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Spectral theorem for unitary matrices

The Folaigel 8 Zol=lial is an important fact in linear algebra. Here is a statement of

a special case of this theorem, for [t ALeiLEa

Spectral theorem for unitary matrices
Suppose U is an N X N unitary matrix.

There exists an orthonormal basis {|\1), ..., [Wn)} of vectors along
with complex numbers

such that

N
U= AWyl
k=1



Spectral theorem for unitary matrices

Spectral theorem for unitary matrices
Suppose U is an N X N unitary matrix.

There exists an orthonormal basis {|1), ..., | W)} of vectors along
with complex numbers

such that

N
Z A [} (Wil

Each vector |y ) is anof u havingAk:

U ) = M) = €% [y)



Phase estimation problem
In the phase estimation problem, we’re given two things:

1. A description of a[lilifelgeilelatilsgReligellit on M. qubits.
2. An n-qubit PelIaRS el [ ).

We're [JRJiIeel that |1 ) is an eigenvector of the unitary operation U described
by the circuit, and our goal is to approximate the corresponding eigenvalue.

Phase estimation problem

Input: A unitary quantum circuit for an n-qubit operation U
and an n. qubit quantum state |)

Promise:  |{») is an eigenvector of U

Output: An approximation to the number 0 € [0, 1) satisfying

Ulp) = ™0 )



Phase estimation problem

Phase estimation problem

Input: A unitary quantum circuit for an n-qubit operation U
and an n. qubit quantum state |)

Promise:  |{») is an eigenvector of U

Output: An approximation to the number 0 € [0, 1) satisfying

Up) = e " [h)

We can approximate 0 by a fraction

fory € {0,1,...,2™ —1}.

This approximation is taken “modulo 1.”



Warm-up: using the phase kickback

Given a circuit for U, we can create a circuit for a controlled-U operation:

Let’s consider this circuit:

0)

L




Warm-up: using the phase kickback
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Warm-up: using the phase kickback

o) ) ) |ms)
1 ezme
|n2>=|w>®(ﬁ|o>+ ﬁm)

oi
1+e71719

2710
'”3>='¢>®( 10y + 5 |1>)




Warm-up: using the phase kickback

27110 27110
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Measuring the top qubit yields the outcomes 0 and 1 with these probabilities:
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Iterating the unitary operation

How can we learn more about 6?7 One possibility is to apply the controlled-Ul operation

twice (or multiple times):
o i~

)

Performing the controlled-1l operation twice has the effect of squaring the eigenvalue:
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Two control qubits

Let’s use two control qubits to perform the controlled-U operations — and then we’ll see
how best to proceed.

)




Two control qubits

Let’s use two control qubits to perform the controlled-U operations — and then we’ll see
how best to proceed.
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Two control qubits

N =

3

27tix 0
> e x)
x=0

What can we learn about O from this state? Suppose we’re promised that 0 = % fory € {0,1,2,3}.
Can we figure out which one it is?

Define a two-qubit state for each possibility:

N =

|¢y>=

8

Xy
Z e27'[l 2 |X>
x=0

1 1 1 1
|bo) = 510) + 511) + 512) + 513)

1 i 1 i
|b1) = 510) + 5 11) = 512) - = [3)

1 1 1 1
|b2) = 510) = 511) + 512) = 513)

1 i 1 i
|b3) = 510) = 511) = 5]2) + 5 3)

These vectors are— so they can be discriminated perfectly by a projective measurement.



Two control qubits

3
1 27 XY
y) =5 3 5 )
xX=

1 1 1 1
|bo) = §|0) + §|1> + §|2>+ §|3)

1 i 1 i 1 1 1 1
|b1) = 510) + 511) = 512) = 513) ol ro-1 -

1 1 1 1 201 -1 1 -1
|¢2>—§|0>—§|1>+§|2)—§|3) L i 1 s

1 i 1 i
|b3) = 510) = =11) = 512) + 513)

The unitary matrix V/ whoseare | o), |d1), |d2), |d3) has this action:
V0y) = |by) (foreveryy €{0,1,2,3})
We can identify y by performing the inverse of V' then a standard basis measurement.

VTld)y) =|y) (foreveryy €{0,1,2,3})



Two-qubit phase estimation

1 1 1 1

OFT, = l 1 i -1 -1
211 -1 1 -1

1 -i -1 i

This matrix is associated with the [eleg=di=NgelligEd kel kyieldan] (for 4 dimensions).

When we think about this matrix as a unitary operation, we call it the [e[ielaldlgaNZel0Igl=Idge gk (oTd 11

The complete circuit for learning y € {0, 1, 2,3} when 6 = y/4:
o I
0] |

lb)




Two-qubit phase estimation

The complete circuit for learningy € {0, 1,2,3} when 0 = y/4:
0) I
o | !
) {

The outcome probabilities when we run the circuit, as a function of ©:
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Quantum Fourier transform

The quantum Fourier transform is defined for each positive integer N as follows.

QFTN =

||M|

\/__ Z__: 27‘[1—11- |

1 T
QFTN|U)=\/—NZ N |x)

Example

Example

_ -1+ivV3  -1-iV3
QFT3 = 1 2l 2‘

1 -1-iV/3 -1+iV3
2 2

-




Quantum Fourier transform

The quantum Fourier transform is defined for each positive integer N as follows.

QFTN =

||M|

\/__ Z__: 27‘[1—1’- |
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Quantum Fourier transform

The quantum Fourier transform is defined for each positive integer N as follows.

QFTN =

||[\/]|

Z_: 27'(1—Li |

\/__

1 T
QFTN|U)=\/—NZ N |x)

Example
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Quantum Fourier transform

The quantum Fourier transform is defined for each positive integer N as follows.

1N_ — 7Tl 1N_ — X
QFTN=\/—NXZZ2J |=\/—NZZ WX x)

Useful shorthand notation:




Circuits for the QFT

We can implement QF Ty efficiently with a quantum circuit when N is a power of 2.

The implementation makes use of [gelgligelllle Belile ke gates:

o 1 00 O
01 0 0
00 1 0
0 0 0 e~

The implementation isin nature. As an example, here is the circuit for QFT35:

r == T
6 8 4 2
I' '
@
@




Circuits for the QFT

Cost analysis

Let s, denote the number of gates we need for m qubits.
e For m =1, a single Hadamard gate is required.
e For m = 2, these are the gates required:
Sm_1 gates for the QFT on m. — 1 qubits
m — 1 controlled phase gates
m — 1 swap gates
1 Hadamard gate

1 m=1
S, =
™o lspi+2m -1 m=>2

This is awith a closed-form solution:
o 2
sm=y (2k-1)=m
k=1
Additional remarks:

e The number of swap gates can be reduced.
e Approximations to QFTo,m can be done at lower cost (and lower depth).



Phase estimation procedure

The general phase-estimation procedure, for any choice of m.:

—
|
[0™) Ly
—a
[b)
Warning

If we perform each uk-operation by repeating a controlled-U operation k times, increasing
the number of control qubits m comes at a [ilfNeleri#



Phase estimation procedure
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Phase estimation procedure

Best approximations Worse approximations
Suppose y /2" is the [ESRTENI] ~ Suppose there's a (XTI to
to ©: 0 between y/2™ and O:
Y —(m+1) -
o - gwl =2 o-ow =2
Then the probability to measure y will Then the probability to measure y will be
relatively high: relatively low:
4 1
> — =~ 0.405 < -
Py 2 Py 4

probability
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Phase estimation procedure

Best approximations Worse approximations
Suppose y /2" is the [ESHTENI] ~ Suppose there's a (XTI to
to ©: 0 between y/2™ and 0:
Y —(m+1) -
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Then the probability to measure y will Then the probability to measure y will be
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Phase estimation procedure

Best approximations Worse approximations
Suppose y /2" is the [ESHTMENIRN] ~ Suppose there's a (XTI to
to ©: 0 between y/2™ and 0:
Y —(m+1) -
o - gwl =2 o- o= =2
Then the probability to measure y will Then the probability to measure y will be
relatively high: relatively low:
4 1
> — = 0.405 < =
Py 2 Py 4

To obtain an approximation y /2m that is @AM to satisfy

Yy -m

0 - —=—| <2
| 2™ |1

we can run the phase estimation procedure using m control qubitsand take y to be the

of the outcomes.

(The eigenvector 1) is unchanged by the procedure and can be reused as many times as needed.)



The order-finding problem

For each positive integer N we define
Zn ={0,1,...,N -1}

Forinstance, Z; = {0}, Z» = {0, 1}, Z3 = {0, 1, 2}, and so on.

We can view arithmetic operations on Zy as being defined modulo N.
Example
Let N = 7. We have 3 -5 = 15, which leaves a remainder of 1 when divided by 7.

This is often expressed like this:
3.-5=1(mod 7)

We can also simply write 3 -5 = 1 when it’s clear we’re working in Z7.

The elements a € Zy that satisfy gcd(a, N) = 1 are special.
Zn = {a € Zy : ged(a, N) = 1}

Example

75, = {1,2,4,5,8,10,11,13,16, 17, 19, 20}



The order-finding problem

Fact

For every a € Z]*\l there must exist a positive integer k such that a® = 1. The smallest such
k is called the of a in ZY.

Example

For N = 21, these are the smallest powers for which this works:

1t =1 59 = 1 11°=1 17° =1
221 82 =1 135 =1 19° =1
4% =1 10° =1 163 =1 20° =1

Order-finding problem

Input: Positive integers a and N with gcd(a, N) = 1.
Output:  The smallest positive integer r such that a” = 1 (mod N)

No efficient classical algorithm for this problem is known — an efficient algorithm for order-finding
implies an efficient algorithm for integer factorization.



Order-finding by phase-estimation

To connect the order-finding problem to phase estimation, consider a system whose classical
state setis Zy.

For a given element a € Zy,, define an operation as follows:
M|x) = |ax) (foreach x € Zy)
This is a[llitelg/eyel=lgetitelg] — but only because ged(a, N) = 1!

Example

Let N = 15 and a = 2. The operation M, has this action:

M:[0) = |0) M:|5) = |10) M[10) = [5)
Ma|1) = |2) M.6) = [12) Ma|11) = [7)
M2[2) = |4) Ma|7) = |14) M[12) = [9)
M2|3) = |6) M.|[8) = |1) M.|13) = [11)
Mo[4) = [8) M.l9) = |3) M_|14) = [13)



Order-finding by phase-estimation

To connect the order-finding problem to phase estimation, consider a system whose classical
state setis Zy.

For a given element a € Z?{,, define an operation as follows:

M|x) = |ax) (foreach x € Zy)

This is a[llitelgeyel=lgetitelg] — but only because ged(a, N) = 1!

Main idea

The of M, are closely connected with the el of a.

By approximating certain eigenvalues with enough precision using phase estimation,
we’ll be able to compute the order.



Eigenvectors and eigenvalues

This is an eigenvector of M 4:

_ ) +lay+ -+ e

NG

| o)

The associated eigenvalue is 1:

la) +]a®) + -+ [a")  Ja)+-+ a7+ 1)

7 VP

Ma|¢0> = = |1I)0>

To identify more eigenvectors, first recall that

27tifr
w,=e

This is another eigenvector of M 4:

I+ wita)+ e+ w7 TP

N

|W1)



Eigenvectors and eigenvalues

la) + w;1|a2) o 4 w;(r_1)|ar)

\/?
wr|1) + @) + wita®) + o+ wr P e
e

- w <|1> +wrta) + willa®) + o+ w;(f—l)larq))
- T

Ma|¢1> =

Jr

wrhbl)

Additional eigenvectors can be identified by similar reasoning...

Foreachj € {0,...,r — 1}, thisis an eigenvector of M 4:

|1> + w;]|(1> 4L 000 db w;j(r_1)|a1‘—1>

\/?
Mg |;) = wllb;)




A convenient eigenvector

)+ wita) + e+ i T e

7
Malh1) = wylh1) = €27 [y)

[Wb1)

Suppose we're given [11) as a quantum state. We can attempt to learn r as follows:

1. Perform phase estimation on the state |1{;) and a quantum circuit implementing M 4.
The outcome is an approximation y /2™ ~ 1/r.

2. Output 2m/y rounded to the nearest integer:

N P I
roun v = Y 5

How much precision do we need to correctly determine r?

_ 1 _ . 2m _ .
= 2N2 roun y =

2m T

Choosing m = 21g(N) + 1 in phase estimation makes such an approximation likely.



A random eigenvector

|1> + w;]|(1> 4L 600 db w;j(r_1)|a1‘—1>

\/?

Ma|h;) = wllbg) = e

[Wbj) =

2mi L

")

Suppose we're given |1 ) as a quantum state for a[EltEeeEg of j € {0,..., T —1}.Wecan
attempt to learn j /r as follows:

1. Perform phase estimation on the state |1pj) and a quantum circuit implementing M .
The outcome is an approximation y /2™ =~ j /.
2. Amongthe fractions 1 /v in lowest terms satisfyingu, v € {0,..., N—=1}andv # 0, output

the one closesttoy /2™ . This can be done efficiently using the Sl Te N ige o lel el ILe et ialse R

How much precision do we need to correctly determine w/v = j/r?

il 1

" 2N?2

<lr
= | =

‘L
2m

Choosing m = 21g(N) + 1 for phase estimation makes such an approximation likely.
We might get unlucky: j could have common factors with .



A random eigenvector

|1> + w;]|(1> 4L 600 db w;j(T_1)|aT‘—1)

\/?
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Suppose we're given |1 ) as a quantum state for a[EltaeeEg of j € {0,..., T —1}.Wecan
attempt to learn j /r as follows:

1. Perform phase estimation on the state |1pj) and a quantum circuit implementing M .
The outcome is an approximation y /2™ =~ j /.
2. Amongthe fractions u/v in lowest terms satisfyingu, v € {0,..., N—=1}andv # 0, output

the one closesttoy /2™ . This can be done efficiently using the [l Te N igelolel Tl g ialse R

How much precision do we need to correctly determine w/v = j/r?

il 1

~ 2N?2

<lr
= | =

‘i
2TTL

If we can draw [lile Gl CatiadeltalZ A for j € {0, ..., T — 1} is chosen uniformly, we can recover
T with high probability by computing the [Eelifelelalaalel N lilisla)Z of the values of v we observed.



Implementation

To find the order of a € Z*N , we apply phase estimation to the operation M 4. Let’s measure the cost
as a function of n = Ig(N).

[0™)

[b)

Cost for each controlled unitary

Using the techniques from Lesson 6, we can implement M, at cost O(nz).
We need to implement ME foreachk =1,2,4,8,... ,Zm_l. Each ME can be implemented
as follows:
Compute b = a® (mod N).
Use a circuit for My,.
The cost to implement My, = M]fl is O(nz).



Implementation

To find the order of a € Z*N , we apply phase estimation to the operation M 4. Let’s measure the cost
as a function of n = Ig(N).

[o™)

[b)

Cost for phase estimation

e m Hadamard gates: cost O(n)
e m controlled unitary operations: cost O(n3)
e Quantum Fourier transform: cost O(n?)

Total cost: O (n3)



Implementation

[0™) |

Remaining issue: getting one of the eigenvectors [\g), ..., |[Wr_1).
Solution: replace the eigenvector |1 ) with the state |1).

This works because of the following equation:

_ [0 oo+ [ibry)

1) 7T

The outcome is the same as if we chose j € {0, 1, ..., T — 1} uniformly and used [\) = [1;).



Factoring through order-finding

The following method succeeds in finding a factor of N with probability at least 1/2, provided N is
odd and not a prime power.

Factor-finding method

Choose a € {2,..., N — 1} at random.
Compute d = ged(a, N). If d = 2 then output d and stop.

(O TRl e 2 T+ of a modulo N.

If r is even, then compute d = gcd(ar/2 —1,N).If d = 2, output d and stop.
If this step is reached, the method has failed.

ok wnhPRe

Main idea

1. By the definition of the order, we know that a” = 1 (mod N).
a’ =1 (mod N) = N divides a” -1
2. If r is even, then
a"-1=(a"?+1)(a"?-1)

Each prime dividing N must therefore divide either (a™/? + 1) or (a™/? - 1).

For a random a, at least one of the prime factors of N is likely to divide (aT/2 -1).



