
Understanding
Quantum Information
and Computation
Lesson 8

Grover’s Algorithm

John Watrous

Unstructured search
LetΣ = {0, 1} denote the binary alphabet (throughout the lesson).
Suppose we’re given a function

f ∶ Σn → Σ

that we can compute efficiently.

Our goal is to find a solution, which is a binary string x ∈ Σn for which f(x) = 1.

Search

Input: f ∶ Σn → Σ

Output: a string x ∈ Σn satisfying f(x) = 1, or “no solution” if no such
strings exist

This is unstructured search because f is arbitrary — there’s no promise and we can’t rely on
it having a structure that makes finding solutions easy.

Algorithms for search
Search

Input: f ∶ Σn → Σ

Output: a string x ∈ Σn satisfying f(x) = 1, or “no solution” if no such
strings exist

Hereafter let us write

N = 2n

By iterating through all x ∈ Σn and evaluating f on each one, we can solve Search withN
queries.

This is the best we can do with a deterministic algorithm.

Probabilistic algorithms offer minor improvements, but still require a number of queries
linear inN.

Grover’s algorithm is a quantum algorithm for Search requiringO(√N) queries.

Phase query gates
We assume that we have access to the function f ∶ Σn → Σ through a query gate:

Uf ∶ ∣a⟩∣x⟩ ↦ ∣a⊕ f(x)⟩∣x⟩ (for alla ∈ Σ and x ∈ Σn)

(We can build a circuit forUf given a Boolean circuit for f.)

The phase query gate for f operates like this:

Zf ∶ ∣x⟩ ↦ (−1)f(x)∣x⟩ (for all x ∈ Σn)

∣x⟩
∣−⟩

(−1)f(x)∣x⟩
∣−⟩

Uf

Zf

Exercise: show how to build aUf operation using a controlledZf operation.

Phase query gates
The phase query gate for f operates like this:

Zf ∶ ∣x⟩ ↦ (−1)f(x)∣x⟩ (for all x ∈ Σn)
We’re also going to need a phase query gate for then-bit OR function:

OR(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 x = 0n

1 x ≠ 0n
(for all x ∈ Σn)

ZOR∣x⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∣x⟩ x = 0n

−∣x⟩ x ≠ 0n
(for all x ∈ Σn)

Algorithm description
Grover’s algorithm

1. Initialize: set n qubits to the state H
⊗n∣0n⟩.

2. Iterate: apply the Grover operation t times (for t to be specified later).
3. Measure: a standard basis measurement yields a candidate solution.

The Grover operation is defined like this:

G = H
⊗n

ZORH
⊗n

Zf

Zf is the phase query gate for f andZOR is the phase query gate for then-bit OR function.

H

H

H

H

H

H

H

H

Zf ZOR

Algorithm description
Grover’s algorithm

1. Initialize: set n qubits to the state H
⊗n∣0n⟩.

2. Iterate: apply the Grover operation t times (for t to be specified later).
3. Measure: a standard basis measurement yields a candidate solution.

The Grover operation is defined like this:

G = H
⊗n

ZORH
⊗n

Zf

Zf is the phase query gate for f andZOR is the phase query gate for then-bit OR function.

A typical way that Grover’s algorithm can be applied:

1. Choose the number of iterations t (next section).
2. Run Grover’s algorithm with t iterations to get a candidate solution x.
3. Check the solution. If f(x) = 1 then output x, otherwise either run Grover’s algorithm

again (possibly with a different t) or report “no solutions.”

Solutions and non-solutions
We’ll refer to then qubits being used for Grover’s algorithm as a register Q.

We’re interested inwhat happenswhenQ is initialized to the stateH⊗n∣0n⟩and theGrover
operationG is performed iteratively.

G = H
⊗n

ZORH
⊗n

Zf

These are the sets of non-solutions and solutions:

A0 = {x ∈ Σn ∶ f(x) = 0}
A1 = {x ∈ Σn ∶ f(x) = 1}

We will be interested in uniform superpositions over these sets:

∣A0⟩ = 1√∣A0∣ ∑
x∈A0

∣x⟩
∣A1⟩ = 1√∣A1∣ ∑

x∈A1

∣x⟩

Analysis: basic idea
A0 = {x ∈ Σn ∶ f(x) = 0} A1 = {x ∈ Σn ∶ f(x) = 1}

∣A0⟩ = 1√∣A0∣ ∑
x∈A0

∣x⟩ ∣A1⟩ = 1√∣A1∣ ∑
x∈A1

∣x⟩

The register Q is first initialized to this state:

∣u⟩ = H
⊗n∣0n⟩ = 1√

N
∑

x∈Σn

∣x⟩
This state is contained in the subspace spanned by ∣A0⟩ and ∣A1⟩:

∣u⟩ =
√∣A0∣

N
∣A0⟩ +

√∣A1∣
N

∣A1⟩
The state of Q remains in this subspace after every application of the Grover operationG.

Action of the Grover operation
We can better understand the Grover operation by splitting it into two parts:

G = (H⊗n
ZORH

⊗n)(Zf)
1. Recall thatZf is defined like this:

Zf∣x⟩ = (−1)f(x)∣x⟩ (for all x ∈ Σn)
Its action on ∣A0⟩ and ∣A1⟩ is simple:

Zf∣A0⟩ = ∣A0⟩
Zf∣A1⟩ = −∣A1⟩

Action of the Grover operation
We can better understand the Grover operation by splitting it into two parts:

G = (H⊗n
ZORH

⊗n)(Zf)
2. The operationZOR is defined like this:

ZOR∣x⟩ = { ∣x⟩ x = 0n

−∣x⟩ x ≠ 0n
(for all x ∈ Σn)

Here’s an alternative way to expressZOR:

ZOR = 2∣0n⟩⟨0n∣ − 1

Using this expression, we can writeH⊗n
ZORH

⊗n like this:

H
⊗n

ZORH
⊗n = H

⊗n(2∣0n⟩⟨0n∣ − 1)H⊗n = 2∣u⟩⟨u∣ − 1

Action of the Grover operation
Zf∣A0⟩ = ∣A0⟩
Zf∣A1⟩ = −∣A1⟩ ∣u⟩ =

√∣A0∣
N

∣A0⟩ +
√∣A1∣

N
∣A1⟩

G∣A0⟩ = (2∣u⟩⟨u∣ − 1)Zf∣A0⟩
= (2∣u⟩⟨u∣ − 1)∣A0⟩
= 2

√∣A0∣
N

∣u⟩ − ∣A0⟩
= 2

√∣A0∣
N

(
√∣A0∣

N
∣A0⟩ +

√∣A1∣
N

∣A1⟩) − ∣A0⟩
= ∣A0∣ − ∣A1∣

N
∣A0⟩ + 2

√∣A0∣ ⋅ ∣A1∣
N

∣A1⟩

Action of the Grover operation
Zf∣A0⟩ = ∣A0⟩
Zf∣A1⟩ = −∣A1⟩ ∣u⟩ =

√∣A0∣
N

∣A0⟩ +
√∣A1∣

N
∣A1⟩

G∣A0⟩ = ∣A0∣ − ∣A1∣
N

∣A0⟩ + 2
√∣A0∣ ⋅ ∣A1∣

N
∣A1⟩

G∣A1⟩ = (2∣u⟩⟨u∣ − 1)Zf∣A1⟩
= (1 − 2∣u⟩⟨u∣)∣A1⟩
= ∣A1⟩ − 2

√∣A1∣
N

∣u⟩
= ∣A1⟩ − 2

√∣A0∣
N

(
√∣A0∣

N
∣A0⟩ +

√∣A1∣
N

∣A1⟩)
= −

2
√∣A0∣ ⋅ ∣A1∣

N
∣A0⟩ + ∣A0∣ − ∣A1∣

N
∣A1⟩

Action of the Grover operation
Zf∣A0⟩ = ∣A0⟩
Zf∣A1⟩ = −∣A1⟩ ∣u⟩ =

√∣A0∣
N

∣A0⟩ +
√∣A1∣

N
∣A1⟩

G∣A0⟩ = ∣A0∣ − ∣A1∣
N

∣A0⟩ + 2
√∣A0∣ ⋅ ∣A1∣

N
∣A1⟩

G∣A1⟩ = −
2
√∣A0∣ ⋅ ∣A1∣

N
∣A0⟩ + ∣A0∣ − ∣A1∣

N
∣A1⟩

The action ofG on span{∣A0⟩, ∣A1⟩} can be described by a 2 × 2 matrix:

M =
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
∣A0∣−∣A1∣

N
− 2

√∣A0∣⋅∣A1∣
N

∣A0⟩
2
√∣A0∣⋅∣A1∣

N
∣A0∣−∣A1∣

N
∣A1⟩

∣A0⟩ ∣A1⟩

Rotation by an angle
The action ofG on span{∣A0⟩, ∣A1⟩} can be described by a 2 × 2 matrix:

M =
⎛⎜⎜⎜⎝

∣A0∣−∣A1∣
N

− 2
√∣A0∣⋅∣A1∣

N

2
√∣A0∣⋅∣A1∣

N
∣A0∣−∣A1∣

N

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝
√ ∣A0∣

N
−
√∣A1∣

N√∣A1∣
N

√∣A0∣
N

⎞⎟⎟⎟⎟⎠
2

This is a rotationmatrix.

⎛⎜⎜⎜⎜⎝
√ ∣A0∣

N
−
√∣A1∣

N√∣A1∣
N

√∣A0∣
N

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎝
cos(θ) − sin(θ)
sin(θ) cos(θ)

⎞⎟⎟⎠ θ = sin−1 (
√∣A1∣

N
)

M =
⎛⎜⎜⎝
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

⎞⎟⎟⎠

Rotation by an angle
M =

⎛⎜⎜⎝
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

⎞⎟⎟⎠ θ = sin−1 (
√∣A1∣

N
)

After the initialization step, this is the state of the register Q:

∣u⟩ =
√∣A0∣

N
∣A0⟩ +

√∣A1∣
N

∣A1⟩ = cos(θ)∣A0⟩ + sin(θ)∣A1⟩
Each time the Grover operationG is performed, the state of Q is rotated by an angle 2θ:

∣u⟩ = cos(θ)∣A0⟩ + sin(θ)∣A1⟩
G∣u⟩ = cos(3θ)∣A0⟩ + sin(3θ)∣A1⟩
G

2∣u⟩ = cos(5θ)∣A0⟩ + sin(5θ)∣A1⟩
⋮

G
t∣u⟩ = cos((2t + 1)θ)∣A0⟩ + sin((2t + 1)θ)∣A1⟩

Geometric picture
Main idea

The operation G = H
⊗n

ZORH
⊗n

Zf is a composition of two reflections:

Zf and H
⊗n

ZORH
⊗n

Composing two reflections yields a rotation.

1. Recall thatZf has this action on the
2-dimensional space spanned by∣A0⟩ and ∣A1⟩:

Zf∣A0⟩ = ∣A0⟩
Zf∣A1⟩ = −∣A1⟩

This is a reflection about the line L1
parallel to ∣A0⟩.

L1

∣ψ⟩

Zf∣ψ⟩

∣A0⟩

∣A1⟩

Geometric picture
Main idea

The operation G = H
⊗n

ZORH
⊗n

Zf is a composition of two reflections:

Zf and H
⊗n

ZORH
⊗n

Composing two reflections yields a rotation.

2. The operationH⊗n
ZORH

⊗n can be
expressed like this:

H
⊗n

ZORH
⊗n = 2∣u⟩⟨u∣ − 1

Again this is a reflection, this time
about the line L2 parallel to ∣u⟩.

L2

∣u⟩

∣ψ⟩

H
⊗n

ZORH
⊗n∣ψ⟩

∣A0⟩

∣A1⟩

Geometric picture
Main idea

The operation G = H
⊗n

ZORH
⊗n

Zf is a composition of two reflections:

Zf and H
⊗n

ZORH
⊗n

Composing two reflections yields a rotation.

When we compose two reflections, we
obtain a rotation by twice the angle
between the lines of reflection.

θ

2θ

L1

L2

∣ψ⟩

Zf∣ψ⟩

G∣ψ⟩

∣u⟩
∣A0⟩

∣A1⟩

Setting the target
Consider any quantum state of this form:

α∣A0⟩ +β∣A1⟩
Measuring yields a solution x ∈ A1 with probability ∣β∣2.

α∣A0⟩ +β∣A1⟩ = α√∣A0∣ ∑
x∈A0

∣x⟩ + β√∣A1∣ ∑
x∈A1

∣x⟩

p(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣α∣2∣A0∣ x ∈ A0

∣β∣2∣A1∣ x ∈ A1

Pr(outcome is inA1) = ∑
x∈A1

p(x) = ∣β∣2

Setting the target
Consider any quantum state of this form:

α∣A0⟩ +β∣A1⟩
Measuring yields a solution x ∈ A1 with probability ∣β∣2.
The state of Q after t iterations in Grover’s algorithm:

cos((2t + 1)θ)∣A0⟩ + sin((2t + 1)θ)∣A1⟩ θ = sin−1 (
√∣A1∣

N
)

Measuring after t iterations gives an outcome x ∈ A1 with probability

sin2((2t + 1)θ)
We wish to maximize this probability — so we may view that ∣A1⟩ is our target state.

Setting the target
The state of Q after t iterations in Grover’s algorithm:

cos((2t + 1)θ)∣A0⟩ + sin((2t + 1)θ)∣A1⟩ θ = sin−1 (
√∣A1∣

N
)

Measuring after t iterations gives an outcome x ∈ A1 with probability

sin2((2t + 1)θ)
To make this probability close to 1 and minimize t, we will aim for

(2t + 1)θ ≈ π2 ⇔ t ≈ π

4θ −
1
2

closest integer
⟶ t = ⌊ π4θ ⌋

Important considerations:

• tmust be an integer
• θ depends on the number of solutions s = ∣A1∣

Unique search
(2t + 1)θ ≈ π2 ⇐ t = ⌊ π4θ ⌋

Unique search

Input: f ∶ Σn → Σ

Promise: There is exactly one string z ∈ Σn for which f(z) = 1,
with f(x) = 0 for all strings x /= z

Output: The string z

For Unique search we have s = ∣A1∣ = 1 and therefore

θ = sin−1(
√

1
N

) ≈
√

1
N

Substituting θ ≈ 1/√N into our expression for t gives

t ≈ ⌊π4 √
N⌋ ← O(√N) queries

Unique search
Example:N = 128

θ = sin−1 (1√
N

) = 0.0885⋯

t = ⌊ π4θ ⌋ = 8

∣u⟩ = cos(θ)∣A0⟩ + sin(θ)∣A1⟩
G∣u⟩G

2∣u⟩

G
8∣u⟩

G
12∣u⟩

∣A0⟩

∣A1⟩

Unique search
θ = sin−1 (

√
1
N

) t = ⌊ π4θ ⌋
Measuring after t iterations gives the (unique) outcome x ∈ A1 with probability

p(N, 1) = sin2((2t + 1)θ)
Success probabilities for Unique search

N p(N, 1)
2 .5
4 1.0
8 .9453125

16 .9613190
32 .9991823
64 .9965857

N p(N, 1)
128 .9956199
256 .9999470
512 .9994480

1024 .9994612
2048 .9999968
4096 .9999453

It can be proved analytically that p(N, 1) ≥ 1 − 1/N.

Multiple solutions
Example:N = 128, s = 4

θ = sin−1 (√ s

N
) = 0.1777⋯

t = ⌊ π4θ ⌋ = 4

∣u⟩ = cos(θ)∣A0⟩ + sin(θ)∣A1⟩
G∣u⟩

G
2∣u⟩G

3∣u⟩G
4∣u⟩

G
8∣u⟩

∣A0⟩

∣A1⟩

Multiple solutions
θ = sin−1 (√ s

N
) t = ⌊ π4θ ⌋

For every s ∈ {1, . . . ,N}, the probability p(N,s) to find a solution satisfies
p(N,s) ≥ max{1 −

s

N
, s

N
}

Number of queries
θ = sin−1 (√ s

N
) t = ⌊ π4θ ⌋

Each iteration of Grover’s algorithm requires 1 query (or evaluations of f). How does the
number of queries t depend onN and s?

sin−1(x) ≥ x (for every x ∈ [0, 1])
θ = sin−1 (√ s

N
) ≥

√
s

N

t ≤ π

4θ ≤ π4

√
N
s

t = O(√N
s

)

Unknown number of solutions
What do we do if we don’t know the number of solutions in advance?

A simple approach

Choose the number of iterations t ∈ {1, . . . , ⌊π√N/4⌋} uniformly at random.

• The probability to find a solution (if one exists) will be at least 40%.
(Repeat several times to boost success probability.)

• The number of queries (or evaluations of f) isO(√N).
A more sophisticated approach

1. Set T = 1.
2. Run Grover’s algorithm with t ∈ {1, . . . ,T} chosen uniformly at random.
3. If a solution is found, output it and stop.

Otherwise, increase T and return to step 2 (or report “no solution”).

• The rate of increase of T must be carefully balanced: slower rates require more
queries, higher rates decrease success probability. T ← ⌈ 5

4T⌉ works.
• If the number of solutions is s ≥ 1, then the number of queries (or evaluations of f)

required isO(√N/s). If there are no solutions,O(√N) queries are required.

Concluding remarks
• Grover’s algorithm is asymptotically optimal.
• Grover’s algorithm is broadly applicable.
• The technique used in Grover’s algorithm can be generalized.

