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Descriptions of measurements

Measurements represent an interface between quantum and classical information:

e Performing a measurement on a system extracts classical information about
its quantum state.

e Ingeneral, the system is changed (or destroyed) in the process.

Initially our focus will be on (el iglle =Nl =l — which produce a classical

outcome alone. (The post-measurement state of the system is not specified.)

Two ways to describe destructive measurements

1. As [eelllEeile)Nedlelidlel=xh one for each measurement outcome.

2. As whose outputs are always classical states (represented by
diagonal density matrices).

Wl Be i o =R le Y NIg=lat=lalis| will be discussed later in the lesson. (They can

always be described as compositions of destructive measurements and channels.)



Measurements as matrices

Suppose X is a system to be measured. For simplicity we will assume the following:

e The classical state set of Xis {0,...,n —1}.

e The set of measurement outcomes is {0, ..., m — 1}.

Recollection: projective measurements

A [oJge) e =Nl gl is described by a collection of projection matrices

{TTo, ..., TT 1} satisfying this condition:
TTog + o + 111 = 1x
If the state of X is p, each outcome a appears with this probability:

Tr(ﬂap)



Measurements as matrices

Suppose X is a system to be measured. For simplicity we will assume the following:

e The classical state set of Xis {0,...,n —1}.

e The set of measurement outcomes is {0, ..., m — 1}.

General measurements

A is described by a collection of positive semidefinite
matrices {Pg, ..., Pm_1} satisfying this condition:

PO + o0 + Pm—l = ]lx

If the state of X is p, each outcome a appears with this probability:

Tr(Pap)



Measurements as matrices

General measurements

A is described by a collection of positive semidefinite
matrices {Pg, ..., Pm_1} satisfying this condition:

PO + eee 4+ Pm—l = ]lx

If the state of X is p, each outcome a appears with this probability:

Tr(Pap)

We necessarily obtain a probability vector (Tr(Pgp),..., Tr(Pm_1p)):

e These are nonnegative real numbers: Q,R 20 = Tr(QR) = 0.

e These numbers sumto 1:

Tr(Pop) + ++ + Tr(Pm_1p) = Tr((Po + -+ + Piy_1)p) = Tr(p) =1



Examples

Projections are always positive semidefinite, so every projective measurement is an
example of a general measurement.

Example 1

A standard basis measurement of a qubit can be represented by {Pg, P1} where

P0=|0)(0|=((1) g) P1=|1><1|=(g (1’)

Measuring a qubit in the state p results in outcome probabilities as follows.

Prob(outcome = 0) = Tr(Pgp) = Tr(|0){0|p)
Prob(outcome = 1) = Tr(P1p) = Tr(|1){1|p)

{0lp[0)
(1lp[1)



Examples

Example 2

Define Py and P; as follows.

2 1 1 _1

3 3 3 3
Py = P, =

11 -1 2

3 3 3 3

Measuring a qubit in the |+) state results in outcome probabilities as follows.

2 1\ /1 1
3 3|2 2 5
Prob(outcome = 0) = Tr(Pg|+){(+]|) = Tr 2 2)|_2
1 1)1 1 6
3 3/\2 2
1 _1\/1 1 .
3
Prob(outcome = 1) = Tr(Pq|+){(+|) = Tr 3lf2 2)|_1
_1oo2 {1 1 6
3 3/\2 2



Examples

Example 3

Theare defined as follows.

| o)

|$o) = [0)
1
| 1) = ﬁ \/7|1 | N
1 2 i3 |$3)
1920 = 210y +/ 31 \ N

1 2 _omi/3
93) = =10 0y +1/2e )

We can define a measurement {Pg, P1, P, P3} as follows.

[d1)

[po) (ol p, = [p1) (b1l P, = [b2) (b2l P, = [b3) (b3l

Po=—5— T2 2 2



Measurements as channels

Recall that classical (probabilistic) states can be represented by diagonal density matrices.

Any general measurement can be described as a O:
e Theinput system X is the system being measured.

e The classical states of the output system Y are the possible measurement outcomes
{0,...,m -1}

e Forevery input state p of X, the output state @ (p) is a diagonal density matrix.

Example: standard basis measurement

The [eelgglal G A Ealgle kgl channel A describes a standard basis measurement of
a qubit:

A(p) = (0[p[0) [0)(Of + (1]p[1) [1)(1]



Measurements as channels

Recall that classical (probabilistic) states can be represented by diagonal density matrices.

Any general measurement can be described as a O:
e Theinput system Xis the system being measured.

e The classical states of the output system Y are the possible measurement outcomes
{0,...,m -1}

e Forevery input state p of X, the output state @ (p) is a diagonal density matrix.

Equivalence to matrix description

A channel @ from X to Y has the property that ®(p) is always diagonal if and
only if

m-—1
®(p)= ) Tr(Pap)|a)al
a=0

for a measurement {Pg, ..., Pm_1}.



Partial measurements

Suppose that a pair of systems (X, Z) is in a state p and a measurement {Pq, ..., Prn_1}
is performed on X.

This results in a measurement outcome — and in addition the state of Z may change
depending on the outcome.

Outcome probabilities

The probabilities for different measurement outcome probabilities to appear
depend only on the measurement and the px of X.

Prob(outcome = a) = Tr(Pqpx) = Tr(PoTrz(p)) = Tr((Pa ® Iz)p)



Partial measurements

Suppose that a pair of systems (X, Z) is in a state p and a measurement {Pq, ..., Pr_1}
is performed on X.

This results in a measurement outcome — and in addition the state of Z may change
depending on the outcome.

States conditioned on measurement outcomes

To determine the state of Z conditioned on a given measurement outcome we can
turn to the channel description of the measurement:

m-—1
®(0)= ) Tr(Peo)|a)(al
a=0
Applying this channel to X results in this state:
m-1
> la)a|® Trx((Pa ® Iz)p)
a=0

The state of Z [gelplelifle)il=le} on the outcome a can be obtained by normalizing the
matrix Tryx((Pq ® Iz)p).



Partial measurements

Suppose that a pair of systems (X, Z) is in a state p and a measurement {Pq, ..., Pr_1}
is performed on X.

This results in a measurement outcome — and in addition the state of Z may change
depending on the outcome.

Summary

When a measurement {Pq, ..., P;,_1} is performed on X when (X, Z) is in the
state p, the following happens:

1. Each outcome a appears with probability Tr((P, ® I7)p).

2. Conditioned on obtaining the outcome a, the state of Z becomes

Trx((Pa® Iz)p)
Tr((Pa® I7)p)




Naimark’s theorem

Naimark’s theorem is a fundamental fact concerning measurements. It states that every
general measurement can be implemented in the following way:

P
a
That is, a given general measurement { Py, ..., P;n_1} on X can be implemented as
follows.
1. Introduce an initialized workspace system Y having classical states {0, ..., m — 1}.

2. Perform a unitary operation U on the pair (Y, X).

3. Perform a standard basis measurementon'.



Proof of Naimark’s theorem

Naimark’s theorem is not difficult to prove... we just need to make a good choice for U and
verify that it works.

Fact

For every positive semidefinite matrix P, there is a unique positive semidefinite
matrix Q such that Q2 = P. This matrix is denoted v/P.

We can calculate VP using a spectral decomposition of P:

n-1 n-l1
P=) AWl = VP=) VArlbi) (il
k=0 L=l



Proof of Naimark’s theorem

Naimark’s theorem is not difficult to prove... we just need to make a good choice for U and
verify that it works.

Any unitary matrix U that follows this pattern will work:




Proof of Naimark’s theorem

We need to check two things: (1) that such a matrix U works correctly, and (2) that U can
be made unitary.

u(lo)(ol ® pyu’

JP .................................... p .................................... JPa P P




Proof of Naimark’s theorem

We need to check two things: (1) that such a matrix U works correctly, and (2) that U can
be made unitary.

u(loy(o| ® p)u’

VPoorPs VPP

VPm—l p\/P_O \/Pm—l p\/Pm—l
m-1
= Y la)bl @ VPapVPs

a,b=0



Proof of Naimark’s theorem

We need to check two things: (1) that such a matrix U works correctly, and (2) that U can
be made unitary.

m-1
o =u(o)ole p)U' = ) |a)(bleVPapVPy

a,b=0
-1

ov="y Tr(VPaoyPy)la)b]

a,b=0

Prob(outcome = a) = {aloy|a) = Tr(yPapyPa) = Tr(Pap)



Proof of Naimark’s theorem

We need to check two things: (1) that such a matrix U works correctly, and (2) that U can
be made unitary.

That U can be made unitary follows from the fact that its first n columns are orthonormal.
Denote these first n columns by |vg), ..., |[Yn-1)-

m-—

m=Z la)® VPale)  (velva) = c|<z )|d>=<c|d>



Non-destructive measurements

Non-destructive measurements have not only a classical measurement outcome, but also

a [l e gl I e e Tl (01 a RS fe =] Of the system that was measured.

There are different specific ways to formulate them in mathematical terms.
Non-destructive measurements from Naimark’s theorem
Consider a general (destructive) measurement {Pg, ..., P;,_1} of a system X.

We can define a measurement with the same outcome
probabilities using Naimark’s theorem.

Conditioned on the outcome a the state of X becomes this:

VPapVPa

Tr(Pap)



Non-destructive measurements

Non-destructive measurements have not only a classical measurement outcome, but also

afoleielal=le gl Mol e lat e BSide =] of the system that was measured.

There are different specific ways to formulate them in mathematical terms.

Non-destructive measurements from Kraus matrices

Suppose My, ..., M -1 are square matrices satisfying this equation:

m-1

> MiMg=1

a=0
They specify a non-destructive measurement. For a system in the state p:

_ _ Ty _ T
Pr(outcome = a) = Tr(MgopMy) = Tr(MMgp)

Conditioned on the outcome a the state of the measured system becomes this:

M, pM}
Tr(MqpMb)




State discrimination & tomography

Quantum state discrimination

Let pg, ..., Pm-1 be quantum states of a system X and let (pg, ..., pm-1) be a
probability vector.

e Anelement a € {0,..., m — 1} is chosen at random according to the
probabilities (pg, ..., Pm=1)-
e The system X is prepared in the state p,.

e Goal: determine a by measuring X.

Quantum state tomography
Let p be an unknown quantum states of a system.

e Identical systems Xy, ..., XN are each independently prepared in the
state p.

e Goal: approximate p by measuring X¢, ..., XN-



Discriminating pairs of states

Quantum state discrimination

Let pg,..., Pm-1 be quantum states of a system X and let (pg, ..., pm-1) be a
probability vector.

e Anelement a € {0,..., m — 1} is chosen at random according to the
probabilities (po, ..., Pm=1)-
e The system X is prepared in the state p,.

e Goal: determine a by measuring X.

When m = 2 for state discrimination, the goal is to distinguish between a [elellfo)#&fel (kR
Pairs of states are optimally discriminated by the [gll5igelaNaal=e P Ig=lgal=1a1 2



Discriminating pairs of states
Pairs of states are optimally discriminated by the

This is the projective measurement {TTg, TT; } defined as follows.

n-1

PoPo ~ P1P1 = Z Ak [} (|

k=0

Se={ke{0,....,n—1}: A =0}
51={k€{0,...,n—1}17\k<0}

Mo= ) [bi){wl and  Thi= ) |[bi)(wxl

keSo keS;

Z Akl = —+ 2||Popo p1e1ll;

I\)ll—‘
I\Jll—l

Pr(correct identification) =

The fact that this is optimal is known as the [glaEigeluEdz o] SR =TeTd=1018



Discriminating 3 or more states

Quantum state discrimination

Let pg, ..., Pm-1 be quantum states of a system X and let (pg, ..., pm-1) be a
probability vector.

e Anelement a € {0,..., m — 1} is chosen at random according to the
probabilities (pg, ..., Pm=1)-
e The system X is prepared in the state p,.

e (Goal: determine a by measuring X.

When m > 3 states are to be discriminated, there isfor an optimal
measurement.
e An optimal measurement can be approximated using S=lplle = lalii=Ne)goy=1gelaalsalTgV=F

o The [l EROTEIE Gl a b4 conditions allow a given measurement to be checked
for optimality.



Discriminating 3 or more states

Example

Recall that the are defined as follows.

| o)
|$o) = [0)
1
| 1) = ﬁ \/7|1 |
1 9 i3 | d3)
920 = 10y +/ 32 \

[d2)

1 2 _omi
|¢3>=ﬁ|o>+\@e )

The measurement {Pgq, P1, P», P3} discriminates these four states with minimum
error.

[d1)




Quantum state tomography

Quantum state tomography

Let p be an unknown quantum states of a system.

e Identical systems Xy, ..., XN are each independently prepared in the
state p.
e Goal: approximate p by measuring X¢, ..., XN.

Different variants of quantum state tomography are considered:

e Measurements can be local (each Xq, ..., Xy is measured separately) or global.

e Multiple strategies may be used to find a description of p from measurement data.



Qubit tomography

Suppose p is an unknown qubit state and X1, ..., Xy are qubits independently prepared in the
state p. Quantum state tomography can be performed as follows.

1. Perform the measurement {|+)(+], |=)(—|} on one-third of the systems.

e Score +1 for each |+)(+]| outcome
e Score —1 for each |-){—| outcome

Expected value for each measurement: Tr(o, p)

2. Perform the measurement {|+1)(+1i|, |[-1){—1|} on one-third of the systems.

e Score +1 for each |+1i){+1| outcome
e Score —1 for each |-i){—1i| outcome

Expected value for each measurement: Tr(oy p)

3. Perform the measurement {|0)(0[, |1){1|} on one-third of the systems.

e Score +1 for each |0)(0| outcome
e Score —1 foreach |1)(1] outcome

Expected value for each measurement: Tr(o,p)

The density matrix p can now be approximated using this formula:

1+ Tr(oxp)ox + Tr(oyp)oy + Tr(o,p)o,
p =
2




Qubit tomography

We can alternatively perform tomography using the [Eigelale Lol Nl kg Taal=lg 2

|bo) = [0)

|b1) = \/7|1

|P2) = %| >+\F Y
\/_

2 _omi
|#3) = |>+\ﬁ Y
Py = |¢0>2(¢0| P, = |¢1)2(d>1|
Key formula:

[$o)

[$3)

[d2)

[ 1)

3
o= (3Tr(Pyp) - 5 )Idi)(bil

k=0




