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Descriptions of measurements
Measurements represent an interface between quantum and classical information:

• Performing a measurement on a system extracts classical information about
its quantum state.

• In general, the system is changed (or destroyed) in the process.

Initially our focus will be on destructive measurements — which produce a classical
outcome alone. (The post-measurement state of the system is not specified.)

Two ways to describe destructive measurements

1. As collections of matrices, one for each measurement outcome.

2. As channels whose outputs are always classical states (represented by
diagonal density matrices).

Non-destructive measurements will be discussed later in the lesson. (They can
always be described as compositions of destructive measurements and channels.)



Measurements as matrices
Suppose X is a system to be measured. For simplicity we will assume the following:

• The classical state set of X is {0, . . . ,n − 1}.
• The set of measurement outcomes is {0, . . . ,m − 1}.

Recollection: projective measurements

A projective measurement is described by a collection of projection matrices{Π0, . . . ,Πm−1} satisfying this condition:
Π0 +⋯ +Πm−1 = 1X

If the state of X is ρ, each outcome a appears with this probability:

Tr(Πaρ)



Measurements as matrices
Suppose X is a system to be measured. For simplicity we will assume the following:

• The classical state set of X is {0, . . . ,n − 1}.
• The set of measurement outcomes is {0, . . . ,m − 1}.

General measurements

A general measurement is described by a collection of positive semidefinite
matrices {P0, . . . ,Pm−1} satisfying this condition:

P0 +⋯ + Pm−1 = 1X

If the state of X is ρ, each outcome a appears with this probability:

Tr(Paρ)

We necessarily obtain a probability vector (Tr(P0ρ), . . . , Tr(Pm−1ρ)):
• These are nonnegative real numbers:Q,R ≥ 0 ⇒ Tr(QR) ≥ 0.
• These numbers sum to 1:

Tr(P0ρ) +⋯ + Tr(Pm−1ρ) = Tr((P0 +⋯ + Pm−1)ρ) = Tr(ρ) = 1
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Examples
Projections are always positive semidefinite, so every projective measurement is an
example of a general measurement.

Example 1

A standard basis measurement of a qubit can be represented by {P0,P1} where
P0 = ∣0⟩⟨0∣ = (1 0

0 0
) P1 = ∣1⟩⟨1∣ = (0 0

0 1
)

Measuring a qubit in the state ρ results in outcome probabilities as follows.

Prob(outcome = 0) = Tr(P0ρ) = Tr(∣0⟩⟨0∣ρ) = ⟨0∣ρ∣0⟩
Prob(outcome = 1) = Tr(P1ρ) = Tr(∣1⟩⟨1∣ρ) = ⟨1∣ρ∣1⟩



Examples
Example 2

Define P0 and P1 as follows.
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Measuring a qubit in the ∣+⟩ state results in outcome probabilities as follows.

Prob(outcome = 0) = Tr(P0∣+⟩⟨+∣) = Tr
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Prob(outcome = 1) = Tr(P1∣+⟩⟨+∣) = Tr
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Examples
Example 3

The tetrahedral states are defined as follows.

∣φ0⟩ = ∣0⟩
∣φ1⟩ = 1√

3
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√
2
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∣φ3⟩ = 1√
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∣φ0⟩

∣φ1⟩

∣φ2⟩
∣φ3⟩

We can define a measurement {P0,P1,P2,P3} as follows.
P0 = ∣φ0⟩⟨φ0∣

2 P1 = ∣φ1⟩⟨φ1∣
2 P2 = ∣φ2⟩⟨φ2∣

2 P3 = ∣φ3⟩⟨φ3∣
2



Measurements as channels
Recall that classical (probabilistic) states can be represented by diagonal densitymatrices.

Any general measurement can be described as a channelΦ:

• The input system X is the system being measured.
• The classical states of the output system Y are the possible measurement outcomes{0, . . . ,m − 1}.
• For every input state ρ of X, the output stateΦ(ρ) is a diagonal density matrix.

Example: standard basis measurement

The completely dephasing channel ∆ describes a standard basis measurement of
a qubit:

∆(ρ) = ⟨0∣ρ∣0⟩ ∣0⟩⟨0∣ + ⟨1∣ρ∣1⟩ ∣1⟩⟨1∣
Equivalence to matrix description

A channel Φ from X to Y has the property that Φ(ρ) is always diagonal if and
only if

Φ(ρ) = m−1
∑
a=0

Tr(Paρ) ∣a⟩⟨a∣

for a measurement {P0, . . . ,Pm−1}.
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Partial measurements
Suppose that a pair of systems (X, Z) is in a state ρ and a measurement {P0, . . . ,Pm−1}
is performed on X.

This results in a measurement outcome — and in addition the state of Z may change
depending on the outcome.

Outcome probabilities

The probabilities for different measurement outcome probabilities to appear
depend only on the measurement and the reduced state ρX of X.

Prob(outcome = a) = Tr(PaρX) = Tr(PaTrZ(ρ)) = Tr((Pa⊗ IZ)ρ)



Partial measurements
Suppose that a pair of systems (X, Z) is in a state ρ and a measurement {P0, . . . ,Pm−1}
is performed on X.

This results in a measurement outcome — and in addition the state of Z may change
depending on the outcome.

States conditioned on measurement outcomes

To determine the state of Z conditioned on a given measurement outcome we can
turn to the channel description of the measurement:

Φ(σ) = m−1
∑
a=0

Tr(Paσ) ∣a⟩⟨a∣
Applying this channel to X results in this state:

m−1
∑
a=0

∣a⟩⟨a∣⊗ TrX((Pa⊗ IZ)ρ)
The state of Z conditioned on the outcome a can be obtained by normalizing the
matrix TrX((Pa⊗ IZ)ρ).



Partial measurements
Suppose that a pair of systems (X, Z) is in a state ρ and a measurement {P0, . . . ,Pm−1}
is performed on X.

This results in a measurement outcome — and in addition the state of Z may change
depending on the outcome.

Summary

When a measurement {P0, . . . ,Pm−1} is performed on X when (X, Z) is in the
state ρ, the following happens:

1. Each outcome a appears with probability Tr((Pa⊗ IZ)ρ).
2. Conditioned on obtaining the outcome a, the state of Z becomes

TrX((Pa⊗ IZ)ρ)
Tr((Pa⊗ IZ)ρ)



Naimark’s theorem
Naimark’s theorem is a fundamental fact concerning measurements. It states that every
general measurement can be implemented in the following way:

U

X

Y

X

Y

ρ

∣0⟩ a

That is, a given general measurement {P0, . . . ,Pm−1} on X can be implemented as
follows.

1. Introduce an initialized workspace system Y having classical states {0, . . . ,m − 1}.
2. Perform a unitary operationU on the pair (Y, X).
3. Perform a standard basis measurement on Y.



Proof of Naimark’s theorem
U

X

Y

X

Y

ρ

∣0⟩ a

Naimark’s theorem is not difficult to prove… we just need tomake a good choice forU and
verify that it works.

Fact

For every positive semidefinite matrix P, there is a unique positive semidefinite
matrix Q such that Q2 = P. This matrix is denoted

√
P.

We can calculate
√
P using a spectral decomposition of P:

P =
n−1
∑
k=0
λk∣ψk⟩⟨ψk∣ ⇒

√
P =

n−1
∑
k=0

√
λk∣ψk⟩⟨ψk∣

Any unitary matrixU that follows this pattern will work:

U =
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Proof of Naimark’s theorem
U

X

Y

X

Y

ρ

∣0⟩ a

Naimark’s theorem is not difficult to prove… we just need tomake a good choice forU and
verify that it works.

Any unitary matrixU that follows this pattern will work:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
P0√
P1

⋮√
Pm−1

?

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Proof of Naimark’s theorem
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We need to check two things: (1) that such a matrixU works correctly, and (2) thatU can
be made unitary.

U(∣0⟩⟨0∣⊗ ρ)U†
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We need to check two things: (1) that such a matrixU works correctly, and (2) thatU can
be made unitary.

U(∣0⟩⟨0∣⊗ ρ)U†
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We need to check two things: (1) that such a matrixU works correctly, and (2) thatU can
be made unitary.

σ = U(∣0⟩⟨0∣⊗ ρ)U† =
m−1
∑

a,b=0
∣a⟩⟨b∣⊗√

Paρ
√
Pb

σY =
m−1
∑

a,b=0
Tr(√Paρ

√
Pb)∣a⟩⟨b∣

Prob(outcome = a) = ⟨a∣σY∣a⟩ = Tr(√Paρ
√
Pa) = Tr(Paρ)
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We need to check two things: (1) that such a matrixU works correctly, and (2) thatU can
be made unitary.

ThatU can bemade unitary follows from the fact that its firstn columns are orthonormal.
Denote these firstn columns by ∣γ0⟩, . . . , ∣γn−1⟩.

∣γc⟩ = m−1
∑
a=0

∣a⟩⊗√
Pa∣c⟩ ⟨γc∣γd⟩ = ⟨c∣ (m−1

∑
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√
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√
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Non-destructive measurements
Non-destructive measurements have not only a classical measurement outcome, but also
a post-measurement quantum state of the system that was measured.

There are different specific ways to formulate them in mathematical terms.

Non-destructive measurements from Naimark’s theorem

Consider a general (destructive) measurement {P0, . . . ,Pm−1} of a system X.
We can define a non-destructive measurement with the same outcome
probabilities using Naimark’s theorem.
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Conditioned on the outcome a the state of X becomes this:

√
Paρ

√
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Tr(Paρ)



Non-destructive measurements
Non-destructive measurements have not only a classical measurement outcome, but also
a post-measurement quantum state of the system that was measured.

There are different specific ways to formulate them in mathematical terms.

Non-destructive measurements from Kraus matrices

Suppose M0, . . . ,Mm−1 are square matrices satisfying this equation:

m−1
∑
a=0

M
†
aMa = 1

They specify a non-destructive measurement. For a system in the state ρ:

Pr(outcome = a) = Tr(MaρM
†
a) = Tr(M†

aMaρ)
Conditioned on the outcome a the state of the measured system becomes this:

MaρM
†
a

Tr(MaρM
†
a)



State discrimination & tomography
Quantum state discrimination

Let ρ0, . . . ,ρm−1 be quantum states of a system X and let (p0, . . . ,pm−1) be a
probability vector.

• An element a ∈ {0, . . . ,m − 1} is chosen at random according to the
probabilities (p0, . . . ,pm−1).

• The system X is prepared in the state ρa.
• Goal: determine a by measuring X.

Quantum state tomography

Let ρ be an unknown quantum states of a system.

• Identical systems X1, . . . , XN are each independently prepared in the
state ρ.

• Goal: approximate ρ by measuring X1, . . . , XN.



Discriminating pairs of states
Quantum state discrimination

Let ρ0, . . . ,ρm−1 be quantum states of a system X and let (p0, . . . ,pm−1) be a
probability vector.

• An element a ∈ {0, . . . ,m − 1} is chosen at random according to the
probabilities (p0, . . . ,pm−1).

• The system X is prepared in the state ρa.
• Goal: determine a by measuring X.

Whenm = 2 for state discrimination, the goal is to distinguish between a pair of states.

Pairs of states are optimally discriminated by the Helstrom measurement.

This is the projective measurement {Π0,Π1} defined as follows.

p0ρ0 − p1ρ1 =
n−1
∑
k=0
λk∣ψk⟩⟨ψk∣

S0 = {k ∈ {0, . . . ,n − 1} ∶ λk ≥ 0}
S1 = {k ∈ {0, . . . ,n − 1} ∶ λk < 0}

Π0 = ∑
k∈S0

∣ψk⟩⟨ψk∣ and Π1 = ∑
k∈S1

∣ψk⟩⟨ψk∣

Pr(correct identification) = 1
2 +

1
2

n−1
∑
k=0

∣λk∣ = 1
2 +

1
2∥p0ρ0 − p1ρ1∥1

The fact that this is optimal is known as the Helstrom–Holevo theorem.
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Discriminating 3 or more states
Quantum state discrimination

Let ρ0, . . . ,ρm−1 be quantum states of a system X and let (p0, . . . ,pm−1) be a
probability vector.

• An element a ∈ {0, . . . ,m − 1} is chosen at random according to the
probabilities (p0, . . . ,pm−1).

• The system X is prepared in the state ρa.
• Goal: determine a by measuring X.

Whenm ≥ 3 states are to be discriminated, there is no known formula for an optimal
measurement.

• An optimal measurement can be approximated using semidefinite programming.

• The Holevo-Yuen-Kennedy-Lax conditions allow a given measurement to be checked
for optimality.



Discriminating 3 or more states
Example

Recall that the tetrahedral states are defined as follows.
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The measurement {P0,P1,P2,P3} discriminates these four states with minimum
error.

P0 = ∣φ0⟩⟨φ0∣
2 P1 = ∣φ1⟩⟨φ1∣

2 P2 = ∣φ2⟩⟨φ2∣
2 P3 = ∣φ3⟩⟨φ3∣
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Quantum state tomography
Quantum state tomography

Let ρ be an unknown quantum states of a system.

• Identical systems X1, . . . , XN are each independently prepared in the
state ρ.

• Goal: approximate ρ by measuring X1, . . . , XN.

Different variants of quantum state tomography are considered:

• Measurements can be local (each X1, . . . , XN is measured separately) or global.
• Multiple strategies may be used to find a description of ρ from measurement data.



Qubit tomography
Suppose ρ is an unknown qubit state andX1, . . . , XN are qubits independently prepared in the
state ρ. Quantum state tomography can be performed as follows.

1. Perform the measurement {∣+⟩⟨+∣, ∣−⟩⟨−∣} on one-third of the systems.
• Score +1 for each ∣+⟩⟨+∣ outcome
• Score −1 for each ∣−⟩⟨−∣ outcome
Expected value for each measurement: Tr(σxρ)

2. Perform the measurement {∣+i⟩⟨+i∣, ∣−i⟩⟨−i∣} on one-third of the systems.
• Score +1 for each ∣+i⟩⟨+i∣ outcome
• Score −1 for each ∣−i⟩⟨−i∣ outcome
Expected value for each measurement: Tr(σyρ)

3. Perform the measurement {∣0⟩⟨0∣, ∣1⟩⟨1∣} on one-third of the systems.
• Score +1 for each ∣0⟩⟨0∣ outcome
• Score −1 for each ∣1⟩⟨1∣ outcome
Expected value for each measurement: Tr(σzρ)

The density matrix ρ can now be approximated using this formula:

ρ =
1 + Tr(σxρ)σx + Tr(σyρ)σy + Tr(σzρ)σz

2



Qubit tomography
We can alternatively perform tomography using the tetrahedral measurement.
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P0 = ∣φ0⟩⟨φ0∣
2 P1 = ∣φ1⟩⟨φ1∣

2 P2 = ∣φ2⟩⟨φ2∣
2 P3 = ∣φ3⟩⟨φ3∣

2

Key formula:

ρ =
3
∑
k=0

(3 Tr(Pkρ) − 1
2 )∣φk⟩⟨φk∣


