Understanding Quantum Information and Computation

Lesson 14

The Stabilizer Formalism

John Watrous

Pauli operations

$$\mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Anti-commutation relations:

$$XY = -YX$$
 $XZ = -ZX$ $YZ = -ZY$

Multiplication rules:

$$XY = iZ$$
 $YZ = iX$ $ZX = iY$ $XX = YY = ZZ = 1$

An n-qubit Pauli operation is the n-fold tensor product of Pauli matrices. Its weight is the number of non-identity Pauli matrices in the tensor product.

Pauli operations as generators

$$\mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Suppose that P_1, \ldots, P_r are n-qubit Pauli operations.

The set generated by P_1, \ldots, P_r includes all matrices that can be obtained from P_1, \ldots, P_r by multiplication (taking any number of each operation and in any order).

Notation: $\langle P_1, \ldots, P_r \rangle$

Example 1

$$\langle X, Y, Z \rangle = \{ \alpha P : \alpha \in \{1, i, -1, -i\}, P \in \{1, X, Y, Z\} \}$$
 (16 elements)

Example 2

$$\langle X, Z \rangle = \{1, X, Z, XZ, -1, -X, -Z, -XZ\}$$
 (8 elements)

Pauli operations as generators

$$\mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Suppose that P_1, \ldots, P_r are n-qubit Pauli operations.

The set generated by P_1, \ldots, P_r includes all matrices that can be obtained from P_1, \ldots, P_r by multiplication (taking any number of each operation and in any order).

Notation: $\langle P_1, \ldots, P_r \rangle$

Example 2

$$(X, Z) = \{1, X, Z, XZ, -1, -X, -Z, -XZ\}$$
 (8 elements)

$$\langle X \otimes X, Z \otimes Z \rangle = \{ \mathbb{1} \otimes \mathbb{1}, X \otimes X, -Y \otimes Y, Z \otimes Z \}$$
 (4 elements)

Pauli observables

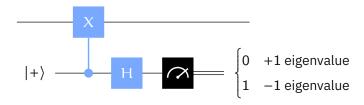
Pauli matrices describe unitary operations — but they also describe measurements.

More precisely, we can associate each Pauli matrix with a *projective measurement* defined by its eigenvectors.

$$X = |+\rangle\langle +|-|-\rangle\langle -| \qquad Y = |+\mathrm{i}\rangle\langle +\mathrm{i}|-|-\mathrm{i}\rangle\langle -\mathrm{i}| \qquad Z = |0\rangle\langle 0|-|1\rangle\langle 1|$$

For example, an X measurement is a measurement with respect to the basis $\{|+\rangle, |-\rangle\}$. Equivalently it is the measurement described by the set $\{|+\rangle\langle+|, |-\rangle\langle-|\}$.

We can perform this measurement non-destructively using *phase estimation*.



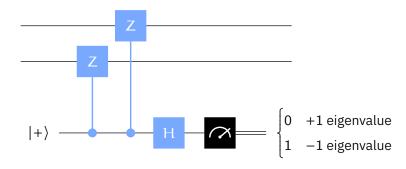
Pauli observables

This extends naturally to n-qubit Pauli operations. For example, consider $Z \otimes Z$.

$$Z \otimes Z = (|0\rangle\langle 0| - |1\rangle\langle 1|) \otimes (|0\rangle\langle 0| - |1\rangle\langle 1|)$$
$$= (|00\rangle\langle 00| + |11\rangle\langle 11|) - (|01\rangle\langle 01| + |10\rangle\langle 10|)$$

The associated measurement is the two-outcome projective measurement described by the set $\{|00\rangle\langle00| + |11\rangle\langle11|, |01\rangle\langle01| + |10\rangle\langle10|\}$.

Again we can perform this measurement non-destructively using phase estimation.



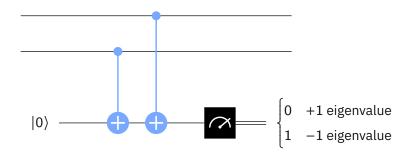
Pauli observables

This extends naturally to n-qubit Pauli operations. For example, consider $Z \otimes Z$.

$$Z \otimes Z = (|0\rangle\langle 0| - |1\rangle\langle 1|) \otimes (|0\rangle\langle 0| - |1\rangle\langle 1|)$$
$$= (|00\rangle\langle 00| + |11\rangle\langle 11|) - (|01\rangle\langle 01| + |10\rangle\langle 10|)$$

The associated measurement is the two-outcome projective measurement described by the set $\{|00\rangle\langle00| + |11\rangle\langle11|, |01\rangle\langle01| + |10\rangle\langle10|\}$.

Again we can perform this measurement non-destructively using phase estimation.



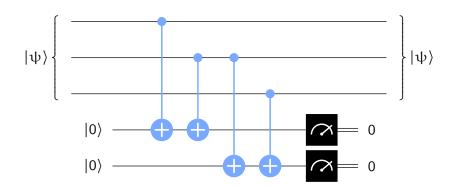
Repetition code revisited

The 3-bit repetition code encodes qubit states as follows:

$$\alpha|0\rangle + \beta\,|1\rangle \mapsto \alpha|000\rangle + \beta\,|111\rangle = |\psi\rangle$$

To check that the 3-qubit state $|\psi\rangle$ is a valid encoding of a qubit, it suffices to check these two equations:

$$(Z \otimes Z \otimes 1)|\psi\rangle = |\psi\rangle$$
$$(1 \otimes Z \otimes Z)|\psi\rangle = |\psi\rangle$$



Repetition code revisited

The 3-bit repetition code encodes qubit states as follows:

$$\alpha|0\rangle + \beta|1\rangle \mapsto \alpha|000\rangle + \beta|111\rangle = |\psi\rangle$$

To check that the 3-qubit state $|\psi\rangle$ is a valid encoding of a qubit, it suffices to check these two equations:

$$(Z \otimes Z \otimes 1)|\psi\rangle = |\psi\rangle$$
$$(1 \otimes Z \otimes Z)|\psi\rangle = |\psi\rangle$$

The 3-qubit Pauli operations $Z \otimes Z \otimes \mathbb{1}$ and $\mathbb{1} \otimes Z \otimes Z$ are stabilizer generators for this code. The stabilizer for the code is the set generated by the stabilizer generators.

$$\left\langle Z\otimes Z\otimes \mathbb{1},\mathbb{1}\otimes Z\otimes Z\right\rangle =\left\{ \mathbb{1}\otimes \mathbb{1}\otimes \mathbb{1},\, Z\otimes Z\otimes \mathbb{1},\, \mathbb{1}\otimes Z\otimes Z,\, Z\otimes \mathbb{1}\otimes Z\right\}$$

Bit-flip detection

$$\alpha|0\rangle + \beta|1\rangle \mapsto \alpha|000\rangle + \beta|111\rangle = |\psi\rangle$$

$$(Z \otimes Z \otimes 1)|\psi\rangle = |\psi\rangle$$

$$(1 \otimes Z \otimes Z)|\psi\rangle = |\psi\rangle$$

Suppose a bit-flip error occurs on the leftmost qubit.

$$|\psi\rangle \, \mapsto \, (X \otimes \mathbb{1} \otimes \mathbb{1}) |\psi\rangle$$

By treating the stabilizer generators as observables, we can detect this error.

$$(Z \otimes Z \otimes 1)(X \otimes 1 \otimes 1)|\psi\rangle = -(X \otimes 1 \otimes 1)(Z \otimes Z \otimes 1)|\psi\rangle = -(X \otimes 1 \otimes 1)|\psi\rangle$$

$$(1 \otimes Z \otimes Z)(X \otimes 1 \otimes 1)|\psi\rangle = (X \otimes 1 \otimes 1)(1 \otimes Z \otimes Z)|\psi\rangle = (X \otimes 1 \otimes 1)|\psi\rangle$$

$$(Z \otimes Z \otimes 1)(X \otimes 1 \otimes 1) = -(X \otimes 1 \otimes 1)(Z \otimes Z \otimes 1)$$

$$(1 \otimes Z \otimes Z)(X \otimes 1 \otimes 1) = (X \otimes 1 \otimes 1)(1 \otimes Z \otimes Z)$$

Bit-flip detection

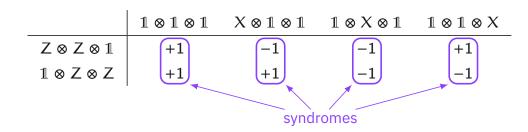
$$\alpha|0\rangle + \beta|1\rangle \mapsto \alpha|000\rangle + \beta|111\rangle = |\psi\rangle$$
$$(Z \otimes Z \otimes 1)|\psi\rangle = |\psi\rangle$$
$$(1 \otimes Z \otimes Z)|\psi\rangle = |\psi\rangle$$

Suppose a bit-flip error occurs on the leftmost qubit.

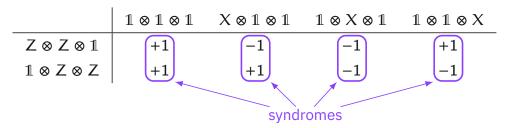
$$|\psi\rangle \, \mapsto \, (X \otimes \mathbb{1} \otimes \mathbb{1}) |\psi\rangle$$

By treating the stabilizer generators as observables, we can detect this error.

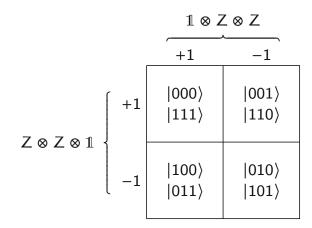
$$(Z \otimes Z \otimes \mathbb{1})(X \otimes \mathbb{1} \otimes \mathbb{1}) = -(X \otimes \mathbb{1} \otimes \mathbb{1})(Z \otimes Z \otimes \mathbb{1})$$
$$(\mathbb{1} \otimes Z \otimes Z)(X \otimes \mathbb{1} \otimes \mathbb{1}) = (X \otimes \mathbb{1} \otimes \mathbb{1})(\mathbb{1} \otimes Z \otimes Z)$$



Syndromes



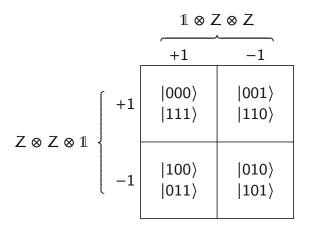
The syndromes partition the 8-dimensional space into four 2-dimensional subspaces.



They also partition the 3-qubit Pauli operations into 4 equal-size collections. For example, $\mathbb{1} \otimes \mathbb{1} \otimes \mathbb{Z}$, $\mathbb{Z} \otimes \mathbb{Z} \otimes \mathbb{Z}$, and $\mathbb{X} \otimes \mathbb{X} \otimes \mathbb{X}$ all cause the same syndrome (+1, +1).

Syndromes

The syndromes partition the 8-dimensional space into four 2-dimensional subspaces.



They also partition the 3-qubit Pauli operations into 4 equal-size collections. For example, $\mathbb{1} \otimes \mathbb{1} \otimes \mathbb{Z}$, $\mathbb{Z} \otimes \mathbb{Z} \otimes \mathbb{Z}$, and $\mathbb{X} \otimes \mathbb{X} \otimes \mathbb{X}$ all cause the same syndrome (+1, +1).

Pauli operations that commute with every stabilizer generator but are not themselves in the stabilizer act like Pauli operations on the encoded qubit.

Stabilizer codes

A set $\{P_1, ..., P_r\}$ of n-qubit Pauli operations are stabilizer generators for a stabilizer code if these properties are satisfied:

1. The stabilizer generators all *commute* with one another.

$$P_{j}P_{k} = P_{k}P_{j} \qquad \text{(for all } j, k \in \{1, \dots, r\}\text{)}$$

2. The stabilizer generators form a *minimal generating set*.

$$P_k \notin \left\langle P_1, \ldots, P_{k-1}, P_{k+1}, \ldots, P_r \right\rangle \qquad (\text{for each } k \in \{1, \ldots, r\})$$

3. At least one nonzero vector is fixed by all of the stabilizer generators.

$$-1^{\otimes n} \notin \langle P_1, \ldots, P_r \rangle$$

The <u>code space</u> defined by the stabilizer generators contains all vectors that are fixed by all of the stabilizer generators.

$$\{|\psi\rangle: |\psi\rangle = P_1|\psi\rangle = \cdots = P_r|\psi\rangle\}$$

Examples

```
3-bit repetition code (bit-flips) Z \otimes Z \otimes 11 \otimes Z \otimes Z
```

3-bit repetition code (phase-flips) —
$$X \otimes X \otimes \mathbb{1}$$

$$\mathbb{1} \otimes X \otimes X$$

```
9-qubit Shor code
                                           Z \otimes Z \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1
                                           1 \otimes Z \otimes Z \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1
                                           1 \otimes 1 \otimes 1 \otimes Z \otimes Z \otimes 1 \otimes 1 \otimes 1 \otimes 1
                                           1 \otimes 1 \otimes 1 \otimes 1 \otimes Z \otimes Z \otimes 1 \otimes 1 \otimes 1
                                           1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes Z \otimes Z \otimes 1
                                           1 \otimes Z \otimes Z
                                           X \otimes X \otimes X \otimes X \otimes X \otimes X \otimes 1 \otimes 1 \otimes 1
                                           1 \otimes 1 \otimes 1 \otimes X \otimes X \otimes X \otimes X \otimes X \otimes X
```

Examples

```
ZZ1
1ZZ
```

```
3-bit repetition code (phase-flips) —

XX1
1XX
```

```
9-qubit Shor code

ZZ1111111

1 ZZ11111

1 11ZZ1111

1 11ZZ111

1 11111ZZ1

1 11111ZZ

XXXXXXX111

1 11XXXXXXX
```

Examples

7-qubit Steane code

ZZZZIII ZZIIZZI ZIZIZIZ XXXXIII XXIIXXI XIXIXIX

E-bit stabilizer code

Z Z X X

5-qubit code

GHZ stabilizer code

Z Z 1 1 Z Z X X X

Suppose that $\{P_1, \ldots, P_r\}$ are n-qubit stabilizer generators for a stabilizer code.

- 1. $P_j P_k = P_k P_j$ for all $j, k \in \{1, ..., r\}$
- 2. $P_k \notin \langle P_1, \dots, P_{k-1}, P_{k+1}, \dots, P_r \rangle$ for each $k \in \{1, \dots, r\}$
- 3. $-1 \notin \langle P_1, \ldots, P_r \rangle$

Theorem

The code space defined by $\{P_1, \ldots, P_r\}$ has dimension 2^{n-r} .

(Equivalently, the code defined by these generators encodes n-r qubits.)

3-bit repetition code (bit-flips)

$$n = 3$$
 qubits
 $r = 2$ stabilizer generators
 $\Rightarrow 3 - 2 = 1$ encoded qubit

Suppose that $\{P_1, \ldots, P_r\}$ are n-qubit stabilizer generators for a stabilizer code.

- 1. $P_j P_k = P_k P_j$ for all $j, k \in \{1, ..., r\}$
- 2. $P_k \notin \langle P_1, \dots, P_{k-1}, P_{k+1}, \dots, P_r \rangle$ for each $k \in \{1, \dots, r\}$
- 3. $-1 \notin \langle P_1, \ldots, P_r \rangle$

Theorem

The code space defined by $\{P_1, \ldots, P_r\}$ has dimension 2^{n-r} .

(Equivalently, the code defined by these generators encodes n-r qubits.)

5-qubit code

$$n = 5$$
 qubits
 $r = 4$ stabilizer generators
 $\Rightarrow 5 - 4 = 1$ encoded qubit

Suppose that $\{P_1, \ldots, P_r\}$ are n-qubit stabilizer generators for a stabilizer code.

- 1. $P_j P_k = P_k P_j$ for all $j, k \in \{1, ..., r\}$
- 2. $P_k \notin \langle P_1, \dots, P_{k-1}, P_{k+1}, \dots, P_r \rangle$ for each $k \in \{1, \dots, r\}$
- 3. $-1 \notin \langle P_1, \ldots, P_r \rangle$

Theorem

The code space defined by $\{P_1, \ldots, P_r\}$ has dimension 2^{n-r} .

(Equivalently, the code defined by these generators encodes n-r qubits.)

E-bit stabilizer code

ZZ

XX

$$n = 2$$
 qubits
 $r = 2$ stabilizer generators
 $\Rightarrow 2 - 2 = 0$ encoded qubits

The code space is the 1-dimensional space spanned by the vector $|\phi^+\rangle$.

Suppose that $\{P_1, \ldots, P_r\}$ are n-qubit stabilizer generators for a stabilizer code.

- 1. $P_j P_k = P_k P_j$ for all $j, k \in \{1, ..., r\}$
- 2. $P_k \notin \langle P_1, \dots, P_{k-1}, P_{k+1}, \dots, P_r \rangle$ for each $k \in \{1, \dots, r\}$
- 3. $-1 \notin \langle P_1, \ldots, P_r \rangle$

Theorem

The code space defined by $\{P_1, \ldots, P_r\}$ has dimension 2^{n-r} .

(Equivalently, the code defined by these generators encodes n - r qubits.)

Every element in the stabilizer can be written in a unique way as $P_1^{\alpha_1} \cdots P_r^{\alpha_r}$ for $\alpha_1, \ldots, \alpha_r \in \{0, 1\}$.

$$P_1^{\alpha_1} \cdots P_r^{\alpha_r} = \mathbb{1}^{\otimes n} \iff (\alpha_1, \dots, \alpha_r) = (0, \dots, 0)$$

The projection Π_k onto the +1 eigenspace of P_k can be expressed like this:

$$\Pi_k = \frac{\mathbb{1}^{\otimes n} + P_k}{2}$$

Theorem

The code space defined by $\{P_1, \ldots, P_r\}$ has dimension 2^{n-r} .

(Equivalently, the code defined by these generators encodes n-r qubits.)

Every element in the stabilizer can be written in a unique way as $P_1^{\alpha_1} \cdots P_r^{\alpha_r}$ for $\alpha_1, \ldots, \alpha_r \in \{0, 1\}$.

$$P_1^{\alpha_1} \cdots P_r^{\alpha_r} = \mathbb{1}^{\otimes n} \iff (\alpha_1, \dots, \alpha_r) = (0, \dots, 0)$$

The projection Π_k onto the +1 eigenspace of P_k can be expressed like this:

$$\Pi_k = \frac{1^{\otimes n} + P_k}{2}$$

The projections Π_1, \ldots, Π_r commute. The projection onto the code space is their product.

$$\Pi_1 \cdots \Pi_r = \left(\frac{\mathbb{1}^{\otimes n} + P_1}{2}\right) \cdots \left(\frac{\mathbb{1}^{\otimes n} + P_r}{2}\right) = \frac{1}{2^r} \sum_{\alpha_1, \dots, \alpha_r \in \{0, 1\}} P_1^{\alpha_1} \cdots P_r^{\alpha_r}$$

Theorem

The code space defined by $\{P_1, \ldots, P_r\}$ has dimension 2^{n-r} .

(Equivalently, the code defined by these generators encodes n - r qubits.)

Every element in the stabilizer can be written in a unique way as $P_1^{\alpha_1} \cdots P_r^{\alpha_r}$ for $\alpha_1, \ldots, \alpha_r \in \{0, 1\}$.

$$P_1^{\alpha_1} \cdots P_r^{\alpha_r} = \mathbb{1}^{\otimes n} \iff (\alpha_1, \dots, \alpha_r) = (0, \dots, 0)$$

The projections Π_1, \ldots, Π_r commute. The projection onto the code space is their product.

$$\Pi_1 \cdots \Pi_r = \left(\frac{\mathbb{1}^{\otimes n} + P_1}{2}\right) \cdots \left(\frac{\mathbb{1}^{\otimes n} + P_r}{2}\right) = \frac{1}{2^r} \sum_{\alpha_1, \dots, \alpha_r \in \{0, 1\}} P_1^{\alpha_1} \cdots P_r^{\alpha_r}$$

The dimension of the code space is the trace of this projection.

$$\operatorname{Tr}(\Pi_1 \cdots \Pi_r) = \frac{1}{2^r} \sum_{\alpha_1, \dots, \alpha_r \in \{0, 1\}} \operatorname{Tr}(P_1^{\alpha_1} \cdots P_r^{\alpha_r}) = \frac{2^n}{2^r} = 2^{n-r}$$

Clifford operations and encodings

Clifford operations

Clifford operations are unitary operations that can be implemented by quantum circuits with gates from this list:

- Hadamard gates
- S gates
- CNOT gates

Up to a global phase, an n-qubit unitary operation is a Clifford operation if and only if it maps n-qubit Pauli operations to n-qubit Pauli operations by conjugation.

Equivalently, U is a Clifford operation (up to a global phase) if for every $P_0, \ldots, P_{n-1} \in \{1, X, Y, Z\}$ there exist $Q_0, \ldots, Q_{n-1} \in \{1, X, Y, Z\}$ such that

$$U(P_{n-1} \otimes \cdots \otimes P_0)U^{\dagger} = \pm Q_{n-1} \otimes \cdots \otimes Q_0$$

Clifford operations are *not universal* for quantum computation.

There are only finitely many n-qubit Clifford operations and their actions on standard basis states can be efficiently simulated classically by the *Gottesman–Knill theorem*.

Clifford operations and encodings

Clifford operations

Clifford operations are unitary operations that can be implemented by quantum circuits with gates from this list:

- Hadamard gates
- S gates
- CNOT gates

Clifford operations are *not universal* for quantum computation.

There are only finitely many n-qubit Clifford operations and their actions on standard basis states can be efficiently simulated classically by the <u>Gottesman-Knill theorem</u>.

Encodings for stabilizer codes can always be performed by Clifford operations. At most $O(n^2/\log(n))$ gates are required.

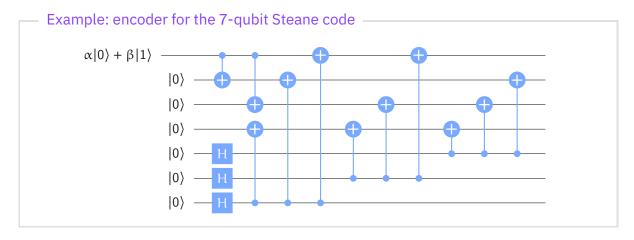
Clifford operations and encodings

Clifford operations

Clifford operations are unitary operations that can be implemented by quantum circuits with gates from this list:

- Hadamard gates
- S gates
- CNOT gates

Encodings for stabilizer codes can always be performed by Clifford operations. At most $O(n^2/\log(n))$ gates are required.



Detecting errors

Let P_1, \ldots, P_r be stabilizer generators for an n-qubit stabilizer code, and let E be an n-qubit Pauli operation, representing a *hypothetical error*.

Errors are detected in a stabilizer code by measuring the stabilizer generators (as observables). The r outcomes form the syndrome.

Case 1:
$$E = \alpha Q$$
 for $Q \in \langle P_1, \dots, P_r \rangle$.

This error does nothing to vectors in the code space: $E|\psi\rangle = \alpha|\psi\rangle$ for every encoded state $|\psi\rangle$.

Case 2:
$$E \neq \alpha Q$$
 for $Q \in \langle P_1, \dots, P_r \rangle$, but $EP_k = P_k E$ for every $k \in \{1, \dots, r\}$.

This error changes vectors in the code space and goes undetected by the code.

Case 3:
$$P_k E = -EP_k$$
 for at least one $k \in \{1, ..., r\}$.

This error is *detected* by the code.

The <u>distance</u> of a stabilizer code is the <u>minimum weight</u> of a Pauli operation that changes vectors in the code space but goes undetected by the code.

Notation: an [[n, m, d]] stabilizer code is one that encodes m qubits into n qubits and has distance d.

```
ZZZZ1111
ZZ11ZZ1
Z1Z1Z1Z
XXXX111
XX11XX1
X1X1X1X
```

The distance is the minimum weight of an n-qubit Pauli operation that

- commutes with every stabilizer generator, and
- 2. is not proportional to a stabilizer element.

This code has distance 3.

We can first reason that every Pauli operation with weight at most 2 that commutes with every stabilizer generator must be the identity operation.

```
P Q 1 1 1 1 1 1 Z 1 Z 1 X 1 X 1 X 1 X
```

```
ZZZZ111
ZZ11ZZ1
Z1Z1Z1Z
XXXX111
XX11XX1
X1X1X1X
```

The distance is the minimum weight of an n-qubit Pauli operation that

- commutes with every stabilizer generator, and
- 2. is not proportional to a stabilizer element.

This code has distance 3.

We can first reason that every Pauli operation with weight at most 2 that commutes with every stabilizer generator must be the identity operation.

```
ZZZZ111
ZZ11ZZ1
Z1Z1Z1Z
XXXX111
XX11XX1
```

The distance is the minimum weight of an n-qubit Pauli operation that

- commutes with every stabilizer generator, and
- 2. is not proportional to a stabilizer element.

This code has distance 3.

We can first reason that every Pauli operation with weight at most 2 that commutes with every stabilizer generator must be the identity operation.

ZZZZ1111 ZZ11Z1Z1Z XXXX1111 XX11XXX1 The $\frac{distance}{distance}$ is the minimum weight of an n-qubit Pauli operation that

- commutes with every stabilizer generator, and
- 2. is not proportional to a stabilizer element.

This code has distance 3. ✓

We can first reason that every Pauli operation with weight at most 2 that commutes with every stabilizer generator must be the identity operation.

On the other hand, there are weight 3 Pauli operations that commute with every stabilizer generator and fall outside of the stabilizer.

Two examples:

1 1 1 1 X X X 1 1 1 1 1 Z Z Z

Correcting errors

Let P_1, \ldots, P_r be stabilizer generators for an n-qubit stabilizer code.

- The 2^r syndromes partition the n-qubit Pauli operations into equal-size sets, with $4^n/2^r$ Pauli operations in each set.
- If E is an error and $S \in \langle P_1, \dots, P_r \rangle$ is a stabilizer element, then E and ES are equivalent errors: $E|\psi\rangle = ES|\psi\rangle$ for every $|\psi\rangle$ in the code space.
- This leaves 4^{n-r} inequivalent classes of errors for each syndrome.

So, unless r = n (i.e., the code space is one-dimensional) we cannot correct every error. Rather, we must choose one correction operation for each syndrome (which corrects at most one class of equivalent errors).

Natural strategy

For each syndrome s, choose a <u>lowest weight</u> Pauli operation that causes the syndrome s as the corresponding correction operation.

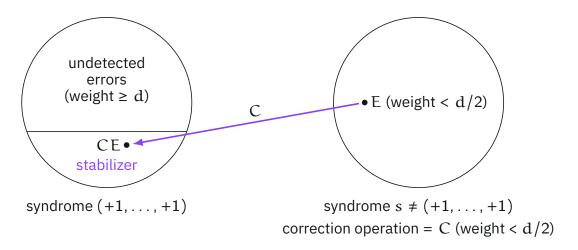
For a distance d stabilizer code, this strategy corrects all errors having weight at most (d-1)/2.

Correcting errors

Natural strategy

For each syndrome s, choose a *lowest weight* Pauli operation that causes the syndrome s as the corresponding correction operation.

For a distance d stabilizer code, this strategy corrects all errors having weight at most (d-1)/2.



Correcting errors

Natural strategy

For each syndrome s, choose a <u>lowest weight</u> Pauli operation that causes the syndrome s as the corresponding correction operation.

For a distance d stabilizer code, this strategy corrects all errors having weight at most (d-1)/2.

Unfortunately, for a given choice of stabilizer generators and a syndrome, it is computationally difficult to find the lowest weight Pauli operation causing that syndrome.

Finding codes for which this can be done efficiently is part of the artistry in code design.