Understanding Quantum Information and Computation

Lesson 12

Purifications and Fidelity

John Watrous

Purifications

Definition

A *purification* of a state (represented by a density matrix) is a pure state of a larger, compound system that leaves the original state when the rest of the compound system is traced out.

In mathematical terms: if X is a system in a state ρ , and $|\psi\rangle$ is a quantum state vector of a pair (X, Y) such that

$$\rho = \mathsf{Tr}_{\mathsf{Y}}(|\psi\rangle\langle\psi|)$$

then $|\psi\rangle$ is a purification of ρ .

Fact

Every density matrix ρ has a purification like this provided that Y has at least as many classical states as X.

This is a critically important notion in quantum information theory.

Existence of purifications

Suppose X is a system and ρ is a density matrix representing a state of X. Consider any expression of ρ as a convex combination of pure states.

$$\rho = \sum_{\alpha=0}^{n-1} p_{\alpha} |\phi_{\alpha}\rangle\langle\phi_{\alpha}|$$

In this expression (p_0, \ldots, p_{n-1}) is a probability vector and $|\phi_0\rangle, \ldots, |\phi_{n-1}\rangle$ are quantum state vectors.

Here's a purification of ρ :

$$|\psi\rangle = \sum_{\alpha=0}^{n-1} \sqrt{p_{\alpha}} |\phi_{\alpha}\rangle \otimes |\alpha\rangle$$

(We're assume for simplicity that the classical states of Y include $0, \ldots, n-1$.)

$$\mathsf{Tr}_{\mathsf{Y}}\big(|\psi\rangle\langle\psi|\big) = \sum_{a,b=0}^{n-1} \sqrt{p_a} \sqrt{p_b} \, |\varphi_a\rangle\langle\varphi_b| \, \mathsf{Tr}(|a\rangle\langle b|) = \sum_{a=0}^{n-1} p_a \, |\varphi_a\rangle\langle\varphi_a| = \rho$$

Existence of purifications

Consider any expression of ρ as a convex combination of pure states.

$$\rho = \sum_{\alpha=0}^{n-1} p_{\alpha} |\phi_{\alpha}\rangle\langle\phi_{\alpha}|$$

Here's a purification of ρ :

$$|\psi\rangle = \sum_{\alpha=0}^{n-1} \sqrt{p_{\alpha}} |\phi_{\alpha}\rangle \otimes |\alpha\rangle$$

$$\rho = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |+\rangle\langle +|$$

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}}|+\rangle \otimes |1\rangle$$

Schmidt decompositions

Every quantum state vector $|\psi\rangle$ of a pair of systems (X,Y) can be expressed in a special form known as a *Schmidt decomposition:*

$$|\psi\rangle = \sum_{\alpha=0}^{r-1} \sqrt{p_{\alpha}} |x_{\alpha}\rangle \otimes |y_{\alpha}\rangle$$
 $(p_0, \dots, p_{r-1} > 0)$

Both of the sets $\{|x_0\rangle, \ldots, |x_{r-1}\rangle\}$ and $\{|y_0\rangle, \ldots, |y_{r-1}\rangle\}$ must be *orthonormal*.

Finding a Schmidt decomposition

1. Compute a spectral decomposition of the reduced state $\rho = \text{Tr}_Y(|\psi\rangle\langle\psi|)$:

$$\rho = \sum_{\alpha=0}^{r-1} p_{\alpha} |x_{\alpha}\rangle\langle x_{\alpha}| \qquad (p_0, \dots, p_{r-1} > 0)$$

2. For each $\alpha = 0, ..., r - 1$ define $|y_{\alpha}\rangle$ as follows:

$$|y_{\alpha}\rangle = \frac{(\langle x_{\alpha}| \otimes \mathbb{1})|\psi\rangle}{\sqrt{p_{\alpha}}}$$

Schmidt decompositions

Example

Consider this state of a pair of qubits (X, Y):

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}}|+\rangle \otimes |1\rangle$$

First compute a spectral decomposition of the reduced state of X:

$$\rho = \cos^2(\pi/8) \left| \psi_{\pi/8} \right\rangle \! \left\langle \psi_{\pi/8} \right| + \sin^2(\pi/8) \left| \psi_{5\pi/8} \right\rangle \! \left\langle \psi_{5\pi/8} \right|$$

We will make these selections:

$$p_0 = \cos^2(\pi/8), \quad p_1 = \sin^2(\pi/8), \quad |x_0\rangle = |\psi_{\pi/8}\rangle, \quad |x_1\rangle = |\psi_{5\pi/8}\rangle.$$

It remains to compute $|y_0\rangle$ and $|y_1\rangle$:

$$|y_0\rangle = \frac{(\langle x_0|\otimes \mathbb{1})|\psi\rangle}{\sqrt{p_0}} = |+\rangle \qquad |y_1\rangle = \frac{(\langle x_1|\otimes \mathbb{1})|\psi\rangle}{\sqrt{p_1}} = -|-\rangle$$

Schmidt decompositions

Example

Consider this state of a pair of qubits (X, Y):

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}}|+\rangle \otimes |1\rangle$$

$$p_0 = \cos^2(\pi/8), \quad p_1 = \sin^2(\pi/8), \quad |x_0\rangle = |\psi_{\pi/8}\rangle, \quad |x_1\rangle = |\psi_{5\pi/8}\rangle.$$

$$(\langle x_0 | \otimes \mathbb{1}) | \psi \rangle \qquad (\langle x_1 | \otimes \mathbb{1}) | \psi \rangle$$

$$|y_0\rangle = \frac{(\langle x_0|\otimes \mathbb{1})|\psi\rangle}{\sqrt{p_0}} = |+\rangle \qquad |y_1\rangle = \frac{(\langle x_1|\otimes \mathbb{1})|\psi\rangle}{\sqrt{p_1}} = -|-\rangle$$

We obtain the following Schmidt decomposition of $|\psi\rangle$:

$$\left|\psi\right\rangle = \cos(\pi/8) \left|\psi_{\pi/8}\right\rangle \otimes \left|+\right\rangle - \sin(\pi/8) \left|\psi_{5\pi/8}\right\rangle \otimes \left|-\right\rangle$$

Unitary equivalence of purifications

Unitary equivalence of purifications

Suppose that $|\psi\rangle$ and $|\varphi\rangle$ are pure states of a pair of systems (X, Y) that satisfy

$$\mathsf{Tr}_{\mathsf{Y}}\big(|\psi\rangle\langle\psi|\big) = \rho = \mathsf{Tr}_{\mathsf{Y}}\big(|\varphi\rangle\langle\varphi|\big)$$

There exists a unitary operation U on Y alone that transforms $|\psi\rangle$ into $|\phi\rangle$:

$$(\mathbb{1}_{\mathsf{X}} \otimes \mathsf{U})|\psi\rangle = |\phi\rangle$$

Consider a spectral decomposition of ρ .

$$\rho = \sum_{\alpha=0}^{r-1} p_{\alpha} |x_{\alpha}\rangle\langle x_{\alpha}|$$

Compute Schmidt decompositions for both $|\psi\rangle$ and $|\phi\rangle$:

$$|\psi\rangle = \sum_{\alpha=0}^{r-1} \sqrt{p_{\alpha}} |x_{\alpha}\rangle \otimes |y_{\alpha}\rangle \qquad |\phi\rangle = \sum_{\alpha=0}^{r-1} \sqrt{p_{\alpha}} |x_{\alpha}\rangle \otimes |z_{\alpha}\rangle$$

Unitary equivalence of purifications

Unitary equivalence of purifications

Suppose that $|\psi\rangle$ and $|\phi\rangle$ are pure states of a pair of systems (X, Y) that satisfy

$$\mathsf{Tr}_{\mathsf{Y}}(|\psi\rangle\langle\psi|) = \rho = \mathsf{Tr}_{\mathsf{Y}}(|\phi\rangle\langle\phi|)$$

There exists a unitary operation U on Y alone that transforms $|\psi\rangle$ into $|\phi\rangle$:

$$(\mathbb{1}_{\mathsf{X}} \otimes \mathsf{U})|\psi\rangle = |\phi\rangle$$

Compute Schmidt decompositions for both $|\psi\rangle$ and $|\phi\rangle$:

$$|\psi\rangle = \sum_{\alpha=0}^{r-1} \sqrt{p_{\alpha}} |x_{\alpha}\rangle \otimes |y_{\alpha}\rangle \qquad |\phi\rangle = \sum_{\alpha=0}^{r-1} \sqrt{p_{\alpha}} |x_{\alpha}\rangle \otimes |z_{\alpha}\rangle$$

Choose U to be any unitary matrix satisfying $U|y_{\alpha}\rangle = |z_{\alpha}\rangle$ for $\alpha = 0, ..., r-1$.

Example: superdense coding

$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$
$$|\phi^{-}\rangle = \frac{1}{\sqrt{2}}|00\rangle - \frac{1}{\sqrt{2}}|11\rangle$$
$$|\psi^{+}\rangle = \frac{1}{\sqrt{2}}|01\rangle + \frac{1}{\sqrt{2}}|10\rangle$$
$$|\psi^{-}\rangle = \frac{1}{\sqrt{2}}|01\rangle - \frac{1}{\sqrt{2}}|10\rangle$$

The reduced state of B for all four Bell states is the completely mixed state.

$$\mathsf{Tr}_{\mathsf{A}}\big(|\varphi^{^{+}}\rangle\langle\varphi^{^{+}}|\big) = \mathsf{Tr}_{\mathsf{A}}\big(|\varphi^{^{-}}\rangle\langle\varphi^{^{-}}|\big) = \mathsf{Tr}_{\mathsf{A}}\big(|\psi^{^{+}}\rangle\langle\psi^{^{+}}|\big) = \mathsf{Tr}_{\mathsf{A}}\big(|\psi^{^{-}}\rangle\langle\psi^{^{-}}|\big) = \frac{\mathbb{1}}{2}$$

By the unitary equivalence of purifications, we conclude that Alice can transform $|\phi^{+}\rangle$ to any of the four Bell states by applying a unitary operation to A alone.

Cryptographic implications

The unitary equivalence of purifications has implications to *quantum cryptography*.

For instance, it rules out an unconditionally secure quantum protocol for *bit commitment*.

Bit commitment

Bit commitment is a cryptographic primitive allowing Alice to $\frac{commit}{t}$ to a selection of a bit $b \in \{0, 1\}$, which remains hidden until she chooses to $\frac{reveal}{t}$ it to Bob.

- Binding property: Alice cannot change her mind once she's committed to b.
- Concealing property: Bob cannot determine b until Alice chooses to reveal it.

Let A and B be Alice's and Bob's systems in a purified version of a hypothetical protocol and let $|\psi_0\rangle$ and $|\psi_1\rangle$ be the states of (A, B) after Alice commits but before she reveals.

If the protocol is perfectly concealing, then

$$\mathsf{Tr}_{\mathsf{A}}\big(|\psi_0\rangle\langle\psi_0|\big) = \mathsf{Tr}_{\mathsf{A}}\big(|\psi_1\rangle\langle\psi_1|\big)$$

This implies that the protocol is not binding: Alice can change her commitment by performing a unitary operation on A alone.

Hughston-Jozsa-Wootters theorem

Suppose X and Y are systems and $|\phi\rangle$ is a quantum state vector of (X,Y).

Let N be a positive integer, let (p_0, \ldots, p_{N-1}) be a probability vector, and let $|\psi_0\rangle, \ldots, |\psi_{N-1}\rangle$ be quantum state vectors of X such that

$$\mathsf{Tr}_{\mathsf{Y}}\big(|\phi\rangle\langle\phi|\big) = \sum_{\alpha=0}^{\mathsf{N}-1} p_{\alpha}|\psi_{\alpha}\rangle\langle\psi_{\alpha}|$$

There exists a measurement $\{P_0, \ldots, P_{N-1}\}$ of Y such that these statements are true when Y is measured when (X, Y) is in the state $|\phi\rangle$:

- Each measurement outcome $\alpha \in \{0, ..., N-1\}$ appears with probability p_{α} .
- Conditioned on obtaining the outcome a, the state of X becomes $|\psi_a\rangle$.

Proof sketch. We have the following relationship:

$$\sum_{\alpha=0}^{N-1} p_{\alpha} |\psi_{\alpha}\rangle\langle\psi_{\alpha}| = \rho = \mathsf{Tr}_{\mathsf{Y}} \big(|\phi\rangle\langle\phi|\big)$$

Introduce a new system Z having classical states $\{0, ..., N-1\}$. These two state vectors of (X, Y, Z) are both purifications of ρ :

$$\begin{split} |\gamma_0\rangle &= |\phi\rangle_{XY} \otimes |0\rangle_Z \\ |\gamma_1\rangle &= \sum_{\alpha=0}^{N-1} \sqrt{p_\alpha} \, |\psi_\alpha\rangle_X \otimes |0\rangle_Y \otimes |\alpha\rangle_Z \end{split}$$

By the unitary equivalence of purifications, there is a unitary operation on (Y, Z) that transforms $|\gamma_0\rangle$ into $|\gamma_1\rangle$:

$$(\mathbb{1}_{\mathsf{X}} \otimes \mathsf{U}) | \gamma_0 \rangle = | \gamma_1 \rangle$$

Introduce a new system Z having classical states $\{0, ..., N-1\}$. These two state vectors of (X, Y, Z) are both purifications of ρ :

$$\begin{split} |\gamma_0\rangle &= |\phi\rangle_{XY} \otimes |0\rangle_Z \\ |\gamma_1\rangle &= \sum_{\alpha=0}^{N-1} \sqrt{p_\alpha} \, |\psi_\alpha\rangle_X \otimes |0\rangle_Y \otimes |\alpha\rangle_Z \end{split}$$

By the unitary equivalence of purifications, there is a unitary operation on (Y, Z) that transforms $|\gamma_0\rangle$ into $|\gamma_1\rangle$:

$$(\mathbb{1}_{\mathsf{X}}\otimes\mathsf{U})|\gamma_0\rangle=|\gamma_1\rangle$$

By the unitary equivalence of purifications, there is a unitary operation on (Y, Z) that transforms $|\gamma_0\rangle$ into $|\gamma_1\rangle$:

$$(\mathbb{1}_{\mathsf{X}} \otimes \mathsf{U}) | \gamma_0 \rangle = | \gamma_1 \rangle$$

This measurement is described by matrices $\{P_0, \ldots, P_{N-1}\}$ defined as follows:

$$P_{\alpha} = (\mathbb{1}_{Y} \otimes \langle 0|) U^{\dagger}(\mathbb{1}_{Y} \otimes |\alpha\rangle\langle\alpha|) U(\mathbb{1}_{Y} \otimes |0\rangle)$$

Definition of fidelity

The fidelity between two quantum states measures their *similarity* or *overlap*.

For two states represented by density matrices ρ and σ it is defined as follows:

$$\mathsf{F}(\rho,\sigma) = \mathsf{Tr}\sqrt{\sqrt{\rho}\,\sigma\sqrt{\rho}}$$

The matrix $\sqrt{\rho} \sigma \sqrt{\rho}$ is positive semidefinite: $\sqrt{\rho} \sigma \sqrt{\rho} = M^{\dagger} M$ for $M = \sqrt{\sigma} \sqrt{\rho}$. We can therefore take the square root of this matrix:

$$\begin{split} \sqrt{\rho} \, \sigma \sqrt{\rho} &= \sum_{k=0}^{n-1} \lambda_k |\varphi_k\rangle \langle \varphi_k| \quad \Rightarrow \quad \sqrt{\sqrt{\rho} \, \sigma \sqrt{\rho}} = \sum_{k=0}^{n-1} \sqrt{\lambda_k} |\varphi_k\rangle \langle \varphi_k| \\ F(\rho,\sigma) &= \sum_{k=0}^{n-1} \sqrt{\lambda_k} \end{split}$$

An equivalent formula in terms of the trace norm $||M||_1 = \text{Tr}\sqrt{MM^{\dagger}} = \text{Tr}\sqrt{M^{\dagger}M}$:

$$\mathsf{F}(\rho,\sigma) = \left\| \sqrt{\rho} \sqrt{\sigma} \right\|_1 = \left\| \sqrt{\sigma} \sqrt{\rho} \right\|_1$$

Definition of fidelity

The fidelity between two quantum states measures their *similarity* or *overlap*.

For two states represented by density matrices ρ and σ it is defined as follows:

$$\mathsf{F}(\rho,\sigma) = \mathsf{Tr}\sqrt{\sqrt{\rho}\,\sigma\sqrt{\rho}}$$

An equivalent formula in terms of the trace norm $||M||_1 = \text{Tr}\sqrt{MM^{\dagger}} = \text{Tr}\sqrt{M^{\dagger}M}$:

$$\mathsf{F}(\rho,\sigma) = \left\| \sqrt{\rho} \sqrt{\sigma} \right\|_1 = \left\| \sqrt{\sigma} \sqrt{\rho} \right\|_1$$

The trace norm can also be defined as $||M||_1 = \max_{U} |Tr(MU)|$ (maximum over all unitary U).

$$F(\rho, \sigma) = \max_{U \text{ unitary}} \left| Tr(\sqrt{\rho} \sqrt{\sigma} U) \right|$$

Definition of fidelity

The fidelity between two quantum states measures their *similarity* or *overlap*.

For two states represented by density matrices ρ and σ it is defined as follows:

$$\begin{split} & \mathsf{F}(\rho,\sigma) = \mathsf{Tr}\,\sqrt{\sqrt{\rho}\,\sigma\sqrt{\rho}} \\ & \mathsf{F}(\rho,\sigma) = \left\|\sqrt{\rho}\sqrt{\sigma}\right\|_1 = \left\|\sqrt{\sigma}\sqrt{\rho}\right\|_1 \\ & \mathsf{F}(\rho,\sigma) = \max_{\mathsf{U}\,\mathsf{unitary}} \left|\mathsf{Tr}\big(\sqrt{\rho}\sqrt{\sigma}\,\mathsf{U}\big)\right| \end{split}$$

There are simpler formulas when at least one of the states is pure:

$$F(|\phi\rangle\langle\phi|,|\psi\rangle\langle\psi|) = |\langle\phi|\psi\rangle|$$
$$F(|\phi\rangle\langle\phi|,\sigma) = \sqrt{\langle\phi|\sigma|\phi\rangle}$$

Properties of fidelity

- 1. For any two density matrices ρ and σ we have $0 \le F(\rho, \sigma) \le 1$.
 - $F(\rho, \sigma) = 0$ if and only if ρ and σ have orthogonal images.
 - $F(\rho, \sigma) = 1$ if and only if $\rho = \sigma$.
- 2. The fidelity is symmetric: $F(\rho, \sigma) = F(\sigma, \rho)$.
- 3. The fidelity is multiplicative for product states:

$$\mathsf{F}(\rho_1 \otimes \cdots \otimes \rho_{\mathfrak{m}}, \sigma_1 \otimes \cdots \otimes \sigma_{\mathfrak{m}}) = \mathsf{F}(\rho_1, \sigma_1) \ \cdots \ \mathsf{F}(\rho_{\mathfrak{m}}, \sigma_{\mathfrak{m}})$$

4. For any two density matrices ρ and σ and any channel Φ we have

$$\mathsf{F}(\rho,\sigma) \leq \mathsf{F}(\Phi(\rho),\Phi(\sigma))$$

5. There is a close relationship between fidelity and trace distance:

$$1 - \frac{1}{2} \|\rho - \sigma\|_1 \le \mathsf{F}(\rho, \sigma) \le \sqrt{1 - \frac{1}{4} \|\rho - \sigma\|_1^2}$$

Properties of fidelity

5. There is a close relationship between fidelity and trace distance:

$$1 - \frac{1}{2} \|\rho - \sigma\|_1 \le F(\rho, \sigma) \le \sqrt{1 - \frac{1}{4} \|\rho - \sigma\|_1^2}$$

Gentle measurement lemma

Let X be a system, let ρ be a state of X, and let $\{P_0, \ldots, P_{m-1}\}$ be a measurement. Suppose that one of the measurement outcomes is very likely to appear.

$$Tr(P_0\rho) > 1 - \varepsilon$$

A *non-destructive* implementation of this measurements (through Naimark's theorem) works like this:

The gentle measurement lemma implies that only a *small disturbance* occurs when the likely measurement outcome appears.

$$F\left(\rho, \frac{\sqrt{P_0}\rho\sqrt{P_0}}{\mathsf{Tr}(P_0\rho)}\right)^2 > 1 - \varepsilon$$

Gentle measurement lemma

Let X be a system, let ρ be a state of X, and let $\{P_0, \ldots, P_{m-1}\}$ be a measurement. Suppose that one of the measurement outcomes is very likely to appear.

$$Tr(P_0\rho) > 1 - \varepsilon$$

We can evaluate the fidelity between the pre- and post-measurement states:

$$\begin{split} F\!\!\left(\rho, \frac{\sqrt{P_0}\rho\sqrt{P_0}}{\mathsf{Tr}(P_0\rho)}\right) &= \mathsf{Tr}\,\sqrt{\frac{\sqrt{\rho}\sqrt{P_0}\rho\sqrt{P_0}\sqrt{\rho}}{\mathsf{Tr}(P_0\rho)}} = \mathsf{Tr}\,\sqrt{\left(\frac{\sqrt{\rho}\sqrt{P_0}\sqrt{\rho}}{\sqrt{\mathsf{Tr}(P_0\rho)}}\right)^2} \\ &= \mathsf{Tr}\!\left(\frac{\sqrt{\rho}\sqrt{P_0}\sqrt{\rho}}{\sqrt{\mathsf{Tr}(P_0\rho)}}\right) &= \frac{\mathsf{Tr}\!\left(\sqrt{P_0}\rho\right)}{\sqrt{\mathsf{Tr}(P_0\rho)}} \geq \frac{\mathsf{Tr}\!\left(P_0\rho\right)}{\sqrt{\mathsf{Tr}(P_0\rho)}} \end{split}$$

$$P_0 = \sum_{k=0}^{n-1} \lambda_k |\psi_k\rangle \langle \psi_k|$$

$$Tr(\sqrt{P_0}\rho) = \sum_{k=0}^{n-1} \sqrt{\lambda_k} \langle \psi_k | \rho |\psi_k\rangle \ge \sum_{k=0}^{n-1} \lambda_k \langle \psi_k | \rho |\psi_k\rangle = Tr(P_0\rho)$$

Gentle measurement lemma

Let X be a system, let ρ be a state of X, and let $\{P_0, \ldots, P_{m-1}\}$ be a measurement. Suppose that one of the measurement outcomes is very likely to appear.

$$Tr(P_0\rho) > 1 - \varepsilon$$

We can evaluate the fidelity between the pre- and post-measurement states:

$$\begin{split} & F\Bigg(\rho, \frac{\sqrt{P_0}\,\rho\sqrt{P_0}}{\mathsf{Tr}(P_0\,\rho)}\Bigg) = \mathsf{Tr}\,\sqrt{\frac{\sqrt{\rho}\sqrt{P_0}\,\rho\sqrt{P_0}\sqrt{\rho}}{\mathsf{Tr}(P_0\,\rho)}} = \mathsf{Tr}\,\sqrt{\left(\frac{\sqrt{\rho}\sqrt{P_0}\sqrt{\rho}}{\sqrt{\mathsf{Tr}(P_0\,\rho)}}\right)^2} \\ & = \mathsf{Tr}\Bigg(\frac{\sqrt{\rho}\sqrt{P_0}\sqrt{\rho}}{\sqrt{\mathsf{Tr}(P_0\,\rho)}}\Bigg) = \frac{\mathsf{Tr}\left(\sqrt{P_0}\,\rho\right)}{\sqrt{\mathsf{Tr}(P_0\,\rho)}} \geq \frac{\mathsf{Tr}\big(P_0\,\rho\big)}{\sqrt{\mathsf{Tr}(P_0\,\rho)}} = \sqrt{\mathsf{Tr}\big(P_0\,\rho\big)} \end{split}$$

$$F\left(\rho, \frac{\sqrt{P_0}\rho\sqrt{P_0}}{\mathsf{Tr}(P_0\rho)}\right)^2 \ge \mathsf{Tr}(P_0\rho) > 1 - \varepsilon$$

Uhlmann's theorem is a fundamentally important fact connecting fidelity with purifications.

Uhlmann's theorem

The fidelity between two quantum states equals the *maximum inner product* (in absolute value) between two purifications of these states.

In greater detail...

Suppose ρ and σ are density matrices representing states of a system X, and let Y be a system with at least as many classical states as X.

$$\mathsf{F}(\rho,\sigma) = \mathsf{max} \Big\{ \left| \langle \varphi | \psi \rangle \right| \, \colon \, \mathsf{Tr}_\mathsf{Y}(|\varphi\rangle \langle \varphi|) = \rho, \, \, \mathsf{Tr}_\mathsf{Y}(|\psi\rangle \langle \psi|) = \sigma \Big\}$$

Uhlmann's theorem

Suppose ρ and σ are density matrices representing states of a system X, and let Y be a system with at least as many classical states as X.

$$\mathsf{F}(\rho,\sigma) = \mathsf{max} \Big\{ \left| \langle \varphi | \psi \rangle \right| \, \colon \, \mathsf{Tr}_{\mathsf{Y}}(|\varphi\rangle \langle \varphi|) = \rho, \, \, \mathsf{Tr}_{\mathsf{Y}}(|\psi\rangle \langle \psi|) = \sigma \Big\}$$

Consider spectral decompositions of ρ and σ :

$$\rho = \sum_{a=0}^{n-1} p_a |u_a\rangle\langle u_a| \quad \text{and} \quad \sigma = \sum_{b=0}^{n-1} q_b |v_b\rangle\langle v_b|$$

These state vectors purify ρ and σ :

$$\sum_{\alpha=0}^{n-1} \sqrt{p_{\alpha}} \, |u_{\alpha}\rangle \otimes |\overline{u_{\alpha}}\rangle \qquad \text{and} \qquad \sum_{b=0}^{n-1} \sqrt{q_{b}} \, |\nu_{b}\rangle \otimes |\overline{\nu_{b}}\rangle$$

Uhlmann's theorem

Suppose ρ and σ are density matrices representing states of a system X, and let Y be a system with at least as many classical states as X.

$$\mathsf{F}(\rho,\sigma) = \mathsf{max} \Big\{ \left| \langle \varphi | \psi \rangle \right| \, \colon \, \mathsf{Tr}_{\mathsf{Y}}(|\varphi\rangle \langle \varphi|) = \rho, \, \, \mathsf{Tr}_{\mathsf{Y}}(|\psi\rangle \langle \psi|) = \sigma \Big\}$$

These state vectors purify ρ and σ :

$$\sum_{\alpha=0}^{n-1} \sqrt{p_{\alpha}} \, |u_{\alpha}\rangle \otimes |\overline{u_{\alpha}}\rangle \qquad \text{and} \qquad \sum_{b=0}^{n-1} \sqrt{q_{b}} \, |\nu_{b}\rangle \otimes |\overline{\nu_{b}}\rangle$$

By the unitary equivalence of purifications, all purifications of ρ and σ to (X,Y) take these forms (for U and V unitary):

$$| \, \varphi \, \rangle = \sum_{a=0}^{n-1} \sqrt{p_a} \, | \, u_a \, \rangle \otimes \, U \, | \, \overline{u_a} \, \rangle \qquad \text{and} \qquad | \, \psi \, \rangle = \sum_{b=0}^{n-1} \sqrt{q_b} \, | \, v_b \, \rangle \otimes \, V \, | \, \overline{v_b} \, \rangle$$

Uhlmann's theorem

Suppose ρ and σ are density matrices representing states of a system X, and let Y be a system with at least as many classical states as X.

$$\mathsf{F}(\rho,\sigma) = \mathsf{max} \Big\{ \left| \langle \varphi | \psi \rangle \right| \, \colon \mathsf{Tr}_\mathsf{Y}(|\varphi\rangle \langle \varphi|) = \rho, \; \mathsf{Tr}_\mathsf{Y}(|\psi\rangle \langle \psi|) = \sigma \Big\}$$

By the unitary equivalence of purifications, all purifications of ρ and σ to (X,Y) take these forms (for U and V unitary):

$$\begin{split} |\varphi\rangle &= \sum_{\alpha=0}^{n-1} \sqrt{p_{\alpha}} \, |u_{\alpha}\rangle \otimes U \, |\overline{u_{\alpha}}\rangle \quad \text{ and } \quad |\psi\rangle = \sum_{b=0}^{n-1} \sqrt{q_{b}} \, |\nu_{b}\rangle \otimes V \, |\overline{\nu_{b}}\rangle \\ & \text{max} \Big\{ \left| \langle \varphi | \psi \rangle \right| \, : \, \text{Tr}_{Y}(|\varphi\rangle \langle \varphi|) = \rho, \, \, \text{Tr}_{Y}(|\psi\rangle \langle \psi|) = \sigma \Big\} \\ &= \max_{U,V \, \text{unitary}} \left| \sum_{\alpha,b=0}^{n-1} \sqrt{p_{\alpha}} \sqrt{q_{b}} \, \langle u_{\alpha} | \nu_{b}\rangle \, \langle \nu_{b} | V^{T} \overline{U} | u_{\alpha}\rangle \right| \\ &= \max_{U,V \, \text{unitary}} \left| \text{Tr} \Big(\sqrt{\rho} \sqrt{\sigma} \, V^{T} \overline{U} \Big) \right| = \left\| \sqrt{\rho} \sqrt{\sigma} \right\|_{1} = \text{F}(\rho,\sigma) \end{split}$$