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Classical linear codes
LetΣ = {0, 1} denote the binary alphabet.
A classical linear code is a non-empty set of binary strings C ⊆ Σ

n with this property:

u,v ∈ C ⇒ u⊕ v ∈ C

Example: 3-bit repetition code

The 3-bit repetition code {000, 111} is a classical linear code.

Example: [7, 4, 3]-Hamming code
The [7, 4, 3]-Hamming code is the classical linear code containing these strings:

0000000 1100001 1010010 0110011
0110100 1010101 1100110 0000111
1111000 0011001 0101010 1001011
1001100 0101101 0011110 1111111

Two natural ways to describe a classical linear code:

1. Generators: a minimal list of stringsu1, . . . ,um ∈ Σ
n such that

C = {α1u1 ⊕⋯⊕αmum ∶ α1, . . . ,αm ∈ {0, 1}}
2. Parity checks: a minimal list of strings v1, . . . ,vr ∈ Σ

n such that

C = {u ∈ Σ
n ∶ u ⋅ v1 = ⋯ = u ⋅ vr = 0}

(whereu ⋅ v is the binary dot product ofu and v).

Example: [7, 4, 3]-Hamming code

The [7, 4, 3]-Hamming code is the classical linear code containing these strings:
0000000 1100001 1010010 0110011
0110100 1010101 1100110 0000111
1111000 0011001 0101010 1001011
1001100 0101101 0011110 1111111

1. Generators: 0110100, 1010010, 1100001, 1111000
2. Parity checks: 1111000, 1100110, 1010101

Note: parity checks are equivalent to stabilizer generators containing onlyZ and 1 Pauli
matrices.

Example: 3-bit repetition code

The 3-bit repetition code {000, 111} is a classical linear code.
1. Generator: 111
2. Parity checks: 110, 011

Equivalently, the strings in this code are standard basis states for the stabilizer
code with stabilizer generators ZZ1 and 1ZZ.
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CSS codes
Stabilizer generators containing onlyZ and 1 Pauli matrices are equivalent to parity
checks.

These are calledZ stabilizer generators.

Example: 3-bit repetition code

The 3-bit repetition code {000, 111} is a classical linear code.
Parity checks: 110, 011
Stabilizer generators: ZZ1, 1ZZ

Example: [7, 4, 3]-Hamming code
The [7, 4, 3]-Hamming code is the classical linear code containing these strings:

0000000 1100001 1010010 0110011
0110100 1010101 1100110 0000111
1111000 0011001 0101010 1001011
1001100 0101101 0011110 1111111

Parity checks: 1111000, 1100110, 1010101
Stabilizer generators: ZZZZ111, ZZ11ZZ1, Z1Z1Z1Z

Stabilizer generators containing onlyX and 1 Pauli matrices are also equivalent to parity
checks — for the plus/minus basis {∣+⟩, ∣−⟩}. These are calledX stabilizer generators.

Example: [7, 4, 3]-Hamming code

0000000 1100001 1010010 0110011
0110100 1010101 1100110 0000111
1111000 0011001 0101010 1001011
1001100 0101101 0011110 1111111

Parity checks: 1111000, 1100110, 1010101
The stabilizer generators XXXX111, XX11XX1, X1X1X1X define a stabilizer
code that includes these states:

∣+ + + + + + +⟩ ∣− − + + + + −⟩ ∣− + − + + − +⟩ ∣+ − − + + − −⟩∣+ − − + − + +⟩ ∣− + − + − + −⟩ ∣− − + + − − +⟩ ∣+ + + + − − −⟩∣− − − − + + +⟩ ∣+ + − − + + −⟩ ∣+ − + − + − +⟩ ∣− + + − + − −⟩∣− + + − − + +⟩ ∣+ − + − − + −⟩ ∣+ + − − − − +⟩ ∣− − − − − − −⟩

Definition: CSS codes

Stabilizer codes that can be expressed using only Z stabilizer generators and X

stabilizer generators are called CSS codes.

Example: e-bit stabilizer code

ZZ

XX

The code space is the one-dimensional space spanned by

∣φ+⟩ = ∣0⟩∣0⟩ + ∣1⟩∣1⟩√
2

= ∣+⟩∣+⟩ + ∣−⟩∣−⟩√
2

Example: 7-qubit Steane code

ZZZZ 1 1 1

ZZ 1 1 ZZ 1

Z 1 Z 1 Z 1 Z

XXXX 1 1 1

XX 1 1 XX 1

X 1 X 1 X 1 X

Example: 9-qubit Shor code

ZZ 1 1 1 1 1 1 1

1 ZZ 1 1 1 1 1 1

1 1 1 ZZ 1 1 1 1

1 1 1 1 ZZ 1 1 1

1 1 1 1 1 1 ZZ 1

1 1 1 1 1 1 1 ZZ

XXXXXX 1 1 1

1 1 1 XXXXXX
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Error detection and correction
Consider a CSS code.

• TheZ stabilizer generators detectX errors but
are oblivious toZ errors (and corrections).

• TheX stabilizer generators detectZ errors but
are oblivious toX errors (and corrections).

Suppose the following:

• TheZ stabilizer generators allow for the
correction of up to j X errors.

• TheX stabilizer generators allow for the
correction of up to kZ errors.

7-qubit Steane code

ZZZZ 1 1 1

ZZ 1 1 ZZ 1

Z 1 Z 1 Z 1 Z

XXXX 1 1 1

XX 1 1 XX 1

X 1 X 1 X 1 X

Then the CSS code allows for the correction of any error on up to min{j,k} qubits — we
can simply detect and correctX errors andZ errors on this many qubits separately.



Code spaces of CSS codes
Consider a CSS code onn qubits.

Let z1, . . . ,zs ∈ Σ
n be parity checks corresponding to theZ stabilizer generators.

CZ = {u ∈ Σ
n ∶ u ⋅ z1 = ⋯ = u ⋅ zs = 0}

DZ = {α1z1 ⊕⋯⊕αszs ∶ α1, . . . ,αs ∈ {0, 1}}
Let x1, . . . ,xt ∈ Σ

n be parity checks corresponding to theX stabilizer generators.

CX = {u ∈ Σ
n ∶ u ⋅ x1 = ⋯ = u ⋅ xt = 0}

DX = {α1x1 ⊕⋯⊕αtxt ∶ α1, . . . ,αt ∈ {0, 1}}

The code space of the CSS code is spanned by vectors of either of these forms:

∣u⊕DX⟩ = 1√
2t

∑
v∈DX

∣u⊕ v⟩ (foru ∈ CZ)

H
⊗n∣u⊕DZ⟩ = 1√

2s
∑

v∈DZ

H
⊗n∣u⊕ v⟩ (foru ∈ CX)

Example: 7-qubit Steane code

ZZZZ 1 1 1

ZZ 1 1 ZZ 1

Z 1 Z 1 Z 1 Z

XXXX 1 1 1

XX 1 1 XX 1

X 1 X 1 X 1 X

We could encode ∣0⟩ and ∣1⟩ as follows:
∣0⟩ ↦ ∣0000000⟩ + ∣0011110⟩ + ∣0101101⟩

+ ∣0110011⟩ + ∣1001011⟩ + ∣1010101⟩
+ ∣1100110⟩ + ∣1111000⟩

∣1⟩ ↦ ∣0000111⟩ + ∣0011001⟩ + ∣0101010⟩
+ ∣0110100⟩ + ∣1001100⟩ + ∣1010010⟩
+ ∣1100001⟩ + ∣1111111⟩
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Toric code
The toric code is an example of a quantum error correcting code (actually a family of
codes) with a few key properties.

• Low weight stabilizer generators
• Geometric locality
• Large distance

Let L ≥ 2 be a positive integer and consider an L × L lattice with periodic boundaries.

L = 8

The product of all of theZ stabilizer generators is the identity — but removing any one
leaves an independent set. Similar for theX stabilizer generators.

This leaves L2 − 1 stabilizer generators of each of the two types.

The toric code (for this choice of L) therefore encodes 2L2 − 2(L2 − 1) = 2 logical qubits
into 2L2 physical qubits.
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Errors and syndromes
The toric code is a CSS code, which allows us to considerX errors andZ errors
separately. Let us focus onX errors —Z errors work similarly by symmetry.

unaffected qubit
qubit affected byX error

+1 syndrome

−1 syndrome

Z

Z

Z Z

Z stabilizer
generator

Chains of adjacentX errors cause
−1 syndrome outcomes at the
endpoints.

Closed loops of adjacentX errors are
undetected by the code.

• Loops crossing every line an even
number of times are products ofX
stabilizer generators.

• Loops crossing any line an odd
number of times are nontrivial
errors that are undetected by the
code.

The minimum weight of a nontrivial, undetectable error is L.
The toric code is therefore a [[2L2, 2,L]] stabilizer code.
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Correcting errors
unaffected qubit
qubit affected byX error
qubit corrected byX gate

+1 syndrome

−1 syndrome

This strategy corrects low-weight
errors, but may not work for high-weight
errors.

Lowest-weight pairings can be found by
efficient classical algorithms.

We can attempt to correct errors by pairing together −1 syndrome measurements with
shortest paths of corrections.

Depending on the noise model, lowest-weight pairings may not correct the most likely
errors — but the method works well for simple noise models.
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Other code families
Surface codes
The toric code doesn’t actually require periodic boundaries — it can be defined on a
two-dimensional surface instead.
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Other code families
Color codes
Consider the 7-qubit Steane code for qubits (Q6, Q5, Q4, Q3, Q2, Q1, Q0).

ZZZZ 1 1 1

ZZ 1 1 ZZ 1

Z 1 Z 1 Z 1 Z

XXXX 1 1 1

XX 1 1 XX 1

X 1 X 1 X 1 X

Q3

Q1 Q0

Q5 Q4

Q2

Q6

ZZZZ

XXXX

ZZZZ

XXXX

ZZZZ

XXXX

Color codes generalize this basic pattern to other graphs and lattices.
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Other code families
Surface codes Color codes

Many other constructions for quantum error correcting codes are known.

Example: Gross code

The gross code is a recently discovered [[144, 12, 12]] stabilizer code.
It requires an additional 144 qubits for performing syndrome measurements and
has a biplanar embedding.


