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Motivation
• Density matrices represent a broader class of quantum states than quantum

state vectors.

• Density matrices can describe states of isolated parts of systems, such as
the state of one system that happens to be entangled with another system
that we wish to ignore.

• Probabilistic states can be represented by density matrices, allowing
quantum and classical information to be described together within a
single mathematical framework.



Definition of density matrices
Suppose that X is a system andΣ is its classical state set.

A density matrix describing a state of X is matrix with complex number entries
whose rows and columns have been placed in correspondence withΣ.

Typical names for density matrices: ρ,σ, ξ, …

Requirements

1. Density matrices have unit trace: Tr(ρ) = 1
2. Density matrices are positive semidefinite: ρ ≥ 0



Definition of density matrices
Requirements

1. Density matrices have unit trace: Tr(ρ) = 1
2. Density matrices are positive semidefinite: ρ ≥ 0

The first condition refers to the trace, which is defined for all square matrices as the sum
of the diagonal entries.

Tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0,0 α0,1 ⋯ α0,n−1

α1,0 α1,1 ⋯ α1,n−1

⋮ ⋮ ⋱ ⋮

αn−1,0 αn−1,1 ⋯ αn−1,n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= α0,0 +α1,1 +⋯ +αn−1,n−1

The trace is a linear function:

Tr(αA +βB) = αTr(A) +βTr(B)



Definition of density matrices
Requirements

1. Density matrices have unit trace: Tr(ρ) = 1
2. Density matrices are positive semidefinite: ρ ≥ 0

The second requirement refers to ρ being positive semidefinite. This is a property that can
be expressed in several different ways, including these:

• There exists a matrixM such that ρ = M
†
M.

• The matrix ρ is Hermitian, meaning that ρ = ρ†, and all of its eigenvalues are
nonnegative real numbers.

• For every complex vector ∣ψ⟩ we have ⟨ψ∣ρ∣ψ⟩ ≥ 0.

Note that the notation ρ ≥ 0means that ρ is positive semidefinite — not that each entry of
ρ is nonnegative.



Examples
Requirements

1. Density matrices have unit trace: Tr(ρ) = 1
2. Density matrices are positive semidefinite: ρ ≥ 0

Example of a positive semidefinite matrix

We can generate an example of a positive semidefinite matrix by first choosing a
matrix M arbitrarily and computing M

†
M.

M =
⎛⎜⎜⎜⎜⎜⎜⎜⎝
−4 − 9i 8 2 + 9i

−7 −4 − 9i −9 + 7i

1 − 5i 8 − 6i −4i

⎞⎟⎟⎟⎟⎟⎟⎟⎠

M
†
M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
172 34 + 169i −6 − 71i

34 − 169i 261 13 − 69i

−6 + 71i 13 + 69i 231

⎞⎟⎟⎟⎟⎟⎟⎟⎠



Examples
Requirements

1. Density matrices have unit trace: Tr(ρ) = 1
2. Density matrices are positive semidefinite: ρ ≥ 0

Examples of density matrices

⎛⎜⎝
1 0

0 0
⎞⎟⎠

⎛⎜⎝
1
2

1
2

1
2

1
2

⎞⎟⎠
⎛⎜⎝

3
4

i
8

− i
8

1
4

⎞⎟⎠
⎛⎜⎝

1
2 0

0 1
2

⎞⎟⎠

1
664

⎛⎜⎜⎜⎜⎜⎜⎜⎝
172 34 + 169i −6 − 71i

34 − 169i 261 13 − 69i

−6 + 71i 13 + 69i 231

⎞⎟⎟⎟⎟⎟⎟⎟⎠



Interpretation
Requirements

1. Density matrices have unit trace: Tr(ρ) = 1
2. Density matrices are positive semidefinite: ρ ≥ 0

Intuitive meaning of density matrix entries

For a given density matrix both the rows and the columns correspond to classical
states.

• Diagonal entries are the probabilities for each classical state to appear from a
standard basis measurement.

• Off-diagonal entries describe how the two corresponding classical states are
in quantum superposition.



Connection to state vectors
Aquantum state vector ∣ψ⟩ is a column vector having Euclidean norm 1.
Here’s the density matrix representation of the same state:

∣ψ⟩⟨ψ∣
States that are represented by density matrices of this form are called pure states.

Examples

∣+i⟩ = 1√
2
∣0⟩ + i√

2
∣1⟩ = ⎛⎜⎜⎜⎝

1√
2
i√
2

⎞⎟⎟⎟⎠

∣+i⟩⟨+i∣ = ⎛⎜⎜⎜⎝
1√
2
i√
2

⎞⎟⎟⎟⎠ (
1√
2 − i√

2 ) =
⎛⎜⎜⎝

1
2 − i

2
i
2

1
2

⎞⎟⎟⎠



Connection to state vectors
Aquantum state vector ∣ψ⟩ is a column vector having Euclidean norm 1.
Here’s the density matrix representation of the same state:

∣ψ⟩⟨ψ∣
States that are represented by density matrices of this form are called pure states.

Examples

∣0⟩⟨0∣ = (1 0
0 0

) ∣+⟩⟨+∣ = ⎛⎜⎝
1
2

1
2

1
2

1
2

⎞⎟⎠

∣1⟩⟨1∣ = (0 0
0 1

) ∣−⟩⟨−∣ = ⎛⎜⎝
1
2 − 1

2

− 1
2

1
2

⎞⎟⎠



Connection to state vectors
Aquantum state vector ∣ψ⟩ is a column vector having Euclidean norm 1.
Here’s the density matrix representation of the same state:

∣ψ⟩⟨ψ∣
States that are represented by density matrices of this form are called pure states.

Examples

∣v⟩ = 1 + 2i
3 ∣0⟩ − 2

3 ∣1⟩

∣v⟩⟨v∣ = ⎛⎜⎜⎝
5
9

−2−4i
9

−2+4i
9

4
9

⎞⎟⎟⎠



Connection to state vectors
Aquantum state vector ∣ψ⟩ is a column vector having Euclidean norm 1.
Here’s the density matrix representation of the same state:

∣ψ⟩⟨ψ∣
States that are represented by density matrices of this form are called pure states.

In general

∣ψ⟩ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0
α1
⋮

αn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⇒ ∣ψ⟩⟨ψ∣ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣α0∣2 α0α1 ⋯ α0αn−1

α1α0 ∣α1∣2 ⋯ α1αn−1

⋮ ⋮ ⋱ ⋮

αn−1α0 αn−1α1 ⋯ ∣αn−1∣2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Connection to state vectors
Aquantum state vector ∣ψ⟩ is a column vector having Euclidean norm 1.
Here’s the density matrix representation of the same state:

∣ψ⟩⟨ψ∣
States that are represented by density matrices of this form are called pure states.

Remark

There is no global phase degeneracy for density matrices: two quantum states are
identical if and only if their density matrix representations are equal.

Suppose ∣ψ⟩ and ∣φ⟩ are quantum state vectors that differ by a global phase:

∣φ⟩ = e
iθ∣ψ⟩

The corresponding density matrices are identical:

∣φ⟩⟨φ∣ = (eiθ∣ψ⟩)(eiθ∣ψ⟩)† = e
i(θ−θ)∣ψ⟩⟨ψ∣ = ∣ψ⟩⟨ψ∣



Probabilistic selections
Key property of density matrices

Convex combinations of density matrices represent probabilistic selections of
quantum states.

Let ρ andσ be density matrices representing quantum states of a system, and suppose
we prepare the system in state ρwith probabilityp ∈ [0, 1] andσwith probability 1−p.

The resulting state is represented by this density matrix:

pρ + (1 − p)σ
More generally, let ρ0, . . . ,ρm−1 be density matrices, let (p0, . . . ,pm−1) be a
probability vector, and suppose we prepare a system in state ρk with probability pk.

The resulting state is represented by this density matrix:

m−1
∑
k=0

pkρk



Probabilistic selections
Key property of density matrices

Convex combinations of density matrices represent probabilistic selections of
quantum states.

More generally, let ρ0, . . . ,ρm−1 be density matrices, let (p0, . . . ,pm−1) be a
probability vector, and suppose we prepare a system in state ρk with probability pk.

The resulting state is represented by this density matrix:

m−1
∑
k=0

pkρk

If ∣ψ0⟩, . . . , ∣ψm−1⟩ are quantum state vectors and we prepare a system in state ∣ψk⟩
with probability pk, then the resulting state is represented by this density matrix:

m−1
∑
k=0

pk∣ψk⟩⟨ψk∣



Probabilistic selections
Key property of density matrices

Convex combinations of density matrices represent probabilistic selections of
quantum states.

Example

A qubit is prepared in the state ∣0⟩ with probability 1/2 and in the state ∣+⟩ with
probability 1/2.

Here’s the density matrix representation of the resulting state:

1
2 ∣0⟩⟨0∣ + 1

2 ∣+⟩⟨+∣ = 1
2 (1 0

0 0
) +

1
2
⎛⎜⎝

1
2

1
2

1
2

1
2

⎞⎟⎠ =
⎛⎜⎝

3
4

1
4

1
4

1
4

⎞⎟⎠



Completely mixed state
Suppose we set the state of a qubit to be ∣0⟩ or ∣1⟩ randomly, each with probability 1/2.
Here’s the density matrix representation of its state.

1
2 ∣0⟩⟨0∣ + 1

2 ∣1⟩⟨1∣ = 1
2 (1 0

0 0
) +

1
2 (0 0

0 1
) =

⎛⎜⎝
1
2 0

0 1
2

⎞⎟⎠ = 1

2

This is known as the completely mixed state — it represents complete uncertainty about
the state of a qubit.

Now suppose that we change the procedure: in place of the states ∣0⟩ and ∣1⟩ we’ll use
the states ∣+⟩ and ∣−⟩.

1
2 ∣+⟩⟨+∣ + 1

2 ∣−⟩⟨−∣ = 1
2
⎛⎜⎝

1
2

1
2

1
2

1
2

⎞⎟⎠ +
1
2
⎛⎜⎝

1
2 − 1

2

− 1
2

1
2

⎞⎟⎠ =
⎛⎜⎝

1
2 0

0 1
2

⎞⎟⎠ = 1

2

It’s the same state as before, the completely mixed state. This is a feature, not a bug!
The two procedures can’t be distinguished by measuring the qubit.



Probabilistic states
Classical states can be represented by density matrices.

Example

Density matrices for the classical states 0 and 1 of a qubit:

∣0⟩⟨0∣ = (1 0
0 0

) ∣1⟩⟨1∣ = (0 0
0 1

)

In general

If a system has classical state set Σ, then each classical state a ∈ Σ is
represented by the density matrix ∣a⟩⟨a∣.



Probabilistic states
In general

If a system has classical state set Σ, then each classical state a ∈ Σ is
represented by the density matrix ∣a⟩⟨a∣.

Probabilistic states are represented by convex combinations of such density matrices.

Example

Suppose the classical state set of X is {0, . . . ,n − 1}.
We can identify the probabilistic state of X represented by the probability vector(p0, . . . ,pn−1) with this density matrix:

ρ =
n−1
∑
k=0

pk∣k⟩⟨k∣ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0 0 ⋯ 0

0 p1 ⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ 0 pn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Spectral theorem
Spectral theorem for positive semidefinite matrices

Suppose P is an n ×n positive semidefinite matrix.

There exists an orthonormal basis {∣ψ0⟩, . . . , ∣ψn−1⟩} of vectors along with
nonnegative real numbers λ0, . . . ,λn−1 such that

P =
n−1
∑
k=0
λk∣ψk⟩⟨ψk∣

Implication for density matrices

Any n ×n density matrix ρ can be expressed as

ρ =
n−1
∑
k=0

pk∣ψk⟩⟨ψk∣
for an orthonormal basis {∣ψ0⟩, . . . , ∣ψn−1⟩} and a probability vector(p0, . . . ,pn−1).



Spectral theorem
Example

Recall the example where a qubit is prepared in the state ∣0⟩ with probability 1/2
and ∣+⟩ with probability 1/2.

1
2 ∣0⟩⟨0∣ + 1

2 ∣+⟩⟨+∣ =
⎛⎜⎝

3
4

1
4

1
4

1
4

⎞⎟⎠
This density matrix can alternatively be expressed as follows:

⎛⎜⎝
3
4

1
4

1
4

1
4

⎞⎟⎠ = cos2(π8 ) ∣ψπ/8⟩⟨ψπ/8∣ + sin2(π8 ) ∣ψ5π/8⟩⟨ψ5π/8∣
∣ψα⟩ = cos(α)∣0⟩ + sin(α)∣1⟩



Qubit quantum state vectors
Up to a global phase, every qubit quantum state vector is equivalent to

∣ψ⟩ = cos(θ2 ) ∣0⟩ + e
iφ sin(θ2 ) ∣1⟩

for θ ∈ [0,π] and φ ∈ [0, 2π) .
Almost uniqueness

• If θ = 0 or θ = π, then φ is irrelevant.
• If θ ∈ (0,π), then φ is unique.



Pure states of a qubit
∣ψ⟩ = cos(θ2 ) ∣0⟩ + e

iφ sin(θ2 ) ∣1⟩ θ ∈ [0,π] φ ∈ [0, 2π)
Here’s this state’s density matrix representation:

∣ψ⟩⟨ψ∣ = ⎛⎜⎜⎝
cos2(θ2 ) e

−iφ cos(θ2 ) sin(θ2 )
e
iφ cos(θ2 ) sin(θ2 ) sin2(θ2 )

⎞⎟⎟⎠

Like all 2 × 2 matrices, there’s a unique way to express this density matrix as a
linear combination of Pauli matrices.

1 = (1 0
0 1

) σx = (0 1
1 0

) σy = (0 −i

i 0
) σz = (1 0

0 −1
)

∣ψ⟩⟨ψ∣ = 1 + sin(θ) cos(φ)σx + sin(θ) sin(φ)σy + cos(θ)σz

2

cos2(θ2 ) = 1 + cos(θ)
2

sin2(θ2 ) = 1 − cos(θ)
2

cos(θ2 ) sin(θ2 ) = sin(θ)
2

e
iφ = cos(φ) + i sin(φ)



Bloch sphere
∣ψ⟩ = cos(θ2 ) ∣0⟩ + e

iφ sin(θ2 ) ∣1⟩ θ ∈ [0,π] φ ∈ [0, 2π)
∣ψ⟩⟨ψ∣ = 1 + sin(θ) cos(φ)σx + sin(θ) sin(φ)σy + cos(θ)σz

2

(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))

φ
y

x

z

θ



Bloch sphere
∣ψ⟩ = cos(θ2 ) ∣0⟩ + e

iφ sin(θ2 ) ∣1⟩ θ ∈ [0,π] φ ∈ [0, 2π)
∣ψ⟩⟨ψ∣ = 1 + sin(θ) cos(φ)σx + sin(θ) sin(φ)σy + cos(θ)σz

2

(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))

∣ψ⟩

φ
y

x

z

θ

This is the Bloch sphere representation
of the qubit state ∣ψ⟩.



Bloch sphere examples
∣ψ⟩ = cos(θ2 ) ∣0⟩ + e

iφ sin(θ2 ) ∣1⟩ θ ∈ [0,π] φ ∈ [0, 2π)
∣ψ⟩⟨ψ∣ = 1 + sin(θ) cos(φ)σx + sin(θ) sin(φ)σy + cos(θ)σz

2

(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))∣ψ⟩

∣0⟩

∣1⟩

∣+⟩

∣−⟩

∣+i⟩
∣−i⟩

φ

y

x

z

θ

Examples

The standard basis {∣0⟩, ∣1⟩}
∣0⟩ = cos(0)∣0⟩ + e

iφ sin(0)∣1⟩
∣1⟩ = cos(π2 )∣0⟩ + e

iφ sin(π2 )∣1⟩
∣0⟩⟨0∣ = 1 +σz

2

∣1⟩⟨1∣ = 1 −σz

2



Bloch sphere examples
∣ψ⟩ = cos(θ2 ) ∣0⟩ + e

iφ sin(θ2 ) ∣1⟩ θ ∈ [0,π] φ ∈ [0, 2π)
∣ψ⟩⟨ψ∣ = 1 + sin(θ) cos(φ)σx + sin(θ) sin(φ)σy + cos(θ)σz

2

(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))∣ψ⟩

∣0⟩

∣1⟩

∣+⟩

∣−⟩

∣+i⟩
∣−i⟩

φ

y

x

z

θ

Examples

The basis {∣+⟩, ∣−⟩}
∣+⟩ = cos(π4 )∣0⟩ + e

i0 sin(π4 )∣1⟩
∣−⟩ = cos(π4 )∣0⟩ + e

iπ sin(π4 )∣1⟩
∣+⟩⟨+∣ = 1 +σx

2

∣−⟩⟨−∣ = 1 −σx

2



Bloch sphere examples
∣ψ⟩ = cos(θ2 ) ∣0⟩ + e

iφ sin(θ2 ) ∣1⟩ θ ∈ [0,π] φ ∈ [0, 2π)
∣ψ⟩⟨ψ∣ = 1 + sin(θ) cos(φ)σx + sin(θ) sin(φ)σy + cos(θ)σz

2

(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))∣ψ⟩

∣0⟩

∣1⟩

∣+⟩

∣−⟩

∣+i⟩
∣−i⟩

φ

y

x

z

θ

Examples

The basis {∣+i⟩, ∣−i⟩}
∣+i⟩ = 1√

2
∣0⟩ + i√

2
∣1⟩

∣−i⟩ = 1√
2
∣0⟩ − i√

2
∣1⟩

∣+i⟩ = cos(π4 )∣0⟩ + e
iπ

2 sin(π4 )∣1⟩
∣−i⟩ = cos(π4 )∣0⟩ + e

i 3π
2 sin(π4 )∣1⟩

∣+i⟩⟨+i∣ = 1 +σy

2

∣−i⟩⟨−i∣ = 1 −σy

2



Bloch sphere examples
∣ψ⟩ = cos(θ2 ) ∣0⟩ + e

iφ sin(θ2 ) ∣1⟩ θ ∈ [0,π] φ ∈ [0, 2π)
∣ψ⟩⟨ψ∣ = 1 + sin(θ) cos(φ)σx + sin(θ) sin(φ)σy + cos(θ)σz

2

(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))∣ψ⟩

∣0⟩

∣1⟩

∣+⟩

∣−⟩

∣+i⟩
∣−i⟩

φ

y

x

z

θ

Examples

The basis {∣+i⟩, ∣−i⟩}
∣+i⟩ = cos(π4 )∣0⟩ + e

iπ
2 sin(π4 )∣1⟩

∣−i⟩ = cos(π4 )∣0⟩ + e
i 3π

2 sin(π4 )∣1⟩
∣+i⟩⟨+i∣ = 1 +σy

2

∣−i⟩⟨−i∣ = 1 −σy

2



Bloch sphere examples
∣ψ⟩ = cos(θ2 ) ∣0⟩ + e

iφ sin(θ2 ) ∣1⟩ θ ∈ [0,π] φ ∈ [0, 2π)
∣ψ⟩⟨ψ∣ = 1 + sin(θ) cos(φ)σx + sin(θ) sin(φ)σy + cos(θ)σz

2

(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))∣ψ⟩

∣0⟩

∣1⟩

∣+⟩

∣−⟩

∣+i⟩
∣−i⟩

∣ψπ/8⟩

∣ψ5π/8⟩

φ
y

x

z

θ

Examples

Another class of state vectors:

∣ψα⟩ = cos(α)∣0⟩ + sin(α)∣1⟩, α ∈ [0,π)
∣ψα⟩⟨ψα∣ = 1 + sin(2α)σx + cos(2α)σz

2



Bloch ball
The Bloch ball contains all of the points on the Bloch sphere as well as those inside it.

• Points in the interior of the Bloch ball correspond to qubit states that are not pure.
• Convex combinations of points in the Bloch ball correspond to convex combinations of

qubit density matrices.

1

2

∣0⟩

∣1⟩

∣+⟩

∣−⟩

∣+i⟩
∣−i⟩

∣ψπ/8⟩

∣ψ5π/8⟩

φ
y

x

z

θ

Examples

The completely mixed state lies at the
center of the Bloch ball.

1

2 = 1
2 ∣0⟩⟨0∣ + 1

2 ∣1⟩⟨1∣
= 1

2 ∣+⟩⟨+∣ + 1
2 ∣−⟩⟨−∣

= 1
2 ∣+i⟩⟨+i∣ + 1

2 ∣−i⟩⟨−i∣



Bloch ball
The Bloch ball contains all of the points on the Bloch sphere as well as those inside it.

• Points in the interior of the Bloch ball correspond to qubit states that are not pure.
• Convex combinations of points in the Bloch ball correspond to convex combinations of

qubit density matrices.

1

2

∣0⟩

∣1⟩

∣+⟩

∣−⟩

∣+i⟩
∣−i⟩

∣ψπ/8⟩

∣ψ5π/8⟩

φ
y

x

z

θ

Examples

The completely mixed state lies at the
center of the Bloch ball.

1

2 =
1 + 0 ⋅σx + 0 ⋅σy + 0 ⋅σz

2



Bloch ball
The Bloch ball contains all of the points on the Bloch sphere as well as those inside it.

• Points in the interior of the Bloch ball correspond to qubit states that are not pure.
• Convex combinations of points in the Bloch ball correspond to convex combinations of

qubit density matrices.

1

2

∣0⟩

∣1⟩

∣+⟩

∣−⟩

∣+i⟩
∣−i⟩

∣ψπ/8⟩

∣ψ5π/8⟩

φ
y

x

z

θ

( 3
4

1
4

1
4

1
4
)

Examples

⎛⎜⎝
3
4

1
4

1
4

1
4

⎞⎟⎠ = 1
2 ∣0⟩⟨0∣ + 1

2 ∣+⟩⟨+∣

= cos2(π8 ) ∣ψπ/8⟩⟨ψπ/8∣
+ sin2(π8 ) ∣ψ5π/8⟩⟨ψ5π/8∣



Multiple systems
Density matrices can represent states of multiple systems:

• Multiple system are viewed as single, compound systems.
• The rows and columns of density matrices for multiple systems correspond to

Cartesian products of the classical state sets of the individual systems.

Example: Bell states

∣φ+⟩⟨φ+∣ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 1

2

0 0 0 0

0 0 0 0
1
2 0 0 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣φ−⟩⟨φ−∣ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 − 1

2

0 0 0 0

0 0 0 0

− 1
2 0 0 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣ψ+⟩⟨ψ+∣ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣ψ−⟩⟨ψ−∣ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 1
2 − 1

2 0

0 − 1
2

1
2 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Independence and correlation
Tensor products of density matrices represent independence between systems.

Product states

If X is prepared in the state ρ and Y is independently prepared in the state σ,
then the state of (X, Y) is the tensor product ρ⊗σ.

States of this form are called product states.

Density matrices that cannot be expressed as product states represent
correlations between systems. Different types of correlations can be considered.

Example: a correlated classical state

A uniform random bit shared between Alice and Bob has this state.

1
2 ∣0⟩⟨0∣⊗ ∣0⟩⟨0∣ + 1

2 ∣1⟩⟨1∣⊗ ∣1⟩⟨1∣ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Independence and correlation
Tensor products of density matrices represent independence between systems.

Product states

If X is prepared in the state ρ and Y is independently prepared in the state σ,
then the state of (X, Y) is the tensor product ρ⊗σ.

States of this form are called product states.

Density matrices that cannot be expressed as product states represent
correlations between systems. Different types of correlations can be considered.

Example: ensembles of quantum states

An ensemble describes a random selection of a quantum state.

The following density matrix represents an ensemble, assuming (p0, . . . ,pm−1)
is a probability vector and ρ0, . . . ,ρm−1 are density matrices of the same size.

m−1
∑
k=0

pk∣k⟩⟨k∣⊗ ρk



Independence and correlation
Tensor products of density matrices represent independence between systems.

Product states

If X is prepared in the state ρ and Y is independently prepared in the state σ,
then the state of (X, Y) is the tensor product ρ⊗σ.

States of this form are called product states.

Density matrices that cannot be expressed as product states represent
correlations between systems. Different types of correlations can be considered.

Example: separable states

Convex combinations of product states represent classical correlations among
quantum states.

m−1
∑
k=0

pk ρk ⊗σk

States that can be written like this are separable; all the rest are entangled.



Reduced states for an e-bit
Alice and Bob share an e-bit: Alice holds A, Bob holds B, and (A, B) is in this state:

∣φ+⟩ = 1√
2
∣00⟩ + 1√

2
∣11⟩

Question

What is the state of Alice’s qubit A in isolation?

Imagine Bob performs a standard basis measurement on B.

Outcome Probability Resulting state of A

0 1
2 ∣0⟩

1 1
2 ∣1⟩

This leaves the qubit A in the completely mixed state:

1
2 ∣0⟩⟨0∣ + 1

2 ∣1⟩⟨1∣ = 1

2



Reduced states for an e-bit
Alice and Bob share an e-bit: Alice holds A, Bob holds B, and (A, B) is in this state:

∣φ+⟩ = 1√
2
∣00⟩ + 1√

2
∣11⟩

Question

What is the state of Alice’s qubit A in isolation?

Answer

The completely mixed state 1
2 .



Reduced states in general
Suppose we have a pair of systems (A, B) in a pure state ∣ψ⟩.
Let Γ be the classical state set of B. There is a unique collection {∣φb⟩ ∶ b ∈ Γ} of
vectors for which this expression is true:

∣ψ⟩ = ∑
b∈Γ

∣φb⟩⊗ ∣b⟩
In particular, each ∣φb⟩ is given by this formula:

∣φb⟩ = (1A ⊗ ⟨b∣)∣ψ⟩



Reduced states in general
Suppose we have a pair of systems (A, B) in a pure state ∣ψ⟩.
Let Γ be the classical state set of B. There is a unique collection {∣φb⟩ ∶ b ∈ Γ} of
vectors for which this expression is true:

∣ψ⟩ = ∑
b∈Γ

∣φb⟩⊗ ∣b⟩
∣φb⟩ = (1A ⊗ ⟨b∣)∣ψ⟩

Suppose a standard basis measurement were performed on B:

• Each b ∈ Γ appears with probability ∥∣φb⟩∥2.
• Conditioned on obtaining the outcome b, the state of A becomes ∣φb⟩∥∣φb⟩∥ .
The reduced state of A:

∑
b∈Γ

∥∣φb⟩∥2 ∣φb⟩⟨φb∣∥∣φb⟩∥2 = ∑
b∈Γ

∣φb⟩⟨φb∣



Reduced states in general
Suppose we have a pair of systems (A, B) in a pure state ∣ψ⟩.
Let Γ be the classical state set of B. There is a unique collection {∣φb⟩ ∶ b ∈ Γ} of
vectors for which this expression is true:

∣ψ⟩ = ∑
b∈Γ

∣φb⟩⊗ ∣b⟩
∣φb⟩ = (1A ⊗ ⟨b∣)∣ψ⟩

Suppose a standard basis measurement were performed on B:

• Each b ∈ Γ appears with probability ∥∣φb⟩∥2.
• Conditioned on obtaining the outcome b, the state of A becomes ∣φb⟩∥∣φb⟩∥ .
The reduced state of A:

=

∑
b∈Γ

∣φb⟩⟨φb∣ = ∑
b∈Γ

(1A ⊗ ⟨b∣)∣ψ⟩⟨ψ∣(1A ⊗ ∣b⟩)



Reduced states in general
Suppose we have a pair of systems (A, B) in a pure state ∣ψ⟩.
The reduced state of A:

∑
b∈Γ

(1A ⊗ ⟨b∣)∣ψ⟩⟨ψ∣(1A ⊗ ∣b⟩)
Suppose (A, B) is in a state described by a density matrix ρ. The reduced state of A is
described by this density matrix:

ρA = ∑
b∈Γ

(1A ⊗ ⟨b∣)ρ(1A ⊗ ∣b⟩)
The reduced state of B is obtained in a similar way.

ρB = ∑
a∈Σ

(⟨a∣⊗ 1B)ρ(∣a⟩⊗ 1B)
(Σ is the classical state set of A.)



Reduced states in general
Suppose (A, B) is in a state described by a density matrix ρ. The reduced state of A is
described by this density matrix:

ρA = ∑
b∈Γ

(1A ⊗ ⟨b∣)ρ(1A ⊗ ∣b⟩)
The reduced state of B is obtained in a similar way.

ρB = ∑
a∈Σ

(⟨a∣⊗ 1B)ρ(∣a⟩⊗ 1B)
These notions can be generalized to three or more systems in a natural way.

Example

Suppose (A, B, C) is in the state ρ. The reduced states of (A, C) and C:

ρAC = ∑
b∈Γ

(1A ⊗ ⟨b∣⊗ 1C)ρ(1A ⊗ ∣b⟩⊗ 1C)
ρC = ∑

a∈Σ
∑
b∈Γ

(⟨a∣⊗ ⟨b∣⊗ 1C)ρ(∣a⟩⊗ ∣b⟩⊗ 1C)



The partial trace
Definition

TrB(ρ) = ∑
b∈Γ

(1A ⊗ ⟨b∣)ρ(1A ⊗ ∣b⟩)
TrA(ρ) = ∑

a∈Σ
(⟨a∣⊗ 1B)ρ(∣a⟩⊗ 1B)

Equivalent definition

TrA and TrB are the unique
linear mappings for which these
equations are always true:

TrA(M⊗N) = Tr(M)N
TrB(M⊗N) = Tr(N)M

Example

Consider this state of a pair of qubits (A, B):
ρ = 1

2 ∣0⟩⟨0∣⊗ ∣0⟩⟨0∣ + 1
2 ∣1⟩⟨1∣⊗ ∣+⟩⟨+∣

ρA = TrB(ρ) = 1
2 ∣0⟩⟨0∣ + 1

2 ∣1⟩⟨1∣ ρB = TrA(ρ) = 1
2 ∣0⟩⟨0∣ + 1

2 ∣+⟩⟨+∣


