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Pauli operations

o) x=l ) v=3) =6 )

Anti-commutation relations:
XY =-YX XZ=-7X YZ=-72Y
Multiplication rules:

XY =1i”Z YZ =1iX ZX =1Y XX=YY=2Z=1

An RaRtelilena = IRe)el=lgelile)gl is the n-fold tensor product of Pauli matrices. Itsis the

number of non-identity Pauli matrices in the tensor product.

1811010101018 18®1 « weight0
XoX®1®101®1®1®1®1l « weight?
X0Y®Z®1e101®X®Y®Z « weight6



Paull operations as generators

S I (I (A I (A

Suppose that Pq, ..., P, are n-qubit Pauli operations.

The setby P1, ..., P, includes all matrices that can be obtained from
P1, ..., P+ by multiplication (taking any number of each operation and in any order).

Notation: (Py, ..., P;)

Example 1

(X,Y,Z) ={aP : x€{l,i,-1,-i}, Pe{1,X,Y,Z}} (16 elements)

Example 2

(X,z)={1, X, Z, XZ, -1, -X, -Z, -XZ} (8 elements)



Paull operations as generators

S I A I (A IR (A

Suppose that Pq, ..., P, are n-qubit Pauli operations.

The setby P1, ..., P, includes all matrices that can be obtained from
P1, ..., P+ by multiplication (taking any number of each operation and in any order).

Notation: (Py, ..., P;)

Example 2

(X,z)={1, X, Z, Xz, -1, -X, -Z, -XZ} (8 elements)

Example 3

(XX, Z2eZ)={1®1, X®X,-Y®Y, Z® Z} (4 elements)



Pauli observables

Pauli matrices describe unitary operations — but they also describe

More precisely, we can associate each Pauli matrix with a [sJge)ZeilZ=Nul=le Eig=liul=lety defined
by its eigenvectors.

X=[+)(+[ = [=-X=] Y= [+i)(+i| - [-i)(-i]  Z=]0)(0] - [1)(1]
For example, an X measurement is a measurement with respect to the basis {|+), |—)}.

Equivalently it is the measurement described by the set {|+){+|, |-)(—|}.

We can perform this measurement non-destructively using [algle =R dTgalel o) 8

0 +1eigenvalue
|+) :
1 —1eigenvalue




Pauli observables

This extends naturally to n-qubit Pauli operations. For example, consider Z ® Z.

Z & Z = (|0){0] - [1)(1]) ® (10)(0] - [1){1])
= (100)¢00] + [11)¢11]) = (01){01] + [10){10])

The associated measurement is the two-outcome projective measurement described by
the set {|00)(00| + [11)(11], |01)(01| + |10)(10]}.

Again we can perform this measurement non-destructively using phase estimation.

0 +1 eigenvalue
s~ e
1 —1eigenvalue



Pauli observables

This extends naturally to n-qubit Pauli operations. For example, consider Z ® Z.

Z & Z = (|0){0] - [1)(1]) ® (10)(0] - [1){1])
= (100)¢00] + [11)¢11]) = (01){01] + [10){10])

The associated measurement is the two-outcome projective measurement described by
the set {|00)(00| + [11)(11], |01)(01| + |10)(10]}.

Again we can perform this measurement non-destructively using phase estimation.

a 0 +1eigenvalue
1 —1eigenvalue



Repetition code revisited

The 3-bit repetition code encodes qubit states as follows:
x[0) + B1) = oc|000) + B|111) = |)

To check that the 3-qubit state | ) is a valid encoding of a qubit, it suffices to check
these two equations:

(Z® Zo 1)) = [V)
(1e®zZeZ)[p) =)




Repetition code revisited

The 3-bit repetition code encodes qubit states as follows:
x[0) + B1) = oc|000) + B111) = |)

To check that the 3-qubit state | ) is a valid encoding of a qubit, it suffices to check
these two equations:

(Z® 2@ 1)) = [U)
(1o Ze Z)p) =)

The 3-qubit Pauli operations Z ® Z ® 1 and 1 ® Z ® Z are Felalllr=I@=Ll=el{o)e for this
code. Thefor the code is the set generated by the stabilizer generators.

(z07201,10207Z)={101®1,Z07Z®1,198Z0Z7Z, Z11®Z}



Bit-flip detection

«[0) + B[1) = |000) + B[111) = | )

(Z®Zo 1)) =|b)
(I1®Ze Z)p) =)

Suppose a bit-flip error occurs on the leftmost qubit.

b)) » (Xele1)p)

By treating the stabilizer generators as observables, we can detect this error.
(ZeZe1)(Xelel)|p)=-(Xelel)(Z®Ze1)|Pp)=-(Xel1lel)|p)
(18ZeZ)(Xelel)|p)=(X@1e1)(1®Ze Z)|P)=(X’1a1)))

(Z®Z®1)(X®11)=-(X®1®1)(Z®Z11)
(120 Z)(X®1®1l)=(Xe1e1)(1®Z® Z)



Bit-flip detection

«[0) + B[1) = |000) + B[111) = | )

(Zze Ze 1)) =)
(1o Z®Z)|P)=|b)

Suppose a bit-flip error occurs on the leftmost qubit.
b)) » (Xel1le1)p)

By treating the stabilizer generators as observables, we can detect this error.

(Z®Z®1)(X®1®1)=-(X01®1)(Z®Z®1)
(1®ZZ)(X®1®1)=(X1e1)(1®Z® Z)

]l®]1®]l X®]1®]1 ]1®X®]1 ]1®]1®X

Z®7Z31
1240 Z

syndromes



Syndromes

111 X1l 18Xl 11X
/71 +1 -1 -1 +1
172 7Z +1 +1 -1 -1

syndromes

The syndromes partition the 8-dimensional space into four 2-dimensional subspaces.

1920 Z

+1 1
, 1000) | |001)
111 | (110

Z®Z®1

1200) | |010)
-1

jo11) | |101)

They also partition the 3-qubit Pauli operations into 4 equal-size collections. For example,
181Q®Z7Z, Z® Z® Z, and X ® X ® X all cause the same syndrome (+1, +1).



Syndromes

The syndromes partition the 8-dimensional space into four 2-dimensional subspaces.

1920 Z
+1 1
, 1000) | |001)
111 | (110
Z®Z®1
1200) | |010)
-1
lo11) | |101)

They also partition the 3-qubit Pauli operations into 4 equal-size collections. For example,
11®Z7Z, Z® Z® Z, and X ® X ® X all cause the same syndrome (+1, +1).

Pauli operations that commute with every stabilizer generator but are not themselves in
the stabilizer act like Pauli operations on the encoded qubit.



Stabilizer codes

Aset {Pq,..., P,} of n-qubit Pauli operations are stabilizer generators for a
Siele)llvdI@olelole] if these properties are satisfied:

1. The stabilizer generators allwith one another.

P; Py = Py P; (forallj, k e {1,...,1})

2. The stabilizer generators form a [gallgllgalel B=LIa =T de i TaFEH =T

Pk ¢ (Pl, cey Pk—lipk+11 .. .,Pr> (foreach k € {1, .. .,T‘})

3. At least one nonzero vector is fixed by all of the stabilizer generators.

n

17" ¢ (Py,...,Py)

Thedeﬁned by the stabilizer generators contains all vectors that are fixed by
all of the stabilizer generators.

{lw) : [W) = Py[w) = = Py )}



Examples

3-bit repetition code (bit-flips) 3-bit repetition code (phase-flips)
ZQ7Z1 XXl
1240 Z 1eXeX

9-qubit Shor code

/731011101011
1207201101011 11
1110240720111 1
1110102020111
1111101820 /411
1911110110 ~410~Z
X@XXXIXX®1I11
111X XX®X®X®X



Examples

3-bit repetition code (bit-flips) 3-bit repetition code (phase-flips)
ZZ1 XX1
127 1XX

9-qubit Shor code

ZZ1111111
1ZzZz111111
111z2zZz1111
111122111
1111112721
1111111227
XXXXXX1T11
TTITXXXXXX



Examples

7-qubit Steane code

7277111
Z7Z117271
172172172
XXXX111
XX1T1TXX1
XIXTX1TX

E-bit stabilizer code

ZZ
XX

5-qubit code

XZ7ZX1
1XZ22ZX
X1XZZ
ZX1XZ

GHZ stabilizer code

71
127
XXX



Code space dimension

Suppose that {Py, ..., P+} are n-qubit stabilizer generators for a stabilizer code.
1. PjPy = PyP;forallj, ke{l,...,71}

2. P ¢(Py,...,Pr_1,Pys1,..., Py )foreachk € {1,..., 7}

3. =1 ¢(Py,...,P;)

Theorem

The code space defined by {Py, ..., P;} has dimension 2™ ".

(Equivalently, the code defined by these generators encodes n — r qubits.)

3-bit repetition code (bit-flips)

n = 3 qubits

ZZ7Z1
T = 2 stabilizer generators

127 :
= 3 — 2 = 1 encoded qubit



Code space dimension

Suppose that {Py, ..., P+} are n-qubit stabilizer generators for a stabilizer code.
1. PjPy = PyP;forallj, ke{l,...,71}
2. P ¢(P1,....,Px-1,Px41,...,Py)foreachk € {1,..., 1}
3. =1 ¢(Py,...,P;)
Theorem

The code space defined by {Py, ..., P;} has dimension 2™ ".

(Equivalently, the code defined by these generators encodes n — r qubits.)

5-qubit code
XZZX1 n = 5 qubits
1XZZX T = 4 stabilizer generators
X1XZZ = 5 — 4 =1 encoded qubit

ZX1XZ



Code space dimension

Suppose that {Py, ..., P+} are n-qubit stabilizer generators for a stabilizer code.
1. PjPy = PyP;forallj, ke{l,...,71}
2. P ¢(P1,....,Px-1,Px41,...,Py)foreachk € {1,..., 1}
3. =1 ¢(Py,...,P;)
Theorem

The code space defined by {Py, ..., P;} has dimension 2™ ".

(Equivalently, the code defined by these generators encodes n — r qubits.)

E-bit stabilizer code

n = 2 qubits
ZZ T = 2 stabilizer generators
XX = 2 — 2 = 0 encoded qubits

The code space is the 1-dimensional
space spanned by the vector | ).



Code space dimension

Suppose that {Py, ..., P+ } are n-qubit stabilizer generators for a stabilizer code.
1. P;jPy = PyPjforallj, ke{l,...,7}
2. P ¢(P1,....,Px-1,Px41,...,Py)foreachk € {1,..., 1}
3. =1 ¢(Py,...,P;)
Theorem

The code space defined by {Py, ..., P;} has dimension 2™ ".
(Equivalently, the code defined by these generators encodes n — r qubits.)

Every element in the stabilizer can be written in a unique way as Pfl - P17 for
ai,...,a, € {0,1}.

Pfl...PfT -1*" o (ai,...,a;)=(0,...,0)

The projection TTy onto the +1 eigenspace of Py can be expressed like this:

]l®n + Pk

Iy = 5



Code space dimension

Theorem

The code space defined by {Py,..., P,} has dimension 2™ ",

(Equivalently, the code defined by these generators encodes n — r qubits.)

Every element in the stabilizer can be written in a unique way as Pfl - P27 for
ai,...,a, €{0,1}.

Pfl...PfT -1°" = (ay,...,a,)=(0,...,0)

The projection TTy onto the +1 eigenspace of Py can be expressed like this:

]1®n + Pk
Iy = — 5
The projections T14, ..., TT, commute. The projection onto the code space is their product.
1°™ + Py 1°" 4+ P 1 .
nl...ﬂT:<T)...(Tf = = Z Pfl...Pf
ai,...,ar€{0,1}



Code space dimension

Theorem

The code space defined by {Py, ..., P.} has dimension 2™ ".

(Equivalently, the code defined by these generators encodes n — r qubits.)

Every element in the stabilizer can be written in a unique way as Pfl - PJT for
ai,...,a, €{0,1}.
dn

Pfl...Pffz]l < (ai,...,a;)=(0,...,0)

The projections T1q, ..., TT,. commute. The projection onto the code space is their product.

1°™ + Py 1°™ + P 1 a a
nan?:(T)M(TT = Z | o

ai,....,ar€{0,1}

The dimension of the code space is the trace of this projection.

Te(TTy - TT,) = = Z Tr(P{ . POT) = S =



Clifford operations and encodings

Clifford operations

Clifford operations are unitary operations that can be implemented by quantum
circuits with gates from this list:

e Hadamard gates
e S gates
e CNOT gates

Up to a global phase, an n-qubit unitary operation is a Clifford operation if and only if it
maps n-qubit Pauli operations to n-qubit Pauli operations by conjugation.

Equivalently, U is a Clifford operation (up to a global phase) if for every
Po,..., Pn_1 € {1, X,Y, Z} there exist Qq, ..., Qn_1 € {1, X, Y, Z} such that

U(Pp1 ® - ® Po)UT = +Qn 1 ® - ® Qg

Clifford operations arefor guantum computation.

There are only finitely many n-qubit Clifford operations and their actions on standard
basis states can be efficiently simulated classically by the [elelic=taalela & IR =lo) =111



Clifford operations and encodings

Clifford operations
Clifford operations are unitary operations that can be implemented by quantum
circuits with gates from this list:

e Hadamard gates
e S gates
e CNOT gates

Clifford operations arefor quantum computation.

There are only finitely many n-qubit Clifford operations and their actions on standard
basis states can be efficiently simulated classically by the [elelic=taalela & IR =lo) =111

Encodings for stabilizer codes can always be performed by Clifford operations. At most
O(nz/ log(n)) gates are required.



Clifford operations and encodings

Clifford operations

Clifford operations are unitary operations that can be implemented by quantum
circuits with gates from this list:

e Hadamard gates
e S gates
e CNOT gates

Encodings for stabilizer codes can always be performed by Clifford operations. At most
O(n?/log(n)) gates are required.

Example: encoder for the 7-qubit Steane code

¢ ¢
o o—

«|0) + B[1)




Detecting errors

Let P4, ..., P, be stabilizer generators for an n-qubit stabilizer code, and let E be an
n-qubit Pauli operation, representing a [gl/elelisl=iileleIN=I7g0]

Errors are detected in a stabilizer code by [ple gl R CRS (el TR Lo 016 (aS

observables). The r outcomes form the syndrome.

Case1l: E = xQ forQ € (Pq,..., Py).

This errorto vectors in the code space: E|1) = x| ) for every
encoded state [).

Case2: E + xQ for Q € (Pq, ..., P,), but EPy = PyEforeveryk € {1,..., T}

This error changes vectors in the code space and goes [liileCiizloii=lel by the code.

Case 3: P E = —EPy foratleastonek € {1,...,1}.

This error is by the code.

Theof a stabilizer code is theof a Pauli operation that changes
vectors in the code space but goes undetected by the code.

Notation: an [[n, m, d]] stabilizer code is one that encodes m qubits into n. qubits and
has distance d.



/-qubit Steane code

Theis the minimum weight of

727272111 an n-qubit Pauli operation that
71172721 1. commutes with every stabilizer
Z1721721Z generator, and

XXXX111 2. is not proportional to a stabilizer
XX1T1TXX1 element.

X1X1TX1X

This code has distance 3.

We can first reason that every Pauli operation with weight at most 2 that commutes with
every stabilizer generator must be the identity operation.

PQ11111

Z17212721Z
X1X1TX1TX



/-qubit Steane code

Theis the minimum weight of

727272111 an n-qubit Pauli operation that
71172721 1. commutes with every stabilizer
Z1721721Z generator, and

XXXX111 2. is not proportional to a stabilizer
XX1T1XX1 element.

X1X1TX1X

This code has distance 3.

We can first reason that every Pauli operation with weight at most 2 that commutes with
every stabilizer generator must be the identity operation.

1Q1 1111

Z17212721Z
X1X1TX1TX
/727272111
XXXX1T11



/-qubit Steane code

Theis the minimum weight of

727272111 an n-qubit Pauli operation that
71172721 1. commutes with every stabilizer
Z1721721Z generator, and

XXXX111 2. is not proportional to a stabilizer
XX1T1XX1 element.

X1X1TX1X

This code has distance 3.

We can first reason that every Pauli operation with weight at most 2 that commutes with
every stabilizer generator must be the identity operation.

1111111

Z17212721Z
X1X1TX1TX
/727272111
XXXX1T11



/-qubit Steane code

Theis the minimum weight of

727272111 an n-qubit Pauli operation that
7117271 1. commutes with every stabilizer
Z172172Z1Z generator, and

XXXX111 2. is not proportional to a stabilizer
XX1T1XX1 element.

X1X1TX1X

This code has distance 3. v

We can first reason that every Pauli operation with weight at most 2 that commutes with
every stabilizer generator must be the identity operation.

On the other hand, there are weight 3 Pauli operations that commute with every stabilizer
generator and fall outside of the stabilizer.

Two examples:

111T1TXXX
1111227227



Correcting errors

Let P4, ..., P, be stabilizer generators for an n-qubit stabilizer code.

e The 2" syndromes partition the n-qubit Pauli operations into equal-size sets,
with 4™ /2" Pauli operations in each set.

e IfEisanerrorand S € (Pq,..., P,)isastabilizer element, then E and ES are
equivalent errors: E|1{) = ES|1) for every |1 ) in the code space.

e This leaves 4™ " inequivalent classes of errors for each syndrome.

So, unless r = n (i.e., the code space is one-dimensional) we cannot correct every error.

Rather, we must choose [eJgl=Reelag=lorile)gNo sl-Igel o) a B (o) =Te 1ol s B a Lo Io)aal=] (Which corrects at

most one class of equivalent errors).

Natural strategy

For each syndrome s, choose a [IZS8=1 Pauli operation that causes the
syndrome s as the corresponding correction operation.

For a distance d stabilizer code, this strategy corrects all errors having weight at most
(d-1)/2.



Correcting errors

Natural strategy

For each syndrome s, choose a [eIZ58:1 Pauli operation that causes the
syndrome s as the corresponding correction operation.

For a distance d stabilizer code, this strategy corrects all errors having weight at most
(d-1)/2.

undetected
errors
(weight > d)

o E (weight < d/2)

CEe
stabilizer

syndrome (+1,...,+1) syndrome s # (+1,...,+1)
correction operation = C (weight < d/2)



Correcting errors

Natural strategy

For each syndrome s, choose a [eIZZE81 Pauli operation that causes the
syndrome s as the corresponding correction operation.

For a distance d stabilizer code, this strategy corrects all errors having weight at most
(d-1)/2.

Unfortunately, for a given choice of stabilizer generators and a syndrome, it is
oe)palalbiqelilo)alelliAe 1jilel0lis to find the lowest weight Pauli operation causing that syndrome.

Finding codes for which this can be done efficiently is part of the artistry in code design.



