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Abstract

Since Richard Feynman introduced the notion of
quantum computation in 1982, wvarious models of
“quantum computers” have been proposed. These
models include quantum Turing machines and quan-
tum circuits. In this paper we define another quan-
tum computational model, one-dimensional quantum
cellular automata, and demonstrate that any quantum
Turing machine can be efficiently simulated by a one-
dimensional quantum cellular automaton with con-
stant slowdown. This can be accomplished by consider-
ation of a restricted class of one-dimensional quantum
cellular automata called one-dimensional partitioned
quantum cellular automata. We also show that any
one-dimensional partitioned quantum cellular automa-
ton can be simulated by a quantum Turing machine
with linear slowdown, but the problem of efficiently
simulating an arbitrary one-dimensional quantum cel-
lular automaton with a quantum Turing machine is
left open. From this discussion, some interesting facts
concerning these models are easily deduced.

1 Introduction

The idea that certain principles of quantum me-
chanics might be powerful computational tools has led
to the study of various theoretical models of quan-
tum computers. The archetypal quantum computer,
as introduced by Richard Feynman in [1], is a com-
puter which can simulate quantum physical processes,
and which operates in accordance with quantum phys-
ical laws. Feynman noted that the problem of sim-
ulating quantum physics with a computer based on
classical physics appears to be intractable, thereby
suggesting that quantum computers may be inher-
ently more powerful than classical computers. David
Deutsch later formalized the notion of quantum com-
putation by defining what has become known as the
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quantum Turing machine (QTM) in [2], and in [3]
Ethan Bernstein and Umesh Vazirani, expanding on
Deutsch’s work, showed that there exists a universal
QTM which can simulate any QTM to any required
accuracy with at most polynomial slowdown. Another
quantum computational model, the quantum circuit,
was introduced by Andrew Yao in [4] and shown to be
equivalent to the quantum Turing machine.

It is not known whether or not these models are
more powerful than their classical analogues. How-
ever, there is evidence to suggest that this is the case;
most notably Peter Shor has shown in [5] that the in-
teger factoring and discrete log problems can be solved
in polynomial time using a QTM. (These problems are
believed not to be solvable in polynomial time using a
probabilistic Turing machine.)

It is natural to extend the idea of quantum compu-
tation to other computational models; in this paper we
discuss one-dimensional quantum cellular automata.
Given any well-formed QTM, we give a construction
of a one-dimensional quantum cellular automaton (1d-
QCA) which will efficiently simulate this QTM. This
is accomplished by defining a restricted class of 1d-
QCA called one-dimensional partitioned quantum cel-
lular automata (1d-PQCA). A 1d-PQCA is a 1d-QCA
in which each cell is partitioned into three subcells
(left, middle, and right), and where the next states
of any given cell depend only on the contents of the
right subcell of its left neighbor, the middle subcell of
itself, and the left subcell of its right neighbor. This is
the quantum analogue of the partitioned cellular au-
tomaton discussed by Kenichi Morita and Masateru
Harao in [6]. The advantage of the 1d-PQCA class is
that it is a simple matter to determine whether or not
a given 1d-PQCA is well-formed, while this is not a
trivial matter for an arbitrary 1d-QCA.

It is not clear that an arbitrary 1d-QCA can be effi-
ciently simulated by a QTM. However, it is shown that
any given 1d-PQCA can be simulated by a QTM with
linear slowdown. It is interesting to note that given
any 1d-PQCA, the QTM which results from this con-



struction will simulate the given 1d-PQCA with deter-
ministic head position, i.e. if this QTM is observed at
any time during its computation, the probability that
the tape head will be observed in any given location
will be either 0 or 1. This allows for the construction
of a QTM which will simulate, with deterministic head
position, any given QTM with linear slowdown. Thus,
for example, the position of the tape head of any such
QTM could be observed at every time step without
affecting its computation. (This is generally not the
case for an arbitrary QTM.)

The remainder of this paper will be organized as
follows. In section 2, the one-dimensional quantum
cellular automata model is defined. In section 3, the
class of one-dimensional partitioned quantum cellu-
lar automata is defined, and necessary and sufficient
conditions for the well-formedness of a 1d-PQCA are
discussed. In section 4, the quantum Turing machine
model is reviewed and in section 5, the equivalence
of the quantum Turing machine model and the par-
titioned quantum cellular automata model is demon-
strated. Finally, in section 6, some facts resulting from
this discussion are mentioned.

2 One-Dimensional Quantum Cellular
Automata

A one-dimensional quantum cellular automaton M
is a quadruple (@, 9, k%, A) where @ is a finite set of
states (including a distinguished quiescent state de-
noted by €), d is a local transition function (described
below), k is an integer denoting the acceptance cell,
and A C () is a set of accepting states. M is assumed
to have a two-way infinite sequence of cells indexed by
the integers (hereafter denoted by Z.) The neighbor-
hood of each cell is defined to be that cell itself along
with its closest neighbor on each side.

A configuration of a 1d-QCA M is a map
a:Z—Q

where, for each integer n, a(n) denotes the state of
the cell indexed by n. For any configuration a, it is
assumed that there are only finitely many values of
n for which a(n) is a non-quiescent state. Denote by
C = C(M) the set of all configurations of M, so that C
is countable for any given 1d-QCA M. For any a € C,
define |a| (the length of a) to be the maximum number
of consecutive cells such that the first and last cells are
non-quiescent. Any configuration of M in which the
cell indexed by k contains an element of A is said to be

an accepting configuration and all other configurations
are non-accepting configurations.
The local transition function 4 is a map

§:Q* - C
with
[ 1 ifg=e
5(6,6,€,Q)—{ 0 ifg#e M

which describes the evolution of M. (Here C denotes
the field of complex numbers.) Suppose that at some
given time t, three consecutive cells of M are in states
q1,q2 and g3 respectively. Then for every state g € @,
the cell which contained g2 at time ¢ will, at time ¢+ 1,
update to the state ¢ with amplitude 6(q1,q2,q3,q).
Every cell updates simultaneously in this manner, so
that globally, if M is in some configuration a € C at
time ¢, then the amplitude with which M transforms
to any configuration b € C at time t + 1 is defined to
be the product of the amplitudes with which each cell
of a transforms to the corresponding cell of b, i.e.

I sa(n — 1),a(n),a(n + 1),b(n)).

neZ

(This product is guaranteed to exist by (1).)

Thus, any configuration of M will transform into
multiple “next configurations”, where the transforma-
tion to each individual configuration has an associ-
ated amplitude. The evolution behaves as if all of
these transformations occur simultaneously, so that
after some number of steps, M will have evolved along
many computation paths simultaneously. Each path
has an associated amplitude which is defined to be
the product of the amplitudes of the transformations
along that path.

Multiple paths with differing amplitudes may lead
from one given configuration to another. This effect
is known as interference. If M is assumed to be in
some configuration a and is allowed to evolve for, say
[ steps, then M will be in a linear superposition of
configurations. For each configuration b in such a su-
perposition, we associate with it an amplitude which
is the sum of the amplitudes of all paths of length [
from a to b. It may therefore be the case, for example,
that a configuration will have amplitude zero in some
superposition, despite the fact that multiple paths of
nonzero amplitude lead to it.

If a 1d-QCA M is observed while in some superpo-
sition of configurations, the observer will not see this
superposition. Rather, the act of observation forces
the machine to choose one of the configurations in the
given superposition randomly, so that exactly one con-
figuration will be observed. The probability that any



given configuration is observed is the absolute square
of the amplitude associated with that configuration,
i.e. the absolute square of the sum of the amplitudes
of all paths which lead to that configuration. The act
of observation has the effect of altering the machine, so
that immediately after the observation occurs the ma-
chine will be in a single configuration, and no longer a
superposition of configurations. (More general types
of observations are possible, but will be ignored for
the purposes of this paper.)

For any 1d-QCA M and input configuration a, we
are interested in whether or not an accepting config-
uration will be observed after some number of steps.
The probability that M accepts a after | stepsis simply
the probability of observing any accepting configura-
tion after [ steps, assuming that M is initially placed
in configuration a and is not observed before [ steps
have passed.

Since each configuration in a given superposition
is observed with a certain probability, it is necessary
that the sum of the probabilities be exactly one. Thus,
allowed local transition functions § must be restricted
to those that guarantee this condition for any super-
position resulting from any given input. A machine
with such a local transition function is said to be well-
formed. This will be formalized presently.

Given any 1d-QCA M, let £2(C) denote the space of
all complex valued functions with domain C = C(M)
and bounded fy-norm, i.e.

1/2
z:C—C (Zw(a)@) < 00

a€cC

6:(C) =
Then ¢4 (C) is a Hilbert space with respect to the inner
product {-,-) : £2(C) x £5(C) — C defined by

(x1,22) = Z z1(a)za(a).

a€eC

Any superposition of M can now be identified with
an element z € ¢5(C), where z(a) € C denotes the
amplitude associated with configuration a in this su-
perposition. Thus, the probability of observing a from
this superposition is |z(a)|? for any a € C. We must

therefore have
> la(a))* =1 (2)
a€eC

for any superposition . The sum in (2) is exactly
|lz||? by definition, so we define

S ={z e 6(C) [ [lz]| =1}

to be the set of all possible superpositions of M.

Each superposition of a given 1d-QCA M will, in
one time-step, evolve into a new superposition accord-
ing to the local transition function of M. We can as-
sociate with any M a function E which will map any
given superposition to this next superposition; if x is
some superposition of M at time ¢, then M will be in
the superposition Ex at time ¢ 4+ 1. In general, after
I steps, M will be in the superposition E'z. E is the
time-evolution operator of M, and can be explicitly
defined as follows. For all a,b € C let a(a,b) denote
the amplitude with which configuration a transforms
into configuration b, i.e.

a(a,b) = [] d(a(n — 1),a(n), a(n + 1),b(n)),

neZ

and for each z € ¢5(C) and b € C define

Exz(b) = a(a,b)z(a).

acC

Thus, we say that M = (Q, 9, k, A) is a well formed
one-dimensional quantum cellular automaton (write
M € 1d-QCA) if and only if the corresponding time-
evolution operator E preserves £»-norm, i.e.

reS<= ExecS.

3 Partitioned Quantum Cellular Au-
tomata

In general, given an arbitrary M = (Q,d,k, A), it
is not a trivial matter to determine whether or not
M is well formed. For this reason we now define a
restricted class of 1d-QCA called partitioned quantum
cellular automata for which this can easily be deter-
mined. This is a generalization of (deterministic) par-
titioned cellular automata discussed by Morita and
Harao in [6].

A one-dimensional partitioned quantum cellular au-
tomaton is a 1d-QCA in which each cell is partitioned
into three subcells: a left subcell, a middle subcell and
a right subcell. (The set of states ) is decomposed ac-
cordingly.) The next state(s) of any cell may now only
depend upon the states of the left subcell of the right
neighbor, the middle subcell of the cell itself, and the
right subcell of the left neighbor.

More formally, let M = (Q,6,k, A) as in the 1d-
QCA case, where Q and d are restricted as follows.
Let

Q=Q1 X QmXxXQr



for finite sets @Q;, @, and @Q,, (and again let € denote
the distinguished quiescent element of ().) Let A be
an |@| x |Q| matrix over C having the form

Mg, a1)  Mai,a2) Mai,qg))
B Mgz, 1) AMaz,q2) a2, qg))
Mg, o) Mg a2) Mag9))
where )\ : Q x ) — C must satisfy
_ |1 ifg=e

For any state ¢ = (g, ¢m, gr) define

lg) =aq, m(q)=aqm, r(q) =g,

and define § as

6(Q1:‘]2:‘13;Q) = A( (Z(Q3),m(Q2),T(Q1)), Q)

for all q1,¢2,q93,9 € . Since a given matrix A com-
pletely determines ¢ in this manner, we may write
M = (Q,A,k, A) rather than M = (Q,0,k, A) for a
1d-PQCA M whenever convenient.

The behavior of a partitioned quantum cellular au-
tomaton M is, in general, simpler than that of an ar-
bitrary 1d-QCA. Suppose that M is in configuration
a. Then after one time step, for any given n € Z, the
state of the cell indexed by n will be transformed to
each state ¢ with amplitude

S(a(n — 1),a(n), a(n +1).q)
= M (U(a(n + 1)), m(a(m)), r(a(n — 1)), q). (4)

In order to simplify this, we will define a permutation
0:C— C as

oa(n) = (l(a(n + 1)), m(a(n)), r(a(n - 1)))

for all n € Z. The action of the permutation ¢ on any
configuration a can be illustrated as follows:

a(n —1) a(n) a(n+1)

oo bl Oyl Llelsd -
- YY) Y)Y
oa(n —1) oa(n) oca(n+1)

Now, (4) is equivalent to

d(a(n —1),a(n),a(n +1),q) = A(oa(n), q),

so that applying § to each neighborhood of some con-
figuration a is equivalent to first applying o to a and
then applying A to each individual cell of oa, i.e.
oa(n) is transformed into each state ¢ with amplitude
M oa(n),q) for every n € Z.

If, for such an M, we have M € 1d-QCA we will say
that M is a well formed one-dimensional partitioned
quantum cellular automaton (write M € 1d-PQCA.)
The following theorem allows us to characterize one-
dimensional partitioned cellular automata in terms of
the matrix A.

Theorem 3.1 Let M = (Q, A, k, A) with A as above.
Then M € 1d-PQCA if and only if A is unitary.

The remainder of this section will be devoted to prov-
ing this theorem.
For each a,b € C define

up(a) = a(a,b),

and

vp(a) = a(b,a).
Lemma 3.1 Let M = (Q, Ak, A), where A satisfies
(3). Then we have

#{aeC |up(a) #0} < 0 (5)
and

#{a el |v(a) #0} < o0 (6)
for any b € C.

Proof. Given b € C, assume that us(a) # 0. By
definition

up(a) = [[ Moa(n),b(n)).

neZ

Since b € C and A(g,€) = 0 for ¢ # €, a must be such
that oca(n) = b(n) = € for all but finitely many n.
There are finitely many such a € C.

(6) follows similarly. H

By Lemma 3.1, the sums
Zub(a)ub(a)
aeC

and

Z vp(a)vp(a)

acC

contain only finitely many nonzero terms and therefore
converge, so we have that u; and v, are elements of
£5(C) for each b € C.



Lemma 3.2 A unitary = {up}pec and {vy}pec are
orthonormal sequences in €»(C).

Proof. Given a,b € C we will show

1 ifa=0
(ut‘uub) = { 0 ifa ;é b. (7)
For each m € Z, q € @, define S?, : C — C as
¢(n) ifn>m
Si(c)(n) =% ¢ ifn=m

c(n+1) ifn<m

for all n € Z, and also define R, : C — C as
q _f eln) ifn#m
m o ={ o 7

foralln € Z.
Since o is one-to-one and onto, we have

(Ug,up) = Zua c)up(o1e)
ceC
= Y [] Men), a(m)Alc(n), b(n)).  (8)
ceCneZ

By Lemma 3.1 there are only finitely many values of
¢ for which the summand is nonzero, so we are free to
change the order of summation in (8) as follows

(wasus) = YY" PAa,a(m))A(g, b(m))
ceC qeqQ

where

P = T[ ASh(e)(n)

n#m

a(n))A(S}, (¢)(n), b(n))

and m is any integer. P is independent of ¢, so we
have

= > P> Xa.a(m)A(g,b(m)). (9

ceC qeEQ

umub

Suppose that a # b. Then there must exist m € Z
such that a(m) # b(m). A is unitary, so that

S Mg, alm))A(g, b(m)) = 0
q€eQ

and therefore by (9) we have (uq,us) = 0.
Now consider (ug, u,). From (9)

ZPZ|/\qa

ceC qEQ

Ua; Ua

for

P =[] IXSE(©n),a(m).

n#m

For any p € @ we have >_ o [A(p, q)|” =1, since A is
unitary. Thus

(wowa) = 3 [ NS4 (@ m), a(m) 2

ceC n#m

= 3 I NS @m),am)?

ceC n#m

= > ][] Men),R

ceCneZ
= <ufl17u[ll> (10)

for a1 = R¢,(a).
Now a € C, and therefore there exists a finite set
{mi,...,my} for which

n¢{mi,...

,mi} = a(n) =e.

If we repeat the process resulting in (10) for each
m=my,Ma,..., Mg, We get (Ug, Uy) = (Uq,, Uq, ) fOr

= Ry, (R;,,(---(R;,, (a))---)). Since ax(n) = € for
all n € Z we have

(Uay,, Uay)

ST e, o =1,

ceCneZ

<u[L7 ua) =

and so we have shown (7).
A slight modification of the above argument shows
that {vs }sec is also an orthonormal sequence. l

Proof of Theorem 3.1. Assume that we are given
M = (Q,A, k, A) with A unitary. We will show that
E, the time-evolution operator of M, is unitary.

By definition, we have

so that
Ex(b) = (z,up)

for every z € £5(C) and b € C. Also define F' as

so that
Fz(b) = (z,vp)

for every @ € £5(C) and b € C.



By Lemma 3.1, {up}pec is an orthonormal se-
quence. So, by Bessel’s inequality

> Ex(b)Ex(b)

beC

= D lzw)
beC

< el

[Pzl

for any x € ¢»(C). Thus E is a bounded linear opera-
tor, and hence we have that

(Ez,y) =)y w(a)uy(a)y(d) (11)

beC aeC

is a bounded bilinear form. This allows us (see [7], for
example) to change the order of summation in (11) to
get

(Bry) = 33 a(@)u(@y)

a€C beC

= > a(a)d ybva(b)
acC beC

= (x,Fy)

for any z,y € £5(C), so that E* = F.
Now, for any # € (5(C) and b € C we have, by
applying Lemma 3.1 and Lemma 3.2,

E*Ez(b) = Y Ex(a)vy(a)
a€eC

= Z Z 2(¢)uq (c)vy(a)

a€C ceC

= > > a(c)ve(a)vy(a)

ceC a€elC

= 3 w(e)(ve.w)

ceC
= xz(b)

so that E*E = I. Similarly

EE*z(b) = _ a(c)(ue, up) = z(b)

ceC

for any z € £5(C), b € C, so that EE* = I.

Thus, F is unitary and hence preserves fs-norm.
We therefore have that M € 1d-PQCA.

The converse is straightforward. ll

Corollary 3.1 For any M € 1d-PQCA, the associ-
ated time-evolution operator E is unitary.

4 Quantum Turing Machines

In this section we will review the quantum Turing
machine model as defined in [3]. A quantum Turing
machine M is a quintuple (K, %, u, k, A) where K is
a finite set of states, ¥ is a finite tape alphabet (in-
cluding a distinguished blank symbol, denoted by b),
u is a local transition function (described below), k is
an integer denoting the distinguished acceptance tape
square, and A C ¥ is a set of accepting symbols. M is
assumed to have a single read-write tape head and a
single two-way infinite tape with tape squares indexed
by Z.

A configuration of a QTM M is a triple (s,h,c),
where s € K denotes the current state of M, h € Z
denotes the index of the tape square over which the
tape head is currently located, and ¢ is a map from
Z to X which describes the contents of the tape. For
any configuration of M it is assumed that the num-
ber of tape squares containing non-blank symbols is
finite. Any configuration of M in which the tape cell
indexed by k contains an element of A is said to be
an accepting configuration and all other configurations
are non-accepting configurations.

The local transition function p is a map

p:KxExExKx{L,R} —C

which describes the evolution of M. Suppose that, at
some particular time, the current state of M is s and
the tape head of M is located above a tape square
which contains the symbol 7. Then for every triple
(r',s',d) € ¥x K x{L, R}, M will write the symbol 7'
in the currently scanned tape square, change internal
state to s’ and move the tape head in direction d with
amplitude u(s, 7,7, s, d).

As in the 1d-QCA case, the computation behaves
as if all of these transitions occur simultaneously, so
that after some number of steps M will have tra-
versed many different computation paths simultane-
ously, each with an associated amplitude. The am-
plitude associated with each path is defined to be the
product of the amplitudes of the transitions along that
path. After [ steps, say, M will be in a linear superpo-
sition of configurations, and the amplitude associated
with each configuration will be the sum of the ampli-
tudes along all paths of length [ to that configuration.

If observed while in a superposition of configura-
tions, M will randomly choose a single configuration
which will be seen; again the probability that a given
configuration will be observed is the absolute square of
the amplitude associated with that configuration. Al-
lowed local transition functions p must be restricted



to those that guarantee that the sum of these proba-
bilities will be one for any given superposition. Such a
QTM is said to be well-formed. (Write M € QTM
whenever M is a well-formed quantum Turing ma-
chine.) We state, without proof, the following the-
orem, due to Bernstein and Vazirani, which allows us
to characterize well-formed quantum Turing machines
in terms of their local transition functions:

Theorem 4.1 (Bernstein & Vazirani) Given any
M= (K,X,u,k,A) as above, M € QT M if and only
Zf (1) V(Sl,T1)7(82,T2) e K xX¥:

ZN(Slzﬁ=£7S7d)u(52=7_2=£757d)
§,s,d

:{ L if(s1,m1) = (852, 72)

0 if(s1,711) # (52, 72)

and (i) V (s1,71,&), (52, 72,&) € K x ¥ x X :

ZH(SlaTl:fl: S7L)H(SQ7T27£2787R) =0.

5 Equivalence of QTM and 1d-PQCA
Models

We now show that for any My,, € QTM, there is an
M., € 1d-PQCA which simulates M;,, with constant
slowdown, and similarly for any M., € 1d-PQCA
there is an My, € QTM which simulates M., with
linear slowdown.

5.1 1d-PQCA Simulation of a QTM

Let Miym = (K, 2, p, ktm, Atm) € QTM and let
Moo = (Q, A, kca, Aca) € 1d-PQCA. We will say that
M., simulates My, if and only if there exists a linear-
time computable function T' : C(My,,) — C(M.,) and
a function f : Z* x Z* — Z™" such that for any given
configuration a € C(Mzy,), the probability that Mi,,
accepts a after t steps is equal to the probability that
M., accepts T'(a) after f(t,|T(a)|) steps.

Without loss of generality, we can assume that the
QTM which is to be simulated has the property that
any given state is only entered while the tape head is
moving in one direction, due to the following lemma
of Bernstein and Vazirani.

Lemma 5.1 (Bernstein & Vazirani) Given any
M € QTM, there exists an M' € QTM which sim-
ulates M with constant slowdown, and which satisfies
the following property:

(P1) M' enters each state while moving in exactly
one direction, i.e. if p'(s1,71,&1,81,d1) and
' (s2, 72, &,85,dy) are both monzero, then

dy = da.

Thus, given M, = (K, X, u, ktm, Atm) satistying
(P1), K can be partitioned into two sets: K; and K,
such that M enters states in K; only when moving
left, and enters states in K, only when moving right.

We now define a 1d-PQCA M., = (Q, A, kca, Aca)
which will simulate Mj,,. Define Q = Q; X Qm X @~
with

Ql :KIU{#}: Qm :Z, Q’f‘ :KT‘U{#}'

The quiescent element of @ is defined to be (#,b, #),
where b is the blank symbol of M;,,. Define A as
follows:

(i) for each (s1,71),(s2,72) € K; X ¥ let
A((5177—17 #)7 (5277—27 #)) = u(8177—1:7—2: 327L)7
(ii) for each (s1,71) € K; X X, (s2,72) € K, X ¥ let

/\((81=7'1= #): (#:7'2782)) = M(81,7'177'2782,R)7
A((5‘%77—2: 32)7 (5177—17 #)) = H(S2772=71= 317L)7

A((5‘%77—1751)1 (#:7—2782)) = N(51=7'1=7'2752=R)7

(iii) for each (s1,71), (s2,72) € K, X T let

(iv) for any ¢1,¢2 € @ for which A(qy, g2) has not al-
ready been defined in (i) — (iii), let

B 1 ifg = ¢
a1, g2) = { 0 otherwise.

Let k.o = ki and define

Aca = {(qth:qr) € Q | qm € Atm}‘

A straightforward application of Theorem 3.1 and
Theorem 4.1 yields the following

Lemma 5.2 If My, € QTM then M., € 1d-PQCA.

For (s, h,c) € C(Mym,), define T'((s, h,¢)) € C(Meq)
as follows. For each n € Z let

#,¢(n),#) ifse Kjandn#h+1
s,c(n),#) ifseK,andn=h+1
#.¢(n),#) ifs€e K,andn#h—1
#.c¢(n),s) ifse K,andn=h-—1.



Lemma 5.3 For any n € Z*, the probability that
My, accepts (s, h,c) after n steps is equal to the prob-
ability that M., accepts T'((s,h,c)) after n steps.

Proof. [Sketch] For any configuration a of My, the
symbol contained in the tape square indexed by n is
equal to the contents of the middle subcell of the cell
indexed by n in T'(a). Recall that the evolution of a
1d-PQCA may be decomposed into two steps: apply-
ing the permutation ¢ to the current configuration,
then transforming each cell according to A. Now, for
each n, oT'((s, h,c))(n) will have have a non-# state
in its left or right subcell exactly when h = n, thereby
simulating the presence of the tape head at this loca-
tion. By inspection of the definition of A, it is clear
that M., will evolve in accordance with M;,,. B

Together, Lemma 5.1, Lemma 5.2 and Lemma 5.3
give us

Theorem 5.1 Given any My, € QTM there is an
M., € 1d-PQCA which simulates M;,, with constant
slowdown.

5.2 QTM Simulation of a 1d-PQCA

Again, let My, = (K, 2, 4, ktm, Atm) € QTM and
let Moy = (Q, A, keq, Ace) € 1d-PQCA. Then My,
simulates M., if and only if there exists a linear-time
computable function 7' : C(M.,) — C(My) and a
function f: Z" x Z* — Z* such that for any given
configuration a € C(M,,), the probability that M.,
accepts a after t steps is equal to the probability that
My,, accepts T'(a) after f(t,|T(a)|) steps.

Given M., = (Q, A, kea, Aca) € 1d-PQCA we will
now define My, = (K, X, u, ktm, Atm) € QTM which
will simulate M,,.

Each tape square of M;,, will represent the cell of
M., with the same index. Define

= (Q1 X Qm X Q) U (Q1 X Qm x Q)"

where (Q; X Q. x Q)" is a copy of (Q; X Qm x Q,),
so that (p1,pm,pr)* € (Q1 X Qm X @,)° whenever
(pt, P> Pr) € (Qr X Quy X Q) . (Myyy, will need to sim-
ulate only a finite portion of M.,, since we are only
concerned with finite configurations of M,,, so tape
squares containing a symbol in (Q; x Q@ x Q) will
be used to mark the leftmost and rightmost cells of
M., being simulated at that time.) Let € be the blank
symbol of My,,.
Define

K = Q x {s0,51,57,52,55,83} X Q.

Each state of My, will consist of one element from (),
and one element from @, (in order to “move” states
from one tape square to another when performing the
permutation o, as described in section 3) and one el-
ement from {sg, s1, ST, S2, 85,53}

The simulation of each step of M., takes place in
three stages. The first stage reversibly performs the
permutation o on the configuration of M., currently
represented by the contents of the tape. In order to do
this, let p take the following values: for each (I,r) €

QlXQT7 (pl:pmapr)a (Qth:Qr) € QlXQmXQr: define

/”((lv SOaT)v (plyprmpr)*a (plapma’r)*a (lv Slva)a R) =1
H((l,ShT), (pl7pm7pT): (pl:pmar)7 (l7317pT)7R) =1
H((l,ShT), (phpm:pT)*: (pl:pmar)y (l,s{,pr),R) =1
/”((lv S){,T‘), (plyprmpr)*v (plapmvr)*a (la SIapT)vR) =1

H((LSLT)u (pl7pm:p7“)7 (l,pm,T‘)*, (p11527pT):L) =1
/”((l752ar)7 (plyprmpr)a (lapmva)v (phSZa’r)vL) =1
H((l7321r)7 (phpm:pT)*: (lupmypr)y (p[,SQ,T),L) =1
H((l7 3577‘)1 (pl,pm;pw“)*, (lypﬂhpr)*u (plu S;1T)7L) =1

(Note that not all of these transitions will be used
given proper input, but are added to guarantee well-
formedness.) In the second stage of the simulation,
the state contained in each tape square of My, is
transformed in accordance with A, so for each (I,r) €

leQT: (pl7pm7pr)7 (Qh(]m:qr) € leQmXQT: define

u((L; 83, 7), (p1s P 1) (@1, Gy Gr) ™5 (D1, 83, 7), R)

= )‘((l:pm7pT)7(ql7qm1qT))
N((l15377")1(plapm:pr)v(QIquaQT)v(lvsi'n’r)vR)

= )\((plypm;pT)y(QI,me%“))
M((l1537r)1(plupm7p7“)*7(ql7qm1qT)*7(l730:T)7L)

= A(pt, P pr), (@15 gm > qr))

The third stage of the simulation simply returns the
tape head to the tape square representing the (new)
leftmost cell of M., being simulated. For each (I,r) €

leQT: (pl7pm7pr)7 (Qh(]m:qr) € leQmXQT: define
/'L((la 501T)7 (plapWHpT)a (pl;pm,pr), (la 501T)7L) = 1

Finally, let p take the value 0 everywhere not defined
above.
Let ki, = keq and define

A ={q] q € A} U{d* | g € Aca}-

The following lemma follows from Theorem 3.1 and
Theorem 4.1.

Lemma 5.4 If M., € 1d-PQCA then My, € QTM.

Given a € C(M.,) let n; and n, denote the indices
of the leftmost and rightmost non-quiescent cells of a
respectively. (If n; = n, then set n, = n; + 1. If all



cells of a are quiescent, then choose n; arbitrarily and
set n, = n;+ 1.) Define (s, h,c) = T'(a) as follows: let
s = (€,80,€), let h =mn,, and let ¢ : Z — X be defined
as

_ [ a(n) ifn#n andn #n,
c(n) = { a(n)* ifn =n;orn=n,.

Define
£t lel) = 482 + 4lclt — 1.

This is the number of steps required for M, to sim-
ulate t steps of M., on input c..

Lemma 5.5 For any t € Z* and ¢ € C(M.,), the
probability that M., accepts c after t steps is equal to
the probability that My, accepts T'(c) after f(¢,|T(c)|)
steps.

Proof. [Sketch] Assume that we begin the simulation
of each time step of M., with the tape head located
over the leftmost cell of the finite section of M., being
simulated, and with the current internal state of My,
equal to (e, so, €).

First, the permutation o is performed reversibly in
two passes of the tape contents, first moving to the
far right then returning to the left. The finite section
of M., being simulated will grow by one cell on each
end during this stage, since the right and left starred
symbols are shifted one cell to the right and left re-
spectively. Next, in a single pass to the right, the state
of each tape square is “quantumly” transformed in ac-
cordance with A\. When this has been completed, the
tape head is returned to the tape square representing
the (new) leftmost cell of M., being simulated. Since
the tape squares outside of the region between the
starred symbols are assumed to contain blanks (rep-
resenting quiescent cells), the current internal state of
M., will again be (e, sq, €).

Thus, after four passes of the current tape contents,
M, will be in a linear superposition of configurations
which corresponds to the superposition of M., after
one time step, i.e. each configuration of My, will have
the same amplitude as the configuration in the super-
position of M., which it represents. The long-term
evolution of Mj;,, will thus behave exactly as that of
M., 1

By Lemma 5.4 and Lemma 5.5 we have
Theorem 5.2 Given any M., € 1d-PQCA, there ex-

ists My, € QTM which simulates M., with linear
slowdown.

6 Some Resulting Facts

From the preceeding discussion, we are immediately
led to two straightforward results.

The first result is an observation concerning the
construction in section 5.2. The QTM which results
from this construction has the interesting property
that the motion of its tape head is deterministic, for-
malized as follows. Let M € QTM and let a be an
arbitrary configuration of M. If M is assumed to be
in configuration a and is run (unobserved) for [ steps
and then observed, then for any integer h there is some
probability that the tape head of M will be located
over the tape square indexed by h. We say that M
has deterministic head position if, for all a € C(M),
I € Z* and h € Z, we have that this probability is
either zero or one.

By Theorem 5.1 and Theorem 5.2 we have

Corollary 6.1 For any QTM M, there exists a QTM
M' such that M' simulates M with linear slowdown,
and such that M' has deterministic head position.

In addition to being deterministic, the head position
of the QTM resulting from the previously mentioned
construction is also oblivious; for any input of a given
length, the position of the tape head at a given time
will depend only upon this length.

The second result regards the notion of acceptance
and rejection by a 1d-PQCA. Consider

M = (Q,A,k,A) € 1d-PQCA.

Recall that for any a € C and 1 € Z*, M accepts a af-
ter [ steps with probability equal to that of observing
an element of A in the cell indexed by k after [ steps.
Of course, this probability may differ greatly with any
change in [, so that if we are interested in whether or
not M recognizes some language £ C C(M), we must
pair some [ € Z' with each input a € C and observe
M after ezactly | steps have passed. This may seem
unsatisfactory since it implies that the observer must
carefully clock the machine and observe it at precisely
the right moment, or else the computation may be
invalid. However, we see that this is a reasonable def-
inition of acceptance/rejection, due to the following

Theorem 6.1 For any M € 1d-PQCA there exists an
M' € 1d-PQCA so that for anya € C(M) and | € Z*
there exists an a' € C(M') (computable in O(l + |a|)
steps) such that the probability that M accepts a after
l steps is equal to the probability that M' accepts o'
after I' steps for any ' > 1.



Proof. Suppose that a 1d-PQCA M = (Q, Ak, A),
with quiescent state e, is given.
First, define M; = (Q, A+, k, A¢) as follows. Let

Qr = {0,1} x {0, 1} x {0}

(with e, = (0,0, 0) as the quiescent state), let A; be the
identity matrix and let A; = {(1,1,0)}. The action of
M; on any configuration is identical to the permuta-
tion o.

For any given | € Z", if we define a;, € C(M,) as

(0,1,0) ifn==k
a;(n) =< (1,0,0) ifn=~k+1
(0,0,0) otherwise,

then on input a;, the cell of M; indexed by k will be
in the state (1,1,0) after exactly I steps have passed,
and at no other time will any cell contain this state.

Now define My = (Q1,A1,k, A1) as follows. Let
Q1 = Q x @Q; (with quiescent state e; = (e,¢), let
Ay = A x A; and let Ay be as defined by

M((p;pe)s (4,at)) = Mp, @) Ae(pr, qt)

for (p,pt), (q,q:) € @ x Q;. Clearly M, € 1d-PQCA.
M; can be viewed as M and M; “stacked” on top of
one another, evolving independently.

For any given a € C(M) and I € Z*, if we define
ay € C(M,) as

ar(n) = (a(n), ar(n)),

where a; is as defined above, then the probability that
M accepts a; after [ steps is the same as the proba-
bility that M accepts a after [ steps. Furthermore, the
cell of M, indexed by k will not contain an accepting
state at any other time, and at no time will any other
cell contain an accepting state.

Finally, define ), = {0} x {0,1} x {0}, and define
M' = (Q', Ak, A") as follows. Let Q' = Q1 X Qg, let
A" =@, x {(0,1,0)} and define A’ as

XN ((p1,pa)s (a1, 4a))
M(pr,q1) ifqr € Ay and p, = qq
= orqi € Ay and p, # qa
0 otherwise

for every (p1,pa), (¢1,q.) € @1 X Q4. Since A; is
unitary, we must have that A’ is unitary, so that
M' € 1d-PQCA (with quiescent state (e1,(0,0,0)).)

Now, for given a € C(M) and | € Z", define
a' € C(M') as

al(n) = (al (n) (07 0, 0))7

where a; is as defined above.

Consider the evolution of M’ on input a’. By the
definition of A’, we see that any state (pi,p,) will
be transformed (with nonzero amplitude) into state
(q1,4.) with ¢, # p. (toggling acceptance/rejection)
exactly when g1 € A;. But if any cell of M' ever
contains a state in A; X @),, then we know that this
must be the cell indexed by k£ and exactly [ steps must
have passed (by the property of M; on input a; men-
tioned above.) Thus, such a transformation will occur
at most one time on any given computation path, and
only on those paths which correspond to paths of M,
which accept a; after [ steps.
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