Understanding
Quantum Information
and Computation

Lesson 3

Quantum Circuits

John Watrous



Circuits

are models of computation:

e Wires carry information
e Gates represent operations

In this series, circuits are always— information flows from left to right.
Example: Boolean circuits

Wires store binary values, gates represent Boolean logic operations, such
as AND (A), OR (v), NOT (=), and FANOUT (e).




Circuits

are models of computation:

e Wires carry information
e Gates represent operations

In this series, circuits are always— information flows from left to right.
Example: arithmetic circuits

Wires store numbers and gates represent arithmetic operations, such as
addition (+) and multiplication (x).
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Quantum circuits

In the IOkl model, the wires represent qubits and the gates represent
both unitary operations and measurements.

Example



Quantum circuits

Example Convention

In this series (and in Qiskit),

ordering qubits from

oJoliie)iabielire)o] is equivalent

to ordering them

left-to-right.
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Quantum circuits

Example




Quantum circuits

Example




Quantum circuits

Single-qubit gates Controlled-NOT Swap gate
Toffoli gate Fredkin gate
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Quantum circuits
It is also sometimes convenient to viewas gates.

Unitary operation Controlled-unitary operation

L




Inner products

When we use the Dirac notation, a ket is a column vector, and its corresponding
bra is a row vector:

W) =| : (Wl =(oq - o)

Suppose that we have two kets:

X1 B1

W) =1 : and  |d)



Inner products

Suppose that we have two kets:

We then have
B1
(WIb)=(o - Tm)| i |=0B1+ + XnPn

This is the {8 deaea] of W) and |d).



Inner products

Alternatively, suppose that we have two column vectors expressed like this:

W)= ) aqla) and [d)= ) Bulb)

acex bex

Then the inner product of these vectors is as follows:

(W)

(Z oc—a<a|)(z Bb|b>)

aex bex

> ) ®aBu{alb)

a€eX bex

) ®aBa

aex



Inner products

Example

1)

—[0) / © 1 10)
\ ) = L0 - L 1)

-[1)

The inner product of these two vectors is

1-+3
2V/2

(W) = ~ —0.2588



Inner products

Example

1)

/ 105°
[0} )
\ ) = L0 - L 1)

-[1)

The inner product of these two vectors is

1-+3
2V/2

(W|d) = = cos(105°) ~ —0.2588



Inner products

Example

1)

/ 90°
~|0) 10)
\ W) = Loy - L|1)

-1)

The inner product of these two vectors is

($]d) =0 = cos(90°)



Inner products

Relationship to the Euclidean norm

The inner product of any vector

W)= Y «ala)

aex

with itself is

(W)= ) Faaa =y laal® = [[[0)]°

aex aex

That is, the Euclidean norm of a vector |1) is given by

W) ]| = V(W |w)



Inner products

Conjugate symmetry

For any two vectors

(W)= ) aala) and [d)= ) Bulb)

aex beXx

we have

(O|dp)= ) TaBa and (Plh)= ) Baxa

aex aex

and therefore

—~

V) = (d[)



Inner products

Linearity in the second argument

Suppose that [1), |$1), and |d») are vectors and o and «, are
complex numbers. If we define a new vector

|b) = 1| b1) + xa|P2)

then

(W) = (Wl(ourld1) + xalb2)) = ar(Wldr) + aa(W] o)



Inner products

Conjugate linearity in the first argument

Suppose that [\{1), |WP>), and |d) are vectors and 31 and 3, are
complex numbers. If we define a new vector

W) = B1lP1) + B2lb2)

then

(WId) = (Br(wal + Ba(wal )b) = Br(wild) + Ba(wald)



Inner products

The Cauchy-Schwarz inequality

For every choice of vectors |[\) and |$) we have

KW I)] < [T [Tl

(Equality holds if and only if [\p) and |¢) are linearly dependent.)



Orthogonality and orthonormality

Two vectors |[\) and | ) areif their inner product is zero:
(Wlp) =0
An{|1])1> ..... |Wm )} is one where all pairs pairs are orthogonal:
(W) =0 (forallj # k)

I\l orthonormal set RV | m )} is an orthogonal set of unit vectors:

1 j=k

f Iy £ k
0 34k (forallj # k)

QUEIRUI ={

An [ENEEIERE { | W1), - . ., [Wm )} is an orthonormal set that forms a

basis (of a given space).



Orthogonality and orthonormality

Example

For any classical state set %, the set of all standard basis vectors

{la) : a ez}

is an orthonormal basis.

Example
The set {|+), |-)} is an orthonormal basis for the 2-dimensional space

corresponding to a single qubit.

Example

The Bell basis {|d ™), |d7), [W ™), |1 ™)} is an orthonormal basis for the
4-dimensional space corresponding to two qubits.



Orthogonality and orthonormality

Example

The set {|+), |-)} is an orthonormal basis for the 2-dimensional space
corresponding to a single qubit.

Example

The Bell basis {|d ™), |d ), [Ww™), [ ™)} is an orthonormal basis for the
4-dimensional space corresponding to two qubits.

Example

The set {|0), |+)} is not an orthogonal set because

(0]+) = —= #0

Nl



Orthogonality and orthonormality

Fact

Suppose that

{|1|)1>1 000 g N)m)}

is an [eaiglelale)ganlel &=l of vectors in an n-dimensional space.

(Orthonormal sets are always linearly independent, so these vectors span
a subspace of dimension m < n.)

If m < n, then there must exist vectors

|1l)m+1>: ooo0g |1|)n>

so that {|Y1),..., | W)} forms an orthonormal basis.

(The [ElgeluSelillels orthogonalization process can be used to construct
these vectors.)



Orthogonality and orthonormality

Orthonormal bases are closely connected with unitary matrices.

These conditions on a square matrix U are equivalent:

1. The matrix W is unitary (.., UTU = 1 = uu™.
2. The rows of U form an orthonormal basis.
3. The columns of U form an orthonormal basis.

For example, consider a 3 X 3 matrix U:

x1,1 X211 x3,1 X1,1 x1,2 x1,3

t_ _
U =|o1, ™2 o3 U=|xy1 o2 23

X13 &p23 (X33 X31 K32 (X33



Orthogonality and orthonormality

For example, consider a 3 X 3 matrix U:

X11 21 X371 X171 12 X713
t_ _
U =|oa12 ™2 32 U=|axy1 o2 23

X13 &Kp23 (X33

X31 K32 (X33

Forming vectors from the columns of U, we can express u™U like this:

1,1 X1,2 X1,3
[W1) = | x21 [W2) = | x20 |[W3) =| xa3
X3 1 X322 X33
(Wilb1)  (P1lw2)  (Wilbs)
WU = [ (o) (Wala)  (Wals)

(Wsb1)  (Wslb2)  (P3]bs)



Orthogonality and orthonormality

These conditions on a square matrix U are equivalent:

1. The matrix U is unitary (i.e., uu=1-= UUT).
2. Therows of U form an orthonormal basis.
3. The columns of U form an orthonormal basis.

Fact

Given any orthonormal set of n-dimensional vectors

{lb1), .o b))}

there is a unitary matrix U whose first m columns are these vectors:

U=1 b)) [b2) - [bm) [bme) - dn)



Projections

A square matrix I'T is called aif it satisfies two properties:

1. TT=T11"
2. TI° =TI

Example

If |\) is a unit vector, then this matrix is a projection:

T = )]
= ()W) = (WD) = [w)w]| =11

(AB)' =BTAT



Projections

A square matrix I'T is called aif it satisfies two properties:

1. TT=T11"
2. TI° =TI

Example

If |\) is a unit vector, then this matrix is a projection:

T = )]
= ()W) = (WD) = [w)w]| =11

2

1% = ([W)W])* = W)W )| = [ (] =TT



Projections

A square matrix I'T is called aif it satisfies two properties:

1. TT=T11"
2. TI2 =TI

Example

If {|w1), ..., | W)} is an orthonormal set, then this is a projection:

= [bi)(wil
k=1

(i <xpk|) ilwk (i)' thk (Wil =

D D 1) (s [bi) (Wi = Zm (Pl =

1k=1

ME:‘

—.
1l



Projections

A square matrix I'T is called aif it satisfies two properties:

1. TT=T11"
2. TI° =TI
Fact

Every projection matrix TT takes the form

= [bi)(wil
k=1

for some orthonormal set {| 1), ..., [bm)}.

(This includes the case TT = 0.)



Projective measurements

A collection of projections {14, ..., T, } that satisfies

T+ 4Ty =1

WYl I projective measurement.

When such a measurement is performed on a system in the state |1), two
things happen:

1. Theoutcomek €{1,..., m} of the measurement is chosen randomly:

Pr(outcomeis k) = ||TTi | W) [|* = (W [Ty | )

2. The state of the system becomes

T [)

ITT W) |



Projective measurements

We can also choose different names for the measurement outcomes. Any
collection of projections {TT, : a € I'} that satisfies the condition

Y Ma=1

describes a projective measurement having outcomes in the set I'. The rules are
the same as before:

1. The outcome a € I'" of the measurement is chosen randomly:

Pr(outcomeis a) = ||TT, [) ||2

2. The state of the system becomes

Ma )

[TTa W)l



Projective measurements

Example

Y10l lo (o1 do Nolo NNl N Ig=T a1 are projective measurements:

e The outcomes are the classical states of the system being
measured.

e The measurement is described by the set {|a)(a| : a € Z}.

Suppose that we measure the state

)= Y «ala)

aexr

Each outcome a appears with probability ||| a){a|y) ||2 = |ag %

Conditioned on the outcome a, the state becomes

a)(alp) _ o
Ma)alw)l ~ Tecal

la)



Projective measurements

Example

Y10l lo (o1 do Nolo NNl N Ig=T a1 are projective measurements:

e The outcomes are the classical states of the system being
measured.

e The measurement is described by the set {|a)(a| : a € Z}.

Example

Performing a standard basis measurement on a system X and doing
nothing to a system Y is equivalent to performing the projective
measurement

{la)(a| ® 1y : a € £}

on the system (X, Y).



Projective measurements

Example

Performing a standard basis measurement on a system X and doing
nothing to a system Y is equivalent to performing the projective
measurement

{la)(a|® 1y : a € £}

on the system (X,Y).

Each measurement outcome a appears with probability

[(Ja)(a| & 1)[p)]>

The state of the system (X, Y) then becomes

(la){al®1)[Wp)
[(la){al & 1)[p)]|




Projective measurements

Example

Define two projections as follows:

Mo = [dpXdT| + b Wb |+ [T W™
Ty =¥ )|

The projective measurement {TTq, TT1 } is an interesting one...

Every projective measurements can be [lglelEglei=lel using unitary operations
and standard basis measurements.




Irrelevance of global phases

Definition

Suppose that [1{) and |¢$) are quantum state vectors satisfying
|$) = | b)

The states |\) and |¢) are then said to [elijil@ Al Ne{le)elel o) le =2

(This requires || = 1. Equivalently, & = e'® for some real number 0.)

Imagine that two states that differ by a global phase are measured. If we start
with the state | ¢ ), the probability to obtain any chosen outcome a is

[(ald)|? = [elal )| = [« [{al)]® = [{(alb)|?

That’s the same probability as if we started with the state |).



Irrelevance of global phases

Definition

Suppose that [1{) and |¢$) are quantum state vectors satisfying
|$) = | b)

The states |\) and |¢) are then said to [elijil@ Al Ne{le)elel o) le =2

(This requires || = 1. Equivalently, & = e'® for some real number 0.)

Imagine that two states that differ by a global phase are measured. If we start
with the state | ¢ ), the probability to obtain any chosen outcome a is

ITTald)||? = | aTalw)]|? = o[ TTa W) ||* = || TTalw) ||

That’s the same probability as if we started with the state |).



Irrelevance of global phases

Definition

Suppose that [1{) and |¢d) are quantum state vectors satisfying
|$) = |)
The states |\) and |¢) are then said to [elijil@ Al Ne{le)elel o) le =2

(This requires || = 1. Equivalently, « = e'® for some real number 0.)

Suppose we apply a unitary operation to two states that differ by a global phase:

Uld) = al|h) = x(U[)))

They still differ by a global phase...

Consequently, two quantum state vectors |1 ) and | ) that differ by a global

phase are [l G Al b0 bls=2l and are considered to be



Irrelevance of global phases

Example

The quantum states

- i|o)_ i|1) and —|-)= —i|0>+ i|1>

== 51075 N

differ by a global phase.



Irrelevance of global phases

Example

The quantum states

1 1 1 1
+) = 10} + 1) and |-) = —=[0) - —=[1)

VR VRN

do differ by a global phase. (This is a difference.)

This is consistent with the observation that these states can be
discriminated perfectly:

O H[+)|* = 1 [0 H|-)|* =0
[(1]H]+)|* =0 [(1]H]-)" =1



No-cloning theorem

Theorem (No-cloning theorem)

Let X and Y both have the classical state set {0, ..., d-1}, where d = 2.
There does not exist a unitary operation U on the pair (X, Y) such that

Vi) : U(lw) @ 0)) = ) @ [b)

|00000) )

) W)




No-cloning theorem

Theorem (No-cloning theorem)

Let X and Y both have the classical state set {0,...,d—1}, where d = 2.
There does not exist a unitary operation U on the pair (X, Y) such that

Vi) : U([p) ®10)) = [P) ® [W)

The operation U must clone the standard basis states |0) and |1):

u(|o) @ [0)) = |0) ® |0)
u(|1) e |0)) = 1) ® |1)

Therefore, by linearity,

1 1 1
u((ﬁm + ﬁm) ® |o>) - Zl0je o)+ 1)@ 1)

§||—-



No-cloning theorem

Theorem (No-cloning theorem)

Let X and Y both have the classical state set {0,...,d—1}, where d = 2.
There does not exist a unitary operation U on the pair (X, Y) such that

V) : U(Jh) ®0)) = [b) @ [1)
Therefore, by linearity,

L el

u((im) ¥ i2|1>) ® |o>) - Lioyelo)+ =

V2 V2 V2

But this is not the correct behavior — we must have

(g )i

= (i|o) + i|1)) ® (%IO) + %ID)



No-cloning theorem

Theorem (No-cloning theorem)

Let X and Y both have the classical state set {0,...,d—1}, where d = 2.
There does not exist a unitary operation U on the pair (X, Y) such that

Vi) : U([p) ®10)) = [P) ® [W)

Remarks:
e Approximate forms of the cloning theorem are known.
e Copying a standard basis state is possible — the no-cloning theorem does

not contradict this.
0) —@p—Ia)
|a) —LIM

e Cloning a probabilistic state (classically) is also impossible.



Discriminating non-orthogonal states

It is not possible to [egfZelAe Eeglnlllelz two non-orthogonal quantum states.
Equivalently, if we can discriminate two quantum states perfectly, then they must be

orthogonal.

Two states |1 ) and |d) can be discriminated perfectly if there is a unitary operation
U that works like this:

0 1
) |d)
0---0) |0---0)



Discriminating non-orthogonal states

0 1
KUY |db)
|0---0) |0---0)
U(]0-+-0)|)) = |7t0)|0) U(|0--0)| ) = |7r1) 1)
10---0) W) = UT(|710)[0)) 10---0)| ) = UT(|71)]1))

(W|db) = (0-+-0]0--0)(b| )
= ({mol(0l)UUT(|7t1)[1)) = (70|71 ){0]1) = O



Discriminating non-orthogonal states

Conversely, orthogonal quantum states can be perfectly discriminated.

In particular, if [\p) and | ) are orthogonal, then any unitary matrix whose first
two columns are |1) and | b ) will work.

u=| [9) o) 2

|0---00) |$) |0---01)




Discriminating non-orthogonal states

Alternatively, we can define a projective measurement {TTg, TT } like this:

Ty = [ V) (| T =1 - [P) (W]

If we measure the state | )...

Pr[outcomeis 0] = ||I'[0|1|))||2 = || |1p)||2 =1
Pr[outcomeis 1] = ||T[1|1|))||2 = ||0||2 =0

If we measure any state | ¢ ) orthogonal to | )...

Pr[outcome is 0] = ||TI0|cl>)||2 = ||0||2 =0
Prloutcomeis 1] = || T |$)]|* = || 1) ||* = 1



