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Purifications
Definition

A purification of a state (represented by a density matrix) is a pure state of a
larger, compound system that leaves the original state when the rest of the
compound system is traced out.

In mathematical terms: if X is a system in a state ρ, and ∣ψ⟩ is a quantum state
vector of a pair (X, Y) such that

ρ = TrY(∣ψ⟩⟨ψ∣)
then ∣ψ⟩ is a purification of ρ.

Fact

Every density matrix ρ has a purification like this provided that Y has at least as
many classical states as X.

This is a critically important notion in quantum information theory.



Existence of purifications
Suppose X is a system and ρ is a density matrix representing a state of X. Consider any
expression of ρ as a convex combination of pure states.

ρ =
n−1
∑
a=0

pa∣φa⟩⟨φa∣
In this expression (p0, . . . ,pn−1) is a probability vector and ∣φ0⟩, . . . , ∣φn−1⟩ are
quantum state vectors.

Here’s a purification of ρ:

∣ψ⟩ = n−1
∑
a=0

√
pa ∣φa⟩⊗ ∣a⟩

(We’re assume for simplicity that the classical states of Y include 0, . . . ,n − 1.)

TrY(∣ψ⟩⟨ψ∣) = n−1
∑

a,b=0

√
pa

√
pb ∣φa⟩⟨φb∣Tr(∣a⟩⟨b∣) = n−1

∑
a=0

pa ∣φa⟩⟨φa∣ = ρ
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3
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1
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1
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1
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⎞⎟⎠ = 1
2 ∣0⟩⟨0∣ + 1

2 ∣+⟩⟨+∣

∣ψ⟩ = 1√
2
∣0⟩⊗ ∣0⟩ + 1√
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∣+⟩⊗ ∣1⟩



Schmidt decompositions
Every quantum state vector ∣ψ⟩ of a pair of systems (X, Y) can be expressed in a special
form known as a Schmidt decomposition:

∣ψ⟩ = r−1
∑
a=0

√
pa ∣xa⟩⊗ ∣ya⟩ (p0, . . . ,pr−1 > 0)

Both of the sets {∣x0⟩, . . . , ∣xr−1⟩} and {∣y0⟩, . . . , ∣yr−1⟩}must be orthonormal.

Finding a Schmidt decomposition

1. Compute a spectral decomposition of the reduced state ρ = TrY(∣ψ⟩⟨ψ∣):
ρ =

r−1
∑
a=0

pa∣xa⟩⟨xa∣ (p0, . . . ,pr−1 > 0)

2. For each a = 0, . . . , r − 1 define ∣ya⟩ as follows:
∣ya⟩ = (⟨xa∣⊗ 1)∣ψ⟩√

pa



Schmidt decompositions
Example

Consider this state of a pair of qubits (X, Y):
∣ψ⟩ = 1√

2
∣0⟩⊗ ∣0⟩ + 1√

2
∣+⟩⊗ ∣1⟩

First compute a spectral decomposition of the reduced state of X:

ρ = cos2(π/8) ∣ψπ/8⟩⟨ψπ/8∣ + sin2(π/8) ∣ψ5π/8⟩⟨ψ5π/8∣
We will make these selections:

p0 = cos2(π/8), p1 = sin2(π/8), ∣x0⟩ = ∣ψπ/8⟩, ∣x1⟩ = ∣ψ5π/8⟩.
It remains to compute ∣y0⟩ and ∣y1⟩:

∣y0⟩ = (⟨x0∣⊗ 1)∣ψ⟩√
p0

= ∣+⟩ ∣y1⟩ = (⟨x1∣⊗ 1)∣ψ⟩√
p1

= −∣−⟩



Schmidt decompositions
Example

Consider this state of a pair of qubits (X, Y):
∣ψ⟩ = 1√

2
∣0⟩⊗ ∣0⟩ + 1√

2
∣+⟩⊗ ∣1⟩

p0 = cos2(π/8), p1 = sin2(π/8), ∣x0⟩ = ∣ψπ/8⟩, ∣x1⟩ = ∣ψ5π/8⟩.
∣y0⟩ = (⟨x0∣⊗ 1)∣ψ⟩√

p0
= ∣+⟩ ∣y1⟩ = (⟨x1∣⊗ 1)∣ψ⟩√

p1
= −∣−⟩

We obtain the following Schmidt decomposition of ∣ψ⟩:
∣ψ⟩ = cos(π/8) ∣ψπ/8⟩⊗ ∣+⟩ − sin(π/8) ∣ψ5π/8⟩⊗ ∣−⟩



Unitary equivalence of purifications
Unitary equivalence of purifications

Suppose that ∣ψ⟩ and ∣φ⟩ are pure states of a pair of systems (X, Y) that satisfy
TrY(∣ψ⟩⟨ψ∣) = ρ = TrY(∣φ⟩⟨φ∣)

There exists a unitary operation U on Y alone that transforms ∣ψ⟩ into ∣φ⟩:
(1X ⊗U)∣ψ⟩ = ∣φ⟩

Consider a spectral decomposition of ρ.

ρ =
r−1
∑
a=0

pa∣xa⟩⟨xa∣
Compute Schmidt decompositions for both ∣ψ⟩ and ∣φ⟩:

∣ψ⟩ = r−1
∑
a=0

√
pa ∣xa⟩⊗ ∣ya⟩ ∣φ⟩ = r−1

∑
a=0

√
pa ∣xa⟩⊗ ∣za⟩

ChooseU to be any unitary matrix satisfyingU∣ya⟩ = ∣za⟩ fora = 0, . . . , r − 1.
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Example: superdense coding
b

a

b

a

∣φ+⟩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Alice
Bob

Z X

H

+B

A

∣φ+⟩ = 1√
2
∣00⟩ + 1√

2
∣11⟩

∣φ−⟩ = 1√
2
∣00⟩ − 1√

2
∣11⟩

∣ψ+⟩ = 1√
2
∣01⟩ + 1√

2
∣10⟩

∣ψ−⟩ = 1√
2
∣01⟩ − 1√

2
∣10⟩

The reduced state of B for all four Bell states is the completely mixed state.

TrA(∣φ+⟩⟨φ+∣) = TrA(∣φ−⟩⟨φ−∣) = TrA(∣ψ+⟩⟨ψ+∣) = TrA(∣ψ−⟩⟨ψ−∣) = 1

2

By the unitary equivalence of purifications, we conclude that Alice can transform ∣φ+⟩ to
any of the four Bell states by applying a unitary operation to A alone.



Cryptographic implications
The unitary equivalence of purifications has implications to quantum cryptography.
For instance, it rules out an unconditionally secure quantum protocol for bit commitment.

Bit commitment

Bit commitment is a cryptographic primitive allowing Alice to commit to a
selection of a bit b ∈ {0, 1}, which remains hidden until she chooses to reveal it
to Bob.

• Binding property: Alice cannot change her mind once she’s committed to b.
• Concealing property: Bob cannot determine b until Alice chooses to reveal it.

Let A and B be Alice’s and Bob’s systems in a purified version of a hypothetical protocol
and let ∣ψ0⟩ and ∣ψ1⟩ be the states of (A, B) after Alice commits but before she reveals.
If the protocol is perfectly concealing, then

TrA(∣ψ0⟩⟨ψ0∣) = TrA(∣ψ1⟩⟨ψ1∣)
This implies that the protocol is not binding: Alice can change her commitment by
performing a unitary operation on A alone.



HJW theorem
Hughston-Jozsa-Wootters theorem

Suppose X and Y are systems and ∣φ⟩ is a quantum state vector of (X, Y).
Let N be a positive integer, let (p0, . . . ,pN−1) be a probability vector, and let∣ψ0⟩, . . . , ∣ψN−1⟩ be quantum state vectors of X such that

TrY(∣φ⟩⟨φ∣) = N−1
∑
a=0

pa∣ψa⟩⟨ψa∣

There exists a measurement {P0, . . . ,PN−1} of Y such that these statements are
true when Y is measured when (X, Y) is in the state ∣φ⟩:
• Each measurement outcome a ∈ {0, . . . ,N− 1} appears with probability pa.
• Conditioned on obtaining the outcome a, the state of X becomes ∣ψa⟩.



HJW theorem
Proof sketch. We have the following relationship:

N−1
∑
a=0

pa∣ψa⟩⟨ψa∣ = ρ = TrY(∣φ⟩⟨φ∣)

Introduce a new system Z having classical states {0, . . . ,N− 1}. These two state vectors
of (X, Y, Z) are both purifications of ρ:

∣γ0⟩ = ∣φ⟩XY ⊗ ∣0⟩Z

∣γ1⟩ = N−1
∑
a=0

√
pa ∣ψa⟩X ⊗ ∣0⟩Y ⊗ ∣a⟩Z

By the unitary equivalence of purifications, there is a unitary operation on (Y, Z) that
transforms ∣γ0⟩ into ∣γ1⟩:

(1X ⊗U)∣γ0⟩ = ∣γ1⟩

U

Z

Y

X

∣0⟩

∣φ⟩ ⎧⎪⎪⎪⎨⎪⎪⎪⎩

a (with probability pa)

∣ψa⟩

This measurement is described by matrices {P0, . . . ,PN−1} defined as follows:
Pa = (1Y ⊗ ⟨0∣)U†(1Y ⊗ ∣a⟩⟨a∣)U(1Y ⊗ ∣0⟩)
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Definition of fidelity
The fidelity between two quantum states measures their similarity or overlap.

For two states represented by density matrices ρ andσ it is defined as follows:

F(ρ,σ) = Tr
√√
ρσ

√
ρ

The matrix √ρσ√ρ is positive semidefinite: √ρσ√ρ = M
†
M forM = √

σ
√
ρ. We can

therefore take the square root of this matrix:

√
ρσ

√
ρ =

n−1
∑
k=0
λk∣φk⟩⟨φk∣ ⇒

√√
ρσ

√
ρ =

n−1
∑
k=0

√
λk∣φk⟩⟨φk∣

F(ρ,σ) = n−1
∑
k=0

√
λk

An equivalent formula in terms of the trace norm ∥M∥1 = Tr
√
MM† = Tr

√
M†M:

F(ρ,σ) = ∥√ρ√σ∥1 = ∥√σ√ρ∥1

The trace norm can also be defined as ∥M∥1 = maxU∣Tr(MU)∣ (maximum over all
unitaryU).

F(ρ,σ) = max
U unitary

∣Tr(√ρ√σU)∣
There are simpler formulas when at least one of the states is pure:

F(∣φ⟩⟨φ∣, ∣ψ⟩⟨ψ∣) = ∣⟨φ∣ψ⟩∣
F(∣φ⟩⟨φ∣,σ) = √⟨φ∣σ∣φ⟩
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Properties of fidelity
1. For any two density matrices ρ andσ we have 0 ≤ F(ρ,σ) ≤ 1.

• F(ρ,σ) = 0 if and only if ρ andσ have orthogonal images.
• F(ρ,σ) = 1 if and only if ρ = σ.

2. The fidelity is symmetric: F(ρ,σ) = F(σ,ρ).
3. The fidelity is multiplicative for product states:

F(ρ1 ⊗⋯⊗ ρm,σ1 ⊗⋯⊗σm) = F(ρ1,σ1) ⋯ F(ρm,σm)
4. For any two density matrices ρ andσ and any channelΦ we have

F(ρ,σ) ≤ F(Φ(ρ),Φ(σ))
5. There is a close relationship between fidelity and trace distance:

1 −
1
2∥ρ −σ∥1 ≤ F(ρ,σ) ≤

√
1 −

1
4∥ρ −σ∥2

1

√
1 −

x 2

1 −
x

1
2∥ρ −σ∥1

F(ρ,σ)

1

1

0
x
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Gentle measurement lemma
Let X be a system, let ρ be a state of X, and let {P0, . . . ,Pm−1} be a measurement.
Suppose that one of the measurement outcomes is very likely to appear.

Tr(P0ρ) > 1 − ε

A non-destructive implementation of this measurements (through Naimark’s theorem)
works like this:

ρ

√
P0ρ

√
P0

Tr(P0ρ)
√
Pm−1ρ

√
Pm−1

Tr(Pm−1ρ)
prob

abilit
y Tr(P0ρ) probability Tr(Pm−1ρ)

The gentle measurement lemma implies that only a small disturbance occurs when the
likely measurement outcome appears.

F(ρ,
√
P0ρ

√
P0

Tr(P0ρ) )2

> 1 − ε
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Suppose that one of the measurement outcomes is very likely to appear.
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We can evaluate the fidelity between the pre- and post-measurement states:

F(ρ,
√
P0ρ

√
P0

Tr(P0ρ) ) = Tr

√√
ρ
√
P0ρ

√
P0

√
ρ

Tr(P0ρ) = Tr

√√√√√√√⎷(√ρ
√
P0

√
ρ√

Tr(P0ρ) )
2

= Tr(√ρ
√
P0

√
ρ√

Tr(P0ρ) ) =
Tr(√P0ρ)√

Tr(P0ρ) ≥
Tr(P0ρ)√
Tr(P0ρ)

=
√

Tr(P0ρ)

P0 =
n−1
∑
k=0
λk∣ψk⟩⟨ψk∣

Tr(√P0ρ) = n−1
∑
k=0

√
λk⟨ψk∣ρ∣ψk⟩ ≥ n−1

∑
k=0
λk⟨ψk∣ρ∣ψk⟩ = Tr(P0ρ)
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√
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√
P0

Tr(P0ρ) )2

≥ Tr(P0ρ) > 1 − ε



Uhlmann’s theorem
Uhlmann’s theorem is a fundamentally important fact connectingfidelitywith purifications.

Uhlmann’s theorem

The fidelity between two quantum states equals the maximum inner product
(in absolute value) between two purifications of these states.

In greater detail…

Suppose ρ and σ are density matrices representing states of a system X, and let
Y be a system with at least as many classical states as X.

F(ρ,σ) = max{ ∣⟨φ∣ψ⟩∣ ∶ TrY(∣φ⟩⟨φ∣) = ρ, TrY(∣ψ⟩⟨ψ∣) = σ }
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Uhlmann’s theorem
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Consider spectral decompositions of ρ andσ:

ρ =
n−1
∑
a=0

pa∣ua⟩⟨ua∣ and σ =
n−1
∑
b=0

qb∣vb⟩⟨vb∣
These state vectors purify ρ andσ:

n−1
∑
a=0

√
pa ∣ua⟩⊗ ∣ua⟩ and

n−1
∑
b=0

√
qb ∣vb⟩⊗ ∣vb⟩

By the unitary equivalence of purifications, all purifications ofρ andσ to (X, Y) take these
forms (forU andV unitary):

∣φ⟩ = n−1
∑
a=0

√
pa ∣ua⟩⊗U ∣ua⟩ and ∣ψ⟩ = n−1

∑
b=0

√
qb ∣vb⟩⊗V ∣vb⟩

max{ ∣⟨φ∣ψ⟩∣ ∶ TrY(∣φ⟩⟨φ∣) = ρ, TrY(∣ψ⟩⟨ψ∣) = σ }
= max

U,V unitary

AAAAAAAAAA
n−1
∑

a,b=0

√
pa

√
qb ⟨ua∣vb⟩ ⟨vb∣VT

U∣ua⟩AAAAAAAAAA
= max

U,V unitary

AAAAAATr(√ρ√σV
T
U)AAAAAA = DDDDDD√ρ√σDDDDDD1

= F(ρ,σ)
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