
Understanding
Quantum Information
and Computation
Lesson 6

Quantum Algorithmic Foundations

John Watrous



Integer factorization
Integer factorization

Input: an integer N ≥ 2
Output: the prime factorization of N

The prime factorization ofN is the list of prime factors ofN and the powers to
which they must be raised to obtainN by multiplication.

Prime factorizations are unique (by the Fundamental Theorem of Arithmetic).
Example

The prime factorization of 12 is

12 = 22 ⋅ 3



Integer factorization
Integer factorization

Input: an integer N ≥ 2
Output: the prime factorization of N

The prime factorization ofN is the list of prime factors ofN and the powers to
which they must be raised to obtainN by multiplication.

Prime factorizations are unique (by the Fundamental Theorem of Arithmetic).
Example

The prime factorization of

3402823669209384634633740743176823109843098343

is

3402823669209384634633740743176823109843098343
= 32 ⋅ 74519450661011221 ⋅ 5073729280707932631243580787



Integer factorization
Integer factorization

Input: an integer N ≥ 2
Output: the prime factorization of N

The prime factorization ofN is the list of prime factors ofN and the powers to
which they must be raised to obtainN by multiplication.

Prime factorizations are unique (by the Fundamental Theorem of Arithmetic).
Example

The prime factorization of this number is unknown:

RSA1024

= 13506641086599522334960321627880596993888147560566702752448514
38515265106048595338339402871505719094417982072821644715513736
80419703964191743046496589274256239341020864383202110372958725
76235850964311056407350150818751067659462920556368552947521350
0852879416377328533906109750544334999811150056977236890927563



Integer factorization
Integer factorization

Input: an integer N ≥ 2
Output: the prime factorization of N

The prime factorization ofN is the list of prime factors ofN and the powers to
which they must be raised to obtainN by multiplication.

Prime factorizations are unique (by the Fundamental Theorem of Arithmetic).
Example

The largest RSA challenge number factored thus far is RSA250, which
was factored in 2020 using the number field sieve.

214032465024074496126442307283933356300861
471514475501779775492088141802344714013664
334551909580467961099285187247091458768739
626192155736304745477052080511905649310668
769159001975940569345745223058932597669747
1681738069364894699871578494975937497937

=
6413528947707158027879019017057738908482501474
2943447208116859632024532344630238623598752668

347708737661925585694639798853367
⋅

3337202759497815655622601060535511422794076034
4767554666784520987023841729210037080257448673

296881877565718986258036932062711



Greatest common divisor
Greatest common divisor (GCD)

Input: nonnegative integers N and M (not both zero)
Output: the greatest common divisor of N and M

The greatest common divisor ofN andM is the largest integerd that evenly
divides bothN andM.

This is possible because we have efficient algorithms for computing GCDs,
including Euclid’s algorithm.

Could there be an efficient (classical) algorithm for integer factorization?

Yes — but we haven’t found one yet.



An abstract view of computation
input computation output

• Inputs and outputs are binary strings.

• The computation could be modeled in a variety of ways, including
(but not limited) these:
◦ Turing machines
◦ Boolean circuits
◦ quantum circuits
◦ Python programs



Encodings and input length
input computation output

• Inputs and outputs are binary strings.

• Through binary strings we can encode interesting objects:
◦ numbers
◦ vectors
◦ matrices
◦ graphs
◦ descriptions of molecules
◦ lists of these and other objects



Encodings and input length
Example

We can encode nonnegative integers using binary notation:

number encoding length
0 0 1
1 1 1
2 10 2
3 11 2
4 100 3
5 101 3
6 110 3
7 111 3
8 1000 4
9 1001 4
10 1010 4
11 1011 4
12 1100 4
⋮ ⋮ ⋮

Length of the binary encoding of N:

lg(N) = {1 N = 0
1 + ⌊log2(N)⌋ N ≥ 1

A sign bit can be added to represent
arbitrary integers.

Leading zeros may be allowed to fill
out a sufficiently large word length.



Encodings and input length
input computation output

• Many objects of interest can be encoded as binary strings.

• Standard or universally agreed upon encoding schemes don’t always exist
— we just pick (or invent) them as needed.

• We generally don’t concern ourselves too much with the specifics —
converting back and forth between “reasonable” encoding schemes
typically has negligible cost.

• In general, the input length is the length of the binary string encoding of the
input, with respect to whatever encoding scheme has been selected.



Elementary operations
input computation output

For circuit-based models of computation, it is typical that we view each gate as
being an elementary operation.

A standard quantum gate set

• Single-qubit unitary gates from this list: X, Y, Z, H, S, S†, T , T †

• Controlled-NOT gates
• Single-qubit standard basis measurements

The unitary gates in this set are universal — any unitary operation can be closely
approximated by a circuit of these gates.



Elementary operations
input computation output

For circuit-based models of computation, it is typical that we view each gate as
being an elementary operation.

A standard Boolean gate set

• AND
• OR
• NOT
• FANOUT

FANOUT gates are not always explicitly considered to be gates, but for this
lesson it is important to do this.



Circuit size (and depth)
Circuit size

The size of a circuit (Boolean or quantum) is the total number of gates it
includes. We may write size(C) to refer to the size of a circuit C.

Example

This Boolean circuit has size 7:

¬

¬

∧

∧

∨



Circuit size (and depth)
Circuit size

The size of a circuit (Boolean or quantum) is the total number of gates it
includes. We may write size(C) to refer to the size of a circuit C.

Circuit size corresponds to sequential running time. (This is how we will measure
computational cost in this lesson.)

Circuit depth

The depth of a circuit is the maximum number of gates encountered on
any path from an input to an output wire.

Circuit depth corresponds to parallel running time.



Cost as a function of input length
When we analyze algorithms, we’re generally interested in how their cost scales
as inputs grow in size.

Each circuit has a fixed size — so we need a family {C1,C2, . . .} of circuits to
describe an algorithm, typically one circuit for each input length.

Example

A classical algorithm for integer factorization could be described by a
family of Boolean circuits, where Cn factors n-bit numbers.

The cost of such an algorithm is described by a function:

t(n) = size(Cn)



Asymptotic notation
It’s good to know precisely how many gates are needed to perform computations…
…but we’ll be buried in secondary details if we try to do this in general.

Big-O notation

For two functions g(n) and h(n), we write that g(n) = O(h(n)) if there
exists a positive real number c > 0 and a positive integer n0 such that

g(n) ≤ c ⋅h(n)
for all n ≥ n0.

Example

17n3 − 257n2 + 65537 = O(n3)



Asymptotic notation
Big-O notation

For two functions g(n) and h(n), we write that g(n) = O(h(n)) if there
exists a positive real number c > 0 and a positive integer n0 such that

g(n) ≤ c ⋅h(n)
for all n ≥ n0.

Example

There exists a family {C1,C2, . . . , } of Boolean circuits, where Cn adds two
n-bit nonnegative integers together, such that

size(Cn) = O(n)
Addition of n-bit integers can be computed at cost O(n).



Asymptotic notation
Examples

Addition of n-bit integers can be computed at cost O(n).
Multiplication of n-bit integers can be computed at cost O(n2).
Integer multiplication

Input: integers N and M

Output: NM

By the standard multiplication algorithm, there are Boolean circuits of sizeO(n2)
for multiplyingn-bit integers.

More generally, there are circuits of sizeO(nm) for multiplying ann-bit integer to
anm-bit integer.

By the Schönhage-Strassenmultiplication algorithm, multiplication of twon-bit
integers can be computed at costO(n lg(n) lg(lg(n))).



Asymptotic notation
Examples

Addition of n-bit integers can be computed at cost O(n).
Multiplication of n-bit integers can be computed at cost O(n2).
Division of n-bit integers can be computed at cost O(n2).
Integer division

Input: integers N and M /= 0
Output: integers q and r so that 0 ≤ r < ∣M∣ and N = qM + r

The standard division algorithm solves this problem forn-bit integers at cost
O(n2).



Asymptotic notation
Examples

Addition of n-bit integers can be computed at cost O(n).
Multiplication of n-bit integers can be computed at cost O(n2).
Division of n-bit integers can be computed at cost O(n2).
GCDs of n-bit integers can be computed at cost O(n2).
Greatest common divisor (GCD)

Input: nonnegative integers N and M (not both zero)
Output: the greatest common divisor of N and M



Asymptotic notation
Examples

Addition of n-bit integers can be computed at cost O(n).
Multiplication of n-bit integers can be computed at cost O(n2).
Division of n-bit integers can be computed at cost O(n2).
GCDs of n-bit integers can be computed at cost O(n2).
Modular exponentiation for n-bit integers can be computed at cost O(n3).
Modular exponentiation

Input: integers K ≥ 0, M ≥ 1, and N

Output: N
K (mod M)



Asymptotic notation
Examples

Addition of n-bit integers can be computed at cost O(n).
Multiplication of n-bit integers can be computed at cost O(n2).
Division of n-bit integers can be computed at cost O(n2).
GCDs of n-bit integers can be computed at cost O(n2).
Modular exponentiation for n-bit integers can be computed at cost O(n3).
Integer factorization

Input: an integer N ≥ 2
Output: the prime factorization of N

A simple trial-division algorithm has costO(n22n/2) to factorn-bit integers.
The number field sieve is conjectured to have cost 2O(n1/3 lg2/3(n)).



Polynomial versus exponential cost
An algorithm’s cost is polynomial if it isO(nb) for some fixed constant b > 0.

Examples

Integer addition, multiplication, and division; computing GCDs; and
modular exponentiation all have polynomial cost.

As a rough, first-order approximation, algorithms having polynomial cost are
abstractly viewed as representing efficient algorithms.

Acknowledgment

An algorithm whose cost scales as n
1,000,000 on inputs of length n is not

reasonably categorized as efficient…
…but it must still doing something clever to avoid exponential cost!

In practice, the identification of a polynomial-cost algorithm for a problem is just
a first step toward actual efficiency.



Polynomial versus exponential cost
An algorithm’s cost is polynomial if it isO(nb) for some fixed constant b > 0.

An algorithm’s cost scales sub-exponentially if it is

O (2n
ε)

for every ε > 0. Otherwise it is exponential (or super-exponential).

• No sub-exponential cost classical algorithm is known for integer
factorization.

• Shor’s algorithm is a quantum algorithm with polynomial cost for integer
factorization.

• NP-complete problems are conjectured not to have sub-exponential cost —
this is a circuit-based formulation of the exponential-time hypothesis.



Polynomial versus exponential cost
An algorithm’s cost is polynomial if it isO(nb) for some fixed constant b > 0.

An algorithm’s cost scales sub-exponentially if it is

O (2n
ε)

for every ε > 0. Otherwise it is exponential (or super-exponential).

cost limit

ex
po
ne
nt
ia
l

po
lyn
om
ial

input length

co
st
(ti
m
e)



Toffoli gates
Recall that Toffoli gates are controlled-controlled-NOT gates:

++

∣a⟩
∣b⟩
∣c⟩

∣a⟩
∣b⟩
∣c⊕ab⟩

We can also think about Toffoli gates as being query gates for the AND function.

Toffoli gates can be implemented by elementary operations like this:

H HT
† T T

† T

T T
†

T

+ + + +

+ +



Simulating Boolean gates
NOT gates can be left alone.

AND and OR gates can be simulated with Toffoli and NOT gates:
AND gate

∣a⟩
∣b⟩

∣0⟩

∣a⟩
∣b⟩

∣a ∧ b⟩+

OR gate

∣a⟩
∣b⟩

∣0⟩

∣¬a⟩
∣¬b⟩

∣a ∨ b⟩+

+

+

+

FANOUT gates can be simulated with controlled-NOT gates:

FANOUT gate

∣a⟩
∣0⟩

∣a⟩
∣a⟩+



Simulating Boolean circuits
AND gate

∣a⟩
∣b⟩

∣0⟩

∣a⟩
∣b⟩

∣a ∧ b⟩+

OR gate

∣a⟩
∣b⟩

∣0⟩

∣¬a⟩
∣¬b⟩

∣a ∨ b⟩+

+

+

+

FANOUT gate

∣a⟩
∣0⟩

∣a⟩
∣a⟩+

Suppose that we have a Boolean circuitC of size t that computes a function

f ∶ Σn → Σ
m

Replace each AND, OR, and FANOUT gate ofC with its quantum simulation:

C
t gates

x

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ f(x)

R
O(t) gates

∣x⟩
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣0k⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∣f(x)⟩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∣g(x)⟩



Simulating Boolean circuits

R
O(t) gates

∣x⟩
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣0k⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∣f(x)⟩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∣g(x)⟩

The string g(x) represents garbage.
It will ruin the interference patterns that
make quantum algorithms work.

To get rid of it, we can use the fact that
R can be inverted…

R R
†

∣x⟩
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣0k⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣y⟩ ⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∣x⟩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
∣0k⟩

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∣y⊕ f(x)⟩
++++++++++



Simulating Boolean circuits

R R
†

∣x⟩
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣0k⟩
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣y⟩ ⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∣x⟩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
∣0k⟩

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∣y⊕ f(x)⟩
++++++++++

Q
O(t) gates

C
t gates

x

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ f(x)


