
On One-Dimensional Quantum Cellular AutomataJohn Watrous�Computer Sciences DepartmentUniversity of WisconsinMadison, Wisconsin 53706AbstractSince Richard Feynman introduced the notion ofquantum computation in 1982, various models of\quantum computers" have been proposed. Thesemodels include quantum Turing machines and quan-tum circuits. In this paper we de�ne another quan-tum computational model, one-dimensional quantumcellular automata, and demonstrate that any quantumTuring machine can be e�ciently simulated by a one-dimensional quantum cellular automaton with con-stant slowdown. This can be accomplished by consider-ation of a restricted class of one-dimensional quantumcellular automata called one-dimensional partitionedquantum cellular automata. We also show that anyone-dimensional partitioned quantum cellular automa-ton can be simulated by a quantum Turing machinewith linear slowdown, but the problem of e�cientlysimulating an arbitrary one-dimensional quantum cel-lular automaton with a quantum Turing machine isleft open. From this discussion, some interesting factsconcerning these models are easily deduced.1 IntroductionThe idea that certain principles of quantum me-chanics might be powerful computational tools has ledto the study of various theoretical models of quan-tum computers. The archetypal quantum computer,as introduced by Richard Feynman in [1], is a com-puter which can simulate quantum physical processes,and which operates in accordance with quantum phys-ical laws. Feynman noted that the problem of sim-ulating quantum physics with a computer based onclassical physics appears to be intractable, therebysuggesting that quantum computers may be inher-ently more powerful than classical computers. DavidDeutsch later formalized the notion of quantum com-putation by de�ning what has become known as the�Supported in part by NSF Grant CCR-9208639.

quantum Turing machine (QTM) in [2], and in [3]Ethan Bernstein and Umesh Vazirani, expanding onDeutsch's work, showed that there exists a universalQTM which can simulate any QTM to any requiredaccuracy with at most polynomial slowdown. Anotherquantum computational model, the quantum circuit,was introduced by Andrew Yao in [4] and shown to beequivalent to the quantum Turing machine.It is not known whether or not these models aremore powerful than their classical analogues. How-ever, there is evidence to suggest that this is the case;most notably Peter Shor has shown in [5] that the in-teger factoring and discrete log problems can be solvedin polynomial time using a QTM. (These problems arebelieved not to be solvable in polynomial time using aprobabilistic Turing machine.)It is natural to extend the idea of quantum compu-tation to other computational models; in this paper wediscuss one-dimensional quantum cellular automata.Given any well-formed QTM, we give a constructionof a one-dimensional quantum cellular automaton (1d-QCA) which will e�ciently simulate this QTM. Thisis accomplished by de�ning a restricted class of 1d-QCA called one-dimensional partitioned quantum cel-lular automata (1d-PQCA). A 1d-PQCA is a 1d-QCAin which each cell is partitioned into three subcells(left, middle, and right), and where the next statesof any given cell depend only on the contents of theright subcell of its left neighbor, the middle subcell ofitself, and the left subcell of its right neighbor. This isthe quantum analogue of the partitioned cellular au-tomaton discussed by Kenichi Morita and MasateruHarao in [6]. The advantage of the 1d-PQCA class isthat it is a simple matter to determine whether or nota given 1d-PQCA is well-formed, while this is not atrivial matter for an arbitrary 1d-QCA.It is not clear that an arbitrary 1d-QCA can be e�-ciently simulated by a QTM. However, it is shown thatany given 1d-PQCA can be simulated by a QTM withlinear slowdown. It is interesting to note that givenany 1d-PQCA, the QTM which results from this con-



struction will simulate the given 1d-PQCA with deter-ministic head position, i.e. if this QTM is observed atany time during its computation, the probability thatthe tape head will be observed in any given locationwill be either 0 or 1. This allows for the constructionof a QTM which will simulate, with deterministic headposition, any given QTM with linear slowdown. Thus,for example, the position of the tape head of any suchQTM could be observed at every time step withouta�ecting its computation. (This is generally not thecase for an arbitrary QTM.)The remainder of this paper will be organized asfollows. In section 2, the one-dimensional quantumcellular automata model is de�ned. In section 3, theclass of one-dimensional partitioned quantum cellu-lar automata is de�ned, and necessary and su�cientconditions for the well-formedness of a 1d-PQCA arediscussed. In section 4, the quantum Turing machinemodel is reviewed and in section 5, the equivalenceof the quantum Turing machine model and the par-titioned quantum cellular automata model is demon-strated. Finally, in section 6, some facts resulting fromthis discussion are mentioned.2 One-Dimensional Quantum CellularAutomataA one-dimensional quantum cellular automaton Mis a quadruple (Q; �; k; A) where Q is a �nite set ofstates (including a distinguished quiescent state de-noted by �), � is a local transition function (describedbelow), k is an integer denoting the acceptance cell,and A � Q is a set of accepting states. M is assumedto have a two-way in�nite sequence of cells indexed bythe integers (hereafter denoted by ZZ.) The neighbor-hood of each cell is de�ned to be that cell itself alongwith its closest neighbor on each side.A con�guration of a 1d-QCA M is a mapa : ZZ! Qwhere, for each integer n, a(n) denotes the state ofthe cell indexed by n. For any con�guration a, it isassumed that there are only �nitely many values ofn for which a(n) is a non-quiescent state. Denote byC = C(M) the set of all con�gurations of M , so that Cis countable for any given 1d-QCA M . For any a 2 C,de�ne jaj (the length of a) to be the maximum numberof consecutive cells such that the �rst and last cells arenon-quiescent. Any con�guration of M in which thecell indexed by k contains an element of A is said to be

an accepting con�guration and all other con�gurationsare non-accepting con�gurations.The local transition function � is a map� : Q4 �! Cwith �(�; �; �; q) = � 1 if q = �0 if q 6= � (1)which describes the evolution of M . (Here C denotesthe �eld of complex numbers.) Suppose that at somegiven time t, three consecutive cells of M are in statesq1; q2 and q3 respectively. Then for every state q 2 Q,the cell which contained q2 at time t will, at time t+1,update to the state q with amplitude �(q1; q2; q3; q).Every cell updates simultaneously in this manner, sothat globally, if M is in some con�guration a 2 C attime t, then the amplitude with which M transformsto any con�guration b 2 C at time t + 1 is de�ned tobe the product of the amplitudes with which each cellof a transforms to the corresponding cell of b, i.e.Yn2ZZ �(a(n� 1); a(n); a(n+ 1); b(n)):(This product is guaranteed to exist by (1).)Thus, any con�guration of M will transform intomultiple \next con�gurations", where the transforma-tion to each individual con�guration has an associ-ated amplitude. The evolution behaves as if all ofthese transformations occur simultaneously, so thatafter some number of steps,M will have evolved alongmany computation paths simultaneously. Each pathhas an associated amplitude which is de�ned to bethe product of the amplitudes of the transformationsalong that path.Multiple paths with di�ering amplitudes may leadfrom one given con�guration to another. This e�ectis known as interference. If M is assumed to be insome con�guration a and is allowed to evolve for, sayl steps, then M will be in a linear superposition ofcon�gurations. For each con�guration b in such a su-perposition, we associate with it an amplitude whichis the sum of the amplitudes of all paths of length lfrom a to b. It may therefore be the case, for example,that a con�guration will have amplitude zero in somesuperposition, despite the fact that multiple paths ofnonzero amplitude lead to it.If a 1d-QCA M is observed while in some superpo-sition of con�gurations, the observer will not see thissuperposition. Rather, the act of observation forcesthe machine to choose one of the con�gurations in thegiven superposition randomly, so that exactly one con-�guration will be observed. The probability that any



given con�guration is observed is the absolute squareof the amplitude associated with that con�guration,i.e. the absolute square of the sum of the amplitudesof all paths which lead to that con�guration. The actof observation has the e�ect of altering the machine, sothat immediately after the observation occurs the ma-chine will be in a single con�guration, and no longer asuperposition of con�gurations. (More general typesof observations are possible, but will be ignored forthe purposes of this paper.)For any 1d-QCA M and input con�guration a, weare interested in whether or not an accepting con�g-uration will be observed after some number of steps.The probability that M accepts a after l steps is simplythe probability of observing any accepting con�gura-tion after l steps, assuming that M is initially placedin con�guration a and is not observed before l stepshave passed.Since each con�guration in a given superpositionis observed with a certain probability, it is necessarythat the sum of the probabilities be exactly one. Thus,allowed local transition functions � must be restrictedto those that guarantee this condition for any super-position resulting from any given input. A machinewith such a local transition function is said to be well-formed. This will be formalized presently.Given any 1d-QCAM , let `2(C) denote the space ofall complex valued functions with domain C = C(M)and bounded `2-norm, i.e.`2(C) = 8<:x : C ! C ������ Xa2C x(a)x(a)!1=2<19=; :Then `2(C) is a Hilbert space with respect to the innerproduct h�; �i : `2(C)� `2(C)! C de�ned byhx1; x2i =Xa2C x1(a)x2(a):Any superposition of M can now be identi�ed withan element x 2 `2(C), where x(a) 2 C denotes theamplitude associated with con�guration a in this su-perposition. Thus, the probability of observing a fromthis superposition is jx(a)j2 for any a 2 C. We musttherefore have Xa2C jx(a)j2 = 1 (2)for any superposition x. The sum in (2) is exactlykxk2 by de�nition, so we de�neS = fx 2 `2(C) j kxk = 1gto be the set of all possible superpositions of M .

Each superposition of a given 1d-QCA M will, inone time-step, evolve into a new superposition accord-ing to the local transition function of M . We can as-sociate with any M a function E which will map anygiven superposition to this next superposition; if x issome superposition of M at time t, then M will be inthe superposition Ex at time t + 1. In general, afterl steps, M will be in the superposition Elx. E is thetime-evolution operator of M , and can be explicitlyde�ned as follows. For all a; b 2 C let �(a; b) denotethe amplitude with which con�guration a transformsinto con�guration b, i.e.�(a; b) = Yn2ZZ �(a(n� 1); a(n); a(n+ 1); b(n));and for each x 2 `2(C) and b 2 C de�neEx(b) =Xa2C �(a; b)x(a):Thus, we say that M = (Q; �; k; A) is a well formedone-dimensional quantum cellular automaton (writeM 2 1d-QCA) if and only if the corresponding time-evolution operator E preserves `2-norm, i.e.x 2 S () Ex 2 S:3 Partitioned Quantum Cellular Au-tomataIn general, given an arbitrary M = (Q; �; k; A), itis not a trivial matter to determine whether or notM is well formed. For this reason we now de�ne arestricted class of 1d-QCA called partitioned quantumcellular automata for which this can easily be deter-mined. This is a generalization of (deterministic) par-titioned cellular automata discussed by Morita andHarao in [6].A one-dimensional partitioned quantum cellular au-tomaton is a 1d-QCA in which each cell is partitionedinto three subcells: a left subcell, a middle subcell anda right subcell. (The set of states Q is decomposed ac-cordingly.) The next state(s) of any cell may now onlydepend upon the states of the left subcell of the rightneighbor, the middle subcell of the cell itself, and theright subcell of the left neighbor.More formally, let M = (Q; �; k; A) as in the 1d-QCA case, where Q and � are restricted as follows.Let Q = Ql �Qm �Qr



for �nite sets Ql, Qm and Qr, (and again let � denotethe distinguished quiescent element of Q.) Let � bean jQj � jQj matrix over C having the form� = 0BBB@ �(q1; q1) �(q1; q2) : : : �(q1; qjQj)�(q2; q1) �(q2; q2) : : : �(q2; qjQj)... ... . . . ...�(qjQj; q1) �(qjQj; q2) : : : �(qjQj; qjQj) 1CCCAwhere � : Q�Q �! C must satisfy�(�; q) = �(q; �) = � 1 if q = �0 if q 6= �: (3)For any state q = (ql; qm; qr) de�nel(q) = ql; m(q) = qm; r(q) = qr;and de�ne � as�(q1; q2; q3; q) = �( (l(q3);m(q2); r(q1)); q)for all q1; q2; q3; q 2 Q. Since a given matrix � com-pletely determines � in this manner, we may writeM = (Q;�; k; A) rather than M = (Q; �; k; A) for a1d-PQCA M whenever convenient.The behavior of a partitioned quantum cellular au-tomaton M is, in general, simpler than that of an ar-bitrary 1d-QCA. Suppose that M is in con�gurationa. Then after one time step, for any given n 2 ZZ, thestate of the cell indexed by n will be transformed toeach state q with amplitude�(a(n� 1); a(n); a(n+ 1); q)= �( (l(a(n+ 1));m(a(n)); r(a(n � 1))); q): (4)In order to simplify this, we will de�ne a permutation� : C �! C as�a(n) = (l(a(n+ 1));m(a(n)); r(a(n � 1)))for all n 2 ZZ. The action of the permutation � on anycon�guration a can be illustrated as follows:a(n� 1) a(n) a(n+ 1)
�a(n� 1) �a(n) �a(n+ 1)Now, (4) is equivalent to�(a(n� 1); a(n); a(n+ 1); q) = �(�a(n); q);

so that applying � to each neighborhood of some con-�guration a is equivalent to �rst applying � to a andthen applying � to each individual cell of �a, i.e.�a(n) is transformed into each state q with amplitude�(�a(n); q) for every n 2 ZZ:If, for such anM , we haveM 2 1d-QCA we will saythat M is a well formed one-dimensional partitionedquantum cellular automaton (write M 2 1d-PQCA:)The following theorem allows us to characterize one-dimensional partitioned cellular automata in terms ofthe matrix �.Theorem 3.1 Let M = (Q;�; k; A) with � as above.Then M 2 1d-PQCA if and only if � is unitary.The remainder of this section will be devoted to prov-ing this theorem.For each a; b 2 C de�neub(a) = �(a; b);and vb(a) = �(b; a):Lemma 3.1 Let M = (Q;�; k; A), where � satis�es(3). Then we have# fa 2 C j ub(a) 6= 0g <1 (5)and # fa 2 C j vb(a) 6= 0g <1 (6)for any b 2 C.Proof. Given b 2 C, assume that ub(a) 6= 0. Byde�nition ub(a) = Yn2ZZ�(�a(n); b(n)):Since b 2 C and �(q; �) = 0 for q 6= �, a must be suchthat �a(n) = b(n) = � for all but �nitely many n.There are �nitely many such a 2 C:(6) follows similarly.By Lemma 3.1, the sumsXa2C ub(a)ub(a)and Xa2C vb(a)vb(a)contain only �nitely many nonzero terms and thereforeconverge, so we have that ub and vb are elements of`2(C) for each b 2 C:



Lemma 3.2 � unitary =) fubgb2C and fvbgb2C areorthonormal sequences in `2(C).Proof. Given a; b 2 C we will showhua; ubi = � 1 if a = b0 if a 6= b: (7)For each m 2 ZZ, q 2 Q, de�ne Sqm : C �! C asSqm(c)(n) = 8<: c(n) if n > mq if n = mc(n+ 1) if n < mfor all n 2 ZZ, and also de�ne Rqm : C �! C asRqm(c)(n) = � c(n) if n 6= mq if n = mfor all n 2 ZZ:Since � is one-to-one and onto, we havehua; ubi = Xc2C ua(��1c)ub(��1c)= Xc2C Yn2ZZ�(c(n); a(n))�(c(n); b(n)): (8)By Lemma 3.1 there are only �nitely many values ofc for which the summand is nonzero, so we are free tochange the order of summation in (8) as followshua; ubi = Xc2CXq2QP �(q; a(m))�(q; b(m))whereP = Yn6=m�(Sqm(c)(n); a(n))�(Sqm(c)(n); b(n))and m is any integer. P is independent of q, so wehavehua; ubi = Xc2C P Xq2Q �(q; a(m))�(q; b(m)): (9)Suppose that a 6= b: Then there must exist m 2 ZZsuch that a(m) 6= b(m): � is unitary, so thatXq2Q �(q; a(m))�(q; b(m)) = 0and therefore by (9) we have hua; ubi = 0:Now consider hua; uai. From (9)hua; uai =Xc2C P Xq2Q j�(q; a(m))j2

for P = Yn6=m j�(Sqm(c)(n); a(n))j2 :For any p 2 Q we havePq2Q j�(p; q)j2 = 1, since � isunitary. Thushua; uai = Xc2C Yn6=m j�(Sqm(c)(n); a(n))j2= Xc2C Yn6=m j�(S�m(c)(n); a(n))j2= Xc2C Yn2ZZ j�(c(n); R�m(a)(n))j2= hua1 ; ua1i (10)for a1 = R�m(a).Now a 2 C, and therefore there exists a �nite setfm1; : : : ;mkg for whichn 62 fm1; : : : ;mkg =) a(n) = �:If we repeat the process resulting in (10) for eachm = m1;m2; : : : ;mk, we get hua; uai = huak ; uaki forak = R�m1(R�m2(� � � (R�mk (a)) � � �)). Since ak(n) = � forall n 2 ZZ we havehua; uai = huak ; uaki= Xc2C Yn2ZZ j�(c(n); �)j2 = 1;and so we have shown (7).A slight modi�cation of the above argument showsthat fvbgb2C is also an orthonormal sequence.Proof of Theorem 3.1. Assume that we are givenM = (Q;�; k; A) with � unitary. We will show thatE, the time-evolution operator of M , is unitary.By de�nition, we haveEx(b) =Xa2C x(a)ub(a):so that Ex(b) = hx; ubifor every x 2 `2(C) and b 2 C. Also de�ne F asFx(b) =Xa2C x(a)vb(a);so that Fx(b) = hx; vbifor every x 2 `2(C) and b 2 C.



By Lemma 3.1, fubgb2C is an orthonormal se-quence. So, by Bessel's inequalitykExk2 = Xb2C Ex(b)Ex(b)= Xb2C jhx; ubij2� kxk2;for any x 2 `2(C). Thus E is a bounded linear opera-tor, and hence we have thathEx; yi =Xb2CXa2C x(a)ub(a)y(b) (11)is a bounded bilinear form. This allows us (see [7], forexample) to change the order of summation in (11) toget hEx; yi = Xa2CXb2C x(a)ub(a)y(b)= Xa2C x(a)Xb2C y(b)va(b)= hx; Fyifor any x; y 2 `2(C), so that E� = F .Now, for any x 2 `2(C) and b 2 C we have, byapplying Lemma 3.1 and Lemma 3.2,E�Ex(b) = Xa2CEx(a)vb(a)= Xa2CXc2C x(c)ua(c)vb(a)= Xc2CXa2C x(c)vc(a)vb(a)= Xc2C x(c)hvc; vbi= x(b)so that E�E = I . SimilarlyEE�x(b) =Xc2C x(c)huc; ubi = x(b)for any x 2 `2(C); b 2 C, so that EE� = I .Thus, E is unitary and hence preserves `2-norm.We therefore have that M 2 1d-PQCA.The converse is straightforward.Corollary 3.1 For any M 2 1d-PQCA, the associ-ated time-evolution operator E is unitary.

4 Quantum Turing MachinesIn this section we will review the quantum Turingmachine model as de�ned in [3]. A quantum Turingmachine M is a quintuple (K;�; �; k; A) where K isa �nite set of states, � is a �nite tape alphabet (in-cluding a distinguished blank symbol, denoted by b),� is a local transition function (described below), k isan integer denoting the distinguished acceptance tapesquare, and A � � is a set of accepting symbols. M isassumed to have a single read-write tape head and asingle two-way in�nite tape with tape squares indexedby ZZ.A con�guration of a QTM M is a triple (s; h; c),where s 2 K denotes the current state of M , h 2 ZZdenotes the index of the tape square over which thetape head is currently located, and c is a map fromZZ to � which describes the contents of the tape. Forany con�guration of M it is assumed that the num-ber of tape squares containing non-blank symbols is�nite. Any con�guration of M in which the tape cellindexed by k contains an element of A is said to bean accepting con�guration and all other con�gurationsare non-accepting con�gurations.The local transition function � is a map� : K �����K � fL;Rg �! Cwhich describes the evolution of M . Suppose that, atsome particular time, the current state of M is s andthe tape head of M is located above a tape squarewhich contains the symbol � . Then for every triple(� 0; s0; d) 2 ��K�fL;Rg,M will write the symbol � 0in the currently scanned tape square, change internalstate to s0 and move the tape head in direction d withamplitude �(s; �; � 0; s0; d).As in the 1d-QCA case, the computation behavesas if all of these transitions occur simultaneously, sothat after some number of steps M will have tra-versed many di�erent computation paths simultane-ously, each with an associated amplitude. The am-plitude associated with each path is de�ned to be theproduct of the amplitudes of the transitions along thatpath. After l steps, say,M will be in a linear superpo-sition of con�gurations, and the amplitude associatedwith each con�guration will be the sum of the ampli-tudes along all paths of length l to that con�guration.If observed while in a superposition of con�gura-tions, M will randomly choose a single con�gurationwhich will be seen; again the probability that a givencon�guration will be observed is the absolute square ofthe amplitude associated with that con�guration. Al-lowed local transition functions � must be restricted



to those that guarantee that the sum of these proba-bilities will be one for any given superposition. Such aQTM is said to be well-formed. (Write M 2 QTMwhenever M is a well-formed quantum Turing ma-chine.) We state, without proof, the following the-orem, due to Bernstein and Vazirani, which allows usto characterize well-formed quantum Turing machinesin terms of their local transition functions:Theorem 4.1 (Bernstein & Vazirani) Given anyM = (K;�; �; k; A) as above, M 2 QTM if and onlyif (i) 8 (s1; �1); (s2; �2) 2 K �� :X�;s;d�(s1; �1; �; s; d)�(s2; �2; �; s; d)= � 1 if (s1; �1) = (s2; �2)0 if (s1; �1) 6= (s2; �2)and (ii) 8 (s1; �1; �1); (s2; �2; �2) 2 K ���� :Xs �(s1; �1; �1; s; L)�(s2; �2; �2; s; R) = 0:5 Equivalence of QTM and 1d-PQCAModelsWe now show that for anyMtm 2 QTM, there is anMca 2 1d-PQCA which simulates Mtm with constantslowdown, and similarly for any Mca 2 1d-PQCAthere is an Mtm 2 QTM which simulates Mca withlinear slowdown.5.1 1d-PQCA Simulation of a QTMLet Mtm = (K;�; �; ktm; Atm) 2 QTM and letMca = (Q;�; kca; Aca) 2 1d-PQCA. We will say thatMca simulates Mtm if and only if there exists a linear-time computable function T : C(Mtm) ! C(Mca) anda function f : ZZ+�ZZ+ ! ZZ+ such that for any givencon�guration a 2 C(Mtm), the probability that Mtmaccepts a after t steps is equal to the probability thatMca accepts T (a) after f(t; jT (a)j) steps.Without loss of generality, we can assume that theQTM which is to be simulated has the property thatany given state is only entered while the tape head ismoving in one direction, due to the following lemmaof Bernstein and Vazirani.Lemma 5.1 (Bernstein & Vazirani) Given anyM 2 QTM, there exists an M 0 2 QTM which sim-ulates M with constant slowdown, and which satis�esthe following property:

(P1) M 0 enters each state while moving in exactlyone direction, i.e. if �0(s1; �1; �1; s01; d1) and�0(s2; �2; �2; s02; d2) are both nonzero, thend1 = d2:Thus, given Mtm = (K;�; �; ktm; Atm) satisfying(P1), K can be partitioned into two sets: Kl and Kr,such that M enters states in Kl only when movingleft, and enters states in Kr only when moving right.We now de�ne a 1d-PQCA Mca = (Q;�; kca; Aca)which will simulate Mtm. De�ne Q = Ql � Qm � QrwithQl = Kl [ f#g; Qm = �; Qr = Kr [ f#g:The quiescent element of Q is de�ned to be (#; b;#),where b is the blank symbol of Mtm. De�ne � asfollows:(i) for each (s1; �1); (s2; �2) 2 Kl �� let�((s1; �1;#); (s2; �2;#)) = �(s1; �1; �2; s2; L);(ii) for each (s1; �1) 2 Kl ��, (s2; �2) 2 Kr �� let�((s1; �1;#); (#; �2; s2)) = �(s1; �1; �2; s2; R);�((#; �2; s2); (s1; �1;#)) = �(s2; �2; �1; s1; L);(iii) for each (s1; �1); (s2; �2) 2 Kr �� let�((#; �1; s1); (#; �2; s2)) = �(s1; �1; �2; s2; R);(iv) for any q1; q2 2 Q for which �(q1; q2) has not al-ready been de�ned in (i) � (iii), let�(q1; q2) = � 1 if q1 = q20 otherwise.Let kca = ktm and de�neAca = f(ql; qm; qr) 2 Q j qm 2 Atmg:A straightforward application of Theorem 3.1 andTheorem 4.1 yields the followingLemma 5.2 If Mtm 2 QTM then Mca 2 1d-PQCA.For (s; h; c) 2 C(Mtm); de�ne T ((s; h; c)) 2 C(Mca)as follows. For each n 2 ZZ letT ((s; h; c))(n)= 8>><>>: (#; c(n);#) if s 2 Kl and n 6= h+ 1(s; c(n);#) if s 2 Kl and n = h+ 1(#; c(n);#) if s 2 Kr and n 6= h� 1(#; c(n); s) if s 2 Kr and n = h� 1:



Lemma 5.3 For any n 2 ZZ+, the probability thatMtm accepts (s; h; c) after n steps is equal to the prob-ability that Mca accepts T ((s; h; c)) after n steps.Proof. [Sketch] For any con�guration a of Mtm, thesymbol contained in the tape square indexed by n isequal to the contents of the middle subcell of the cellindexed by n in T (a). Recall that the evolution of a1d-PQCA may be decomposed into two steps: apply-ing the permutation � to the current con�guration,then transforming each cell according to �. Now, foreach n, �T ((s; h; c))(n) will have have a non-# statein its left or right subcell exactly when h = n, therebysimulating the presence of the tape head at this loca-tion. By inspection of the de�nition of �, it is clearthat Mca will evolve in accordance with Mtm.Together, Lemma 5.1, Lemma 5.2 and Lemma 5.3give usTheorem 5.1 Given any Mtm 2 QTM there is anMca 2 1d-PQCA which simulates Mtm with constantslowdown.5.2 QTM Simulation of a 1d-PQCAAgain, let Mtm = (K;�; �; ktm; Atm) 2 QTM andlet Mca = (Q;�; kca; Aca) 2 1d-PQCA. Then Mtmsimulates Mca if and only if there exists a linear-timecomputable function T : C(Mca) ! C(Mtm) and afunction f : ZZ+ � ZZ+ ! ZZ+ such that for any givencon�guration a 2 C(Mca), the probability that Mcaaccepts a after t steps is equal to the probability thatMtm accepts T (a) after f(t; jT (a)j) steps.Given Mca = (Q;�; kca; Aca) 2 1d-PQCA we willnow de�ne Mtm = (K;�; �; ktm; Atm) 2 QTM whichwill simulate Mca.Each tape square of Mtm will represent the cell ofMca with the same index. De�ne� = (Ql �Qm �Qr) [ (Ql �Qm �Qr)?where (Ql �Qm �Qr)? is a copy of (Ql �Qm �Qr),so that (pl; pm; pr)? 2 (Ql �Qm �Qr)? whenever(pl; pm; pr) 2 (Ql �Qm �Qr) : (Mtm will need to sim-ulate only a �nite portion of Mca, since we are onlyconcerned with �nite con�gurations of Mca, so tapesquares containing a symbol in (Ql �Qm �Qr)? willbe used to mark the leftmost and rightmost cells ofMca being simulated at that time.) Let � be the blanksymbol of Mtm.De�neK = Ql � fs0; s1; s?1; s2; s?2; s3g �Qr:

Each state of Mtm will consist of one element from Qland one element from Qr (in order to \move" statesfrom one tape square to another when performing thepermutation �, as described in section 3) and one el-ement from fs0; s1; s?1; s2; s?2; s3g.The simulation of each step of Mca takes place inthree stages. The �rst stage reversibly performs thepermutation � on the con�guration of Mca currentlyrepresented by the contents of the tape. In order to dothis, let � take the following values: for each (l; r) 2Ql�Qr; (pl; pm; pr); (ql; qm; qr) 2 Ql�Qm�Qr, de�ne�((l; s0; r); (pl; pm; pr)?; (pl; pm; r)?; (l; s1; pr); R) = 1�((l; s1; r); (pl; pm; pr); (pl; pm; r); (l; s1; pr); R) = 1�((l; s1; r); (pl; pm; pr)?; (pl; pm; r); (l; s?1; pr); R) = 1�((l; s?1; r); (pl; pm; pr)?; (pl; pm; r)?; (l; s?1; pr); R) = 1�((l; s?1; r); (pl; pm; pr); (l; pm; r)?; (pl; s2; pr); L) = 1�((l; s2; r); (pl; pm; pr); (l; pm; pr); (pl; s2; r); L) = 1�((l; s2; r); (pl; pm; pr)?; (l; pm; pr); (pl; s?2; r); L) = 1�((l; s?2; r); (pl; pm; pr)?; (l; pm; pr)?; (pl; s?2; r); L) = 1(Note that not all of these transitions will be usedgiven proper input, but are added to guarantee well-formedness.) In the second stage of the simulation,the state contained in each tape square of Mtm istransformed in accordance with �, so for each (l; r) 2Ql�Qr; (pl; pm; pr); (ql; qm; qr) 2 Ql�Qm�Qr, de�ne�((l; s?2; r); (pl; pm; pr); (ql; qm; qr)?; (pl; s3; r); R)= �((l; pm; pr); (ql; qm; qr))�((l; s3; r); (pl; pm; pr); (ql; qm; qr); (l; s3; r); R)= �((pl; pm; pr); (ql; qm; qr))�((l; s3; r); (pl; pm; pr)?; (ql; qm; qr)?; (l; s0; r); L)= �((pl; pm; pr); (ql; qm; qr))The third stage of the simulation simply returns thetape head to the tape square representing the (new)leftmost cell of Mca being simulated. For each (l; r) 2Ql�Qr; (pl; pm; pr); (ql; qm; qr) 2 Ql�Qm�Qr, de�ne�((l; s0; r); (pl; pm; pr); (pl; pm; pr); (l; s0; r); L) = 1Finally, let � take the value 0 everywhere not de�nedabove.Let ktm = kca and de�neAtm = fq j q 2 Acag [ fq? j q 2 Acag:The following lemma follows from Theorem 3.1 andTheorem 4.1.Lemma 5.4 If Mca 2 1d-PQCA then Mtm 2 QTM.Given a 2 C(Mca) let nl and nr denote the indicesof the leftmost and rightmost non-quiescent cells of arespectively. (If nl = nr then set nr = nl + 1. If all



cells of a are quiescent, then choose nl arbitrarily andset nr = nl+1.) De�ne (s; h; c) = T (a) as follows: lets = (�; s0; �), let h = nl, and let c : ZZ! � be de�nedas c(n) = � a(n) if n 6= nl and n 6= nra(n)? if n = nl or n = nr:De�ne f(t; jcj) = 4t2 + 4jcjt� t:This is the number of steps required for Mtm to sim-ulate t steps of Mca on input c..Lemma 5.5 For any t 2 ZZ+ and c 2 C(Mca), theprobability that Mca accepts c after t steps is equal tothe probability that Mtm accepts T (c) after f(t; jT (c)j)steps.Proof. [Sketch] Assume that we begin the simulationof each time step of Mca with the tape head locatedover the leftmost cell of the �nite section ofMca beingsimulated, and with the current internal state of Mtmequal to (�; s0; �):First, the permutation � is performed reversibly intwo passes of the tape contents, �rst moving to thefar right then returning to the left. The �nite sectionof Mca being simulated will grow by one cell on eachend during this stage, since the right and left starredsymbols are shifted one cell to the right and left re-spectively. Next, in a single pass to the right, the stateof each tape square is \quantumly" transformed in ac-cordance with �. When this has been completed, thetape head is returned to the tape square representingthe (new) leftmost cell of Mca being simulated. Sincethe tape squares outside of the region between thestarred symbols are assumed to contain blanks (rep-resenting quiescent cells), the current internal state ofMtm will again be (�; s0; �).Thus, after four passes of the current tape contents,Mtm will be in a linear superposition of con�gurationswhich corresponds to the superposition of Mca afterone time step, i.e. each con�guration ofMtm will havethe same amplitude as the con�guration in the super-position of Mca which it represents. The long-termevolution of Mtm will thus behave exactly as that ofMca.By Lemma 5.4 and Lemma 5.5 we haveTheorem 5.2 Given any Mca 2 1d-PQCA, there ex-ists Mtm 2 QTM which simulates Mca with linearslowdown.

6 Some Resulting FactsFrom the preceeding discussion, we are immediatelyled to two straightforward results.The �rst result is an observation concerning theconstruction in section 5.2. The QTM which resultsfrom this construction has the interesting propertythat the motion of its tape head is deterministic, for-malized as follows. Let M 2 QTM and let a be anarbitrary con�guration of M . If M is assumed to bein con�guration a and is run (unobserved) for l stepsand then observed, then for any integer h there is someprobability that the tape head of M will be locatedover the tape square indexed by h. We say that Mhas deterministic head position if, for all a 2 C(M),l 2 ZZ+ and h 2 ZZ, we have that this probability iseither zero or one.By Theorem 5.1 and Theorem 5.2 we haveCorollary 6.1 For any QTM M , there exists a QTMM 0 such that M 0 simulates M with linear slowdown,and such that M 0 has deterministic head position.In addition to being deterministic, the head positionof the QTM resulting from the previously mentionedconstruction is also oblivious; for any input of a givenlength, the position of the tape head at a given timewill depend only upon this length.The second result regards the notion of acceptanceand rejection by a 1d-PQCA. ConsiderM = (Q;�; k; A) 2 1d-PQCA:Recall that for any a 2 C and l 2 ZZ+, M accepts a af-ter l steps with probability equal to that of observingan element of A in the cell indexed by k after l steps.Of course, this probability may di�er greatly with anychange in l, so that if we are interested in whether ornot M recognizes some language L � C(M), we mustpair some l 2 ZZ+ with each input a 2 C and observeM after exactly l steps have passed. This may seemunsatisfactory since it implies that the observer mustcarefully clock the machine and observe it at preciselythe right moment, or else the computation may beinvalid. However, we see that this is a reasonable def-inition of acceptance/rejection, due to the followingTheorem 6.1 For anyM 2 1d-PQCA there exists anM 0 2 1d-PQCA so that for any a 2 C(M) and l 2 ZZ+there exists an a0 2 C(M 0) (computable in O(l + jaj)steps) such that the probability that M accepts a afterl steps is equal to the probability that M 0 accepts a0after l0 steps for any l0 � l.



Proof. Suppose that a 1d-PQCA M = (Q;�; k; A),with quiescent state �, is given.First, de�ne Mt = (Qt;�t; k; At) as follows. LetQt = f0; 1g � f0; 1g� f0g(with �t = (0; 0; 0) as the quiescent state), let �t be theidentity matrix and let At = f(1; 1; 0)g. The action ofMt on any con�guration is identical to the permuta-tion �.For any given l 2 ZZ+, if we de�ne at 2 C(Mt) asat(n) = 8<: (0; 1; 0) if n = k(1; 0; 0) if n = k + l(0; 0; 0) otherwise,then on input at, the cell of Mt indexed by k will bein the state (1; 1; 0) after exactly l steps have passed,and at no other time will any cell contain this state.Now de�ne M1 = (Q1;�1; k; A1) as follows. LetQ1 = Q � Qt (with quiescent state �1 = (�; �t), letA1 = A�At and let �1 be as de�ned by�1((p; pt); (q; qt)) = �(p; q)�t(pt; qt)for (p; pt); (q; qt) 2 Q � Qt. Clearly M1 2 1d-PQCA.M1 can be viewed as M and Mt \stacked" on top ofone another, evolving independently.For any given a 2 C(M) and l 2 ZZ+, if we de�nea1 2 C(M1) as a1(n) = (a(n); at(n));where at is as de�ned above, then the probability thatM1 accepts a1 after l steps is the same as the proba-bility thatM accepts a after l steps. Furthermore, thecell of M1 indexed by k will not contain an acceptingstate at any other time, and at no time will any othercell contain an accepting state.Finally, de�ne Qa = f0g � f0; 1g � f0g, and de�neM 0 = (Q0;�0; k; A0) as follows. Let Q0 = Q1 �Qa, letA0 = Q1 � f(0; 1; 0)g and de�ne �0 as�0((p1; pa); (q1; qa))= 8<: �1(p1; q1) if q1 62 A1 and pa = qaor q1 2 A1 and pa 6= qa0 otherwisefor every (p1; pa); (q1; qa) 2 Q1 � Qa. Since �1 isunitary, we must have that �0 is unitary, so thatM 0 2 1d-PQCA (with quiescent state (�1; (0; 0; 0)).)Now, for given a 2 C(M) and l 2 ZZ+, de�nea0 2 C(M 0) as a0(n) = (a1(n); (0; 0; 0));where a1 is as de�ned above.
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