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Model for fault tolerance
Consider a quantum circuit that we might hope to implement.
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What could possibly go wrong?

• State initializations
• Unitary gates
• Measurements
• Qubit storage

We typically assume classical computations are perfect — but anything that involves
quantum information could be faulty.

Independent stochastic noise model

Faults are assumed to be uncorrelated — occurring independently at eash possible
location with a given probability.
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Fault-tolerant implementations
Agiven logical quantum circuit might be implemented fault tolerantly as follows.
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• State preparations, unitary gates, and measurement are performed by gadgets.
• Qubits are encoded using a quantum error correcting code.
• Encoded qubits are repeatedly error corrected throughout the computation.

For a given noise model and choice of gadgets and code, we can ask a fundamental
question: Are we making things better or worse?



Error propagation
Two-qubit gates can propagate errors (even when they’re perfect).
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This can create correlated errors on two qubits. (Two-qubit gates can also be faulty,
causing correlated errors on multiple qubits.)

These errors can propagate further as we add additional two-qubit gates.
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This must be kept in mind as we consider our gadgets and error correction procedure.
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Transversal gates
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Some codes allow for transversal implementations of certain gates — meaning a tensor
product of operations acting on a single qubit position within each code block.

Example: transversal Pauli gates

Every stabilizer code allows for a transversal implementation of Pauli gates.
For the 3 × 3 surface code, for instance, we can implement X and Z as follows:

X =
X 1 1

X 1 1

X 1 1

Z =
Z Z Z

1 1 1

1 1 1

Transversal gate gadgets are inherently fault-tolerant — they never propagate errors
within a code block. (Subsequent error correction steps can correct induced errors.)

Eastin–Knill theorem

For any quantum error correcting code with distance at least 2, the set of logical
gates that can be implemented transversally generates a discrete set of
operations (and is therefore not universal).
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Some codes allow for transversal implementations of certain gates — meaning a tensor
product of operations acting on a single qubit position within each code block.

Example: transversal CNOT

Every CSS code allows for a transversal implementation of CNOT gates.
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Transversal gate gadgets are inherently fault-tolerant — they never propagate errors
within a code block. (Subsequent error correction steps can correct induced errors.)

Eastin–Knill theorem

For any quantum error correcting code with distance at least 2, the set of logical
gates that can be implemented transversally generates a discrete set of
operations (and is therefore not universal).



Transversal gates
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Some codes allow for transversal implementations of certain gates — meaning a tensor
product of operations acting on a single qubit position within each code block.

Example: transversal Clifford gates for Steane code

The Steane 7-qubit code allows all Clifford gates to be implemented transversally.
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Transversal gate gadgets are inherently fault-tolerant — they never propagate errors
within a code block. (Subsequent error correction steps can correct induced errors.)

Eastin–Knill theorem

For any quantum error correcting code with distance at least 2, the set of logical
gates that can be implemented transversally generates a discrete set of
operations (and is therefore not universal).
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Magic states
S = (1 0

0 i
) = (1 0

0 e
iπ/2) T = (1 0

0 1+i√
2
) = (1 0

0 e
iπ/4)

• S is a Clifford operation
• T is not a Clifford operation — {H,T ,CNOT} is universal for quantum computation

We cannot implement T gates using Clifford operations and standard basis
measurements alone — but we can if we also have a copy of thismagic state:

T ∣+⟩ = 1√
2
(∣0⟩ + e

iπ/4∣1⟩)
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2 ∣1⟩⊗ T
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Measure 0: output T ∣ψ⟩
Measure 1: output ST †∣ψ⟩ = T ∣ψ⟩

An S gate can be implemented similarly using a copy of the state S∣+⟩ = ∣+i⟩.

+

Z∣ψ⟩
S∣+⟩

S∣ψ⟩



Magic states
We cannot implement T gates using Clifford operations and standard basis
measurements alone — but we can if we also have a copy of thismagic state:

T ∣+⟩ = 1√
2
(∣0⟩ + e

iπ/4∣1⟩)

+

S∣ψ⟩
T ∣+⟩

T ∣ψ⟩

T ∣+⟩⊗ ∣ψ⟩ CNOT
⟼

1√
2
∣0⟩⊗ T ∣ψ⟩ + 1 + i

2 ∣1⟩⊗ T
†∣ψ⟩

Measure 0: output T ∣ψ⟩
Measure 1: output ST †∣ψ⟩ = T ∣ψ⟩

An S gate can be implemented similarly using a copy of the state S∣+⟩ = ∣+i⟩.

+

Z∣ψ⟩
S∣+⟩

S∣ψ⟩



Magic states
We cannot implement T gates using Clifford operations and standard basis
measurements alone — but we can if we also have a copy of thismagic state:

T ∣+⟩ = 1√
2
(∣0⟩ + e

iπ/4∣1⟩)

+

S∣ψ⟩
T ∣+⟩

T ∣ψ⟩

An S gate can be implemented similarly using a copy of the state S∣+⟩ = ∣+i⟩.

+

Z∣ψ⟩
S∣+⟩

S∣ψ⟩



Magic states
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This method allows for a fault-tolerant implementation of a T gate:

• The circuit is performed on encoded qubits, using fault-tolerant gadgets for the
required gates.

• Requires an encoded magic state.

Key idea: magic state distillation

Encoded magic states can be prepared separately with a probabilistic process that
need not succeed every time. (If it fails we simply try again.)
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Other methods for implementing gates fault-tolerantly include code deformation and
code switching.
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Fault-tolerant error correction
Straightforward implementations of syndome measurements are not fault-tolerant — they
can cause errors to propagate within code blocks.
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There are multiple known ways to address this problem.

Shor error correction

Use cat states to measure syndomes.
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Steane error correction (CSS codes only)

Use encoded states to intentionally propagate errors to workspace qubits.



Fault-tolerant error correction
Straightforward implementations of syndome measurements are not fault-tolerant — they
can cause errors to propagate within code blocks.

∣+⟩
P2

P1

P0

H

There are multiple known ways to address this problem.

Steane error correction (CSS codes only)

Use encoded states to intentionally propagate errors to workspace qubits.

+
+

+

+
+

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
detect errors
(classically)∣+⟩L

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩



Threshold theorem
Threshold theorem (informal statement)

A quantum circuit having N gates can be implemented with high accuracy by a
noisy quantum circuit, provided that the probability of error at each location in the
noisy circuit is below a fixed, nonzero threshold value pth > 0.

The size of the noisy circuit required scales as O(N logc(N)) for a positive
constant c.
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Suppose (for simplicity) that we use the 7-qubit Steane code, so our error corrections can
correct for 1 error per code block.

The probability of error at each (logical) location in the original circuit is at mostCp
2 for

some constantC (which depends on our gadgets).

If p < 1/C = pth this is a reduction in error — from p to (Cp)p.

Key idea

Concatenate: Think of our new (fault tolerant) circuit as a logical circuit, and
implement it fault-tolerantly.
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The logical error rate for the original circuit decreases rapidly with each concatenation.
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