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Motivation

e Density matrices represent a il gal of quantum states than quantum
state vectors.

e Density matrices can describe states of [ellsiizleNslelass] of systems, such as
the state of one system that happens to be entangled with another system

that we wish to ignore.

e Probabilistic states can be represented by density matrices, allowing
guantum and classical information to be described together within a

single mathematical framework.



Definition of density matrices

Suppose that Xis a system and X is its classical state set.

A LEEAulelifnd describing a state of X is matrix with complex number entries
whose rows and columns have been placed in correspondence with .

Typical names for density matrices: p, o, &, ...
Requirements

1. Density matrices have unit trace: Tr(p) =1
2. Density matrices are positive semidefinite: p > 0



Definition of density matrices

Requirements

1. Density matrices have unit trace: Tr(p) =1
2. Density matrices are positive semidefinite: p = 0

The first condition refers to thewhich is defined for all square matrices as the sum
of the diagonal entries.

X0,0 0,1 Xon-1
X1,0 X1,1 X1 n-1
Tr = 0,0 + 1,1 + eee + Xn-1n-1

Xn-10 Xn-11 *°° Knpn-1n-1

The trace is a linear function:

Tr(xA + B3B)=a«Tr(A)+ B3 Tr(B)



Definition of density matrices

Requirements

1. Density matrices have unit trace: Tr(p) =1
2. Density matrices are positive semidefinite: p = 0

The second requirement refers to p being [aleXiflZ=1=llle =ilalte=A This is a property that can
be expressed in several different ways, including these:

e There exists a matrix M such that p = MTM.

e The matrix p is Hermitian, meaning that p = pT, and all of its eigenvalues are
nonnegative real numbers.

e For every complex vector [1) we have ({|p|) = 0.

Note that the notation p > 0 means that p is positive semidefinite — not that each entry of
p is nonnegative.



Examples

Requirements

1. Density matrices have unit trace: Tr(p) =1
2. Density matrices are positive semidefinite: p = 0

Example of a positive semidefinite matrix

We can generate an example of a positive semidefinite matrix by first choosing a
matrix M arbitrarily and computing MTM.

-4 -91 8 2+91
M = = -4-91 -9+7i
1-51 8 —61 —4i

172 34 +169i —6—71i
MM = |34 - 169i 261 13 — 691
—6+71i 13 +69i 231



Examples

Requirements

1. Density matrices have unit trace: Tr(p) =1
2. Density matrices are positive semidefinite: p = 0

Examples of density matrices
1 0
0 O

1 : :
664 34 - 1691 201 13 - 691
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172 34+1691 -6-T711

-6+711 13+691 231
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Interpretation

Requirements

1. Density matrices have unit trace: Tr(p) =1
2. Density matrices are positive semidefinite: p = 0

Intuitive meaning of density matrix entries

For a given density matrix both the rows and the columns correspond to classical
states.

° entries are the probabilities for each classical state to appear from a
standard basis measurement.

o [0)jehellellolilell entries describe how the two corresponding classical states are

in quantum superposition.



Connection to state vectors

A quantum state vector |1) is a column vector having Euclidean norm 1.

Here’s the density matrix representation of the same state:

) (W]

States that are represented by density matrices of this form are called

Examples

1
1 i 2
+i) = —|[0) + — (1) =
|+1) ﬁl) ﬁl) N
V2
% 1 _1i
. all — 2 1 i) 2 2
el = U (5 -H)=L
2 2 2



Connection to state vectors

A quantum state vector |1) is a column vector having Euclidean norm 1.

Here’s the density matrix representation of the same state:

) (W]

States that are represented by density matrices of this form are called

Examples



Connection to state vectors

A quantum state vector |1) is a column vector having Euclidean norm 1.

Here’s the density matrix representation of the same state:

) (W]

States that are represented by density matrices of this form are called

Examples

5 —2-4i
9 9
[v)(v] = ,
—2+4i 4
9 9




Connection to state vectors

A quantum state vector |1) is a column vector having Euclidean norm 1.

Here’s the density matrix representation of the same state:

) (W]

States that are represented by density matrices of this form are called [JUg=E{elf=5

In general

| ool XQxX1 ottt XOn_1

X1 Xn-1

X — — — 2
n-1 Xn-10y Kn_1X1 =+ |&n-1]



Connection to state vectors

A quantum state vector |1} is a column vector having Euclidean norm 1.

Here’s the density matrix representation of the same state:

) (W]

States that are represented by density matrices of this form are called

Remark

There is no [yle)elelNellekz degeneracy for density matrices: two quantum states are
identical if and only if their density matrix representations are equal.

Suppose [\) and | ) are quantum state vectors that differ by a global phase:
i0
) =" W)
The corresponding density matrices are identical:

1p) (b = (e1w)) (e [w) = V)W = [W)(w]



Probabilistic selections

Key property of density matrices

of density matrices represent probabilistic selections of
quantum states.

Let p and o be density matrices representing quantum states of a system, and suppose
we prepare the system in state p with probability p € [0, 1] and o with probability 1 — p.

The resulting state is represented by this density matrix:
pp+(l-p)o

More generally, let po, ..., Pm—1 be density matrices, let (pg, - - ., Pm-1)bea
probability vector, and suppose we prepare a system in state py with probability py.

The resulting state is represented by this density matrix:

m-1
Z PxPx
k=0



Probabilistic selections

Key property of density matrices

of density matrices represent probabilistic selections of
quantum states.

More generally, let pg, ..., Ppm-1 be density matrices, let (pg, ..., pm-1) bea
probability vector, and suppose we prepare a system in state py with probability py.

The resulting state is represented by this density matrix:
m-1
Z PkPk
k=0

If |[Po), ..., | Wm_1) are quantum state vectors and we prepare a system in state |y )
with probability py, then the resulting state is represented by this density matrix:

m-—1
> prlbi) (Wil

k=0



Probabilistic selections

Key property of density matrices

of density matrices represent probabilistic selections of
quantum states.

Example

A qubit is prepared in the state |0) with probability 1/2 and in the state |+) with
probability 1/2.

Here’s the density matrix representation of the resulting state:

210)(0] + 31 +)(+] = %(; g)%(

NI N|=
NI= N

B e
u



Completely mixed state

Suppose we set the state of a qubit to be |0) or |1) randomly, each with probability 1/2.
Here’s the density matrix representation of its state.

1

1 1 1({1 0\ 1(0 O 5 0 1

§|0>(0|+§|1)(1|—§<0 0)4‘5(0 1)—(0 l)_E
2

This is known as the [eelalal Al e 8ieliz| — it represents complete uncertainty about
the state of a qubit.

Now suppose that we change the procedure: in place of the states |0) and |1) we’ll use
the states |+) and |—).

1 1 1
§|+)(+| + §|—)(—| =3

—

NIRL NI
NIFL NI

It’s the same state as before, the completely mixed state. This is a feature, not a bug!
The two procedures can’t be distinguished by measuring the qubit.



Probabilistic states

Classical states can be represented by density matrices.
Example

Density matrices for the classical states 0 and 1 of a qubit:
1 0 0 O
0 0 = 1 1 =
10)(0] (0 o) [ 1)(1] (0 1)

In general

If a system has classical state set X, then each classical state a € X is
represented by the density matrix |a){a|.



Probabilistic states

In general

If a system has classical state set X, then each classical state a € X is
represented by the density matrix |a){a|.

Probabilistic states are represented byof such density matrices.

Example
Suppose the classical state set of X is {0,...,n — 1}.

We can identify the probabilistic state of X represented by the probability vector
(Po,- - -, Pn-1) with this density matrix:

n-1
p=) prlk)(k|=
k=0



Spectral theorem

Spectral theorem for positive semidefinite matrices
Suppose P is an n X n positive semidefinite matrix.

There exists an orthonormal basis {|\Ug), ..., |Wn_1)} of vectors along with

numbers Ag, ..., An—1 such that

n-1
P = Z A [ b ) (Wi
k=0

Implication for density matrices

Any n X n. density matrix p can be expressed as

n-1
p= Z Prlbi) (Wil
k=0

for an orthonormal basis {|g), ..., |Pn-1)} and a probability vector
(Po,- - Pn-1)-



Spectral theorem

Example

Recall the example where a qubit is prepared in the state |0) with probability 1/2
and |+) with probability 1/2.

210)(0] + 5 +)(+] = (

Bl= Dl
E L N o
v

This density matrix can alternatively be expressed as follows:

—
E L N (O]
Bl= D=

) = cosz(%) Wr/e)(Wr/sl + Sinz(g) | W58 ) (W58l

[Wo) = cos(e)[0) +sin(ex)|1)



Qubit quantum state vectors

Up to aflelslelNalile =8 every qubit quantum state vector is equivalent to

|b) = cos(3)|0) + e sin(%) |1)

N|©

for © € [0, 7t] and ¢ €[0,27).
Almost uniqueness

o If0=00r0 =, then ¢ is [[E0LA
o If 0 € (0, 7), then ¢ is [N



Pure states of a qubit

N |

[b) = cos(2) [0) + e"®sin(2)]1) 0c[o,n] ¢ e[0,2n)

Here’s this state’s density matrix representation:

Like all 2 x 2 matrices, there’s a unique way to express this density matrix as a

linear combination of Pauli matrices.

(1 0) (0 1) (o —i) (1 o)

e Ox = O-y =1. o, =

0 1 1 0 0 0 1
)] = LSO cos(®)oy +sin(®)sinl)oy + cos(O)o

cosz( 9) 1+ c;)s(e)

ar(§) - L0

o s 3) - L2

e'® = cos(P) + isin(P)



Bloch sphere

N |

[b) = cos(2) [0) + e sin(2)]1) 0c[o,n] ¢ e[0,2n)

] = LE SOV (S0 + (@) sintp)ory + cos()

(sin(0) cos(d), sin(0) sin(¢), cos(0))




Bloch sphere

N |

[b) = cos(2) [0) + e sin(2)]1) 0c[o,n] ¢ e[0,2n)

] = LE SOV (S0 + (@) sintp)ory + cos()

This is the [z{lelels85e)gl=lE=] representation

of the qubit state [).




Bloch sphere examples

) = cos(

N D

)10) + e'®sin(9) |1) 0e[0,n] ¢ €[0,2m)

] = LE SOV (S0 + (@) sintp)ory + cos()

0) Examples

The standard basis {|0), |1)}

|0) = cos(0)]0) + e'? sin(0)|1)

|1) = cos( % )[0) + et sin( 5 )[1)

1+ o0,
1-o0,




Bloch sphere examples

|1b> =COS(%)|O>+ei¢sin(%)|1> 0 e [0,7'[] o) 6[0,271)
] = LE SOV (S0 + (@) sintp)ory + cos()
|0) ’ Examples

The basis {|+), |-)}




Bloch sphere examples

N |

[b) = cos(2) [0) + e sin(2)]1) 0c[o,n] ¢ e[0,2n)

] = LE SOV (S0 + (@) sintp)ory + cos()

0) Examples

The basis {|+1), |-1)}




Bloch sphere examples

) = cos(

N |

)10) + e'®sin(9) |1) 0e[0,n] ¢ €[0,2m)

] = LE SOV (S0 + (@) sintp)ory + cos()

Examples

The basis {|+1), |-1)}

|+1) = cos(F)]0) + e 2 sin( T )|1)
|—i) = cos(Z)[0) + "% sin(Z)]1)
|[+1i){(+1i| = L +2Gy




Bloch sphere examples

[b) =coS(%)|0)+ei¢sin(%)|1) 0ef0,n] ¢ €[0,2n)
] = LE SOV (S0 + (@) sintp)ory + cos()
10) . Examples

Another class of state vectors:

[P o) = cos(x)|0) +sin(x)|1), € [0, 71)

1 +sin(2a)oy + cos(2x)0,

|1l)oc><1l)oc| = 2




Bloch ball

The [2leld¥5101ll contains all of the points on the Bloch sphere as well as those inside it.

e Points in the interior of the Bloch ball correspond to qubit states that are not pure.

e Convex combinations of points in the Bloch ball correspond to convex combinations of
qubit density matrices.

|0) Examples

The completely mixed state lies at the
center of the Bloch ball.

=)

- L 1 1 1
Q 7 = 510)01+ 311)(1|

u L9+ 5 1)

(il + 5] -i)(—




Bloch ball

The [2leld¥5101ll contains all of the points on the Bloch sphere as well as those inside it.

e Points in the interior of the Bloch ball correspond to qubit states that are not pure.

e Convex combinations of points in the Bloch ball correspond to convex combinations of
qubit density matrices.

|0) Examples

The completely mixed state lies at the
center of the Bloch ball.

=)

|-1) lLﬂ 1 1+0-04+0-0,+0:0,
2 2 - 2

|+1)




Bloch ball

The [2leld¥5101ll contains all of the points on the Bloch sphere as well as those inside it.

e Points in the interior of the Bloch ball correspond to qubit states that are not pure.

e Convex combinations of points in the Bloch ball correspond to convex combinations of
qubit density matrices.

Examples

—
Bl= dlW

1 1
) = 510)(0] + 5| +)(+]

D= D=

= cos*(Z) [Wrys ) (Wress]

+5in”(2) [Wsre/e) (Wsre/el




Multiple systems

Density matrices can represent states of multiple systems:

e Multiple system are viewed as single, compound systems.

e The rows and columns of density matrices for multiple systems correspond to
06 lac el NoIgee [iTeks| Of the classical state sets of the individual systems.

Example: Bell states

1 1 1 1
2 00 3 z 00 -3
. . o 0o o0 o0 . 0 0 0 ©

" N | = & N | =

0 0 0 0 0 0 0 0

b o0 400 3

0 0 0 O 0O 0 0 0

o 2 L o _ o I -1 o
W= 27 [ )W = o

0 3 2 0 0 -2 2 O

0 0 0 O 0 0 0 0



Independence and correlation
of density matrices representbetween systems.

Product states

If X is prepared in the state p and Y is independently prepared in the state o,
then the state of (X,Y) is the tensor product p ® o.

States of this form are called [olgele (Mo (ol =%

Density matrices that cannot be expressed as product states represent
between systems. Different types of correlations can be considered.

Example: a correlated classical state

A uniform random bit shared between Alice and Bob has this state.

210)(0] @ [0){o] + 311)(1] ® [1)(1] =

O O O NI
o O O O
o O O O
NIF O O O



Independence and correlation
of density matrices representbetween systems.

Product states

If X is prepared in the state p and Y is independently prepared in the state o,
then the state of (X,Y) is the tensor product p ® o.

States of this form are called [olgele (Mo & (ol =R

Density matrices that cannot be expressed as product states represent
between systems. Different types of correlations can be considered.

Example: ensembles of quantum states

An describes a random selection of a quantum state.

The following density matrix represents an ensemble, assuming (pg, ..., Pm-1)
is a probability vector and pg, ..., pm—1 are density matrices of the same size.

m-—1
> prlk)kl @ pi
k=0



Independence and correlation
of density matrices representbetween systems.

Product states

If X is prepared in the state p and Y is independently prepared in the state o,
then the state of (X,Y) is the tensor product p ® o.

States of this form are called [olgele (Mo (ol =%

Density matrices that cannot be expressed as product states represent
between systems. Different types of correlations can be considered.

Example: separable states

Convex combinations of product states represent classical correlations among
quantum states.

m-1

Z Pk Px ® Ok
k=0

States that can be written like this are all the rest are [gl{elal={=le "



Reduced states for an e-bit

Alice and Bob [JEle R lRz Alice holds A, Bob holds B, and (A, B) is in this state:

by g
|$ >_\/§|00>+\/§|11>

Question

What is the state of Alice’s qubit A in isolation?

Imagine Bob performs a standard basis measurement on B.

Outcome  Probability  Resulting state of A

1
0 > |0)
1
1 5 1)
This leaves the qubit A in the completely mixed state:
1 1 1
S10)(0] + 5[1)(1] = 5



Reduced states for an e-bit

Alice and Bob [JLleel A Alice holds A, Bob holds B, and (A, B) is in this state:

by g
|$ >_\/§|00>+\/§|11>

Question

What is the state of Alice’s qubit A in isolation?

Answer

The completely mixed state %.



Reduced states in general

Suppose we have a pair of systems (A, B) in a pure state [1).

Let T be the classical state set of B. There is a unique collection {| by ) : b € T'} of
vectors for which this expression is true:

W)= > |dv) @ |b)

bel

In particular, each |y, ) is given by this formula:

|dv) = (1a ® (b])[W)



Reduced states in general

Suppose we have a pair of systems (A, B) in a pure state [1).

Let T be the classical state set of B. There is a unique collection {| by ) : b € T'} of
vectors for which this expression is true:

V)= ) |by)@|b)

bel

|bb) = (1a ® (b])|W)

Suppose a standard basis measurement were performed on B:

e Each b e I" appears with probability || | pp ) ||2.
e Conditioned on obtaining the outcome b, the state of A becomes m

The reduced state of A:

Y sy |2 Loitn] d"" = Y 10X do]

bel ”| bel’



Reduced states in general

Suppose we have a pair of systems (A, B) in a pure state [1).

Let T be the classical state set of B. There is a unique collection {| by ) : b € T'} of
vectors for which this expression is true:

W) =) Idv)® |b)

bel

|bb) = (1a ® (b])|W)

Suppose a standard basis measurement were performed on B:
e Each b € I" appears with probability ||| dp) ||2.
e Conditioned on obtaining the outcome b, the state of A becomes m

The reduced state of A:

Y ldu){dol= Y (1a® (b])[W)(w|(1a @ [b))

bel’ bel’



Reduced states in general

Suppose we have a pair of systems (A, B) in a pure state |[1).

The reduced state of A:

> (1a® (b])[W)(W|(1a ® b))

bel

Suppose (A, B) is in a state described by a density matrix p. The reduced state of A is
described by this density matrix:

PA = Z (1A ® (b])p(1a ® |b))
bel’

The reduced state of B is obtained in a similar way.

P = Z ((a] ® 1g)p(la) ® 1g)

aex

(X is the classical state set of A.)



Reduced states in general

Suppose (A, B) is in a state described by a density matrix p. The reduced state of A is
described by this density matrix:

PA = Z (1A ® (b])p(1a ® |b))
bel’

The reduced state of B is obtained in a similar way.

PB = Z ((al®1g)p(la)® 1p)
aex
These notions can be generalized to three or more systems in a natural way.
Example

Suppose (A, B, C) is in the state p. The reduced states of (A, C) and C:

Z (]lA ® <b| ® ]lc)p(]lA ® Ib) ® ]lc)
bel

pc=) Y ({ale(blelc)p(la)® |b)e®ic)

aeX bel’

PAC



The partial trace

Definition Equivalent definition

Tra and Trg are the unique
linear mappings for which these

Tre(p) = Z (]lA ® <b|)p(]lA ® |b>) equations are always true:

bel’
TFA(p)= Z((a|®]lB)p(|a)®]1B) TI’/.\(M@N):Tr(M)N
as Trg(M ® N) = Tr(N)M
Example

Consider this state of a pair of qubits (A, B):

p = 310)(0] ® 0)(0] + 3 [1)(1] ® |+){+]

oA =Tra(p) = 51001 + 3111l pa = Tra(p) = 510)(0] + 5 +)(+|



