic problems regard-
ing solvable groups in polynomial time.

There are several other problems about solvable black-
box groups for which we do not have polynomial-time algo-
rithms. Examples include Group Intersection (given gener-
ating sets for two subgroups of a solvable black-box group,
do the subgroups have a nontrivial intersection?) and Coset
Intersection (defined similarly). See Babai [3] for more ex-
amples of group-theoretic problems we may hope to solve in
quantum polynomial time in the solvable black-box group
setting.

Another interesting question is whether there exist
polynomial-time quantum algorithms for similar problems
for arbitrary (not necessarily solvable) finite groups. The
recent work of Ivanyos, Magniez, and Santha [26] represents
progress in this direction.
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