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Purifications

Definition

A of a state (represented by a density matrix) is a pure state of a
larger, compound system that leaves the original state when the rest of the
compound system is traced out.

In mathematical terms: if X is a system in a state p, and |\{) is a quantum state
vector of a pair (X,Y) such that

p=Try([W) (W)

then |1) is a purification of p.

Fact

Every density matrix p has a purification like this provided that Y has at least as
many classical states as X.

This is a critically important notion in quantum information theory.



Existence of purifications

Suppose X is a system and p is a density matrix representing a state of X. Consider any
expression of p as a convex combination of pure states.

n-1
P = Z pald)a)(d)al
a=0

In this expression (pog, - - ., Pn-1) iS a probability vector and |¢dg), ..., |dn_1) are
quantum state vectors.

Here’s a purification of p:
n-1
W)= > VPalda)®la)
a=0
(We're assume for simplicity that the classical states of Y include O, ..., n —1.)

n-1 n-1
Trv([W) W) = Y VPavPo lda)(dul Tr(la)(bl) = Y palda){dal =p
a=0

a,b=0



Existence of purifications

Consider any expression of p as a convex combination of pure states.
n-1
p= Z pald)a)((bal
a=0
Here’s a purification of p:

n-1
W) = > VPalda)®la)
a=0

Example



Schmidt decompositions

Every quantum state vector |\ of a pair of systems (X, Y) can be expressed in a special

MR GQHEREYSchmidt decomposition:

r—1
W)= ) VPalxa)®lya)  (Po,....Pr-1>0)
a=0

Both of the sets {|xq), ..., [xr—1)} and {|yo), .-, [yr—1)} must be FlliOu e

Finding a Schmidt decomposition

1. Compute a spectral decomposition of the reduced state p = Try (| ){(Wb]):

r—1
p=) Palxa)xal  (Po,..-,Pr-1>0)
a=0
2. Foreach a=0,...,v—1define |y,) as follows:

(xal @ )
VPa

lYya) =



Schmidt decompositions

Example

Consider this state of a pair of qubits (X, Y):

1 1
) = EI0>® |0) + ﬁ|+)® 1)

First compute a spectral decomposition of the reduced state of X:
p = cos’(7/8) | W8 ) {(Wrys| + sin’ (7/8) | Wsr/s)(Wsn/s]
We will make these selections:
po = cos’(7t/8), pi =sin*(7/8), |xo) = |[Wrss),  1x1) = [Wsnys)-

It remains to compute |yg) and |y1):

_ ({xol ® 1)1p) _(Gale D))
lyo) = 75 =|+)  |y1) = Noh =—[-)



Schmidt decompositions

Example
Consider this state of a pair of qubits (X, Y):

1 1
) = E|0)® |0) + EH)@ 1)

Po = c052(7'c/8), P1 = sin2(7r/8), |x0) = |1|)7r/8>v |x1) = |1P57r/8>'

((xol ® 1)) ((x1l® 1))

T =+ lyi) = =-[-)

lyo) = NEn

We obtain the following Schmidt decomposition of [):

[} = cos(7/8) [Wrys) ® [+) — sin(7/8) [Wsnys) @ |-)



Unitary equivalence of purifications

Unitary equivalence of purifications

Suppose that |1\) and |¢ ) are pure states of a pair of systems (X, Y) that satisfy

Trv (W) (W]) = p = Trv(Id) 1)
There exists a unitary operation U on Y alone that transforms | ) into |b):

(Ix @ W) = |d)

Consider a spectral decomposition of p.

r—1
p=) Palxa)(xal

a=0

Compute Schmidt decompositions for both |1 ) and | ):

r-1 r-1
W) =Y VPalxa)® lya) ) =Y VPalxa)® lza)
a=0 a=0



Unitary equivalence of purifications

Unitary equivalence of purifications

Suppose that |1\) and |¢ ) are pure states of a pair of systems (X, Y) that satisfy

Trv (W) (W]) = p = Trv(Id) 1)
There exists a unitary operation U on Y alone that transforms | ) into |b):

(Ix @ W) =)
Compute Schmidt decompositions for both |1 ) and | ):
1 r—-1
W)= ) VPalxa)®lya)  [d)=) VPalxa)®|za)
a=0 a=0

Choose U to be any unitary matrix satisfying U|y o) = |zq)fora=0,...,r - 1.



Example: superdense coding

z:":T |¢+)=%|oo)+%|11)
A
. 167) = %|oo>— %m)
. Bob o 1 1
") ) Wb )—ﬁ|o1)+ﬁ|10)
5 o B ) = J5101) - =110)

The reduced state of B for all four Bell states is the completely mixed state.

Tra(lo ™)™ 1) = Tra(10 )} (@ 1) = Trallw ™ )" 1) = Tra(lw ) 1) = 3

By the [liela A=l o1l =Ry dellgiiloletile)gkH we conclude that Alice can transform |¢+) to

any of the four Bell states by applying a unitary operation to A alone.



Cryptographic implications

The unitary equivalence of purifications has implications to [e[ilelat¥lsaRelgY/elie)=idels1s)A
For instance, it rules out an unconditionally secure quantum protocol for [sliaelelsalaaliisal=lgt#

Bit commitment

Bit commitment is a cryptographic primitive allowing Alice toto a
selection of a bit b € {0, 1}, which remains hidden until she chooses to it
to Bob.

e Binding property: Alice cannot change her mind once she’s committed to b.
e Concealing property: Bob cannot determine b until Alice chooses to reveal it.

Let A and B be Alice’s and Bob’s systems in aversion of a hypothetical protocol
and let [\g) and | 1) be the states of (A, B) after Alice commits but before she reveals.

If the protocol is perfectly concealing, then

Tra(|wo)(Wol) = Tra(lw1){(w1])

This implies that the protocol is not binding: Alice can change her commitment by
performing a unitary operation on A alone.



HJW theorem

Hughston-Jozsa-Wootters theorem
Suppose X and Y are systems and |¢) is a quantum state vector of (X,Y).

Let N be a positive integer, let (po, ..., pn-1) be a probability vector, and let

[Wo), ..., [Wn-1) be quantum state vectors of X such that
Trv (| ) Z Palba)(Wal
There exists a measurement {Pg, ..., Pn_1} of Y such that these statements are

true when Y is measured when (X,Y) is in the state | ):

e Each measurement outcome a € {0, ..., N — 1} appears with probability p,.

e Conditioned on obtaining the outcome a, the state of X becomes |1 ).



HJW theorem

Proof sketch. We have the following relationship:
N-1
> Palba)wal =p=Trv(ld)d|)
a=0

Introduce a new system Z having classical states {0, ..., N — 1}. These two state vectors
of (X, Y, Z) are both purifications of p:

l'vo) = | )xy ® [0)z

IIMH

lv1) = a)x ® |0)y ® |a)z

By the unitary equivalence of purifications, there is a unitary operation on (Y, Z) that
transforms |yg) into |y1):

(Ix ® U)|vo) = |v1)



HJW theorem

Introduce a new system Z having classical states {0, ..., N — 1}. These two state vectors
of (X, Y, Z) are both purifications of p:

l'vo) = [d)xy ® [0)2
1

= |
N-—

V1) = ) VPalba)x @ [O)y ®|a)z
a=0

By the unitary equivalence of purifications, there is a unitary operation on (Y, Z) that
transforms |yg) into |y1):

(Ix ® U)|vo) = [v1)

a (with probability p o)

[Wa)



HJW theorem

By the unitary equivalence of purifications, there is a unitary operation on (Y, Z) that
transforms |yg) into |y1):

(Ix ® W)|vo) = |v1)

a (with probability p )

Y
|d)
X
[Wa)
This measurement is described by matrices {Py, ..., Pn_1} defined as follows:

Po = (Iy ® (0))UT(1y ® [a)(a])U(Ty ® |0))



Definition of fidelity

The fidelity between two quantum states measures theiror

For two states represented by density matrices p and o it is defined as follows:

F(p,o)=Try/poJp

The matrix \/po/p is positive semidefinite: \/po/p = MM for M = Vo,/p. Wecan
therefore take the square root of this matrix:

n-1 n-1
VOoVp = ) Addu)(dkl = VVPovp = ) VArldi)(dkl
k=0 k=0

n-1
F(p,o)= ) VA«
k=0

An equivalent formula in terms of the trace norm || M ||; = TrVvMMT = TrVyMTM:

F(p, o) = [[veVol, = [[Vovell,



Definition of fidelity

The fidelity between two quantum states measures theiror

For two states represented by density matrices p and o it is defined as follows:

F(p,0) =TryVpovp
An equivalent formula in terms of the trace norm || M ||; = TrvMMT = TrvyMTM:
F(p, o) = [[Vovol, = [Vovell;

The trace norm can also be defined as || M ||; = maxy | Tr(MUW)| (maximum over all
unitary U).

F(p,o) = max |Tr(y/pvoUu)|

U unitary



Definition of fidelity

The fidelity between two quantum states measures theiror

For two states represented by density matrices p and o it is defined as follows:

F(p, o) =TryVpop
F(p, o) = [[veval, = [[Vovell,

F(p,o)= max |Tr(y/pvoUu)|
U unitary
There are simpler formulas when at least one of the states is pure:

F(d) ], [W)(W]) = [{dw)]
F(d) bl o) = V{dlo|d)



Properties of fidelity

1. For any two density matrices p and o we have 0 < F(p, o) < 1.

e F(p, o) =0ifandonlyif p and o have orthogonal images.
e F(p,o)=1ifandonlyif p = o.
2. The fidelity is symmetric: F(p, o) = F(o, p).

3. The fidelity is multiplicative for product states:
F(p1® - ®pm, 01 @ ®0y) =F(p1,01) =+ F(pm, om)
4. For any two density matrices p and o and any channel @ we have
F(p, o) = F(@(p), ®(0))

5. There is a close relationship between fidelity and trace distance:

1 1
1—§||p—0||1SF(PyU)S\/1—1”0—0”%



Properties of fidelity

5. There is a close relationship between fidelity and trace distance:

1 1
1—§||P—0||15F(p,0)5\/1—1”0—0”%

F(p, o)

1
0 Jle-ol



Gentle measurement lemma

Let X be a system, let p be a state of X, and let {Pg, ..., P;i_1} be a measurement.
Suppose that one of the measurement outcomes is very likely to appear.

Tr(Pgp) >1-¢

AlGL R ez implementation of this measurements (through Naimark’s theorem)
works like this:

vPopy/Po

Tr(Pop)

The gentle measurement lemma implies that only a[glelifelEiigslelilo=l occurs when the
likely measurement outcome appears.

o,
Tr(Pop)

F( M)l



Gentle measurement lemma

Let X be a system, let p be a state of X, and let {Py, ..., Pm_1} be a measurement.
Suppose that one of the measurement outcomes is very likely to appear.

Tr(Pgp) >1-¢

We can evaluate the fidelity between the pre- and post-measurement states:

o \/P_op\/P_o):Tr voVPoeVPovD _ | (VovPoyp
" Tr(Pop) Tr(Pop) VTr(Pop)

(J—x/_f) Tr(yPop) _ Tr(Pop)
VTr(Pgp) VTr(Pop) \/TF(POP)

n-1
Po= ) Al
k=0

n-1
Tr(v/Pop) = Z K(Wilplbi) = ) A(Wilplwi) = Tr(Pop)
k=0



Gentle measurement lemma

Let X be a system, let p be a state of X, and let {Py, ..., Pm_1} be a measurement.
Suppose that one of the measurement outcomes is very likely to appear.

Tr(Pgp) >1-¢

We can evaluate the fidelity between the pre- and post-measurement states:

P Tr(Pop) Tr(Pop) VTr(Pop)

\/5\/1’_0\/5) Tr(y/Pop) _ Tr(Pop)
=T /—— | = > =4/Tr(P
(\/TF(POP) JTr(Pop)  vTr(Pop) G0

F( M):Tr ﬁ\/P_op\/P_o\/EzTrJ (mf

2
F( M) >Tr(Pgp)>1-¢

P,
Tr(Pop)



Uhlmann’s theorem

Uhlmann’s theoremis a fundamentally important fact connecting fidelity with purifications.

Uhlmann’s theorem

The fidelity between two quantum states equals the
(in absolute value) between two purifications of these states.

In greater detail...
Suppose p and o are density matrices representing states of a system X, and let

Y be a system with at least as many classical states as X.

F(p, 0) = max{ [(G1W)] : Trv(I) (1) = o, Trv([W)W) = o |



Uhlmann’s theorem

Uhlmann’s theorem

Suppose p and o are density matrices representing states of a system X, and let
Y be a system with at least as many classical states as X.

F(p, o) = max{ [{|$)] : Tre(|d) (1) = o, Try(lW)(W]) = o}

Consider spectral decompositions of p and o:

n-1 n-1
p=) Palua){ual and o=) gplve)(vl
a=0 b=0

These state vectors purify p and o:

n-1 n-1
> VPalua)®[ta) and ) /qp[ve) ® Vi)
a=0 b=0



Uhlmann’s theorem

Uhlmann’s theorem

Suppose p and o are density matrices representing states of a system X, and let
Y be a system with at least as many classical states as X.

F(p, o) = max{ [{|$)] : Tre(|d) (1) = o, Try(lW)(W]) = o}

These state vectors purify p and o:
n-1 n-1
) VPalua)®[wq) and ) Vap|ve) ® Vo)
a=0 b=0

By the unitary equivalence of purifications, all purifications of p and o to (X, Y) take these
forms (for U and V unitary):

n-1 n-1
[d)= ) VPalua)®Ug) and  |b)= ) Vaplve)® V(vp)
a=0 b=0



Uhlmann’s theorem

Uhlmann’s theorem

Suppose p and o are density matrices representing states of a system X, and let
Y be a system with at least as many classical states as X.

F(p, @) = max{ [(b )] : Tv(|d)(&]) = o, Trv([b) 1) = o}

By the unitary equivalence of purifications, all purifications of p and o to (X, Y) take these
forms (for U and V unitary):

n-1 n-1
[d)= ) VPalua)®Ug) and  [¥)= ) Vqp|ve)® V[vE)
a=0 b=0

max{ [(&1W)] : Trv(Id)(b]) = p, Trv(JW) (W) = o}

n-1

max | > VPavao (Ualve) (Ve |V Ulu,)
b

U,V unitary a D=0

T(veve Vi) = |veval], = Fte. o

max
U,V unitary




