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Spectral theorem for unitary matrices
The spectral theorem is an important fact in linear algebra. Here is a statement of
a special case of this theorem, for unitary matrices.

Spectral theorem for unitary matrices

Suppose U is an N ×N unitary matrix.

There exists an orthonormal basis {∣ψ1⟩, . . . , ∣ψN⟩} of vectors along
with complex numbers

λ1 = e
2πiθ1 , . . . , λN = e

2πiθN

such that

U =
N

∑
k=1
λk∣ψk⟩⟨ψk∣



Spectral theorem for unitary matrices
Spectral theorem for unitary matrices

Suppose U is an N ×N unitary matrix.

There exists an orthonormal basis {∣ψ1⟩, . . . , ∣ψN⟩} of vectors along
with complex numbers

λ1 = e
2πiθ1 , . . . , λN = e

2πiθN

such that

U =
N

∑
k=1
λk∣ψk⟩⟨ψk∣

Each vector ∣ψk⟩ is an eigenvector ofU having eigenvalue λk:

U∣ψk⟩ = λk∣ψk⟩ = e
2πiθk ∣ψk⟩



Phase estimation problem
In the phase estimation problem, we’re given two things:

1. A description of a unitary quantum circuit onn qubits.
2. Ann-qubit quantum state ∣ψ⟩.
We’re promised that ∣ψ⟩ is an eigenvector of the unitary operationU described
by the circuit, and our goal is to approximate the corresponding eigenvalue.

Phase estimation problem

Input: A unitary quantum circuit for an n-qubit operation U

and an n qubit quantum state ∣ψ⟩
Promise: ∣ψ⟩ is an eigenvector of U
Output: An approximation to the number θ ∈ [0, 1) satisfying

U∣ψ⟩ = e
2πiθ∣ψ⟩



Phase estimation problem
Phase estimation problem

Input: A unitary quantum circuit for an n-qubit operation U

and an n qubit quantum state ∣ψ⟩
Promise: ∣ψ⟩ is an eigenvector of U
Output: An approximation to the number θ ∈ [0, 1) satisfying

U∣ψ⟩ = e
2πiθ∣ψ⟩

1

i

−1

−i

e
2πiθ 2πθ We can approximate θ by a fraction

θ ≈ y

2m

for y ∈ {0, 1, . . . , 2m − 1}.
This approximation is taken “modulo 1.”



Warm-up: using the phase kickback
Given a circuit forU, we can create a circuit for a controlled-U operation:

U

Let’s consider this circuit:

H H

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0⟩

U



Warm-up: using the phase kickback
H H

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0⟩

U

∣π0⟩ ∣π1⟩ ∣π2⟩ ∣π3⟩

∣π0⟩ = ∣ψ⟩∣0⟩
∣π1⟩ = 1√

2
∣ψ⟩∣0⟩ + 1√

2
∣ψ⟩∣1⟩

∣π2⟩ = 1√
2
∣ψ⟩∣0⟩ + 1√

2
(U∣ψ⟩)∣1⟩ = ∣ψ⟩⊗ ( 1√

2
∣0⟩ + e

2πiθ√
2

∣1⟩)



Warm-up: using the phase kickback
H H

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0⟩

U

∣π0⟩ ∣π1⟩ ∣π2⟩ ∣π3⟩

∣π2⟩ = ∣ψ⟩⊗ ( 1√
2
∣0⟩ + e

2πiθ√
2

∣1⟩)
∣π3⟩ = ∣ψ⟩⊗ (1 + e

2πiθ

2 ∣0⟩ + 1 − e
2πiθ

2 ∣1⟩)



Warm-up: using the phase kickback
∣ψ⟩⊗ (1 + e

2πiθ

2 ∣0⟩ + 1 − e
2πiθ

2 ∣1⟩)
Measuring the top qubit yields the outcomes 0 and 1 with these probabilities:

p0 =
/////////
1 + e

2πiθ

2
/////////
2
= cos2(πθ) p1 =

/////////
1 − e

2πiθ

2
/////////
2
= sin2(πθ)
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Iterating the unitary operation
How can we learn more about θ? One possibility is to apply the controlled-U operation
twice (or multiple times):

H H

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0⟩

U U

Performing the controlled-U operation twice has the effect of squaring the eigenvalue:
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Two control qubits
Let’s use two control qubits to perform the controlled-U operations — and then we’ll see
how best to proceed.

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0⟩
∣0⟩

H

H

U U U

∣π1⟩ ∣π2⟩

∣π1⟩ = ∣ψ⟩⊗ 1
2

1
∑
a0=0

1
∑
a1=0

∣a1a0⟩

∣π2⟩ = ∣ψ⟩⊗ 1
2

1
∑
a0=0

1
∑
a1=0

e
2πia0θ∣a1a0⟩



Two control qubits
Let’s use two control qubits to perform the controlled-U operations — and then we’ll see
how best to proceed.

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0⟩
∣0⟩

H

H

U U U

∣π3⟩

∣π3⟩ = ∣ψ⟩⊗ 1
2

1
∑
a0=0

1
∑
a1=0

e
2πi(2a1+a0)θ∣a1a0⟩

= ∣ψ⟩⊗ 1
2

3
∑
x=0

e
2πixθ∣x⟩



Two control qubits
1
2

3
∑
x=0

e
2πixθ∣x⟩

What can we learn about θ from this state? Suppose we’re promised that θ = y
4 for y ∈ {0, 1, 2, 3}.

Can we figure out which one it is?

Define a two-qubit state for each possibility:

∣φy⟩ = 1
2

3
∑
x=0

e
2πixy

4 ∣x⟩

∣φ0⟩ = 1
2 ∣0⟩ + 1

2 ∣1⟩ + 1
2 ∣2⟩ + 1

2 ∣3⟩
∣φ1⟩ = 1

2 ∣0⟩ + i

2 ∣1⟩ − 1
2 ∣2⟩ − i

2 ∣3⟩
∣φ2⟩ = 1

2 ∣0⟩ − 1
2 ∣1⟩ + 1

2 ∣2⟩ − 1
2 ∣3⟩

∣φ3⟩ = 1
2 ∣0⟩ − i

2 ∣1⟩ − 1
2 ∣2⟩ + i

2 ∣3⟩
These vectors are orthonormal—so they can be discriminated perfectly by a projectivemeasurement.



Two control qubits
∣φy⟩ = 1

2
3
∑
x=0

e
2πixy

4 ∣x⟩

∣φ0⟩ = 1
2 ∣0⟩ + 1

2 ∣1⟩ + 1
2 ∣2⟩ + 1

2 ∣3⟩
∣φ1⟩ = 1

2 ∣0⟩ + i

2 ∣1⟩ − 1
2 ∣2⟩ − i

2 ∣3⟩
∣φ2⟩ = 1

2 ∣0⟩ − 1
2 ∣1⟩ + 1

2 ∣2⟩ − 1
2 ∣3⟩

∣φ3⟩ = 1
2 ∣0⟩ − i

2 ∣1⟩ − 1
2 ∣2⟩ + i

2 ∣3⟩

V = 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The unitary matrixV whose columns are ∣φ0⟩, ∣φ1⟩, ∣φ2⟩, ∣φ3⟩ has this action:
V∣y⟩ = ∣φy⟩ (for every y ∈ {0, 1, 2, 3})

We can identify y by performing the inverse ofV then a standard basis measurement.

V
†∣φy⟩ = ∣y⟩ (for every y ∈ {0, 1, 2, 3})



Two-qubit phase estimation
QFT4 = 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This matrix is associated with the discrete Fourier transform (for 4 dimensions).
When we think about this matrix as a unitary operation, we call it the quantum Fourier transform.

The complete circuit for learning y ∈ {0, 1, 2, 3} when θ = y/4:

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0⟩
∣0⟩

H

H

U U U

QFT†
4



Two-qubit phase estimation
The complete circuit for learning y ∈ {0, 1, 2, 3} when θ = y/4:

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0⟩
∣0⟩

H

H

U U U

QFT†
4

The outcome probabilities when we run the circuit, as a function of θ:
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Quantum Fourier transform
The quantum Fourier transform is defined for each positive integerN as follows.

QFTN = 1√
N

N−1
∑
x=0

N−1
∑
y=0

e
2πixy

N ∣x⟩⟨y∣

QFTN∣y⟩ = 1√
N

N−1
∑
x=0

e
2πixy

N ∣x⟩

Example

QFT2 = 1√
2
(1 1
1 −1

) = H

Example

QFT3 = 1√
3

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1

1 −1+i
√

3
2

−1−i
√

3
2

1 −1−i
√

3
2

−1+i
√

3
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠



Quantum Fourier transform
The quantum Fourier transform is defined for each positive integerN as follows.

QFTN = 1√
N

N−1
∑
x=0

N−1
∑
y=0

e
2πixy

N ∣x⟩⟨y∣

QFTN∣y⟩ = 1√
N

N−1
∑
x=0

e
2πixy

N ∣x⟩

Example

QFT4 = 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Quantum Fourier transform
The quantum Fourier transform is defined for each positive integerN as follows.

QFTN = 1√
N

N−1
∑
x=0

N−1
∑
y=0

e
2πixy

N ∣x⟩⟨y∣

QFTN∣y⟩ = 1√
N

N−1
∑
x=0

e
2πixy

N ∣x⟩

Example

QFT8 = 1
2
√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 1+i√

2 i −1+i√
2 −1 −1−i√

2 −i 1−i√
2

1 i −1 −i 1 i −1 −i

1 −1+i√
2 −i 1+i√

2 −1 1−i√
2 i −1−i√

2
1 −1 1 −1 1 −1 1 −1
1 −1−i√

2 i 1−i√
2 −1 1+i√

2 −i −1+i√
2

1 −i −1 i 1 −i −1 i

1 1−i√
2 −i −1−i√

2 −1 −1+i√
2 i 1+i√

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Quantum Fourier transform
The quantum Fourier transform is defined for each positive integerN as follows.

QFTN = 1√
N

N−1
∑
x=0

N−1
∑
y=0

e
2πixy

N ∣x⟩⟨y∣ = 1√
N

N−1
∑
x=0

N−1
∑
y=0
ω

xy
N ∣x⟩⟨y∣

Useful shorthand notation:

ωN = e
2πi
N = cos (2π

N
) + i sin (2π

N
)

ω1ω2

ω3
ω4

ω8

ω16



Circuits for the QFT
We can implement QFTN efficiently with a quantum circuit whenN is a power of 2.

The implementation makes use of controlled-phase gates:

α ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e

iα

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The implementation is recursive in nature. As an example, here is the circuit for QFT32:

QFT16

H

π
16

π
8

π
4

π
2

×

×

×

× ×

× ×

×



Circuits for the QFT
Cost analysis

Let sm denote the number of gates we need for m qubits.
• For m = 1, a single Hadamard gate is required.
• For m ≥ 2, these are the gates required:

sm−1 gates for the QFT on m − 1 qubits
m − 1 controlled phase gates
m − 1 swap gates
1 Hadamard gate

sm = {1 m = 1
sm−1 + 2m − 1 m ≥ 2

This is a recurrence relation with a closed-form solution:

sm =
m

∑
k=1

(2k − 1) = m
2

Additional remarks:

• The number of swap gates can be reduced.
• Approximations to QFT2m can be done at lower cost (and lower depth).



Phase estimation procedure
The general phase-estimation procedure, for any choice ofm:

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0m⟩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

y

H

H

H

U U
2

U
2m−1

QFT†
2m

Warning

If we perform each U
k-operation by repeating a controlled-U operation k times, increasing

the number of control qubits m comes at a high cost.



Phase estimation procedure

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0m⟩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

y

H

H

H

U U
2

U
2m−1

QFT†
2m

∣π⟩

∣π⟩ = ∣ψ⟩⊗ 1
2m

2m−1

∑
y=0

2m−1

∑
x=0

e
2πix(θ−y/2m)∣y⟩

py =
//////////

1
2m

2m−1

∑
x=0

e
2πix(θ−y/2m)//////////

2



Phase estimation procedure
Best approximations

Suppose y/2m is the best approximation
to θ:

//////θ −
y

2m
//////1 ≤ 2−(m+1)

Then the probability to measure y will
relatively high:

py ≥ 4
π2 ≈ 0.405

Worse approximations

Suppose there’s a better approximation to
θ between y/2m and θ:

//////θ −
y

2m
//////1 ≥ 2−m

Then the probability to measure y will be
relatively low:

py ≤ 1
4
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Phase estimation procedure
Best approximations

Suppose y/2m is the best approximation
to θ:

//////θ −
y

2m
//////1 ≤ 2−(m+1)

Then the probability to measure y will
relatively high:

py ≥ 4
π2 ≈ 0.405

Worse approximations

Suppose there’s a better approximation to
θ between y/2m and θ:

//////θ −
y

2m
//////1 ≥ 2−m

Then the probability to measure y will be
relatively low:

py ≤ 1
4
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Phase estimation procedure
Best approximations

Suppose y/2m is the best approximation
to θ:

//////θ −
y

2m
//////1 ≤ 2−(m+1)

Then the probability to measure y will
relatively high:

py ≥ 4
π2 ≈ 0.405

Worse approximations

Suppose there’s a better approximation to
θ between y/2m and θ:

//////θ −
y

2m
//////1 ≥ 2−m

Then the probability to measure y will be
relatively low:

py ≤ 1
4
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Phase estimation procedure
Best approximations

Suppose y/2m is the best approximation
to θ:

//////θ −
y

2m
//////1 ≤ 2−(m+1)

Then the probability to measure y will
relatively high:

py ≥ 4
π2 ≈ 0.405

Worse approximations

Suppose there’s a better approximation to
θ between y/2m and θ:

//////θ −
y

2m
//////1 ≥ 2−m

Then the probability to measure y will be
relatively low:

py ≤ 1
4

To obtain an approximation y/2m that is very likely to satisfy

//////θ −
y

2m
//////1 < 2−m

we can run the phase estimation procedure usingm control qubits several times and takey to be the
mode of the outcomes.

(The eigenvector ∣ψ⟩ is unchanged by the procedure and can be reused as many times as needed.)



The order-finding problem
For each positive integerN we define

ZN = {0, 1, . . . ,N − 1}
For instance, Z1 = {0}, Z2 = {0, 1}, Z3 = {0, 1, 2}, and so on.
We can view arithmetic operations on ZN as being defined moduloN.

Example

Let N = 7. We have 3 ⋅ 5 = 15, which leaves a remainder of 1 when divided by 7.

This is often expressed like this:

3 ⋅ 5 ≡ 1 (mod 7)
We can also simply write 3 ⋅ 5 = 1 when it’s clear we’re working in Z7.

The elementsa ∈ ZN that satisfy gcd(a,N) = 1 are special.

Z∗
N = {a ∈ ZN ∶ gcd(a,N) = 1}

Example

Z∗
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}



The order-finding problem
Fact

For every a ∈ Z∗
N there must exist a positive integer k such that ak = 1. The smallest such

k is called the order of a in Z∗
N.

Example
For N = 21, these are the smallest powers for which this works:

11 = 1 56 = 1 116 = 1 176 = 1
26 = 1 82 = 1 132 = 1 196 = 1
43 = 1 106 = 1 163 = 1 202 = 1

Order-finding problem

Input: Positive integers a and N with gcd(a,N) = 1.
Output: The smallest positive integer r such that ar ≡ 1 (mod N)

No efficient classical algorithm for this problem is known — an efficient algorithm for order-finding
implies an efficient algorithm for integer factorization.



Order-finding by phase-estimation
To connect the order-finding problem to phase estimation, consider a system whose classical
state set is ZN.

For a given elementa ∈ Z∗
N, define an operation as follows:

Ma∣x⟩ = ∣ax⟩ (for each x ∈ ZN)

This is a unitary operation — but only because gcd(a,N) = 1!

Example

Let N = 15 and a = 2. The operation Ma has this action:

M2∣0⟩ = ∣0⟩ M2∣5⟩ = ∣10⟩ M2∣10⟩ = ∣5⟩
M2∣1⟩ = ∣2⟩ M2∣6⟩ = ∣12⟩ M2∣11⟩ = ∣7⟩
M2∣2⟩ = ∣4⟩ M2∣7⟩ = ∣14⟩ M2∣12⟩ = ∣9⟩
M2∣3⟩ = ∣6⟩ M2∣8⟩ = ∣1⟩ M2∣13⟩ = ∣11⟩
M2∣4⟩ = ∣8⟩ M2∣9⟩ = ∣3⟩ M2∣14⟩ = ∣13⟩



Order-finding by phase-estimation
To connect the order-finding problem to phase estimation, consider a system whose classical
state set is ZN.

For a given elementa ∈ Z∗
N, define an operation as follows:

Ma∣x⟩ = ∣ax⟩ (for each x ∈ ZN)

This is a unitary operation — but only because gcd(a,N) = 1!

Main idea

The eigenvalues of Ma are closely connected with the order of a.

By approximating certain eigenvalues with enough precision using phase estimation,
we’ll be able to compute the order.



Eigenvectors and eigenvalues
This is an eigenvector ofMa:

∣ψ0⟩ = ∣1⟩ + ∣a⟩ +⋯ + ∣ar−1⟩√
r

The associated eigenvalue is 1:

Ma∣ψ0⟩ = ∣a⟩ + ∣a2⟩ +⋯ + ∣ar⟩√
r

= ∣a⟩ +⋯ + ∣ar−1⟩ + ∣1⟩√
r

= ∣ψ0⟩
To identify more eigenvectors, first recall that

ωr = e
2πi/r

This is another eigenvector ofMa:

∣ψ1⟩ = ∣1⟩ +ω−1
r ∣a⟩ +⋯ +ω−(r−1)

r ∣ar−1⟩√
r



Eigenvectors and eigenvalues
Ma∣ψ1⟩ = ∣a⟩ +ω−1

r ∣a2⟩ +⋯ +ω−(r−1)
r ∣ar⟩√

r

= ωr∣1⟩ + ∣a⟩ +ω−1
r ∣a2⟩ +⋯ +ω−(r−2)

r ∣ar−1⟩√
r

=ωr( ∣1⟩ +ω−1
r ∣a⟩ +ω−2

r ∣a2⟩ +⋯ +ω−(r−1)
r ∣ar−1⟩√

r
)

=ωr∣ψ1⟩
Additional eigenvectors can be identified by similar reasoning…
For each j ∈ {0, . . . , r − 1}, this is an eigenvector ofMa:

∣ψj⟩ = ∣1⟩ +ω−j
r ∣a⟩ +⋯ +ω−j(r−1)

r ∣ar−1⟩√
r

Ma∣ψj⟩ =ωj
r∣ψj⟩



A convenient eigenvector
∣ψ1⟩ = ∣1⟩ +ω−1

r ∣a⟩ +⋯ +ω−(r−1)
r ∣ar−1⟩√

r

Ma∣ψ1⟩ =ωr∣ψ1⟩ = e
2πi 1

r ∣ψ1⟩
Suppose we’re given ∣ψ1⟩ as a quantum state. We can attempt to learn r as follows:

1. Perform phase estimation on the state ∣ψ1⟩ and a quantum circuit implementingMa.
The outcome is an approximation y/2m ≈ 1/r.

2. Output 2m/y rounded to the nearest integer:

round(2m
y ) = ⌊2m

y +
1
2⌋

Howmuch precision do we need to correctly determine r?

/////// y

2m −
1
r

/////// ≤ 1
2N2 ⇒ round(2m

y ) = r

Choosingm = 2 lg(N) + 1 in phase estimation makes such an approximation likely.



A random eigenvector
∣ψj⟩ = ∣1⟩ +ω−j

r ∣a⟩ +⋯ +ω−j(r−1)
r ∣ar−1⟩√

r

Ma∣ψj⟩ =ωj
r∣ψ1⟩ = e

2πi j
r ∣ψ1⟩

Suppose we’re given ∣ψj⟩ as a quantum state for a random choice of j ∈ {0, . . . , r− 1}. We can
attempt to learn j/r as follows:
1. Perform phase estimation on the state ∣ψj⟩ and a quantum circuit implementingMa.

The outcome is an approximation y/2m ≈ j/r.
2. Among the fractionsu/v in lowest terms satisfyingu,v ∈ {0, . . . ,N−1} andv /= 0, output

the one closest toy/2m. This can be done efficiently using the continued fraction algorithm.

Howmuch precision do we need to correctly determineu/v = j/r?
/////// y

2m −
j
r

/////// ≤ 1
2N2 ⇒

u
v = j

r

Choosingm = 2 lg(N) + 1 for phase estimation makes such an approximation likely.
We might get unlucky: j could have common factors with r.



A random eigenvector
∣ψj⟩ = ∣1⟩ +ω−j

r ∣a⟩ +⋯ +ω−j(r−1)
r ∣ar−1⟩√

r

Ma∣ψj⟩ =ωj
r∣ψ1⟩ = e

2πi j
r ∣ψ1⟩

Suppose we’re given ∣ψj⟩ as a quantum state for a random choice of j ∈ {0, . . . , r− 1}. We can
attempt to learn j/r as follows:
1. Perform phase estimation on the state ∣ψj⟩ and a quantum circuit implementingMa.

The outcome is an approximation y/2m ≈ j/r.
2. Among the fractionsu/v in lowest terms satisfyingu,v ∈ {0, . . . ,N−1} andv /= 0, output

the one closest toy/2m. This can be done efficiently using the continued fraction algorithm.

Howmuch precision do we need to correctly determineu/v = j/r?
/////// y

2m −
j
r

/////// ≤ 1
2N2 ⇒

u
v = j

r

If we can draw independent samples, for j ∈ {0, . . . , r− 1} is chosen uniformly, we can recover
rwith high probability by computing the least common multiple of the values of vwe observed.



Implementation
To find the order ofa ∈ Z∗

N, we apply phase estimation to the operationMa. Let’s measure the cost
as a function ofn = lg(N).

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0m⟩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H

H

H

Ma M
2
a M

2m−1

a

QFT†
2m

Cost for each controlled unitary

Using the techniques from Lesson 6, we can implement Ma at cost O(n2).
We need to implement Mk

a for each k = 1, 2, 4, 8, . . . , 2m−1. Each M
k
a can be implemented

as follows:

Compute b = a
k (mod N).

Use a circuit for Mb.

The cost to implement Mb = M
k
a is O(n2).



Implementation
To find the order ofa ∈ Z∗

N, we apply phase estimation to the operationMa. Let’s measure the cost
as a function ofn = lg(N).

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0m⟩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H

H

H

Ma M
2
a M

2m−1

a

QFT†
2m

Cost for phase estimation

• m Hadamard gates: cost O(n)
• m controlled unitary operations: cost O(n3)
• Quantum Fourier transform: cost O(n2)
Total cost: O(n3)



Implementation

∣ψ⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣1⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣0m⟩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H

H

H

Ma M
2
a M

2m−1

a

QFT†
2m

Remaining issue: getting one of the eigenvectors ∣ψ0⟩, . . . , ∣ψr−1⟩.
Solution: replace the eigenvector ∣ψ⟩ with the state ∣1⟩.
This works because of the following equation:

∣1⟩ = ∣ψ0⟩ +⋯ + ∣ψr−1⟩√
r

The outcome is the same as if we chose j ∈ {0, 1, . . . , r − 1} uniformly and used ∣ψ⟩ = ∣ψj⟩.



Factoring through order-finding
The following method succeeds in finding a factor of N with probability at least 1/2, provided N is
odd and not a prime power.

Factor-finding method

1. Choose a ∈ {2, . . . ,N − 1} at random.
2. Compute d = gcd(a,N). If d ≥ 2 then output d and stop.
3. Compute the order r of a modulo N.
4. If r is even, then compute d = gcd(ar/2 − 1,N). If d ≥ 2, output d and stop.
5. If this step is reached, the method has failed.

Main idea

1. By the definition of the order, we know that ar ≡ 1 (mod N).
a
r ≡ 1 (mod N) ⇔ N divides ar − 1

2. If r is even, then

a
r − 1 = (ar/2 + 1)(ar/2 − 1)

Each prime dividing N must therefore divide either (ar/2 + 1) or (ar/2 − 1).
For a random a, at least one of the prime factors of N is likely to divide (ar/2 − 1).


