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What are channels?

Channels describe IR MR b2 in systems that store quantum information.

This includes useful operations (such as unitary operations described by quantum gates
and circuits) and changes we might wish to avoid (such as noise).

Common names for generic channels include the capital Greek letters @, ¥, and =.

If achannel @ is applied to a system is a state represented by a density matrix p, then we
obtain a system in the state @ (p).

Requirements

1. Channels are linear mappings.
2. Channels transform density matrices into density matrices.*

* This includes the possibility that a channel is applied to part of a compound system.



Further details

Every channel @ has ansystem Xand ansystem Y.

e Conceptually speaking, @ transforms X into Y. (The input and output systems are
not considered to simultaneously co-exist.)

e Theinput and output systems can be the same — in which case we may simply view
that @ changes the state of this system.

Suppose Z is an additional system, I is the classical state set of Z, and the pair (Z, X) is
in the state p. We can express p in the following form.

o= la)(bl®pas

a,bel’

Applying the channel @ to X transforms it into Y, leaving (Z, Y) in this state:

> la)(b]® ®(pa,)

a,bel’



Further details

Suppose Z is an additional system, T" is the classical state set of Z, and the pair (Z, X) is
in the state p. We can express p in the following form.

o= la)bl®pas

a,bel’

Applying the channel @ to X transforms it into Y, leaving (Z, Y) in this state:

> la)bl® @(pa)

a,bel’

IfI" = {0,..., m — 1} we can describe this transformation in terms of

00,0 P0,m-1 D (poo) D(po,m-1)

Ol 0 (Pl el D(pm-10) -+ DP(Pm-1,m-1)

This must be a(for every possible Z and every density matrix p).



Unitary channels

Suppose U is a unitary matrix representing a unitary operation on a system X.

The channel ®@ corresponding to this operation is defined as follows.
®(p) = Upu

This is consistent with |1 ){(1 | being the density matrix representation of the quantum
state vector |).

If U is performed on |1), we obtain the quantum state vector U |y ), whose density
matrix representation is as follows.

U)W = ufp)wu’

Fact

This is always a valid channel. If the state of (Z, X) is represented by a density
matrix p and @ is applied to X, then we necessarily obtain a density matrix:

(1z® W)p(1z @ U)'



Unitary channels

Suppose U is a unitary matrix representing a unitary operation on a system X.

The channel ®@ corresponding to this operation is defined as follows.
®(p) = Upu'

Fact

This is always a valid channel. If the state of (Z, X) is represented by a density
matrix p and @ is applied to X, then we necessarily obtain a density matrix:

(1z® Wp(1z @ U)'

Example: the identity channel

The channel we obtain when we take U = 1 is the [{el&aliis/Ae e lalg =15

Id(p) = p



Convex combinations

Let @ and @ be channels from Xto Y and letp € [0, 1].
Consider applying @ with probability p and ©; with probability 1 — p. We obtain a new

channel:

Y=p®y+(1l-p)Dd;
Y(p)=(pD@o+(1-p)D1)(p)=pPo(p)+(1-p)P1(p)



Convex combinations

Let @ and @ be channels from Xto Y and letp € [0, 1].

Consider applying @ with probability p and @ with probability 1 — p. We obtain a new
channel:

Y=p®y+(l-p)Dd;y

More generally, if @g, ..., ®,,_1 are channels and (pg, ..., pPm-1) is @ probability
vector, then averaging in a similar way creates a new channel:

m-1

W= Z PPk
k=0

Example: mixed-unitary channels

Applying one of a collection of unitary operations to a system yields a

mixed unitary LR

m-1

Y(p) = Z piUipUL
k=0



Qubit reset

Qubit reset channel

The [P NNEEERGIIE] resets a qubit to the |0) state.

A(p) = Tr(p)[0){0]

Suppose A and B are qubits, (A, B) is in the state | 7 ), and A is applied to A.

First we can express |¢ ") as a density matrix (using Dirac notation):

oL 1
7)==l e 0)+ =1 e 1)
%)@ | = 510)(0] ® [0)(0] + 5 [0)(1] @ [0)(1] + 5[1)(0] ® [1)(0] + 5 [1)(1] @ |1)1]

Then we can apply the channel to the first qubit, evaluate, and simplify:

2 A(0)01) @ [0)(0] + 3 A([0)(1]) @ [0)(1] + 3 A(IL)0]) @ [1){0] + 3 A(IL)(1]) @ [1)1]

1 1 1
= 510)(0] ® [0)(0] + 5[0)(0] ® [1)(1] = |0)(0] & »



Complete dephasing

Completely dephasing channel

The [ee)ulsl CiERe ElelloElg Mol elalg =l zeros-out off-diagonal matrix entries.
(0600 0601) (0600 0 )
A =
X0  *11 0 o

This channel can alternatively be expressed using Dirac notation.
A(]0)(0]) = [0)(0] A(]0)(1]) =0
A(]1)(0]) =0 A(J1)(1]) = [1)(1]
Suppose (A, B) is a pair of qubits in the state |c|)+), and A is applied to A:

SA(0)0]) @ [0)(0] + 3 AI0)(1]) @ [0)(1] + 5 A(I1)(0]) ® [1)(0] + 5 A(1)(1]) ® [1)(1]

1 1
= 510)(0 @ [0){0] + 5 |1)(1] ® |1)(1]



Complete depolarizing

Completely depolarizing channel

The [ee)palsl Ci=lA6 Elelol elgralg-qel el g2l always outputs the completely mixed state.

Q(p) = Tr(p) 5

The completely depolarizing channel represents an extreme form of

We can describe a less extreme form of noise by averaging with the identity channel:

Q. =(1-¢)ld+eQ

Qc(p)=(1-e)p+ 51

Something similar can be done with the completely dephasing channel:

A =(1-¢)ld+eA
(0600 0601) ( 0o (1-¢)xp
A, =

X10 11 (1-¢)axp x11



Three gubit channels

Qubit reset channel

The [P NNEERERIE] resets a qubit to the |0) state.

A(p) = Tr(p)[0){0]

Completely dephasing channel

The [ee)ualal CEAe Eel e lgl-qel elalg =) zeros-out off-diagonal matrix entries.

A(|0)(0]) = [0){0| A(l0)(1]) =0
A(|1){0]) =0 A(I)(L]) = 1)1

Completely depolarizing channel

The [eelgalal G A6 EslollelgPAlg-Rolplela =l always outputs the completely mixed state.

Q(p) =Tr(p)

N| =



Channel representations

Question

Linear mapping from vectors to vectors can be represented by matrices in a
familiar way...

... but channels are linear mappings JjgeluNilet{glel= N oM salo /g (ol=FF

How can we express [elgaliigelg/Me il lali I in mathematical terms?

Sometimes we may have a simple formula that expresses the action of a channel — such
as A(p) = Tr(p)|0){0| for the qubit reset channel — but this is not practical in general.

We'll discuss three different general ways to represent channels and how they relate:

1. Stinespring representations
2. Kraus representations

3. Choirepresentations



Stinespring representations

Every channel can be implemented in the following way:
1. Form a compound system including theand an initialized

workspace system.
2. Perform a[llaligelg/Aelel=lgelilelg] on the compound systems.

3. everything except the output system.

Special case

A channel @ from a system X to itself can be implemented like this:

D(p)




Stinespring representations

Every channel can be implemented in the following way:
1. Form a compound system including theand an initialized

workspace system.
2. Perform a[Wlaligelg/Aelel=lgelilelg] on the compound systems.

3. everything except the output system.

In general

A channel @ from a system X to a system Y can be implemented as follows
(for a suitable choice of systems W and G):

Such a description (consisting of the unitary operation and a specification of the input and

output systems) is a Sl gl ==l titelg] of the channel.



Example: dephasing

Example 1

An implementation of the completely dephasing channel:

P A(p)
.

0 0

(0lp[0) ~(0lpl1)
00l o o | (11P1O) (Tlol)
0 0

o O O O
SN

o O O O



Example: dephasing

Example 1

An implementation of the completely dephasing channel:

P A(p)
|0)
1 0 0 0)/(0]plo) (0|pj1) O O\/1 O O O
0 0 0 1||(1lplo) (1|p|]1) 0 ofl0 0 0 1
0 0 1 0 0 0 0 o/lo 0 1 O
01 0 0 0 0 o0 o/lo 1 0 O
(0lpl0) 0 0 (0O|p|1)
B 0 0 0 0
0 0 0 0
(1[pl0) O 0O (1]p|1)



Example: dephasing

Example 1

An implementation of the completely dephasing channel:

P A(p)
0) 1
(0lpl0) 0 0 (0lpl1) (0lpl0) [0){0] ® [0){0]
0 0 0 0 | _ +{0lp|1)]0)(1] ® |0)(1]
0 0 0 0 +(1]p|0) [1){0] ® [1)(O]
(1lplo) 0 0 (1]p|1) +(1]p[1) [1)(1] @ [1)(1]

partial trace

— (0[p]0) [0)(0] + (1]p|1) [1)(1] = A(p)



Example: dephasing

Example 2

An alternative implementation of the completely dephasing channel:

P

o) —i0 : 1

(0lp|0)

)+ ®p = 2 E;:z:gi

(1]pl0)

(0]p]1)
(1]pl1)
(Olp|1)
(1]p]1)

(0]p]0)
(1]p]0)
(0lp|0)
(1]p]0)

A



Example: dephasing

Example 2

An alternative implementation of the completely dephasing channel:

: A

1 0 0 0)/(0lplo) (olpl1) (0lpl0) (Olp|1))(1 0 0 O
110 1 0 0 |[(lplo) (1[p]1) (Llpl0) (ilp|1)|{0 1 O O
210 0 1 0 |[(0]pl0) (O]p[1) (OlplO) (O|pl1)|{|O O 1 O

0 0 0 -1/\(1]pl0) (1]pl1) (ilpl0) (1|pl1)/\0 O 0O -1

(0[pl0)  (0]p|1)  (O|p|O)  —(O[p|1)
_ 1) (1lpl0)  (1p1)  (1lpl0) —(1]p]1)
2| (olplo)  (olpl1)  (0lpl0) —(Olp[1)
—(1lpl0) —(1[p[1) —(1|pl0) (1]p[1)



Example: dephasing

Example 2

An alternative implementation of the completely dephasing channel:

: A
o) —i0 ‘ 1

(0lplo)  (0lp[1)  (O[p[0) —(Olp|1)
1] (1fpl0)  (1]p[1)  (1[pl0) —(1]p[1)
2| (olplo)  (olpl1)  (0]pl0) —(Olp[1)
—(1lpl0) —(1]p[1) —(1|pl0) (1|p|1)

pami)tracel(wlplm <0|p|1>)+1(<0|p|0> —<0|p|1>)=(<0|p|0> 0 )
>\(1lpl0) (1lpl1) =(1lel0)  (1lp[1) 0 (1fel1)

2
= A(p)



Example: dephasing

Example 2

An alternative implementation of the completely dephasing channel:

p A
o) —i0 ‘ 1

1(<O|p|0> <0|p|1>)+1(<0|p|0> —<0|p|1>)=(<0|p|0> 0 )
2\(1lploy (1lplt)) 2\=(1lplo) (1|pl1) 0 (ilpl1)

1 1
§p + Eo—zpo-z = A(p)



Example: dephasing

Example 1

An implementation of the completely dephasing channel:

P A(p)

0) -

Example 2

An alternative implementation of the completely dephasing channel:

P Eﬁ A(p)
o —i 1




Kraus representations

G ENEl e ielieli are a convenient formulaic way of expressing channels through
matrix multiplication and addition.

In general, a Kraus representation of a channel ® looks like this:

N-1
©(p)= ) AxpA;
k=0
Here, Ay, ..., An_1 are matrices that all have the same dimensions:
e Thecolumnsof Ay, ..., AN -1 correspond to the classical states of the input system.
e Therowsof Ag,..., An-1 correspond to the classical states of the output system.

These matrices must satisfy the following condition.

N-1
Y AlAr=1
k=0



Examples

N-1 N-1

©(p)= ) AxpA; > AlAk=1
k=0 k=0

Example: qubit reset channel

We can obtain a Kraus representation of the qubit reset channel by taking
Ao =10){0] and A1 = [0)(1].

1
> AxpAf = 0)(0[p[0){0] +[0)(1[p[1)(O]
k=0
= ({0lpl0) + {1]p|1)) [0)(0]

= Tr(p) |0)(0]

Here’s a check that the required condition is met:

1
Z LA = [0)(0]0)(0] + [1){0[0)(1] = [0){0] + [1)(1] = 1



Examples

N-1 N-1

©(p)= ) AxpA; > AlAk=1
k=0 k=0

Example: completely dephasing channel

We can obtain a Kraus representation of the completely dephasing channel by
taking Ag = |0)(0] and Aq = |1)(1].

1
> ArpAl =10)(0lpl0)(0] + 1)(1]p|1)(1|
k=0
= (0[p|0) [0)(0] + (1[p[1) [1)(1|

= A(p)

Here’s a check that the required condition is met:

1
Z LA = 10)(0]0)(0] + [1)(1[1)(1] = [0){0] + [1)(1] = 1



Examples

N-1 + N-1 +
®(p) = ) AkpA ) ArAk=1
k=0 k=0

Example: completely dephasing channel (alternative Kraus representation)

We can obtain a different Kraus representation of the completely dephasing
channel by taking Ag = 1/v2 and A; = 0, /V?2.

1
1 1 o, O
ZAkpAT_ z Yg

= NN A
1 1
=§p+§0-zpo-z
= A(p)

Again we can check that the required condition is met:

iTkz_l 0. 02
& RR TR



Examples

N-1 + N-1 +
®(p) = ) AkpA ) AiAx=1
k=0 k=0

Exercise: completely depolarizing channel

For the completely depolarizing qubit channel (O we need four (or more) Kraus
matrices. Show that these two alternatives both work:

0)(0 0)(1 1)(0 1)(1
A= 1001 el el Dl
V2 V2 V2 V2

1 o o o

Av=5 Ai=— Ay=—H  Az=

Notice (by the second alternative) that applying a [gelaleleluN el NeTel=Igelile)g] tO a qubit
completely depolarizes it.

+ O Oy + O oy, t+t0O O
Q(p)= P xPOx fp y 2P0z




Chol representations

Theof a channel @ is a single matrix denoted J(®).

If the input system has n classical states and the output system has m classical
states, then J(®@) is an (nm) X (nm) matrix.

Key properties of the Choi representation

1. The Choi representation is a Jfeltigli?1| representation: for two channels ®©
and ¥ we have J(®) = J(W¥) if and only if ® =W,

2. Simple-to-check conditions on J(®) are true if and only if @ is a valid
channel.

Remark: The matrix J(® ) does not directly represent @ as a linear mapping.
(The action of @ can, however, be recovered from J(®) by a simple formula.)



Chol representations

Let @ be a channel from a system X to a system Y, and assume the classical state set of
the input system Xis 2. The [®glelRg=e)=E=ltelile)lg] of D is defined as follows.

J(@)= ) |a)ble @(]a)(b])

a,bex
If we assume £ = {0, ..., n — 1}, then we can express J(®) as a block matrix:
@(]o){0]) o(lo)1]) - @(lo){n-1])
@(|1){0l) ol - @(1)n-1])
J(@) =
O(In-1)0]) @(In-1)1]) - @(In-1)}(n-1)

Theset{|a)(b| : 0 < a, b < n}formsabasis for the space of all . xn complex matrices
— so the blocks of J(®) determine the action of ®@ on all n X n matrices.



The Chol state of a channel

Let @ be a channel from a system X to a system Y, and assume the classical state set of
the input system Xis 2. The [®lelRg=el=E =l telilelg] of D is defined as follows.

J(®)= ) la)b|® @(]a)(b])

a,beX

If we normalize the Choi representation J(®) of a channel ®@ by dividingby n = |X|, we
obtain a density matrix. This state is called theof .

Z|a ® |a)

aEZ

W)Wl == 3 la)bl® |a)(b|

a,bex

Li@)== 3 la)bl® d(la)(bl)

a,bex



The Chol state of a channel

Let @ be a channel from a system X to a system Y, and assume the classical state set of
the input system X is 2. The [Nl = ielite)a) of O is defined as follows.

J(®)= ) la)b|® @(]a)(b])

a,beX

If we normalize the Choi representation J(®) of a channel ®@ by dividingby n = |X|, we
obtain a density matrix. This state is called theof D.

1
|w>=J—HZ|a>®|a>

aex

X n Y
W) (b —

X

C




The Chol state of a channel

If we normalize the Choi representation J(®) of a channel @ by dividingby n = |X|, we
obtain a density matrix. This state is called theof .

> la)e|a)

aex

X n Y
W) (b

X

1
N)):\/_R

J(@)

n

Implications:

1. J(®)/misadensity matrix — and therefore J(®) = 0.
2. Tracing out the system Y from J(®)/n leaves the completely mixed state on X.

Try( ](TCII,))) = ]1?)( = Try(I(q))) = ]lX

These conditions on J( @) turn out to be [Ee el Al e EM ezl for O to be a channel.



Examples

Example: the completely dephasing channel

The Choi representation of the (qubit) completely dephasing channel:

1
J(A)= ) |a)(b|leA(la)(b])
b=

a,b=0

10){0] @ |0)(0] + [1){1] ® |1)(1]

As a block matrix:

>

o

o
~_ —

>
— N~ -~

o

o
o O O -
o O O O
o O O O
= O O O



Examples

Example: the completely depolarizing channel

The Choi representation of the (qubit) completely depolarizing channel:

1
J(Q)= ) la)bl®Q(la)(b])
b:

a,b=0

0)0l ® 2 + [1){1] ® =

1]l®]l
2

As a block matrix:

1

1 0 0 1 5 0 0 O
QO Q

0 O 0 O o%oo

J(Q) = - 1

0 0 0 0 0 0 5 O
O Q

1 0 0 1 000%



Examples

Example: the identity channel

The Choi representation of the (qubit) identity channel:

1
J(id) = ) la)(b|eld(|a)(b])

a,b=0
1

> la)(b| ® [a)(b]

a,b=0

=2[p NP7

As a block matrix:

1 0) (0 1 1 0 0 1
Id Id
0O O 0 O 0O 0 0 O
(Id) = =
0 0 0 0 0O 0 0 O
Id Id
1 O 0 1 1 0 0 1



Equivalence of representations

Three different ways to represent channels:

1. Stinespring representations
2. Kraus representations
3. Choirepresentations

The remainder of the lesson discusses how their equivalence can be reasoned.

Definition

Stinespring representation

@ is a channel from X to Y
(a linear map transforming density
matrices to density matrices)

Choi representation Kraus representation

e J(®)=0 — o O(p)=Y, ApAl
o Trv(J(®)) = Ix o YLALAL =1y



Definition Choi representation
@ is a channel from X to Y - o J(®)=0
(a linear map transforming density o Try(J(®@)) =1x
matrices to density matrices)
We already argued this implication the context of Choi states...

X Y

=Y la)ela) 1)

aex X

Implications:

1. J(®)/m isadensity matrix — and therefore J(®) = 0.
2. Tracing out the system Y from J(®)/n leaves the completely mixed state on X.

](®)> 5%

Tv(22) =2 = Tr(J(@)) =1



Second implication

Choi representation Kraus representation
e J(©)20 - o ©(p)=Y, ArpAl
e Try(J(®)) =1x °* Xk ALAk = 1x

Because J(®) is positive semidefinite it can be expressed as follows.
N-1

J(@) = ) i) (Wil

k=0

Each vector |y ) can be further decomposed.

W) = ) la)®|dra)

aex



Second implication

Choi representation Kraus representation
e J(®)=0 _ e ©(p)=Y, ApAL
e Try(J(®)) =1x o YL ALAL =1k

Because J (@) is positive semidefinite it can be expressed as follows.

N-1
J(@) = ) | )Wyl W) = ) la) @ |dra)
k=0 aex
We can now obtain a Kraus representation by choosing Ag, ..., An-1 like this:

Ar =) |dra)al

aex



Second implication

Choi representation Kraus representation
e J(®)=0 _ e ©(p)=Y, ApAL
e Try(J(®)) =1x o YL ALAL =1k

N-1
J(@)= ) [Wi)we]  [bi)= ) la)®|dbra) Ax= ) [dra)al
k=0

aex aex

Why should this work? Consider the mapping that these matrices define.

N-1
Y(p)= Y AyxpAl
k=0

The Choi representation of W agrees with ® — so we must have W = @.

N-1
J(¥)= ) la)blew(la)(bl)= ) [bi)(wi|=J(D)
k=0

a,beXx



Second implication

Choi representation Kraus representation
e J(®)=0 _ e ©(p)=Y, ApAL
e Try(J(®)) =1x o YL ALAL =1k

N-1
J(@)= ) [Wi){we] i) =) la)®|dbra)  Ax= ) [dra)al
k=0

aex aex

The two other conditions turn out to be equivalent:

N-1
Trv(J(@) =1x = Y AlAL=1x
k=0

This follows from this equation:

N-1 T
(Z ALAk) = Try(J(®))

k=0



Third implication
Kraus representation Stinespring representation

o ®(p)=Y, ArpAl
o YL ALAL =1y

Ao
u=| 7 Tra(U(j0)(0] @ p)UT) = ) ArpA,
D k=0
AN-1
The condition Z]]:':_Ol ATkAk = 1 is equivalent to the n columns formed by Ag, ..., An-1
being orthonormal. Denote these first n columns by |vo), ..., [Yn-1).

N-1

N-1
[Ya) = ) k)@ Ayla) <va|vb>=<a|(z ALAk)|b>

k=0 k=0



Fourth implication

Stinespring representation Definition

® is a channel from X to'Y
(a linear map transforming density
matrices to density matrices)

We already covered this implication in the context of Stinespring representations (and
unitary channels).

In summary:

1.

2
3.
4

The introduction of an initialized workspace system is a channel.
Unitary operations are channels.
Tracing out a system is a channel.

Compositions of channels are channels.



Equivalence of representations

Definition Stinespring representation

® is a channel from XtoY
(a linear map transforming density
matrices to density matrices)

@(p)

Choi representation Kraus representation

e J(@)=0 e ©(p)=Y, ArpAl
e Try(J(®)) =1x - o YL ALAL=1x



