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Classical states
Suppose that we have two systems:

• X is a system having classical state setΣ.
• Y is a system having classical state set Γ .

Imagine that X and Y are placed side-by-side, with X on the left and Y on the
right, and viewed together as if they form a single system.

We denote this new compound system by (X, Y) or XY.
Question

What are the classical states of (X, Y)?

Answer

The classical state set of (X, Y) is the Cartesian product
Σ × Γ = {(a,b) ∶ a ∈ Σ and b ∈ Γ}



Classical states
Question

What are the classical states of (X, Y)?

Answer

The classical state set of (X, Y) is the Cartesian product
Σ × Γ = {(a,b) ∶ a ∈ Σ and b ∈ Γ}

Example

If Σ = {0, 1} and Γ = {♣,♦,♥,♠}, then
Σ × Γ = {(0,♣), (0,♦), (0,♥), (0,♠), (1,♣), (1,♦), (1,♥), (1,♠)}



Classical states
This description generalizes to more than two systems in a natural way.

Suppose X1, . . . , Xn are systems having classical state setsΣ1, . . . ,Σn,
respectively.

The classical state set of then-tuple (X1, . . . , Xn), viewed as a single
compound system, is the Cartesian product

Σ1 ×⋯×Σn = {(a1, . . . ,an) ∶ a1 ∈ Σ1, . . . , an ∈ Σn}
Example

If Σ1 = Σ2 = Σ3 = {0, 1}, then the classical state set of (X1, X2, X3) is
Σ1 ×Σ2 ×Σ3 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}



Classical states
Ann-tuple (a1, . . . ,an)may also be written as a stringa1⋯an.

Example

Suppose X1, . . . , X10 are bits, so their classical state sets are all the
same:

Σ1 = Σ2 = ⋯ = Σ10 = {0, 1}
The classical state set of (X1, . . . , X10) is the Cartesian product

Σ1 ×Σ2 ×⋯×Σ10 = {0, 1}10



Classical states
Ann-tuple (a1, . . . ,an)may also be written as a stringa1⋯an.

Example

The classical state set of (X1, . . . , X10) is the Cartesian product
Σ1 ×Σ2 ×⋯×Σ10 = {0, 1}10

Written as strings, these classical states look like this:

0000000000
0000000001
0000000010
0000000011

⋮

1111111111



Classical states
Convention

Cartesian products of classical state sets are ordered lexicographically
(i.e., dictionary ordering):

• We assume the individual classical state sets are already ordered.
• Significance decreases from left to right.

Example

The Cartesian product {1, 2, 3} × {0, 1} is ordered like this:
(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)

Whenn-tuples are written as strings and ordered in this way, we observe
familiar patterns, such as {0, 1} × {0, 1} being ordered as 00, 01, 10, 11.



Probabilistic states
Probabilistic states of compound systems associate probabilities with the
Cartesian product of the classical state sets of the individual systems.

Example

This is a probabilistic state of a pair of bits (X, Y):
Pr((X, Y) = (0, 0)) = 1

2

Pr((X, Y) = (0, 1)) = 0
Pr((X, Y) = (1, 0)) = 0

Pr((X, Y) = (1, 1)) = 1
2



Probabilistic states
Probabilistic states of compound systems associate probabilities with the
Cartesian product of the classical state sets of the individual systems.

Example

This is a probabilistic state of a pair of bits (X, Y):
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

0

0
1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← probability associated with state 00

← probability associated with state 01

← probability associated with state 10

← probability associated with state 11



Probabilistic states
Definition

For a given probabilistic state of (X, Y), we say that X and Y are
independent if

Pr((X, Y) = (a,b)) = Pr(X = a)Pr(Y = b)
for all a ∈ Σ and b ∈ Γ .

Suppose that a probabilistic state of (X, Y) is expressed as a vector:
∣π⟩ = ∑

(a,b)∈Σ×Γ
pab∣ab⟩

The systems X and Y are independent if there exist probability vectors

∣φ⟩ = ∑
a∈Σ

qa∣a⟩ and ∣ψ⟩ = ∑
b∈Γ

rb∣b⟩
such that pab = qarb for alla ∈ Σ and b ∈ Γ .



Probabilistic states
Example

The probabilistic state of a pair of bits (X, Y) represented by the vector
∣π⟩ = 1

6 ∣00⟩ + 1
12 ∣01⟩ + 1

2 ∣10⟩ + 1
4 ∣11⟩

is one in which X and Y are independent. The required condition is true
for these probability vectors:

∣φ⟩ = 1
4 ∣0⟩ + 3

4 ∣1⟩ and ∣ψ⟩ = 2
3 ∣0⟩ + 1

3 ∣1⟩



Probabilistic states
Example

For the probabilistic state

1
2 ∣00⟩ + 1

2 ∣11⟩
of two bits (X, Y), we have that X and Y are not independent.

If they were, we would have numbers q0,q1, r0, r1 such that

q0r0 = 1
2

q0r1 = 0
q1r0 = 0
q1r1 = 1

2

But if q0r1 = 0, then either q0 = 0 or r1 = 0 (or both), contradicting
either the first or last equality.



Tensor products of vectors
Definition

The tensor product of two vectors

∣φ⟩ = ∑
a∈Σ
αa∣a⟩ and ∣ψ⟩ = ∑

b∈Γ
βb∣b⟩

is the vector

∣φ⟩⊗ ∣ψ⟩ = ∑
(a,b)∈Σ×Γ

αaβb∣ab⟩
Equivalently, the vector ∣π⟩ = ∣φ⟩⊗ ∣ψ⟩ is defined by this condition:

⟨ab∣π⟩ = ⟨a∣φ⟩⟨b∣ψ⟩ (for all a ∈ Σ and b ∈ Γ )



Tensor products of vectors
Definition

∣φ⟩ = ∑
a∈Σ
αa∣a⟩ and ∣ψ⟩ = ∑

b∈Γ
βb∣b⟩

∣φ⟩⊗ ∣ψ⟩ = ∑
(a,b)∈Σ×Γ

αaβb∣ab⟩

Example

∣φ⟩ = 1
4 ∣0⟩ + 3

4 ∣1⟩ and ∣ψ⟩ = 2
3 ∣0⟩ + 1

3 ∣1⟩
∣φ⟩⊗ ∣ψ⟩ = 1

6 ∣00⟩ + 1
12 ∣01⟩ + 1

2 ∣10⟩ + 1
4 ∣11⟩



Tensor products of vectors
Definition

∣φ⟩ = ∑
a∈Σ
αa∣a⟩ and ∣ψ⟩ = ∑

b∈Γ
βb∣b⟩

∣φ⟩⊗ ∣ψ⟩ = ∑
(a,b)∈Σ×Γ

αaβb∣ab⟩

Alternative notation for tensor products:

∣φ⟩∣ψ⟩ = ∣φ⟩⊗ ∣ψ⟩
∣φ⊗ψ⟩ = ∣φ⟩⊗ ∣ψ⟩



Tensor products of vectors
Following our convention for ordering the elements of Cartesian product sets, we
obtain this specification for the tensor product of two column vectors:

⎛⎜⎜⎜⎜⎜⎝
α1
⋮

αm

⎞⎟⎟⎟⎟⎟⎠⊗
⎛⎜⎜⎜⎜⎜⎝
β1
⋮

βk

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1β1
⋮

α1βk

α2β1
⋮

α2βk

⋮

αmβ1
⋮

αmβk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Tensor products of vectors
Example

⎛⎜⎜⎜⎜⎜⎝
α1
α2
α3

⎞⎟⎟⎟⎟⎟⎠⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1
β2
β3
β4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1β1
α1β2
α1β3
α1β4
α2β1
α2β2
α2β3
α2β4
α3β1
α3β2
α3β3
α3β4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Tensor products of vectors
Observe the following expression for tensor products of standard basis vectors:

∣a⟩⊗ ∣b⟩ = ∣a⟩∣b⟩ = ∣ab⟩
Alternatively, writing (a,b) as an ordered pair rather than a string, we could
write

∣a⟩⊗ ∣b⟩ = ∣(a,b)⟩
but it is more common to write

∣a⟩⊗ ∣b⟩ = ∣a,b⟩
(It is a standard convention in mathematics to eliminate parentheses when they
do not serve to add clarity or remove ambiguity.)



Tensor products of vectors
Important property of tensor products

The tensor product of two vectors is bilinear.

1. Linearity in the first argument:

(∣φ1⟩ + ∣φ2⟩)⊗ ∣ψ⟩ = ∣φ1⟩⊗ ∣ψ⟩ + ∣φ2⟩⊗ ∣ψ⟩
(α∣φ⟩)⊗ ∣ψ⟩ = α(∣φ⟩⊗ ∣ψ⟩)

2. Linearity in the second argument:

∣φ⟩⊗ (∣ψ1⟩ + ∣ψ2⟩) = ∣φ⟩⊗ ∣ψ1⟩ + ∣φ⟩⊗ ∣ψ2⟩
∣φ⟩⊗ (α∣ψ⟩) = α(∣φ⟩⊗ ∣ψ⟩)

Notice that scalars “float freely” within tensor products:

(α∣φ⟩)⊗ ∣ψ⟩ = ∣φ⟩⊗ (α∣ψ⟩) = α(∣φ⟩⊗ ∣ψ⟩) = α∣φ⟩⊗ ∣ψ⟩



Tensor products of vectors
Tensor products generalize to three or more systems.

If ∣φ1⟩, . . . , ∣φn⟩ are vectors, then the tensor product
∣ψ⟩ = ∣φ1⟩⊗⋯⊗ ∣φn⟩

is defined by the equation

⟨a1⋯an∣ψ⟩ = ⟨a1∣φ1⟩⋯ ⟨an∣φn⟩
Equivalently, the tensor product of three or more vectors can be defined
recursively:

∣φ1⟩⊗⋯⊗ ∣φn⟩ = (∣φ1⟩⊗⋯⊗ ∣φn−1⟩)⊗ ∣φn⟩
The tensor product of three or more vectors ismultilinear.



Measurements of probabilistic states
Measurements of compound systems work in the same way as measurements of
single systems — provided that all of the systems are measured.

Example

Suppose that two bits (X, Y) are in the probabilistic state
1
2 ∣00⟩ + 1

2 ∣11⟩
Measuring both bits yields the outcome 00 with probability 1/2 and the
outcome 11 with probability 1/2.



Measurements of probabilistic states
Question

Suppose two systems (X, Y) are together in some probabilistic state.
What happens when we measure X and do nothing to Y?

Answer

1. The probability to observe a particular classical state a ∈ Σ when
just X is measured is

Pr(X = a) = ∑
b∈Γ

Pr((X, Y) = (a,b))
2. There may still exist uncertainty about the classical state of Y,

depending on the outcome of the measurement:

Pr(Y = b ∣X = a) = Pr((X, Y) = (a,b))
Pr(X = a)



Measurements of probabilistic states
These formulas can be expressed using the Dirac notation as follows.

Suppose that (X, Y) is in some arbitrary probabilistic state:

∑
(a,b)∈Σ×Γ

pab∣ab⟩ = ∑
(a,b)∈Σ×Γ

pab∣a⟩⊗ ∣b⟩ = ∑
a∈Σ

∣a⟩⊗ (∑
b∈Γ

pab∣b⟩)
1. The probability that a measurement of X yields an outcomea ∈ Σ is

Pr(X = a) = ∑
b∈Γ

pab

2. Conditioned on the outcomea ∈ Σ, the probabilistic state of Y becomes

∑b∈Γ pab∣b⟩
∑c∈Γ pac



Measurements of probabilistic states
Example

Suppose (X, Y) is in the probabilistic state
1
12 ∣00⟩ + 1

4 ∣01⟩ + 1
3 ∣10⟩ + 1

3 ∣11⟩
We write this vector as follows:

∣0⟩⊗ ( 1
12 ∣0⟩ + 1

4 ∣1⟩) + ∣1⟩⊗ (1
3 ∣0⟩ + 1

3 ∣1⟩)



Measurements of probabilistic states
Example

Suppose (X, Y) is in the probabilistic state
∣0⟩⊗ ( 1

12 ∣0⟩ + 1
4 ∣1⟩) + ∣1⟩⊗ (1

3 ∣0⟩ + 1
3 ∣1⟩)

Case 1: the measurement outcome is 0.

Pr(outcome is 0) = 1
12 +

1
4 = 1

3

Conditioned on this outcome, the probabilistic state of Y becomes

1
12 ∣0⟩ + 1

4 ∣1⟩
1
3

= 1
4 ∣0⟩ + 3

4 ∣1⟩



Measurements of probabilistic states
Example

Suppose (X, Y) is in the probabilistic state
∣0⟩⊗ ( 1

12 ∣0⟩ + 1
4 ∣1⟩) + ∣1⟩⊗ (1

3 ∣0⟩ + 1
3 ∣1⟩)

Case 2: the measurement outcome is 1.

Pr(outcome is 1) = 1
3 +

1
3 = 2

3

Conditioned on this outcome, the probabilistic state of Y becomes

1
3 ∣0⟩ + 1

3 ∣1⟩
2
3

= 1
2 ∣0⟩ + 1

2 ∣1⟩



Measurements of probabilistic states
The same method can be used when Y is measured rather than X. Suppose that(X, Y) is in some arbitrary probabilistic state:

∑
(a,b)∈Σ×Γ

pab∣ab⟩ = ∑
(a,b)∈Σ×Γ

pab∣a⟩⊗ ∣b⟩ = ∑
b∈Γ

(∑
a∈Σ

pab∣a⟩)⊗ ∣b⟩
1. The probability that a measurement of Y yields an outcome b ∈ Γ is

Pr(Y = b) = ∑
a∈Σ

pab

2. Conditioned on the outcome b ∈ Γ , the probabilistic state of X becomes

∑a∈Σ pab∣a⟩
∑c∈Σ pcb

This slide corrects a
typo in the video: In
item 1, b ∈ Γ
appeared incorrectly
asa ∈ Σ.



Operations on probabilistic states
Probabilistic operations on compound systems are represented by stochastic
matrices having rows and columns that correspond to the Cartesian product of
the individual systems’ classical state sets.

Example

A controlled-NOT operation on two bits X and Y:
If X = 1, then perform a NOT operation on Y, otherwise do noth-
ing.

X is the control bit that determines whether or not a NOT operation is
applied to the target bit Y.



Operations on probabilistic states
Example

A controlled-NOT operation on two bits X and Y:
If X = 1, then perform a NOT operation on Y, otherwise do noth-
ing.

X is the control bit that determines whether or not a NOT operation is
applied to the target bit Y.

Action on standard basis

∣00⟩ ↦ ∣00⟩
∣01⟩ ↦ ∣01⟩
∣10⟩ ↦ ∣11⟩
∣11⟩ ↦ ∣10⟩

Matrix representation

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Operations on probabilistic states
Example

Here is a different operation on two bits (X, Y):
With probability 1/2, set Y to be equal to X, otherwise
set X to be equal to Y.

The matrix representation of this operation is as follows:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1/2 1/2 0
0 0 0 0
0 0 0 0
0 1/2 1/2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
0 0 0 0
0 0 0 0
0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0
0 0 0 0
0 0 0 0
0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Operations on probabilistic states
Question

Suppose we have two probabilistic operations, each on its own system,
described by stochastic matrices:

1. M is an operation on X.
2. N is an operation on Y.
If we simultaneously perform the two operations, how do we describe
the effect on the compound system (X, Y)?



Tensor products of matrices
Definition

The tensor product of two matrices

M = ∑
a,b∈Σ

αab∣a⟩⟨b∣ and N = ∑
c,d∈Γ

βcd∣c⟩⟨d∣
is the matrix

M⊗N = ∑
a,b∈Σ

∑
c,d∈Γ

αabβcd∣ac⟩⟨bd∣
Equivalently, M⊗N is defined by this condition:

⟨ac∣M⊗N∣bd⟩ = ⟨a∣M∣b⟩⟨c∣N∣d⟩ (for all a,b ∈ Σ and b,d ∈ Γ )



Tensor products of matrices
Definition

M = ∑
a,b∈Σ

αab∣a⟩⟨b∣ and N = ∑
c,d∈Γ

βcd∣c⟩⟨d∣
M⊗N = ∑

a,b∈Σ
∑

c,d∈Γ
αabβcd∣ac⟩⟨bd∣

An alternative, but equivalent, way to defineM⊗N is that it is the unique matrix that
satisfies the equation

(M⊗N) ∣φ⊗ψ⟩ = M∣φ⟩⊗N∣ψ⟩
for every choice of vectors ∣φ⟩ and ∣ψ⟩.



Tensor products of matrices
⎛⎜⎜⎜⎜⎜⎝
α11 ⋯ α1m
⋮ ⋱ ⋮

αm1 ⋯ αmm

⎞⎟⎟⎟⎟⎟⎠⊗
⎛⎜⎜⎜⎜⎜⎝
β11 ⋯ β1k
⋮ ⋱ ⋮

βk1 ⋯ βkk

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11β11 ⋯ α11β1k α1mβ11 ⋯ α1mβ1k
⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

α11βk1 ⋯ α11βkk α1mβk1 ⋯ α1mβkk

⋮ ⋱ ⋮

αm1β11 ⋯ αm1β1k αmmβ11 ⋯ αmmβ1k
⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

αm1βk1 ⋯ αm1βkk αmmβk1 ⋯ αmmβkk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Tensor products of matrices
Example

(α00 α01
α10 α11

)⊗ (β00 β01
β10 β11

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α00β00 α00β01 α01β00 α01β01

α00β10 α00β11 α01β10 α01β11

α10β00 α10β01 α11β00 α11β01

α10β10 α10β11 α11β10 α11β11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Tensor products of matrices
Tensor products of three or more matrices are defined in an analogous way.

IfM1, . . . ,Mn are matrices, then the tensor productM1 ⊗⋯⊗Mn is
defined by the condition

⟨a1⋯an∣M1 ⊗⋯⊗Mn∣b1⋯bn⟩ = ⟨a1∣M1∣b1⟩⋯⟨an∣Mn∣bn⟩
Alternatively, the tensor product of three or more matrices can be defined
recursively, similar to what we observed for vectors.

The tensor product of matrices ismultiplicative:

(M1 ⊗⋯⊗Mn)(N1 ⊗⋯⊗Nn) = (M1N1)⊗⋯⊗ (MnNn)



Operations on probabilistic states
Question

Suppose we have two probabilistic operations, each on its own system,
described by stochastic matrices:

1. M is an operation on X.
2. N is an operation on Y.
If we simultaneously perform the two operations, how do we describe
the effect on the compound system (X, Y)?
Answer

The action is described by the tensor product M⊗N.

Tensor products represent independence — this time between operations.



Operations on probabilistic states
Example

Recall this operation from Lesson 1:

⎛⎜⎝
1 1

2

0 1
2

⎞⎟⎠
Suppose this operation is performed on a bit X, and a NOT operation is
(independently) performed on a second bit Y.

The combined operation on the compound system (X, Y) then has this
matrix representation:

⎛⎜⎝
1 1

2

0 1
2

⎞⎟⎠⊗
⎛⎜⎝
0 1

1 0
⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1
2

1 0 1
2 0

0 0 0 1
2

0 0 1
2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Operations on probabilistic states
A common situation that we encounter is one in which one operation is
performed on one system and nothing is done to another system.

The same prescription is followed, noting that doing nothing is represented by
the identity matrix.

Example

Resetting a bit X to the 0 state and doing nothing to a bit Y yields this
operation on (X, Y):

⎛⎜⎝
1 1

0 0
⎞⎟⎠⊗

⎛⎜⎝
1 0

0 1
⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Quantum states
Quantum state vectors of multiple systems are represent by column vectors
whose indices correspond to the Cartesian product of the individual systems’
classical state sets.

Example

If X and Y are qubits, the classical state set for the pair (X, Y) is
{0, 1} × {0, 1} = {00, 01, 10, 11}

These are examples of quantum state vectors of the pair (X, Y):
1
2 ∣00⟩ + i

2 ∣01⟩ − 1
2 ∣10⟩ − i

2 ∣11⟩
3
5 ∣00⟩ − 4

5 ∣11⟩
∣01⟩



Quantum states
Quantum state vectors of multiple systems are represent by column vectors
whose indices correspond to the Cartesian product of the individual systems’
classical state sets.

Example

If X and Y are qubits, the classical state set for the pair (X, Y) is
{0, 1} × {0, 1} = {00, 01, 10, 11}

These are examples of quantum state vectors of the pair (X, Y):
1
2 ∣0⟩∣0⟩ + i

2 ∣0⟩∣1⟩ − 1
2 ∣1⟩∣0⟩ − i

2 ∣1⟩∣1⟩
3
5 ∣0⟩∣0⟩ − 4

5 ∣1⟩∣1⟩
∣0⟩∣1⟩



Quantum states
Quantum state vectors of multiple systems are represent by column vectors
whose indices correspond to the Cartesian product of the individual systems’
classical state sets.

Example

If X and Y are qubits, the classical state set for the pair (X, Y) is
{0, 1} × {0, 1} = {00, 01, 10, 11}

These are examples of quantum state vectors of the pair (X, Y):
1
2 ∣0⟩⊗ ∣0⟩ + i

2 ∣0⟩⊗ ∣1⟩ − 1
2 ∣1⟩⊗ ∣0⟩ − i

2 ∣1⟩⊗ ∣1⟩
3
5 ∣0⟩⊗ ∣0⟩ − 4

5 ∣1⟩⊗ ∣1⟩
∣0⟩⊗ ∣1⟩



Quantum states
Quantum state vectors of multiple systems are represent by column vectors
whose indices correspond to the Cartesian product of the individual systems’
classical state sets.

Example

If X and Y are qubits, the classical state set for the pair (X, Y) is
{0, 1} × {0, 1} = {00, 01, 10, 11}

These are examples of quantum state vectors of the pair (X, Y):
1
2 ∣0⟩X∣0⟩Y +

i

2 ∣0⟩X∣1⟩Y −
1
2 ∣1⟩X∣0⟩Y −

i

2 ∣1⟩X∣1⟩Y

3
5 ∣0⟩X∣0⟩Y −

4
5 ∣1⟩X∣1⟩Y

∣0⟩X∣1⟩Y



Quantum states
Quantum state vectors of multiple systems are represent by column vectors
whose indices correspond to the Cartesian product of the individual systems’
classical state sets.

Example

If X and Y are qubits, the classical state set for the pair (X, Y) is
{0, 1} × {0, 1} = {00, 01, 10, 11}

These are examples of quantum state vectors of the pair (X, Y):
1
2 ∣00⟩ + i

2 ∣01⟩ − 1
2 ∣10⟩ − i

2 ∣11⟩
3
5 ∣00⟩ − 4

5 ∣11⟩
∣01⟩



Quantum states
Tensor products of quantum state vectors are also quantum state vectors.

Let ∣φ⟩ be a quantum state vector of a system X and let ∣ψ⟩ be a quantum state
vector of a system Y. The tensor product

∣φ⟩⊗ ∣ψ⟩
is then a quantum state vector of the system (X, Y).
States of this form are called product states. They represent independence
between the systems X and Y.

More generally, if ∣ψ1⟩, . . . , ∣ψn⟩ are quantum state vectors of systems
X1, . . . , Xn, then

∣ψ1⟩⊗⋯⊗ ∣ψn⟩
is a quantum state vector representing a product state of the compound system(X1, . . . , Xn).



Quantum states
Example

The quantum state vector

1
2 ∣00⟩ + i

2 ∣01⟩ − 1
2 ∣10⟩ − i

2 ∣11⟩
is an example of a product state:

1
2 ∣00⟩ + i

2 ∣01⟩ − 1
2 ∣10⟩ − i

2 ∣11⟩
= ( 1√

2
∣0⟩ − 1√

2
∣1⟩)⊗ ( 1√

2
∣0⟩ + i√

2
∣1⟩)



Quantum states
Example

The quantum state vector

1√
2
∣00⟩ + 1√

2
∣11⟩

of two qubits is not a product state.



Quantum states
Suppose it were possible to write

1√
2
∣00⟩ + 1√

2
∣11⟩ = ∣φ⟩⊗ ∣ψ⟩

It would then follow that

⟨0∣φ⟩⟨1∣ψ⟩ = ⟨01∣φ⊗ψ⟩ = 0

implying that

⟨0∣φ⟩ = 0 or ⟨1∣ψ⟩ = 0 (or both)

This contradicts these equalities:

⟨0∣φ⟩⟨0∣ψ⟩ = ⟨00∣φ⊗ψ⟩ = 1√
2

⟨1∣φ⟩⟨1∣ψ⟩ = ⟨11∣φ⊗ψ⟩ = 1√
2

Example

The quantum state vector

1√
2
∣00⟩ + 1√

2
∣11⟩

of two qubits is not a product
state.



Quantum states
The previous example of a quantum state vector is one of the four
Bell states, which collectively form the Bell basis.

The Bell basis

∣φ+⟩ = 1√
2
∣00⟩ + 1√

2
∣11⟩

∣φ−⟩ = 1√
2
∣00⟩ − 1√

2
∣11⟩

∣ψ+⟩ = 1√
2
∣01⟩ + 1√

2
∣10⟩

∣ψ−⟩ = 1√
2
∣01⟩ − 1√

2
∣10⟩



Quantum states
Here are a couple of well-known examples of quantum state vectors for
three-qubits.

GHZ state

1√
2
∣000⟩ + 1√

2
∣111⟩

W state

1√
3
∣001⟩ + 1√

3
∣010⟩ + 1√

3
∣100⟩



Measurements
Measurements of compound systems work in the same way measurements of
single systems — provided that all of the systems are measured.

If ∣ψ⟩ a quantum state of a system (X1, . . . , Xn), and every one of the systems
is measured, then eachn-tuple

(a1, . . . ,an) ∈ Σ1 ×⋯×Σn

(or stringa1⋯an) is obtained with probability

∣⟨a1⋯an∣ψ⟩∣2



Measurements
Measurements of compound systems work in the same way measurements of
single systems — provided that all of the systems are measured.

Example

If the pair (X, Y) is in the quantum state

3
5 ∣0⟩∣♥⟩ − 4i

5 ∣1⟩∣♠⟩
then measuring both systems yields the outcome (0,♥) with probability
9/25 and the outcome (1,♠) with probability 16/25.



Measurements
Question

Suppose two systems (X, Y) are together in some quantum state.
What happens when we measure X and do nothing to Y?

A quantum state vector of (X, Y) takes the form
∣ψ⟩ = ∑

(a,b)∈Σ×Γ
αab∣ab⟩

If both X and Y are measured, then each outcome (a,b) ∈ Σ × Γ appears with
probability

∣⟨ab∣ψ⟩∣2 = ∣αab∣2



Measurements
Question

Suppose two systems (X, Y) are together in some quantum state.
What happens when we measure X and do nothing to Y?

A quantum state vector of (X, Y) takes the form
∣ψ⟩ = ∑

(a,b)∈Σ×Γ
αab∣ab⟩

If just X is measured, the probability for each outcomea ∈ Σ to appear must
therefore be equal to

Pr(outcome isa) = ∑
b∈Γ

∣⟨ab∣ψ⟩∣2 = ∑
b∈Γ

∣αab∣2

Similar to the probabilistic setting, the quantum state of Y changes as a result…



Measurements
Aquantum state vector of (X, Y) takes the form

∣ψ⟩ = ∑
(a,b)∈Σ×Γ

αab∣ab⟩
We can express the vector ∣ψ⟩ as

∣ψ⟩ = ∑
a∈Σ

∣a⟩⊗ ∣φa⟩
where

∣φa⟩ = ∑
b∈Γ
αab∣b⟩

for eacha ∈ Σ.



Measurements
Aquantum state vector of (X, Y) takes the form

∣ψ⟩ = ∑
a∈Σ

∣a⟩⊗ ∣φa⟩ where ∣φa⟩ = ∑
b∈Γ
αab∣b⟩

1. The probability to obtain each outcomea ∈ Σ is

Pr(outcome isa) = ∑
b∈Γ

∣αab∣2 = ∥∣φa⟩∥2

2. As a result of the standard basis measurement of X giving the outcomea,
the quantum state of (X, Y) becomes

∣a⟩⊗ ∣φa⟩∥∣φa⟩∥



Measurements
Example

Suppose that (X, Y) is in the state
∣ψ⟩ = 1√

2
∣00⟩ + 1

2 ∣01⟩ + i

2
√

2
∣10⟩ − 1

2
√

2
∣11⟩

and X is measured.

We begin by writing

∣ψ⟩ = ∣0⟩⊗ ( 1√
2
∣0⟩ + 1

2 ∣1⟩) + ∣1⟩⊗ ( i

2
√

2
∣0⟩ − 1

2
√

2
∣1⟩)



Measurements
Example

Suppose that (X, Y) is in the state
∣ψ⟩ = ∣0⟩⊗ ( 1√

2
∣0⟩ + 1

2 ∣1⟩) + ∣1⟩⊗ ( i

2
√

2
∣0⟩ − 1

2
√

2
∣1⟩)

and X is measured.

The probability for the measurement to result in the outcome 0 is

66666666
1√
2
∣0⟩ + 1

2 ∣1⟩
66666666

2
= 1

2 +
1
4 = 3

4

in which case the state of (X, Y) becomes
∣0⟩⊗ 1√

2 ∣0⟩ + 1
2 ∣1⟩√

3
4

= ∣0⟩⊗ (
√

2
3 ∣0⟩ + 1√

3
∣1⟩)



Measurements
Example

Suppose that (X, Y) is in the state
∣ψ⟩ = ∣0⟩⊗ ( 1√

2
∣0⟩ + 1

2 ∣1⟩) + ∣1⟩⊗ ( i

2
√

2
∣0⟩ − 1

2
√

2
∣1⟩)

and X is measured.

The probability for the measurement to result in the outcome 1 is

66666666
i

2
√

2
∣0⟩ − 1

2
√

2
∣1⟩66666666

2
= 1

8 +
1
8 = 1

4

in which case the state of (X, Y) becomes
∣1⟩⊗ i

2
√

2 ∣0⟩ − 1
2
√

2 ∣1⟩√
1
4

= ∣1⟩⊗ ( i√
2
∣0⟩ − 1√

2
∣1⟩)



Measurements
Example

Suppose that (X, Y) is in the state
∣ψ⟩ = 1√

2
∣00⟩ + 1

2 ∣01⟩ + i

2
√

2
∣10⟩ − 1

2
√

2
∣11⟩

and Y is measured.

We begin by writing

∣ψ⟩ = ( 1√
2
∣0⟩ + i

2
√

2
∣1⟩)⊗ ∣0⟩ + (1

2 ∣0⟩ − 1
2
√

2
∣1⟩)⊗ ∣1⟩



Measurements
Example

Suppose that (X, Y) is in the state
∣ψ⟩ = ( 1√

2
∣0⟩ + i

2
√

2
∣1⟩)⊗ ∣0⟩ + (1

2 ∣0⟩ − 1
2
√

2
∣1⟩)⊗ ∣1⟩

and Y is measured.

The probability for the measurement to result in the outcome 0 is

66666666
1√
2
∣0⟩ + i

2
√

2
∣1⟩66666666

2
= 1

2 +
1
8 = 5

8

in which case the state of (X, Y) becomes
1√
2 ∣0⟩ + i

2
√

2 ∣1⟩√
5
8

= (
√

4
5 ∣0⟩ + i√

5
∣1⟩)⊗ ∣0⟩



Measurements
Example

Suppose that (X, Y) is in the state
∣ψ⟩ = ( 1√

2
∣0⟩ + i

2
√

2
∣1⟩)⊗ ∣0⟩ + (1

2 ∣0⟩ − 1
2
√

2
∣1⟩)⊗ ∣1⟩

and Y is measured.

The probability for the measurement to result in the outcome 1 is

66666666
1
2 ∣0⟩ − 1

2
√

2
∣1⟩66666666

2
= 1

4 +
1
8 = 3

8

in which case the state of (X, Y) becomes
1
2 ∣0⟩ − 1

2
√

2 ∣1⟩√
3
8

= (
√

2
3 ∣0⟩ − 1√

3
∣1⟩)⊗ ∣1⟩



Unitary operations
Quantum operations on compound systems are represented by unitary matrices
whose rows and columns correspond to the Cartesian product of the classical
state sets of the individual systems.

Example

Suppose X has classical state set {1, 2, 3} and Y has classical state set{0, 1}. This unitary matrix represents an operation on (X, Y):

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2

1
2 0 0 1

2
1
2

i
2 − 1

2 0 0 − i
2

1
2 − 1

2
1
2 0 0 − 1

2

0 0 0 1√
2

1√
2 0

1
2 − i

2 − 1
2 0 0 i

2

0 0 0 − 1√
2

1√
2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Unitary operations
The combined action of a collection of unitary operations applied independently
to a collection of systems is represented by the tensor product of the unitary
matrices.

That is, if X1, . . . , Xn are quantum systems,U1, . . . ,Un are unitary matrices
representing operations on these systems, and the operations are performed
independently on the systems, the combined action on (X1, . . . , Xn) is
represented by the matrix

U1 ⊗⋯⊗Un

In particular, if we perform a unitary operationU on a system X and do nothing
to a system Y, the operation on (X, Y) we obtain is represented by the unitary
matrix

U⊗ 1 or alternatively U⊗ 1Y



Unitary operations
The combined action of a collection of unitary operations applied independently
to a collection of systems is represented by the tensor product of the unitary
matrices.

That is, if X1, . . . , Xn are quantum systems,U1, . . . ,Un are unitary matrices
representing operations on these systems, and the operations are performed
independently on the systems, the combined action on (X1, . . . , Xn) is
represented by the matrix

U1 ⊗⋯⊗Un

In particular, if we perform a unitary operationV on a system Y and do nothing
to a system X, the operation on (X, Y) we obtain is represented by the unitary
matrix

1⊗V or alternatively 1X ⊗V



Unitary operations
Example

Suppose X and Y are qubits.

Performing a Hadamard operation on X and doing nothing to Y is
equivalent to performing this unitary operation on (X, Y):

H⊗ 1 =
⎛⎜⎜⎝

1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎠⊗ (1 0
0 1

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2 0 1√

2 0
0 1√

2 0 1√
2

1√
2 0 − 1√

2 0
0 1√

2 0 − 1√
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Unitary operations
Example

Suppose X and Y are qubits.

Performing a Hadamard operation on Y and doing nothing to X is
equivalent to performing this unitary operation on (X, Y):

1⊗H = (1 0
0 1

)⊗
⎛⎜⎜⎝

1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

1√
2 0 0

1√
2 − 1√

2 0 0
0 0 1√

2
1√
2

0 0 1√
2 − 1√

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Unitary operations
Not every unitary operation on a compound system can be expressed as a tensor
product of unitary operations.

Example

Suppose that X and Y are systems that share the same classical state
set Σ. The swap operation on the pair (X, Y) exchange the contents of
the two systems:

SWAP∣φ⊗ψ⟩ = ∣ψ⊗φ⟩
It can be expressed using the Dirac notation as follows:

SWAP = ∑
a,b∈Σ

∣a⟩⟨b∣⊗ ∣b⟩⟨a∣



Unitary operations
Not every unitary operation on a compound system can be expressed as a tensor
product of unitary operations.

Example

The swap operation can be expressed using the Dirac notation as follows:

SWAP = ∑
a,b∈Σ

∣a⟩⟨b∣⊗ ∣b⟩⟨a∣
For instance, when X and Y are qubits, we find that

SWAP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Unitary operations
Not every unitary operation on a compound system can be expressed as a tensor
product of unitary operations.

Example

SWAP∣φ+⟩ = ∣φ+⟩
SWAP∣φ−⟩ = ∣φ−⟩
SWAP∣ψ+⟩ = ∣ψ+⟩
SWAP∣ψ−⟩ = −∣ψ−⟩

∣φ+⟩ = 1√
2
∣00⟩ + 1√

2
∣11⟩

∣φ−⟩ = 1√
2
∣00⟩ − 1√

2
∣11⟩

∣ψ+⟩ = 1√
2
∣01⟩ + 1√

2
∣10⟩

∣ψ−⟩ = 1√
2
∣01⟩ − 1√

2
∣10⟩



Unitary operations
Suppose that X is a qubit and Y is an arbitrary system.

For every unitary operationU on Y, a controlled-U operation is a unitary
operation on the pair (X, Y) defined as follows:

∣0⟩⟨0∣⊗ 1Y + ∣1⟩⟨1∣⊗U = (1Y 0
0 U

)
Example

A controlled-NOT operation (where the first qubit is the control):

∣0⟩⟨0∣⊗ 1 + ∣1⟩⟨1∣⊗σx =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Unitary operations
Suppose that X is a qubit and Y is an arbitrary system.

For every unitary operationU on Y, a controlled-U operation is a unitary
operation on the pair (X, Y) defined as follows:

∣0⟩⟨0∣⊗ 1Y + ∣1⟩⟨1∣⊗U = (1Y 0
0 U

)
Example

A controlled-NOT operation (where the second qubit is the control):

1⊗ ∣0⟩⟨0∣ +σx ⊗ ∣1⟩⟨1∣ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Unitary operations
Suppose that X is a qubit and Y is an arbitrary system.

For every unitary operationU on Y, a controlled-U operation is a unitary
operation on the pair (X, Y) defined as follows:

∣0⟩⟨0∣⊗ 1Y + ∣1⟩⟨1∣⊗U = (1Y 0
0 U

)
Example

A controlled-σz (or controlled-Z) operation:

∣0⟩⟨0∣⊗ 1 + ∣1⟩⟨1∣⊗σz =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Unitary operations
Suppose that X is a qubit and Y is an arbitrary system.

For every unitary operationU on Y, a controlled-U operation is a unitary
operation on the pair (X, Y) defined as follows:

∣0⟩⟨0∣⊗ 1Y + ∣1⟩⟨1∣⊗U = (1Y 0
0 U

)
Example

A controlled-σz (or controlled-Z) operation:

1⊗ ∣0⟩⟨0∣ +σz ⊗ ∣1⟩⟨1∣ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Unitary operations
Example

A controlled-SWAP operation (on three qubits):

∣0⟩⟨0∣⊗ 1 + ∣1⟩⟨1∣⊗ SWAP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This operation is also known as a Fredkin operation (or Fredkin gate).



Unitary operations
Example

A controlled-controlled-NOT operation (on three qubits):

∣0⟩⟨0∣⊗ 1⊗ 1 + ∣1⟩⟨1∣⊗ (∣0⟩⟨0∣⊗ 1 + ∣1⟩⟨1∣⊗σx)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
This operation is better known as a Toffoli operation (or Toffoli gate).


