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Circuits
Circuits are models of computation:

• Wires carry information
• Gates represent operations

In this series, circuits are always acyclic — information flows from left to right.

Example: Boolean circuits

Wires store binary values, gates represent Boolean logic operations, such
as AND (∧), OR (∨), NOT (¬), and FANOUT ( ).
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Circuits
Circuits are models of computation:

• Wires carry information
• Gates represent operations

In this series, circuits are always acyclic — information flows from left to right.

Example: arithmetic circuits

Wires store numbers and gates represent arithmetic operations, such as
addition (+) and multiplication (∗).
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Quantum circuits
In the quantum circuitmodel, the wires represent qubits and the gates represent
both unitary operations and measurements.
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Quantum circuits
Example
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Convention

In this series (and in Qiskit),
ordering qubits from
bottom-to-top is equivalent
to ordering them
left-to-right.



Quantum circuits
Example
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Quantum circuits
Example
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Quantum circuits
Single-qubit gates
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Quantum circuits
It is also sometimes convenient to view arbitrary unitary operations as gates.

Unitary operation

U

Controlled-unitary operation

U



Inner products
When we use the Dirac notation, a ket is a column vector, and its corresponding
bra is a row vector:

∣ψ⟩ = ⎛⎜⎜⎜⎜⎜⎝
α1
⋮

αn

⎞⎟⎟⎟⎟⎟⎠ ⟨ψ∣ = (α1 ⋯ αn)

Suppose that we have two kets:

∣ψ⟩ = ⎛⎜⎜⎜⎜⎜⎝
α1
⋮

αn

⎞⎟⎟⎟⎟⎟⎠ and ∣φ⟩ = ⎛⎜⎜⎜⎜⎜⎝
β1
⋮

βn

⎞⎟⎟⎟⎟⎟⎠



Inner products
Suppose that we have two kets:

∣ψ⟩ = ⎛⎜⎜⎜⎜⎜⎝
α1
⋮

αn

⎞⎟⎟⎟⎟⎟⎠ and ∣φ⟩ = ⎛⎜⎜⎜⎜⎜⎝
β1
⋮

βn

⎞⎟⎟⎟⎟⎟⎠
We then have

⟨ψ∣φ⟩ = (α1 ⋯ αn)
⎛⎜⎜⎜⎜⎜⎝
β1
⋮

βn

⎞⎟⎟⎟⎟⎟⎠ = α1β1 +⋯ +αnβn

This is the inner product of ∣ψ⟩ and ∣φ⟩.



Inner products
Alternatively, suppose that we have two column vectors expressed like this:

∣ψ⟩ = ∑
a∈Σ
αa∣a⟩ and ∣φ⟩ = ∑

b∈Σ
βb∣b⟩

Then the inner product of these vectors is as follows:

⟨ψ∣φ⟩ = (∑
a∈Σ
αa⟨a∣)(∑

b∈Σ
βb∣b⟩)

= ∑
a∈Σ

∑
b∈Σ
αaβb⟨a∣b⟩

= ∑
a∈Σ
αaβa



Inner products
Example
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The inner product of these two vectors is

⟨ψ∣φ⟩ = 1 −
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≈ −0.2588



Inner products
Example

∣φ⟩ = 1
2 ∣0⟩ + √

3
2 ∣1⟩

∣ψ⟩ = 1√
2 ∣0⟩ − 1√

2 ∣1⟩

−∣0⟩ ∣0⟩

−∣1⟩

∣1⟩

105◦

The inner product of these two vectors is

⟨ψ∣φ⟩ = 1 −
√

3
2
√

2
= cos(105◦) ≈ −0.2588



Inner products
Example

∣φ⟩ = 1
2 ∣0⟩ + √

3
2 ∣1⟩

∣ψ⟩ = √
3

2 ∣0⟩ − 1
2 ∣1⟩

−∣0⟩ ∣0⟩

−∣1⟩

∣1⟩

90◦

The inner product of these two vectors is

⟨ψ∣φ⟩ = 0 = cos(90◦)



Inner products
Relationship to the Euclidean norm

The inner product of any vector

∣ψ⟩ = ∑
a∈Σ
αa∣a⟩

with itself is

⟨ψ∣ψ⟩ = ∑
a∈Σ
αaαa = ∑

a∈Σ
∣αa∣2 = ∥∣ψ⟩∥2

That is, the Euclidean norm of a vector ∣ψ⟩ is given by
∥∣ψ⟩∥ =

√⟨ψ∣ψ⟩



Inner products
Conjugate symmetry

For any two vectors

∣ψ⟩ = ∑
a∈Σ
αa∣a⟩ and ∣φ⟩ = ∑

b∈Σ
βb∣b⟩

we have

⟨ψ∣φ⟩ = ∑
a∈Σ
αaβa and ⟨φ∣ψ⟩ = ∑

a∈Σ
βaαa

and therefore

⟨ψ∣φ⟩ = ⟨φ∣ψ⟩



Inner products
Linearity in the second argument

Suppose that ∣ψ⟩, ∣φ1⟩, and ∣φ2⟩ are vectors and α1 and α2 are
complex numbers. If we define a new vector

∣φ⟩ = α1∣φ1⟩ +α2∣φ2⟩
then

⟨ψ∣φ⟩ = ⟨ψ∣(α1∣φ1⟩ +α2∣φ2⟩) = α1⟨ψ∣φ1⟩ +α2⟨ψ∣φ2⟩



Inner products
Conjugate linearity in the first argument

Suppose that ∣ψ1⟩, ∣ψ2⟩, and ∣φ⟩ are vectors and β1 and β2 are
complex numbers. If we define a new vector

∣ψ⟩ = β1∣ψ1⟩ +β2∣ψ2⟩
then

⟨ψ∣φ⟩ = (β1⟨ψ1∣ +β2⟨ψ2∣)∣φ⟩ = β1⟨ψ1∣φ⟩ +β2⟨ψ2∣φ⟩



Inner products
The Cauchy–Schwarz inequality

For every choice of vectors ∣ψ⟩ and ∣φ⟩ we have
∣⟨ψ∣φ⟩∣ ≤ ∥∣ψ⟩∥∥∣φ⟩∥

(Equality holds if and only if ∣ψ⟩ and ∣φ⟩ are linearly dependent.)



Orthogonality and orthonormality
Two vectors ∣ψ⟩ and ∣φ⟩ are orthogonal if their inner product is zero:

⟨ψ∣φ⟩ = 0

An orthogonal set {∣ψ1⟩, . . . , ∣ψm⟩} is one where all pairs pairs are orthogonal:
⟨ψj∣ψk⟩ = 0 (for all j /= k)

An orthonormal set {∣ψ1⟩, . . . , ∣ψm⟩} is an orthogonal set of unit vectors:

⟨ψj∣ψk⟩ = {1 j = k

0 j /= k
(for all j /= k)

An orthonormal basis {∣ψ1⟩, . . . , ∣ψm⟩} is an orthonormal set that forms a
basis (of a given space).



Orthogonality and orthonormality
Example

For any classical state set Σ, the set of all standard basis vectors

{∣a⟩ ∶ a ∈ Σ}
is an orthonormal basis.

Example

The set {∣+⟩, ∣−⟩} is an orthonormal basis for the 2-dimensional space
corresponding to a single qubit.

Example

The Bell basis {∣φ+⟩, ∣φ−⟩, ∣ψ+⟩, ∣ψ−⟩} is an orthonormal basis for the
4-dimensional space corresponding to two qubits.



Orthogonality and orthonormality
Example

The set {∣+⟩, ∣−⟩} is an orthonormal basis for the 2-dimensional space
corresponding to a single qubit.

Example

The Bell basis {∣φ+⟩, ∣φ−⟩, ∣ψ+⟩, ∣ψ−⟩} is an orthonormal basis for the
4-dimensional space corresponding to two qubits.

Example

The set {∣0⟩, ∣+⟩} is not an orthogonal set because
⟨0∣+⟩ = 1√

2
/= 0



Orthogonality and orthonormality
Fact

Suppose that

{∣ψ1⟩, . . . , ∣ψm⟩}
is an orthonormal set of vectors in an n-dimensional space.

(Orthonormal sets are always linearly independent, so these vectors span
a subspace of dimension m ≤ n.)

If m < n, then there must exist vectors

∣ψm+1⟩, . . . , ∣ψn⟩
so that {∣ψ1⟩, . . . , ∣ψn⟩} forms an orthonormal basis.
(The Gram–Schmidt orthogonalization process can be used to construct
these vectors.)



Orthogonality and orthonormality
Orthonormal bases are closely connected with unitary matrices.

These conditions on a square matrixU are equivalent:

1. The matrixU is unitary (i.e.,U†
U = 1 = UU

†).
2. The rows ofU form an orthonormal basis.
3. The columns ofU form an orthonormal basis.

For example, consider a 3 × 3 matrixU:

U
† =

⎛⎜⎜⎜⎜⎜⎝
α1,1 α2,1 α3,1
α1,2 α2,2 α3,2
α1,3 α2,3 α3,3

⎞⎟⎟⎟⎟⎟⎠ U =
⎛⎜⎜⎜⎜⎜⎝
α1,1 α1,2 α1,3
α2,1 α2,2 α2,3
α3,1 α3,2 α3,3

⎞⎟⎟⎟⎟⎟⎠



Orthogonality and orthonormality
For example, consider a 3 × 3 matrixU:

U
† =

⎛⎜⎜⎜⎜⎜⎝
α1,1 α2,1 α3,1
α1,2 α2,2 α3,2
α1,3 α2,3 α3,3

⎞⎟⎟⎟⎟⎟⎠ U =
⎛⎜⎜⎜⎜⎜⎝
α1,1 α1,2 α1,3
α2,1 α2,2 α2,3
α3,1 α3,2 α3,3

⎞⎟⎟⎟⎟⎟⎠
Forming vectors from the columns ofU, we can expressU†

U like this:

∣ψ1⟩ =
⎛⎜⎜⎜⎜⎜⎝
α1,1
α2,1
α3,1

⎞⎟⎟⎟⎟⎟⎠ ∣ψ2⟩ =
⎛⎜⎜⎜⎜⎜⎝
α1,2
α2,2
α3,2

⎞⎟⎟⎟⎟⎟⎠ ∣ψ3⟩ =
⎛⎜⎜⎜⎜⎜⎝
α1,3
α2,3
α3,3

⎞⎟⎟⎟⎟⎟⎠

U
†
U =

⎛⎜⎜⎜⎜⎜⎝
⟨ψ1∣ψ1⟩ ⟨ψ1∣ψ2⟩ ⟨ψ1∣ψ3⟩⟨ψ2∣ψ1⟩ ⟨ψ2∣ψ2⟩ ⟨ψ2∣ψ3⟩⟨ψ3∣ψ1⟩ ⟨ψ3∣ψ2⟩ ⟨ψ3∣ψ3⟩

⎞⎟⎟⎟⎟⎟⎠



Orthogonality and orthonormality
These conditions on a square matrixU are equivalent:

1. The matrixU is unitary (i.e.,U†
U = 1 = UU

†).
2. The rows ofU form an orthonormal basis.
3. The columns ofU form an orthonormal basis.

Fact

Given any orthonormal set of n-dimensional vectors

{∣ψ1⟩, . . . , ∣ψm⟩}
there is a unitary matrix U whose first m columns are these vectors:

U =
⎛⎜⎜⎜⎜⎜⎝

⋮ ⋮ ⋮ ⋮ ⋮∣ψ1⟩ ∣ψ2⟩ ⋯ ∣ψm⟩ ∣ψm+1⟩ ⋯ ∣ψn⟩
⋮ ⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎠



Projections
A square matrixΠ is called a projection if it satisfies two properties:

1. Π = Π†

2. Π2 = Π
Example

If ∣ψ⟩ is a unit vector, then this matrix is a projection:
Π = ∣ψ⟩⟨ψ∣

Π
† = (∣ψ⟩⟨ψ∣)† = (⟨ψ∣)†(∣ψ⟩)† = ∣ψ⟩⟨ψ∣ = Π

(AB)† = B
†
A

†



Projections
A square matrixΠ is called a projection if it satisfies two properties:

1. Π = Π†

2. Π2 = Π
Example

If ∣ψ⟩ is a unit vector, then this matrix is a projection:
Π = ∣ψ⟩⟨ψ∣

Π
† = (∣ψ⟩⟨ψ∣)† = (⟨ψ∣)†(∣ψ⟩)† = ∣ψ⟩⟨ψ∣ = Π

Π
2 = (∣ψ⟩⟨ψ∣)2 = ∣ψ⟩⟨ψ∣ψ⟩⟨ψ∣ = ∣ψ⟩⟨ψ∣ = Π



Projections
A square matrixΠ is called a projection if it satisfies two properties:

1. Π = Π†

2. Π2 = Π
Example

If {∣ψ1⟩, . . . , ∣ψm⟩} is an orthonormal set, then this is a projection:

Π =
m

∑
k=1

∣ψk⟩⟨ψk∣

Π
† = ( m

∑
k=1

∣ψk⟩⟨ψk∣)
†

=
m

∑
k=1

(∣ψk⟩⟨ψk∣)† = m

∑
k=1

∣ψk⟩⟨ψk∣ = Π
Π

2 =
m

∑
j=1

m

∑
k=1

∣ψj⟩⟨ψj∣ψk⟩⟨ψk∣ = m

∑
k=1

∣ψk⟩⟨ψk∣ = Π



Projections
A square matrixΠ is called a projection if it satisfies two properties:

1. Π = Π†

2. Π2 = Π
Fact

Every projection matrix Π takes the form

Π =
m

∑
k=1

∣ψk⟩⟨ψk∣
for some orthonormal set {∣ψ1⟩, . . . , ∣ψm⟩}.
(This includes the case Π = 0.)



Projective measurements
A collection of projections {Π1, . . . ,Πm} that satisfies

Π1 +⋯ +Πm = 1

describes a projective measurement.

When such a measurement is performed on a system in the state ∣ψ⟩, two
things happen:

1. The outcome k ∈ {1, . . . ,m} of the measurement is chosen randomly:
Pr(outcome is k) = ∥Πk∣ψ⟩∥2 = ⟨ψ∣Πk∣ψ⟩

2. The state of the system becomes

Πk∣ψ⟩∥Πk∣ψ⟩∥



Projective measurements
We can also choose different names for the measurement outcomes. Any
collection of projections {Πa ∶ a ∈ Γ} that satisfies the condition

∑
a∈Γ
Πa = 1

describes a projective measurement having outcomes in the set Γ . The rules are
the same as before:

1. The outcomea ∈ Γ of the measurement is chosen randomly:

Pr(outcome isa) = ∥Πa∣ψ⟩∥2

2. The state of the system becomes

Πa∣ψ⟩∥Πa∣ψ⟩∥



Projective measurements
Example

Standard basis measurements are projective measurements:

• The outcomes are the classical states of the system being
measured.

• The measurement is described by the set {∣a⟩⟨a∣ ∶ a ∈ Σ}.
Suppose that we measure the state

∣ψ⟩ = ∑
a∈Σ
αa∣a⟩

Each outcomea appears with probability ∥∣a⟩⟨a∣ψ⟩∥2 = ∣αa∣2.
Conditioned on the outcomea, the state becomes

∣a⟩⟨a∣ψ⟩∥∣a⟩⟨a∣ψ⟩∥ = αa∣αa∣ ∣a⟩



Projective measurements
Example

Standard basis measurements are projective measurements:

• The outcomes are the classical states of the system being
measured.

• The measurement is described by the set {∣a⟩⟨a∣ ∶ a ∈ Σ}.
Example

Performing a standard basis measurement on a system X and doing
nothing to a system Y is equivalent to performing the projective
measurement

{∣a⟩⟨a∣⊗ 1Y ∶ a ∈ Σ}
on the system (X, Y).



Projective measurements
Example

Performing a standard basis measurement on a system X and doing
nothing to a system Y is equivalent to performing the projective
measurement

{∣a⟩⟨a∣⊗ 1Y ∶ a ∈ Σ}
on the system (X, Y).

Each measurement outcomea appears with probability

∥(∣a⟩⟨a∣⊗ 1)∣ψ⟩∥2

The state of the system (X, Y) then becomes
(∣a⟩⟨a∣⊗ 1)∣ψ⟩∥(∣a⟩⟨a∣⊗ 1)∣ψ⟩∥



Projective measurements
Example

Define two projections as follows:

Π0 = ∣φ⟩⟨φ+∣ + ∣φ−⟩⟨φ−∣ + ∣ψ+⟩⟨ψ+∣
Π1 = ∣ψ−⟩⟨ψ−∣

The projective measurement {Π0,Π1} is an interesting one…
Every projective measurements can be implemented using unitary operations
and standard basis measurements.

∣0⟩ H H

×

×



Irrelevance of global phases
Definition

Suppose that ∣ψ⟩ and ∣φ⟩ are quantum state vectors satisfying

∣φ⟩ = α∣ψ⟩
The states ∣ψ⟩ and ∣φ⟩ are then said to differ by a global phase.

(This requires ∣α∣ = 1. Equivalently, α = e
iθ for some real number θ.)

Imagine that two states that differ by a global phase are measured. If we start
with the state ∣φ⟩, the probability to obtain any chosen outcomea is

∣⟨a∣φ⟩∣2 = ∣α⟨a∣ψ⟩∣2 = ∣α∣2∣⟨a∣ψ⟩∣2 = ∣⟨a∣ψ⟩∣2
That’s the same probability as if we started with the state ∣ψ⟩.



Irrelevance of global phases
Definition

Suppose that ∣ψ⟩ and ∣φ⟩ are quantum state vectors satisfying

∣φ⟩ = α∣ψ⟩
The states ∣ψ⟩ and ∣φ⟩ are then said to differ by a global phase.

(This requires ∣α∣ = 1. Equivalently, α = e
iθ for some real number θ.)

Imagine that two states that differ by a global phase are measured. If we start
with the state ∣φ⟩, the probability to obtain any chosen outcomea is

∥Πa∣φ⟩∥2 = ∥αΠa∣ψ⟩∥2 = ∣α∣2∥Πa∣ψ⟩∥2 = ∥Πa∣ψ⟩∥2

That’s the same probability as if we started with the state ∣ψ⟩.



Irrelevance of global phases
Definition

Suppose that ∣ψ⟩ and ∣φ⟩ are quantum state vectors satisfying

∣φ⟩ = α∣ψ⟩
The states ∣ψ⟩ and ∣φ⟩ are then said to differ by a global phase.

(This requires ∣α∣ = 1. Equivalently, α = e
iθ for some real number θ.)

Suppose we apply a unitary operation to two states that differ by a global phase:

U∣φ⟩ = αU∣ψ⟩ = α(U∣ψ⟩)
They still differ by a global phase…

Consequently, two quantum state vectors ∣ψ⟩ and ∣φ⟩ that differ by a global
phase are completely indistinguishable and are considered to be equivalent.



Irrelevance of global phases
Example

The quantum states

∣−⟩ = 1√
2
∣0⟩ − 1√

2
∣1⟩ and − ∣−⟩ = − 1√

2
∣0⟩ + 1√

2
∣1⟩

differ by a global phase.



Irrelevance of global phases
Example

The quantum states

∣+⟩ = 1√
2
∣0⟩ + 1√

2
∣1⟩ and ∣−⟩ = 1√

2
∣0⟩ − 1√

2
∣1⟩

do not differ by a global phase. (This is a relative phase difference.)

This is consistent with the observation that these states can be
discriminated perfectly:

∣⟨0∣H∣+⟩∣2 = 1 ∣⟨0∣H∣−⟩∣2 = 0

∣⟨1∣H∣+⟩∣2 = 0 ∣⟨1∣H∣−⟩∣2 = 1



No-cloning theorem
Theorem (No-cloning theorem)

Let X and Y both have the classical state set {0, . . . ,d−1}, where d ≥ 2.
There does not exist a unitary operation U on the pair (X, Y) such that

∀∣ψ⟩ ∶U(∣ψ⟩⊗ ∣0⟩) = ∣ψ⟩⊗ ∣ψ⟩

U

∣00000⟩

∣ψ⟩

∣ψ⟩

∣ψ⟩



No-cloning theorem
Theorem (No-cloning theorem)

Let X and Y both have the classical state set {0, . . . ,d−1}, where d ≥ 2.
There does not exist a unitary operation U on the pair (X, Y) such that

∀∣ψ⟩ ∶U(∣ψ⟩⊗ ∣0⟩) = ∣ψ⟩⊗ ∣ψ⟩

The operationUmust clone the standard basis states ∣0⟩ and ∣1⟩:
U(∣0⟩⊗ ∣0⟩) = ∣0⟩⊗ ∣0⟩
U(∣1⟩⊗ ∣0⟩) = ∣1⟩⊗ ∣1⟩

Therefore, by linearity,

U(( 1√
2
∣0⟩ + 1√

2
∣1⟩)⊗ ∣0⟩) = 1√

2
∣0⟩⊗ ∣0⟩ + 1√

2
∣1⟩⊗ ∣1⟩



No-cloning theorem
Theorem (No-cloning theorem)

Let X and Y both have the classical state set {0, . . . ,d−1}, where d ≥ 2.
There does not exist a unitary operation U on the pair (X, Y) such that

∀∣ψ⟩ ∶U(∣ψ⟩⊗ ∣0⟩) = ∣ψ⟩⊗ ∣ψ⟩
Therefore, by linearity,

U(( 1√
2
∣0⟩ + 1√

2
∣1⟩)⊗ ∣0⟩) = 1√

2
∣0⟩⊗ ∣0⟩ + 1√

2
∣1⟩⊗ ∣1⟩

But this is not the correct behavior — we must have

U(( 1√
2
∣0⟩ + 1√

2
∣1⟩)⊗ ∣0⟩)

= ( 1√
2
∣0⟩ + 1√

2
∣1⟩)⊗ ( 1√

2
∣0⟩ + 1√

2
∣1⟩)



No-cloning theorem
Theorem (No-cloning theorem)

Let X and Y both have the classical state set {0, . . . ,d−1}, where d ≥ 2.
There does not exist a unitary operation U on the pair (X, Y) such that

∀∣ψ⟩ ∶U(∣ψ⟩⊗ ∣0⟩) = ∣ψ⟩⊗ ∣ψ⟩

Remarks:
• Approximate forms of the cloning theorem are known.
• Copying a standard basis state is possible — the no-cloning theorem does

not contradict this.

+∣0⟩
∣a⟩

∣a⟩
∣a⟩

• Cloning a probabilistic state (classically) is also impossible.



Discriminating non-orthogonal states
It is not possible to perfectly discriminate two non-orthogonal quantum states.
Equivalently, if we can discriminate two quantum states perfectly, then they must be
orthogonal.

Two states ∣ψ⟩ and ∣φ⟩ can be discriminated perfectly if there is a unitary operation
U that works like this:

U

0∣ψ⟩

∣0⋯0⟩
U

1∣φ⟩

∣0⋯0⟩



Discriminating non-orthogonal states

U

0∣ψ⟩

∣0⋯0⟩
U

1∣φ⟩

∣0⋯0⟩

U(∣0⋯0⟩∣ψ⟩) = ∣π0⟩∣0⟩ U(∣0⋯0⟩∣φ⟩) = ∣π1⟩∣1⟩
∣0⋯0⟩∣ψ⟩ = U

†(∣π0⟩∣0⟩) ∣0⋯0⟩∣φ⟩ = U
†(∣π1⟩∣1⟩)

⟨ψ∣φ⟩ = ⟨0⋯0∣0⋯0⟩⟨ψ∣φ⟩
= (⟨π0∣⟨0∣)UU

†(∣π1⟩∣1⟩) = ⟨π0∣π1⟩⟨0∣1⟩ = 0



Discriminating non-orthogonal states
Conversely, orthogonal quantum states can be perfectly discriminated.

In particular, if ∣ψ⟩ and ∣φ⟩ are orthogonal, then any unitary matrix whose first
two columns are ∣ψ⟩ and ∣φ⟩ will work.

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⋮

∣ψ⟩
⋮

⋮

∣φ⟩
⋮

?

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

U
†∣ψ⟩ ∣0⋯00⟩ U

†∣φ⟩ ∣0⋯01⟩



Discriminating non-orthogonal states
Alternatively, we can define a projective measurement {Π0,Π1} like this:

Π0 = ∣ψ⟩⟨ψ∣ Π1 = 1 − ∣ψ⟩⟨ψ∣
If we measure the state ∣ψ⟩…

Pr[outcome is 0] = ∥Π0∣ψ⟩∥2 = ∥∣ψ⟩∥2 = 1

Pr[outcome is 1] = ∥Π1∣ψ⟩∥2 = ∥0∥2 = 0

If we measure any state ∣φ⟩ orthogonal to ∣ψ⟩…
Pr[outcome is 0] = ∥Π0∣φ⟩∥2 = ∥0∥2 = 0

Pr[outcome is 1] = ∥Π1∣φ⟩∥2 = ∥∣φ⟩∥2 = 1


