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Anti-commutation relations:

XY = −YX XZ = −ZX YZ = −ZY

Multiplication rules:

XY = iZ YZ = iX ZX = iY XX = YY = ZZ = 1

Ann-qubit Pauli operation is then-fold tensor product of Pauli matrices. Its weight is the
number of non-identity Pauli matrices in the tensor product.

1 ⊗ 1 ⊗ 1 ⊗1⊗1⊗1⊗ 1 ⊗ 1⊗ 1 ← weight 0
X⊗X⊗ 1 ⊗1⊗1⊗1⊗ 1 ⊗ 1⊗ 1 ← weight 2
X⊗Y ⊗Z⊗1⊗1⊗1⊗X⊗Y⊗Z ← weight 6



Pauli operations as generators
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Suppose that P1, . . . ,Pr aren-qubit Pauli operations.

The set generated by P1, . . . ,Pr includes all matrices that can be obtained from
P1, . . . ,Pr by multiplication (taking any number of each operation and in any order).

Notation: ⟨P1, . . . ,Pr⟩
Example 1

⟨X,Y,Z⟩ = {αP ∶ α ∈ {1, i,−1,−i}, P ∈ {1,X,Y,Z}} (16 elements)

Example 2

⟨X,Z⟩ = {1, X, Z, XZ, −1, −X, −Z, −XZ} (8 elements)

Example 3

⟨X⊗X,Z⊗Z⟩ = {1⊗ 1, X⊗X, −Y ⊗ Y, Z⊗Z} (4 elements)
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Pauli observables
Pauli matrices describe unitary operations — but they also describemeasurements.

More precisely, we can associate each Pauli matrix with a projective measurement defined
by its eigenvectors.

X = ∣+⟩⟨+∣ − ∣−⟩⟨−∣ Y = ∣+i⟩⟨+i∣ − ∣−i⟩⟨−i∣ Z = ∣0⟩⟨0∣ − ∣1⟩⟨1∣
For example, anXmeasurement is a measurement with respect to the basis {∣+⟩, ∣−⟩}.
Equivalently it is the measurement described by the set {∣+⟩⟨+∣, ∣−⟩⟨−∣}.
We can perform this measurement non-destructively using phase estimation.

∣+⟩
X

H

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 +1 eigenvalue
1 −1 eigenvalue

This extends naturally ton-qubit Pauli operations. For example, considerZ⊗Z.

Z⊗Z = (∣0⟩⟨0∣ − ∣1⟩⟨1∣)⊗ (∣0⟩⟨0∣ − ∣1⟩⟨1∣)
= (∣00⟩⟨00∣ + ∣11⟩⟨11∣) − (∣01⟩⟨01∣ + ∣10⟩⟨10∣)

The associated measurement is the two-outcome projective measurement described by
the set {∣00⟩⟨00∣ + ∣11⟩⟨11∣, ∣01⟩⟨01∣ + ∣10⟩⟨10∣}.
Again we can perform this measurement non-destructively using phase estimation.
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Z
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Repetition code revisited
The 3-bit repetition code encodes qubit states as follows:

α∣0⟩ +β∣1⟩ ↦ α∣000⟩ +β∣111⟩ = ∣ψ⟩
To check that the 3-qubit state ∣ψ⟩ is a valid encoding of a qubit, it suffices to check
these two equations:

(Z⊗Z⊗ 1)∣ψ⟩ = ∣ψ⟩
(1⊗Z⊗Z)∣ψ⟩ = ∣ψ⟩

∣0⟩
∣0⟩

+ +
+ +

∣ψ⟩
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⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
∣ψ⟩

0

0

The 3-qubit Pauli operationsZ⊗Z⊗ 1 and 1⊗Z⊗Z are stabilizer generators for this
code. The stabilizer for the code is the set generated by the stabilizer generators.

⟨Z⊗Z⊗ 1,1⊗Z⊗Z⟩ = {1⊗ 1⊗ 1, Z⊗Z⊗ 1, 1⊗Z⊗Z, Z⊗ 1⊗Z}
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Bit-flip detection
α∣0⟩ +β∣1⟩ ↦ α∣000⟩ +β∣111⟩ = ∣ψ⟩

(Z⊗Z⊗ 1)∣ψ⟩ = ∣ψ⟩
(1⊗Z⊗Z)∣ψ⟩ = ∣ψ⟩

Suppose a bit-flip error occurs on the leftmost qubit.

∣ψ⟩ ↦ (X⊗ 1⊗ 1)∣ψ⟩
By treating the stabilizer generators as observables, we can detect this error.

(Z⊗Z⊗ 1)(X⊗ 1⊗ 1)∣ψ⟩ = −(X⊗ 1⊗ 1)(Z⊗Z⊗ 1)∣ψ⟩ = −(X⊗ 1⊗ 1)∣ψ⟩
(1⊗Z⊗Z)(X⊗ 1⊗ 1)∣ψ⟩ = (X⊗ 1⊗ 1)(1⊗Z⊗Z)∣ψ⟩ = (X⊗ 1⊗ 1)∣ψ⟩

(Z⊗Z⊗ 1)(X⊗ 1⊗ 1) = −(X⊗ 1⊗ 1)(Z⊗Z⊗ 1)
(1⊗Z⊗Z)(X⊗ 1⊗ 1) = (X⊗ 1⊗ 1)(1⊗Z⊗Z)

1⊗ 1⊗ 1 X⊗ 1⊗ 1 1⊗X⊗ 1 1⊗ 1⊗X

Z⊗Z⊗ 1 +1 −1 −1 +1
1⊗Z⊗Z +1 +1 −1 −1

syndromes
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Syndromes
1⊗ 1⊗ 1 X⊗ 1⊗ 1 1⊗X⊗ 1 1⊗ 1⊗X

Z⊗Z⊗ 1 +1 −1 −1 +1
1⊗Z⊗Z +1 +1 −1 −1

syndromes

The syndromes partition the 8-dimensional space into four 2-dimensional subspaces.

+1

−1

+1 −1

Z⊗Z⊗ 1

1⊗Z⊗Z
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3444444444444444444444444444444444444444444444444445444444444444444444444444444444444444444444444444446
∣000⟩∣111⟩ ∣001⟩∣110⟩

∣010⟩∣101⟩∣100⟩∣011⟩
They also partition the 3-qubit Pauli operations into 4 equal-size collections. For example,
1⊗ 1⊗Z, Z⊗Z⊗Z, andX⊗X⊗X all cause the same syndrome (+1,+1).

Pauli operations that commute with every stabilizer generator but are not themselves in
the stabilizer act like Pauli operations on the encoded qubit.
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Stabilizer codes
Aset {P1, . . . ,Pr} ofn-qubit Pauli operations are stabilizer generators for a
stabilizer code if these properties are satisfied:

1. The stabilizer generators all commute with one another.

PjPk = PkPj (for all j,k ∈ {1, . . . , r})
2. The stabilizer generators form aminimal generating set.

Pk ∈ ⟨P1, . . . ,Pk−1,Pk+1, . . . ,Pr⟩ (for each k ∈ {1, . . . , r})
3. At least one nonzero vector is fixed by all of the stabilizer generators.

−1⊗n ∈ ⟨P1, . . . ,Pr⟩
The code space defined by the stabilizer generators contains all vectors that are fixed by
all of the stabilizer generators.

{∣ψ⟩ ∶ ∣ψ⟩ = P1∣ψ⟩ = ⋯ = Pr∣ψ⟩}



Examples
3-bit repetition code (bit-flips)

Z⊗Z⊗ 1

1 ⊗Z⊗Z

3-bit repetition code (phase-flips)

X⊗X⊗ 1

1 ⊗X⊗X

9-qubit Shor code

Z⊗Z⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

1 ⊗Z⊗Z⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

1 ⊗ 1 ⊗ 1 ⊗Z⊗Z⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗Z⊗Z⊗ 1 ⊗ 1 ⊗ 1

1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗Z⊗Z⊗ 1

1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗Z⊗Z

X⊗X⊗X⊗X⊗X⊗X⊗ 1 ⊗ 1 ⊗ 1

1 ⊗ 1 ⊗ 1 ⊗X⊗X⊗X⊗X⊗X⊗X



Examples
3-bit repetition code (bit-flips)

ZZ 1

1 ZZ

3-bit repetition code (phase-flips)

XX 1

1 XX

9-qubit Shor code

ZZ 1 1 1 1 1 1 1

1 ZZ 1 1 1 1 1 1

1 1 1 ZZ 1 1 1 1

1 1 1 1 ZZ 1 1 1

1 1 1 1 1 1 ZZ 1

1 1 1 1 1 1 1 ZZ

XXXXXX 1 1 1

1 1 1 XXXXXX



Examples
7-qubit Steane code

ZZZZ 1 1 1

ZZ 1 1 ZZ 1

Z 1 Z 1 Z 1 Z

XXXX 1 1 1

XX 1 1 XX 1

X 1 X 1 X 1 X

E-bit stabilizer code

ZZ

XX

5-qubit code

XZZX 1

1 XZZX

X 1 XZZ

ZX 1 XZ

GHZ stabilizer code

ZZ 1

1 ZZ

XXX



Code space dimension
Suppose that {P1, . . . ,Pr} aren-qubit stabilizer generators for a stabilizer code.
1. PjPk = PkPj for all j,k ∈ {1, . . . , r}
2. Pk ∈ ⟨P1, . . . ,Pk−1,Pk+1, . . . ,Pr⟩ for each k ∈ {1, . . . , r}
3. −1 ∈ ⟨P1, . . . ,Pr⟩

Theorem

The code space defined by {P1, . . . ,Pr} has dimension 2n−r.
(Equivalently, the code defined by these generators encodes n − r qubits.)

3-bit repetition code (bit-flips)

ZZ 1

1 ZZ

n = 3 qubits
r = 2 stabilizer generators
⇒ 3 − 2 = 1 encoded qubit

Every element in the stabilizer can be written in a unique way as Pa1
1 ⋯P

ar
r for

a1, . . . ,ar ∈ {0, 1}.
P
a1
1 ⋯P

ar
r = 1

⊗n ⇔ (a1, . . . ,ar) = (0, . . . , 0)
The projectionΠk onto the +1 eigenspace of Pk can be expressed like this:

Πk = 1
⊗n + Pk

2

The projectionsΠ1, . . . ,Πr commute. The projection onto the code space is their product.

Π1 ⋯Πr = (1⊗n + P1
2 )⋯(1⊗n + Pr

2 ) = 1
2r ∑

a1,...,ar∈{0,1}
P
a1
1 ⋯P

ar
r

The dimension of the code space is the trace of this projection.

Tr(Π1 ⋯Πr) = 1
2r ∑

a1,...,ar∈{0,1}
Tr(Pa1

1 ⋯P
ar
r ) = 2n

2r = 2n−r
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n = 5 qubits
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E-bit stabilizer code

ZZ

XX

n = 2 qubits
r = 2 stabilizer generators
⇒ 2 − 2 = 0 encoded qubits

The code space is the 1-dimensional
space spanned by the vector ∣φ+⟩.
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Clifford operations and encodings
Clifford operations

Clifford operations are unitary operations that can be implemented by quantum
circuits with gates from this list:

• Hadamard gates
• S gates
• CNOT gates

Up to a global phase, ann-qubit unitary operation is a Clifford operation if and only if it
mapsn-qubit Pauli operations ton-qubit Pauli operations by conjugation.

Equivalently,U is a Clifford operation (up to a global phase) if for every
P0, . . . ,Pn−1 ∈ {1,X,Y,Z} there existQ0, . . . ,Qn−1 ∈ {1,X,Y,Z} such that

U(Pn−1 ⊗⋯⊗ P0)U† = ±Qn−1 ⊗⋯⊗Q0

Clifford operations are not universal for quantum computation.

There are only finitely manyn-qubit Clifford operations and their actions on standard
basis states can be efficiently simulated classically by the Gottesman–Knill theorem.

Encodings for stabilizer codes can always be performed by Clifford operations. At most
O(n2/ log(n)) gates are required.

Example: encoder for the 7-qubit Steane code
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Detecting errors
Let P1, . . . ,Pr be stabilizer generators for ann-qubit stabilizer code, and letE be an
n-qubit Pauli operation, representing a hypothetical error.

Errors are detected in a stabilizer code bymeasuring the stabilizer generators (as
observables). The r outcomes form the syndrome.

Case 1:E = αQ forQ ∈ ⟨P1, . . . ,Pr⟩.
This error does nothing to vectors in the code space:E∣ψ⟩ = α∣ψ⟩ for every
encoded state ∣ψ⟩.

Case 2:E ≠ αQ forQ ∈ ⟨P1, . . . ,Pr⟩, butEPk = PkE for every k ∈ {1, . . . , r}.
This error changes vectors in the code space and goes undetected by the code.

Case 3: PkE = −EPk for at least one k ∈ {1, . . . , r}.
This error is detected by the code.

The distance of a stabilizer code is theminimum weight of a Pauli operation that changes
vectors in the code space but goes undetected by the code.

Notation: an [[n,m,d]] stabilizer code is one that encodesm qubits inton qubits and
has distanced.



7-qubit Steane code
ZZZZ 1 1 1

ZZ 1 1 ZZ 1

Z 1 Z 1 Z 1 Z

XXXX 1 1 1

XX 1 1 XX 1

X 1 X 1 X 1 X

The distance is the minimum weight of
ann-qubit Pauli operation that

1. commutes with every stabilizer
generator, and

2. is not proportional to a stabilizer
element.

This code has distance 3.

✓

We can first reason that every Pauli operation with weight at most 2 that commutes with
every stabilizer generator must be the identity operation.
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X 1 X 1 X 1 X

Z Z Z Z 1 1 1

X X X X 1 1 1
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7-qubit Steane code
ZZZZ 1 1 1

ZZ 1 1 ZZ 1

Z 1 Z 1 Z 1 Z

XXXX 1 1 1

XX 1 1 XX 1

X 1 X 1 X 1 X

The distance is the minimum weight of
ann-qubit Pauli operation that

1. commutes with every stabilizer
generator, and

2. is not proportional to a stabilizer
element.

This code has distance 3.✓

We can first reason that every Pauli operation with weight at most 2 that commutes with
every stabilizer generator must be the identity operation.

On the other hand, there are weight 3 Pauli operations that commute with every stabilizer
generator and fall outside of the stabilizer.

Two examples:

1 1 1 1 X X X

1 1 1 1 Z Z Z
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Correcting errors
Let P1, . . . ,Pr be stabilizer generators for ann-qubit stabilizer code.

• The 2r syndromes partition then-qubit Pauli operations into equal-size sets,
with 4n/2r Pauli operations in each set.

• IfE is an error and S ∈ ⟨P1, . . . ,Pr⟩ is a stabilizer element, thenE andES are
equivalent errors:E∣ψ⟩ = ES∣ψ⟩ for every ∣ψ⟩ in the code space.

• This leaves 4n−r inequivalent classes of errors for each syndrome.

So, unless r = n (i.e., the code space is one-dimensional) we cannot correct every error.
Rather, we must choose one correction operation for each syndrome (which corrects at
most one class of equivalent errors).

Natural strategy

For each syndrome s, choose a lowest weight Pauli operation that causes the
syndrome s as the corresponding correction operation.

For a distanced stabilizer code, this strategy corrects all errors having weight at most(d − 1)/2.

Unfortunately, for a given choice of stabilizer generators and a syndrome, it is
computationally difficult to find the lowest weight Pauli operation causing that syndrome.

Finding codes for which this can be done efficiently is part of the artistry in code design.
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