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What are channels?
Channels describe discrete-time changes in systems that store quantum information.

This includes useful operations (such as unitary operations described by quantum gates
and circuits) and changes we might wish to avoid (such as noise).

Common names for generic channels include the capital Greek lettersΦ,Ψ, and Ξ.

If a channelΦ is applied to a system is a state represented by a density matrix ρ, then we
obtain a system in the stateΦ(ρ).

Requirements

1. Channels are linear mappings.
2. Channels transform density matrices into density matrices.∗

∗ This includes the possibility that a channel is applied to part of a compound system.



Further details
Every channelΦ has an input system X and an output system Y.

• Conceptually speaking,Φ transforms X into Y. (The input and output systems are
not considered to simultaneously co-exist.)

• The input and output systems can be the same — in which case we may simply view
thatΦ changes the state of this system.

Suppose Z is an additional system, Γ is the classical state set of Z, and the pair (Z, X) is
in the state ρ. We can express ρ in the following form.

ρ = ∑
a,b∈Γ

∣a⟩⟨b∣⊗ ρa,b

Applying the channelΦ to X transforms it into Y, leaving (Z, Y) in this state:
∑

a,b∈Γ
∣a⟩⟨b∣⊗Φ(ρa,b)



Further details
Suppose Z is an additional system, Γ is the classical state set of Z, and the pair (Z, X) is
in the state ρ. We can express ρ in the following form.

ρ = ∑
a,b∈Γ

∣a⟩⟨b∣⊗ ρa,b

Applying the channelΦ to X transforms it into Y, leaving (Z, Y) in this state:
∑

a,b∈Γ
∣a⟩⟨b∣⊗Φ(ρa,b)

If Γ = {0, . . . ,m − 1} we can describe this transformation in terms of block matrices:

ρ =
⎛⎜⎜⎜⎜⎜⎜⎜⎝
ρ0,0 ⋯ ρ0,m−1

⋮ ⋱ ⋮

ρm−1,0 ⋯ ρm−1,m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
↦

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Φ(ρ0,0) ⋯ Φ(ρ0,m−1)

⋮ ⋱ ⋮

Φ(ρm−1,0) ⋯ Φ(ρm−1,m−1)
⎞⎟⎟⎟⎟⎟⎟⎟⎠

This must be a density matrix (for every possible Z and every density matrix ρ).



Unitary channels
SupposeU is a unitary matrix representing a unitary operation on a system X.
The channelΦ corresponding to this operation is defined as follows.

Φ(ρ) = UρU
†

This is consistent with ∣ψ⟩⟨ψ∣ being the density matrix representation of the quantum
state vector ∣ψ⟩.
IfU is performed on ∣ψ⟩, we obtain the quantum state vectorU∣ψ⟩, whose density
matrix representation is as follows.

(U∣ψ⟩)(U∣ψ⟩)† = U∣ψ⟩⟨ψ∣U†

Fact

This is always a valid channel. If the state of (Z, X) is represented by a density
matrix ρ and Φ is applied to X, then we necessarily obtain a density matrix:

(1Z ⊗U)ρ(1Z ⊗U)†

Example: the identity channel

The channel we obtain when we take U = 1 is the identity channel:

Id(ρ) = ρ
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Id(ρ) = ρ



Convex combinations
LetΦ0 andΦ1 be channels from X to Y and let p ∈ [0, 1].
Consider applyingΦ0 with probability p andΦ1 with probability 1 − p. We obtain a new
channel:

Ψ = pΦ0 + (1 − p)Φ1

Ψ(ρ) = (pΦ0 + (1 − p)Φ1)(ρ) = pΦ0(ρ) + (1 − p)Φ1(ρ)

More generally, ifΦ0, . . . ,Φm−1 are channels and (p0, . . . ,pm−1) is a probability
vector, then averaging in a similar way creates a new channel:

Ψ =
m−1
∑
k=0

pkΦk

Example: mixed-unitary channels

Applying one of a collection of unitary operations to a system yields a
mixed unitary channel.

Ψ(ρ) = m−1
∑
k=0

pkUkρU
†
k
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Qubit reset
Qubit reset channel

The qubit reset channel resets a qubit to the ∣0⟩ state.
Λ(ρ) = Tr(ρ)∣0⟩⟨0∣

Suppose A and B are qubits, (A, B) is in the state ∣φ+⟩, andΛ is applied to A.
First we can express ∣φ+⟩ as a density matrix (using Dirac notation):

∣φ+⟩ = 1√
2
∣0⟩⊗ ∣0⟩ + 1√

2
∣1⟩⊗ ∣1⟩

∣φ+⟩⟨φ+∣ = 1
2 ∣0⟩⟨0∣⊗ ∣0⟩⟨0∣ + 1

2 ∣0⟩⟨1∣⊗ ∣0⟩⟨1∣ + 1
2 ∣1⟩⟨0∣⊗ ∣1⟩⟨0∣ + 1

2 ∣1⟩⟨1∣⊗ ∣1⟩⟨1∣
Then we can apply the channel to the first qubit, evaluate, and simplify:

1
2Λ(∣0⟩⟨0∣)⊗ ∣0⟩⟨0∣ + 1

2Λ(∣0⟩⟨1∣)⊗ ∣0⟩⟨1∣ + 1
2Λ(∣1⟩⟨0∣)⊗ ∣1⟩⟨0∣ + 1

2Λ(∣1⟩⟨1∣)⊗ ∣1⟩⟨1∣
= 1

2 ∣0⟩⟨0∣⊗ ∣0⟩⟨0∣ + 1
2 ∣0⟩⟨0∣⊗ ∣1⟩⟨1∣ = ∣0⟩⟨0∣⊗ 1

2



Complete dephasing
Completely dephasing channel

The completely dephasing channel zeros-out off-diagonal matrix entries.

∆
⎛⎜⎝
α00 α01

α10 α11

⎞⎟⎠ =
⎛⎜⎝
α00 0

0 α11

⎞⎟⎠
This channel can alternatively be expressed using Dirac notation.

∆(∣0⟩⟨0∣) = ∣0⟩⟨0∣ ∆(∣0⟩⟨1∣) = 0

∆(∣1⟩⟨0∣) = 0 ∆(∣1⟩⟨1∣) = ∣1⟩⟨1∣

Suppose (A, B) is a pair of qubits in the state ∣φ+⟩, and∆ is applied to A:

1
2∆(∣0⟩⟨0∣)⊗ ∣0⟩⟨0∣ + 1

2∆(∣0⟩⟨1∣)⊗ ∣0⟩⟨1∣ + 1
2∆(∣1⟩⟨0∣)⊗ ∣1⟩⟨0∣ + 1

2∆(∣1⟩⟨1∣)⊗ ∣1⟩⟨1∣
= 1

2 ∣0⟩⟨0∣⊗ ∣0⟩⟨0∣ + 1
2 ∣1⟩⟨1∣⊗ ∣1⟩⟨1∣



Complete depolarizing
Completely depolarizing channel

The completely depolarizing channel always outputs the completely mixed state.

Ω(ρ) = Tr(ρ)12
The completely depolarizing channel represents an extreme form of noise.

We can describe a less extreme form of noise by averaging with the identity channel:

Ωε = (1 − ε) Id+εΩ

Ωε(ρ) = (1 − ε)ρ +
ε

21

Something similar can be done with the completely dephasing channel:

∆ε = (1 − ε) Id+ε∆

∆ε
⎛⎜⎝
α00 α01

α10 α11

⎞⎟⎠ =
⎛⎜⎝

α00 (1 − ε)α01

(1 − ε)α10 α11

⎞⎟⎠



Three qubit channels
Qubit reset channel

The qubit reset channel resets a qubit to the ∣0⟩ state.
Λ(ρ) = Tr(ρ)∣0⟩⟨0∣

Completely dephasing channel

The completely dephasing channel zeros-out off-diagonal matrix entries.

∆(∣0⟩⟨0∣) = ∣0⟩⟨0∣ ∆(∣0⟩⟨1∣) = 0

∆(∣1⟩⟨0∣) = 0 ∆(∣1⟩⟨1∣) = ∣1⟩⟨1∣

Completely depolarizing channel

The completely depolarizing channel always outputs the completely mixed state.

Ω(ρ) = Tr(ρ)12



Channel representations
Question

Linear mapping from vectors to vectors can be represented by matrices in a
familiar way…

… but channels are linear mappings from matrices to matrices.

How can we express arbitrary channels in mathematical terms?

Sometimes we may have a simple formula that expresses the action of a channel — such
asΛ(ρ) = Tr(ρ)∣0⟩⟨0∣ for the qubit reset channel — but this is not practical in general.

We’ll discuss three different general ways to represent channels and how they relate:

1. Stinespring representations
2. Kraus representations
3. Choi representations



Stinespring representations
Every channel can be implemented in the following way:

1. Form a compound system including the input system and an initialized
workspace system.

2. Perform a unitary operation on the compound systems.

3. Discard everything except the output system.

Special case

A channel Φ from a system X to itself can be implemented like this:

U

X

W

X

W

ρ Φ(ρ)
∣0⟩



Stinespring representations
Every channel can be implemented in the following way:

1. Form a compound system including the input system and an initialized
workspace system.

2. Perform a unitary operation on the compound systems.

3. Discard everything except the output system.

In general

A channel Φ from a system X to a system Y can be implemented as follows
(for a suitable choice of systems W and G):

U

X

W

Y

G

ρ Φ(ρ)
∣0⟩

Such a description (consisting of the unitary operation and a specification of the input and
output systems) is a Stinespring representation of the channel.



Example: dephasing
Example 1

An implementation of the completely dephasing channel:

+

ρ

∣0⟩
∆(ρ)

∣0⟩⟨0∣⊗ ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ 0 0⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩ 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨0∣ρ∣0⟩ 0 0 ⟨0∣ρ∣1⟩
0 0 0 0
0 0 0 0⟨1∣ρ∣0⟩ 0 0 ⟨1∣ρ∣1⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Example: dephasing
Example 1

An implementation of the completely dephasing channel:

+

ρ

∣0⟩
∆(ρ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ 0 0⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩ 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨0∣ρ∣0⟩ 0 0 ⟨0∣ρ∣1⟩
0 0 0 0
0 0 0 0⟨1∣ρ∣0⟩ 0 0 ⟨1∣ρ∣1⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Example: dephasing
Example 1

An implementation of the completely dephasing channel:

+

ρ

∣0⟩
∆(ρ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨0∣ρ∣0⟩ 0 0 ⟨0∣ρ∣1⟩
0 0 0 0
0 0 0 0⟨1∣ρ∣0⟩ 0 0 ⟨1∣ρ∣1⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⟨0∣ρ∣0⟩ ∣0⟩⟨0∣⊗ ∣0⟩⟨0∣
+ ⟨0∣ρ∣1⟩ ∣0⟩⟨1∣⊗ ∣0⟩⟨1∣
+ ⟨1∣ρ∣0⟩ ∣1⟩⟨0∣⊗ ∣1⟩⟨0∣
+ ⟨1∣ρ∣1⟩ ∣1⟩⟨1∣⊗ ∣1⟩⟨1∣

partial trace
⟼ ⟨0∣ρ∣0⟩ ∣0⟩⟨0∣ + ⟨1∣ρ∣1⟩ ∣1⟩⟨1∣ = ∆(ρ)



Example: dephasing
Example 2

An alternative implementation of the completely dephasing channel:

H

Zρ

∣0⟩
∆(ρ)

∣+⟩⟨+∣⊗ ρ = 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ ⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩ ⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ ⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩ ⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ ⟨0∣ρ∣0⟩ −⟨0∣ρ∣1⟩⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩ ⟨1∣ρ∣0⟩ −⟨1∣ρ∣1⟩⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ ⟨0∣ρ∣0⟩ −⟨0∣ρ∣1⟩
−⟨1∣ρ∣0⟩ −⟨1∣ρ∣1⟩ −⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Example: dephasing
Example 2

An alternative implementation of the completely dephasing channel:

H

Zρ

∣0⟩
∆(ρ)

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ ⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩ ⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ ⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩ ⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ ⟨0∣ρ∣0⟩ −⟨0∣ρ∣1⟩⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩ ⟨1∣ρ∣0⟩ −⟨1∣ρ∣1⟩⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ ⟨0∣ρ∣0⟩ −⟨0∣ρ∣1⟩
−⟨1∣ρ∣0⟩ −⟨1∣ρ∣1⟩ −⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Example: dephasing
Example 2

An alternative implementation of the completely dephasing channel:

H

Zρ

∣0⟩
∆(ρ)

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ ⟨0∣ρ∣0⟩ −⟨0∣ρ∣1⟩⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩ ⟨1∣ρ∣0⟩ −⟨1∣ρ∣1⟩⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩ ⟨0∣ρ∣0⟩ −⟨0∣ρ∣1⟩
−⟨1∣ρ∣0⟩ −⟨1∣ρ∣1⟩ −⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
partial trace

⟼
1
2
⎛⎜⎝
⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩
⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩

⎞⎟⎠ +
1
2
⎛⎜⎝
⟨0∣ρ∣0⟩ −⟨0∣ρ∣1⟩
−⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩

⎞⎟⎠ =
⎛⎜⎝
⟨0∣ρ∣0⟩ 0

0 ⟨1∣ρ∣1⟩
⎞⎟⎠

= ∆(ρ)



Example: dephasing
Example 2

An alternative implementation of the completely dephasing channel:

H

Zρ

∣0⟩
∆(ρ)

1
2
⎛⎜⎝
⟨0∣ρ∣0⟩ ⟨0∣ρ∣1⟩
⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩

⎞⎟⎠ +
1
2
⎛⎜⎝
⟨0∣ρ∣0⟩ −⟨0∣ρ∣1⟩
−⟨1∣ρ∣0⟩ ⟨1∣ρ∣1⟩

⎞⎟⎠ =
⎛⎜⎝
⟨0∣ρ∣0⟩ 0

0 ⟨1∣ρ∣1⟩
⎞⎟⎠

1
2ρ +

1
2σzρσz = ∆(ρ)



Example: dephasing
Example 1

An implementation of the completely dephasing channel:

+

ρ

∣0⟩
∆(ρ)

Example 2

An alternative implementation of the completely dephasing channel:

H

Zρ

∣0⟩
∆(ρ)



Kraus representations
Kraus representations are a convenient formulaic way of expressing channels through
matrix multiplication and addition.

In general, a Kraus representation of a channelΦ looks like this:

Φ(ρ) = N−1
∑
k=0

AkρA
†
k

Here,A0, . . . ,AN−1 are matrices that all have the same dimensions:

• The columns ofA0, . . . ,AN−1 correspond to the classical states of the input system.
• The rows ofA0, . . . ,AN−1 correspond to the classical states of the output system.

These matrices must satisfy the following condition.

N−1
∑
k=0

A
†
kAk = 1



Examples
Φ(ρ) = N−1

∑
k=0

AkρA
†
k

N−1
∑
k=0

A
†
kAk = 1

Example: qubit reset channel

We can obtain a Kraus representation of the qubit reset channel by taking
A0 = ∣0⟩⟨0∣ and A1 = ∣0⟩⟨1∣.

1
∑
k=0

AkρA
†
k = ∣0⟩⟨0∣ρ∣0⟩⟨0∣ + ∣0⟩⟨1∣ρ∣1⟩⟨0∣
= (⟨0∣ρ∣0⟩ + ⟨1∣ρ∣1⟩) ∣0⟩⟨0∣
= Tr(ρ) ∣0⟩⟨0∣

Here’s a check that the required condition is met:

1
∑
k=0

A
†
kAk = ∣0⟩⟨0∣0⟩⟨0∣ + ∣1⟩⟨0∣0⟩⟨1∣ = ∣0⟩⟨0∣ + ∣1⟩⟨1∣ = 1



Examples
Φ(ρ) = N−1

∑
k=0

AkρA
†
k

N−1
∑
k=0

A
†
kAk = 1

Example: completely dephasing channel

We can obtain a Kraus representation of the completely dephasing channel by
taking A0 = ∣0⟩⟨0∣ and A1 = ∣1⟩⟨1∣.

1
∑
k=0

AkρA
†
k = ∣0⟩⟨0∣ρ∣0⟩⟨0∣ + ∣1⟩⟨1∣ρ∣1⟩⟨1∣
= ⟨0∣ρ∣0⟩ ∣0⟩⟨0∣ + ⟨1∣ρ∣1⟩ ∣1⟩⟨1∣
= ∆(ρ)

Here’s a check that the required condition is met:

1
∑
k=0

A
†
kAk = ∣0⟩⟨0∣0⟩⟨0∣ + ∣1⟩⟨1∣1⟩⟨1∣ = ∣0⟩⟨0∣ + ∣1⟩⟨1∣ = 1



Examples
Φ(ρ) = N−1

∑
k=0

AkρA
†
k

N−1
∑
k=0

A
†
kAk = 1

Example: completely dephasing channel (alternative Kraus representation)

We can obtain a different Kraus representation of the completely dephasing
channel by taking A0 = 1/√2 and A1 = σz/√2.

1
∑
k=0

AkρA
†
k = 1√

2
ρ

1√
2
+
σz√

2
ρ
σz√

2

= 1
2ρ +

1
2σzρσz

= ∆(ρ)
Again we can check that the required condition is met:

1
∑
k=0

A
†
kAk = 1√

2
1√
2
+
σz√

2
σz√

2
= 1

2 +
1

2 = 1



Examples
Φ(ρ) = N−1

∑
k=0

AkρA
†
k

N−1
∑
k=0

A
†
kAk = 1

Exercise: completely depolarizing channel

For the completely depolarizing qubit channelΩ we need four (or more) Kraus
matrices. Show that these two alternatives both work:

A0 = ∣0⟩⟨0∣√
2

A1 = ∣0⟩⟨1∣√
2

A2 = ∣1⟩⟨0∣√
2

A3 = ∣1⟩⟨1∣√
2

A0 = 1

2 A1 = σx

2 A2 =
σy

2 A3 = σz

2

Notice (by the second alternative) that applying a random Pauli operation to a qubit
completely depolarizes it.

Ω(ρ) = ρ +σxρσx +σyρσy +σzρσz

4



Choi representations
The Choi representation of a channelΦ is a single matrix denoted J(Φ).
If the input system hasn classical states and the output system hasm classical
states, then J(Φ) is an (nm) × (nm)matrix.

Key properties of the Choi representation

1. The Choi representation is a faithful representation: for two channels Φ
and Ψ we have J(Φ) = J(Ψ) if and only if Φ = Ψ.

2. Simple-to-check conditions on J(Φ) are true if and only if Φ is a valid
channel.

Remark: The matrix J(Φ) does not directly representΦ as a linear mapping.
(The action ofΦ can, however, be recovered from J(Φ) by a simple formula.)



Choi representations
LetΦ be a channel from a system X to a system Y, and assume the classical state set of
the input system X isΣ. The Choi representation ofΦ is defined as follows.

J(Φ) = ∑
a,b∈Σ

∣a⟩⟨b∣⊗Φ(∣a⟩⟨b∣)
If we assumeΣ = {0, . . . ,n − 1}, then we can express J(Φ) as a block matrix:

J(Φ) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ(∣0⟩⟨0∣) Φ(∣0⟩⟨1∣) ⋯ Φ(∣0⟩⟨n − 1∣)
Φ(∣1⟩⟨0∣) Φ(∣1⟩⟨1∣) ⋯ Φ(∣1⟩⟨n − 1∣)

⋮ ⋮ ⋱ ⋮

Φ(∣n − 1⟩⟨0∣) Φ(∣n − 1⟩⟨1∣) ⋯ Φ(∣n − 1⟩⟨n − 1∣)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The set {∣a⟩⟨b∣ ∶ 0 ≤ a,b < n} forms a basis for the space of alln×n complexmatrices
— so the blocks of J(Φ) determine the action ofΦ on alln ×nmatrices.



The Choi state of a channel
LetΦ be a channel from a system X to a system Y, and assume the classical state set of
the input system X isΣ. The Choi representation ofΦ is defined as follows.

J(Φ) = ∑
a,b∈Σ

∣a⟩⟨b∣⊗Φ(∣a⟩⟨b∣)
If we normalize the Choi representation J(Φ) of a channelΦ by dividing byn = ∣Σ∣, we
obtain a density matrix. This state is called the Choi state ofΦ.

∣ψ⟩ = 1√
n

∑
a∈Σ

∣a⟩⊗ ∣a⟩
∣ψ⟩⟨ψ∣ = 1

n ∑
a,b∈Σ

∣a⟩⟨b∣⊗ ∣a⟩⟨b∣
1
nJ(Φ) = 1

n ∑
a,b∈Σ

∣a⟩⟨b∣⊗Φ(∣a⟩⟨b∣)

Φ
X

X

Y

∣ψ⟩⟨ψ∣
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
J(Φ)
n



The Choi state of a channel
LetΦ be a channel from a system X to a system Y, and assume the classical state set of
the input system X isΣ. The Choi representation ofΦ is defined as follows.

J(Φ) = ∑
a,b∈Σ

∣a⟩⟨b∣⊗Φ(∣a⟩⟨b∣)
If we normalize the Choi representation J(Φ) of a channelΦ by dividing byn = ∣Σ∣, we
obtain a density matrix. This state is called the Choi state ofΦ.

∣ψ⟩ = 1√
n

∑
a∈Σ

∣a⟩⊗ ∣a⟩

Φ
X

X

Y

∣ψ⟩⟨ψ∣
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
J(Φ)
n



The Choi state of a channel
If we normalize the Choi representation J(Φ) of a channelΦ by dividing byn = ∣Σ∣, we
obtain a density matrix. This state is called the Choi state ofΦ.

∣ψ⟩ = 1√
n

∑
a∈Σ

∣a⟩⊗ ∣a⟩

Φ
X

X

Y

∣ψ⟩⟨ψ∣
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
J(Φ)
n

Implications:

1. J(Φ)/n is a density matrix — and therefore J(Φ) ≥ 0.
2. Tracing out the system Y from J(Φ)/n leaves the completely mixed state on X.

TrY(J(Φ)
n ) = 1X

n ⇒ TrY(J(Φ)) = 1X

These conditions on J(Φ) turn out to be necessary and sufficient forΦ to be a channel.



Examples
Example: the completely dephasing channel

The Choi representation of the (qubit) completely dephasing channel:

J(∆) = 1
∑

a,b=0
∣a⟩⟨b∣⊗∆(∣a⟩⟨b∣)

= ∣0⟩⟨0∣⊗ ∣0⟩⟨0∣ + ∣1⟩⟨1∣⊗ ∣1⟩⟨1∣
As a block matrix:

J(∆) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆(1 0
0 0

) ∆(0 1
0 0

)
∆(0 0

1 0
) ∆(0 0

0 1
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Examples
Example: the completely depolarizing channel

The Choi representation of the (qubit) completely depolarizing channel:

J(Ω) = 1
∑

a,b=0
∣a⟩⟨b∣⊗Ω(∣a⟩⟨b∣)

= ∣0⟩⟨0∣⊗ 1

2 + ∣1⟩⟨1∣⊗ 1

2

= 1
21⊗ 1

As a block matrix:

J(Ω) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ω(1 0
0 0

) Ω(0 1
0 0

)
Ω(0 0

1 0
) Ω(0 0

0 1
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0

0 1
2 0 0

0 0 1
2 0

0 0 0 1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Examples
Example: the identity channel

The Choi representation of the (qubit) identity channel:

J(Id) = 1
∑

a,b=0
∣a⟩⟨b∣⊗ Id(∣a⟩⟨b∣)

=
1
∑

a,b=0
∣a⟩⟨b∣⊗ ∣a⟩⟨b∣

= 2 ∣φ+⟩⟨φ+∣
As a block matrix:

J(Id) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Id(1 0
0 0

) Id(0 1
0 0

)
Id(0 0

1 0
) Id(0 0

0 1
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Equivalence of representations
Three different ways to represent channels:

1. Stinespring representations
2. Kraus representations
3. Choi representations

The remainder of the lesson discusses how their equivalence can be reasoned.

Definition

Φ is a channel from X to Y
(a linear map transforming density
matrices to density matrices)

Choi representation

• J(Φ) ≥ 0
• TrY(J(Φ)) = 1X

Kraus representation

• Φ(ρ) = ∑k AkρA
†
k

• ∑k A
†
kAk = 1X

Stinespring representation

U

X

W

Y

G

ρ Φ(ρ)
∣0⟩



First implication
Definition

Φ is a channel from X to Y
(a linear map transforming density
matrices to density matrices)

Choi representation

• J(Φ) ≥ 0
• TrY(J(Φ)) = 1X

We already argued this implication the context of Choi states…

Φ
X

X

Y
1√
n

∑
a∈Σ

∣a⟩⊗ ∣a⟩
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
J(Φ)
n

Implications:

1. J(Φ)/n is a density matrix — and therefore J(Φ) ≥ 0.
2. Tracing out the system Y from J(Φ)/n leaves the completely mixed state on X.

TrY(J(Φ)
n ) = 1X

n ⇒ TrY(J(Φ)) = 1X



Second implication
Choi representation

• J(Φ) ≥ 0
• TrY(J(Φ)) = 1X

Kraus representation

• Φ(ρ) = ∑k AkρA
†
k

• ∑k A
†
kAk = 1X

Because J(Φ) is positive semidefinite it can be expressed as follows.
J(Φ) = N−1

∑
k=0

∣ψk⟩⟨ψk∣
Each vector ∣ψk⟩ can be further decomposed.

∣ψk⟩ = ∑
a∈Σ

∣a⟩⊗ ∣φk,a⟩

We can now obtain a Kraus representation by choosing like this:

Ak = ∑
a∈Σ

∣φk,a⟩⟨a∣



Second implication
Choi representation

• J(Φ) ≥ 0
• TrY(J(Φ)) = 1X

Kraus representation

• Φ(ρ) = ∑k AkρA
†
k

• ∑k A
†
kAk = 1X

Because J(Φ) is positive semidefinite it can be expressed as follows.
J(Φ) = N−1

∑
k=0

∣ψk⟩⟨ψk∣ ∣ψk⟩ = ∑
a∈Σ

∣a⟩⊗ ∣φk,a⟩
We can now obtain a Kraus representation by choosingA0, . . . ,AN−1 like this:

Ak = ∑
a∈Σ

∣φk,a⟩⟨a∣



Second implication
Choi representation

• J(Φ) ≥ 0
• TrY(J(Φ)) = 1X

Kraus representation

• Φ(ρ) = ∑k AkρA
†
k

• ∑k A
†
kAk = 1X

J(Φ) = N−1
∑
k=0

∣ψk⟩⟨ψk∣ ∣ψk⟩ = ∑
a∈Σ

∣a⟩⊗ ∣φk,a⟩ Ak = ∑
a∈Σ

∣φk,a⟩⟨a∣
Why should this work? Consider the mapping that these matrices define.

Ψ(ρ) = N−1
∑
k=0

AkρA
†
k

The Choi representation ofΨ agrees withΦ — so we must haveΨ =Φ.

J(Ψ) = ∑
a,b∈Σ

∣a⟩⟨b∣⊗Ψ(∣a⟩⟨b∣) = N−1
∑
k=0

∣ψk⟩⟨ψk∣ = J(Φ)



Second implication
Choi representation

• J(Φ) ≥ 0
• TrY(J(Φ)) = 1X

Kraus representation

• Φ(ρ) = ∑k AkρA
†
k

• ∑k A
†
kAk = 1X

J(Φ) = N−1
∑
k=0

∣ψk⟩⟨ψk∣ ∣ψk⟩ = ∑
a∈Σ

∣a⟩⊗ ∣φk,a⟩ Ak = ∑
a∈Σ

∣φk,a⟩⟨a∣
The two other conditions turn out to be equivalent:

TrY(J(Φ)) = 1X ⇔
N−1
∑
k=0

A
†
kAk = 1X

This follows from this equation:

(N−1
∑
k=0

A
†
kAk)

T

= TrY(J(Φ))



Third implication
Kraus representation

• Φ(ρ) = ∑k AkρA
†
k

• ∑k A
†
kAk = 1X

Stinespring representation

U

X

W

Y

G

ρ Φ(ρ)
∣0⟩

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0

A1

⋮

AN−1

?

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
TrG(U(∣0⟩⟨0∣⊗ ρ)U†) = N−1

∑
k=0

AkρA
†
k

The condition∑N−1
k=0 A

†
kAk = 1 is equivalent to then columns formed byA0, . . . ,AN−1

being orthonormal. Denote these firstn columns by ∣γ0⟩, . . . , ∣γn−1⟩.
∣γa⟩ = N−1

∑
k=0

∣k⟩⊗Ak∣a⟩ ⟨γa∣γb⟩ = ⟨a∣ (N−1
∑
k=0

A
†
kAk) ∣b⟩



Fourth implication
Definition

Φ is a channel from X to Y
(a linear map transforming density
matrices to density matrices)

Stinespring representation

U

X

W

Y

G

ρ Φ(ρ)
∣0⟩

We already covered this implication in the context of Stinespring representations (and
unitary channels).

In summary:

1. The introduction of an initialized workspace system is a channel.
2. Unitary operations are channels.
3. Tracing out a system is a channel.
4. Compositions of channels are channels.



Equivalence of representations
Definition

Φ is a channel from X to Y
(a linear map transforming density
matrices to density matrices)

Choi representation

• J(Φ) ≥ 0
• TrY(J(Φ)) = 1X

Kraus representation

• Φ(ρ) = ∑k AkρA
†
k

• ∑k A
†
kAk = 1X

Stinespring representation

U

X

W

Y

G

ρ Φ(ρ)
∣0⟩


