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Classical states

Suppose that we have two systems:

e Xis asystem having classical state set 2.
e Y isasystem having classical state set I'.

Imagine that X and Y are placed side-by-side, with X on the left and Y on the
right, and viewed together as if they form a single system.

We denote this new compound system by (X, Y) or XY.
Question

What are the classical states of (X,Y)?

Answer

The classical state set of (X,Y) is the

IxT={(a,b): aeZandberl}



Classical states

Question

What are the classical states of (X, Y)?

Answer

The classical state set of (X,Y) is the

IxT={(a,b): aeZandberl}

Example

If 2 ={0,1} and "' = {&, &, 9 @&} then

IxT ={(0,#)(0,4)(0,9), (0 #) (1,&)(1,4),(1,9)(1e)}



Classical states

This description generalizes to more than two systems in a natural way.

Suppose X1, ..., X, are systems having classical state sets 21, ..., 2,
respectively.

The classical state set of the n-tuple (X1, ..., X,,), viewed as a single
compound system, is the Cartesian product

le...xznz{(al,...,an) Paj €xq, ..., anEZn}

Example

If X1 = X, = X3 ={0, 1}, then the classical state set of (X1, X5, X3) is

¥ x Xy x X3 =1{(0,0,0),(0,0,1),(0,1,0),(0,1,1),
(1,0,0),(1,0,1),(1,1,0),(1,1,1)}



Classical states

An n-tuple (ay, ..., a,) may also be written as a ag - ap.
Example
Suppose X1, ..., Xy are bits, so their classical state sets are all the
same:
T1=2Xp=--=210={01}
The classical state set of (X1,...,X;g) is the Cartesian product

Z]_ X Zg X eee X ZlO = {O, 1}10



Classical states

An n-tuple (ay, ..., a,) may also be written as a ag - ap.
Example
The classical state set of (X1,...,Xjg) is the Cartesian product

Z]_ X Z2 X eee X ‘\:10 = {O, 1}10

Written as strings, these classical states look like this:

0000000000
0000000001
0000000010
0000000011

1111111111



Classical states

Convention

Cartesian products of classical state sets are ordered [[Z(ele)={gelo)lTolo1 /)2
(i.e., dictionary ordering):

e We assume the individual classical state sets are already ordered.
e Significance decreases from left to right.

Example

The Cartesian product {1,2,3} x {0, 1} is ordered like this:

(1,0), (1,1), (2,0), (2,1), (3,0), (3,1)

When n-tuples are written as strings and ordered in this way, we observe
familiar patterns, such as {0, 1} x {0, 1} being ordered as 00, 01, 10, 11.



Probabilistic states

Probabilistic states of compound systems associate probabilities with the
Cartesian product of the classical state sets of the individual systems.

Example

This is a probabilistic state of a pair of bits (X, Y):

Pr((X,Y)=(0,0)) = 2
Pr((X,Y) =(0,1)) =0
Pr((X,Y)=(1,0)) =0
Pr((X,Y)=(1,1)) =2



Probabilistic states

Probabilistic states of compound systems associate probabilities with the
Cartesian product of the classical state sets of the individual systems.

Example

This is a probabilistic state of a pair of bits (X, Y):

« probability associated with state 00

« probability associated with state 01

o O NI

« probability associated with state 10

«— probability associated with state 11

N =



Probabilistic states
Definition
For a given probabilistic state of (X,Y), we say that X and Y are

independenly

Pr((X,Y) =(a,b)) =Pr(X=a)Pr(Y =D0)

forallae > and b eT.

Suppose that a probabilistic state of (X, Y) is expressed as a vector:
m)= ) pavlab)
(a,b)exxTl
The systems X and Y are independent if there exist probability vectors

|#)= > dala) and |b)= ) Tp|b)

aex bel’

suchthat pgp = qqrp foralla € 2 and b €T



Probabilistic states

Example

The probabilistic state of a pair of bits (X, Y) represented by the vector
1 1 1 1
|7t) = 6'00) + ElOI) + §|10) + Z'll)

is one in which X and Y are independent. The required condition is true
for these probability vectors:



Probabilistic states

Example

For the probabilistic state

1 1
=100) + =[11)

of two bits (X, Y), we have that X and Y are not independent.

If they were, we would have numbers qgq, q1, Tg, T1 such that

doTo =%
qor1 =0
qi70 =0
qiT1 =%

But if qor1 = O, then either qo = 0 or r; = 0 (or both), contradicting
either the first or last equality.



Tensor products of vectors

The [Eke)@slgelellleif of two vectors

[d)= ) aala) and [W)= ) Bolb)

aex bel’

is the vector

[P)@b)= >  «qBulab)

(a,b)eLxT

Equivalently, the vector |7t) = |d) ® [U) is defined by this condition:

(ab]|7t) = (a|p)(b|P) (forallae Zand b eT)



Tensor products of vectors

Definition
[d)= ) aqla) and |h) =) Byulb)
aex bel’
[d)e )= > aaBulab)
(a,b)eZxT
Example

1 3 2 1
|p) = Z|0>+ le) and [) = §|0>+ §|1>

1 1 1 1
|b) ® | P) = 5'00) + E'Ol) + §|10> + lel)



Tensor products of vectors

Definition

[$)= > oqla) and [h)=) PBylb)

aex bel’

[P)e )= Y  aaBulab)

(a,b)eLxT

Alternative notation for tensor products:

[P) ) = [d) @ )
b @) =[d)e )



Tensor products of vectors

Following our convention for ordering the elements of Cartesian product sets, we
obtain this specification for the tensor product of two column vectors:

131

o1 B

o B 062:f3 1
el =
o By “2:Bk

Xm B1

(XmBk



Tensor products of vectors

Example

x1f31
132
x133

134

1 231
X1
o | ® 2 _ 232
B3 233
X3

234
x331
332
x3f33
334




Tensor products of vectors

Observe the following expression for tensor products of standard basis vectors:
|a) ® |b) = |a)|b) = |ab)

Alternatively, writing (a, b) as an ordered pair rather than a string, we could
write

|la) ® |b) = [(a, b))
but it is more common to write
|la)® |b) =|a, b)

(It is a standard convention in mathematics to eliminate parentheses when they
do not serve to add clarity or remove ambiguity.)



Tensor products of vectors

Important property of tensor products

The tensor product of two vectors is

1. Linearity in the first argument:

(Ib1) + [d2)) ® W) = [d1) ® |[¥) + |d2) ® [ )
() ® [ ) = () ® [h))

2. Linearity in the second argument:

[d) ® (|W1) + |W2)) = [d) ® [W1) + ) ® [W2)
|b) ® () = (|d) ® [W))

Notice that scalars “float freely” within tensor products:

(x]d)) @ [W) = [d) ® (x| b)) = x(|d) ® [W)) = x| D) ® [ W)



Tensor products of vectors

Tensor products generalize to three or more systems.

If |d1), ..., |dn) are vectors, then the tensor product

W) =|d1) @ ® [dn)

is defined by the equation

(ar-an|d) = (aild1) - (an|dpn)

Equivalently, the tensor product of three or more vectors can be defined
recursively:

|b1) ® - ® [pn) = (Ib1) ® - ® [pn-1)) ® [dn)

The tensor product of three or more vectors is



Measurements of probabilistic states

Measurements of compound systems work in the same way as measurements of
single systems — provided that all of the systems are measured.

Example

Suppose that two bits (X, Y) are in the probabilistic state
1 1

Measuring both bits yields the outcome 00 with probability 1/2 and the
outcome 11 with probability 1/2.



Measurements of probabilistic states

Question

Suppose two systems (X, Y) are together in some probabilistic state.
What happens when we measure X and do nothing to Y?

Answer

1. The probability to observe a particular classical state a € >~ when
just X is measured is

Pr(X=a)= ) Pr((X,Y)=(a,b))
bel’

2. There may still exist uncertainty about the classical state of Y,
depending on the outcome of the measurement:

Pr((X,Y) = (a, b))
Pr(X = a)

Pr(Y=b|X=a)=



Measurements of probabilistic states

These formulas can be expressed using the Dirac notation as follows.

Suppose that (X, Y) is in some arbitrary probabilistic state:
> Pavlab)= )  papla)®|b)= Z|a>®(2pab|b>)
(a,b)eXxrl (a,b)exxrl aex berl

1. The probability that a measurement of X yields an outcome a € X is

Pr(X=a)= ) pap
bel

2. Conditioned on the outcome a € %, the probabilistic state of Y becomes

Zber Pablb)
ZCEF Pac




Measurements of probabilistic states

Example

Suppose (X,Y) is in the probabilistic state
1 1 1 1
15100 + 7101) + 3]10) + 3]11)

We write this vector as follows:

0)  7510)+ 311 + 11y & 310) + 310)



Measurements of probabilistic states

Example

Suppose (X,Y) is in the probabilistic state

1 1 1 1
0) 8 7510)+ 311)) + 1y & 310) + 310)
Case 1: the measurement outcome is 0.

1
— +

1
Pr(outcome is 0) = >t




Measurements of probabilistic states

Example

Suppose (X,Y) is in the probabilistic state

0) 8 7510)+ 311)) + 1y & 310) + 310)

Case 2: the measurement outcome is 1.



Measurements of probabilistic states

The same method can be used when Y is measured rather than X. Suppose that
(X,Y) is in some arbitrary probabilistic state:

> Ppaplab)= ) pab|a>®|b>=Z(Zpab|a>)®|b>

(a,b)exXxrl (a,b)eXxrl bel'\aeXx

1. The probability that a measurement of Y yields an outcome b € ' is

Pr(Y=b)= ) pap

aex

2. Conditioned on the outcome b € T', the probabilistic state of X becomes

ZaEZ Pab | (1)
ZCEZ Pcb




Operations on probabilistic states

Probabilistic operations on compound systems are represented by stochastic
matrices having rows and columns that correspond to the Cartesian product of
the individual systems’ classical state sets.

Example

A [eelglige) il SN[0XR Ooperation on two bits X and Y:

If X = 1, then perform a NOT operation on Y, otherwise do noth-
ing.
Xis thethat determines whether or not a NOT operation is

applied to the Y.



Operations on probabilistic states

Example

A [oelglige)l=IeSIN[0XR Operation on two bits X and Y:

If X = 1, then perform a NOT operation on Y, otherwise do noth-
ing.
Xis thethat determines whether or not a NOT operation is

applied to the Y.

Action on standard basis Matrix representation

|00) ~ |00)
|01) —~ |01)
|10) — |11)
|11) — |10)

o O O~
o O +» O
= O O O
o = O O



Operations on probabilistic states

Example

Here is a different operation on two bits (X, Y):

With probability 1/2, set Y to be equal to X, otherwise
set X to be equal to Y.

The matrix representation of this operation is as follows:

1 1/2 1/2 0 1 10 0 1 0 1 0
0o 0o 0 ofl 1/0 0 0 of 1(0 0 0 O
o 0o o o|l 2lo 0 0 0ol 2|0 0 0 o0
0 1/2 1/2 1 00 1 1 01 0 1



Operations on probabilistic states

Question
Suppose we have two probabilistic operations, each on its own system,
described by stochastic matrices:

1. M is an operation on X.
2. N is an operation on Y.

If We perform the two operations, how do we describe
the effect on the compound system (X, Y)?



Tensor products of matrices

The [l @slgelellleif of two matrices

M= ) agpla)(b] and N= ) Bealc)(d]

a,bex c,del’

is the matrix

Me N = Z Z b Pcalac){bd|

a,beX c,del’

Equivalently, M ® N is defined by this condition:

(ac[M ® N|bd) = (a|M|b){c|N|d) (foralla,be X andb,deT)



Tensor products of matrices

Definition

M= ) agpla)(b| and N= ) Bealc)d]

a,bex c,del’

MeN= ) > aqBcalac)(bd]

a,beX c,del’

An alternative, but equivalent, way to define M ® N is that it is the unique matrix that
satisfies the equation

(MeN)|dep)=M[dp)e N|b)

for every choice of vectors [¢p ) and | ).



Tensor products of matrices

1]t Oim B11
) o| :

Xmi Xmm Bkl
x11B11
x11 B k1
Otmi P11

Xm1Px1

B1x
Bk
x11B1k

x11 B Kk

Xmi1Bik

m1 Brk

xX1m B11

X1m Pk1

Xmm Bll

Xmm Bkl

om P1k

O1m Bk

Xmm B 1k

Xmm B kk




Tensor products of matrices

Example
(0600 0601) % (Boo
x10  o11 B1o
00 oo
| %00B10
10300

x10B10

501)
B11
0o Po1
oo P11

x10Po1

x10311

01 B oo
01310
1100

x11310

o1 Bo1
xo1 11
x11B01

x11PB11



Tensor products of matrices

Tensor products of three or more matrices are defined in an analogous way.

If My, ..., M,, are matrices, then the tensor product M; ® --- ® M, is
defined by the condition

(a1--an|Mj ® - ® My |by-bn) = (a;|M1|b1){an|Mn|bn)

Alternatively, the tensor product of three or more matrices can be defined
recursively, similar to what we observed for vectors.

The tensor product of matrices is [galtliais) el iA7=E

(M1 ® - ®Mp)(Ny®--®Ny)=(MiNp)®-®(MuNy)



Operations on probabilistic states

Question

Suppose we have two probabilistic operations, each on its own system,
described by stochastic matrices:

1. M is an operation on X.
2. N is an operation on Y.

If We perform the two operations, how do we describe
the effect on the compound system (X, Y)?

Answer

The action is described by the tensor product M ® N.

Tensor products represent— this time between operations.



Operations on probabilistic states

Example
1
0

Suppose this operation is performed on a bit X, and a NOT operation is
(independently) performed on a second bit Y.

NIR N|—=

The combined operation on the compound system (X, Y) then has this
matrix representation:

1
0 1 0 1

1 1
(1 5)@(o 1)= 1 0 3 0
1 1
o 1 1 0/ |0 o 0o 1
0 0 7 O



Operations on probabilistic states

A common situation that we encounter is one in which one operation is
performed on one system andis done to another system.

The same prescription is followed, noting that doing nothing is represented by

Walelidentity matrix.

Example

Resetting a bit X to the 0 state and doing nothing to a bit Y yields this
operation on (X, Y):

1 0 1 O

1 1 1 0 0 1 0 1
® =

0 O 0 1 0O 0 0 O

0O 0 0 O




Quantum states

Quantum state vectors of multiple systems are represent by column vectors
whose indices correspond to the Cartesian product of the individual systems’

classical state sets.

Example

If X and Y are qubits, the classical state set for the pair (X,Y) is
{0,1} x {0,1} = {00, 01, 10, 11}

These are examples of quantum state vectors of the pair (X, Y):
1 i 1 i
§|00) + §|01) - §|10) - §|11)

3 4
=100) - £]11)

01)



Quantum states

Quantum state vectors of multiple systems are represent by column vectors
whose indices correspond to the Cartesian product of the individual systems’

classical state sets.

Example

If X and Y are qubits, the classical state set for the pair (X,Y) is
{0,1} x {0,1} = {00, 01, 10, 11}

These are examples of quantum state vectors of the pair (X, Y):

L10)10) + 1011} - 211310) - L)
3 4
£10)[0) - £[1)]1)

0)]1)



Quantum states

Quantum state vectors of multiple systems are represent by column vectors
whose indices correspond to the Cartesian product of the individual systems’

classical state sets.

Example

If X and Y are qubits, the classical state set for the pair (X,Y) is
{0,1} x {0,1} = {00, 01, 10, 11}

These are examples of quantum state vectors of the pair (X, Y):

1

1 1
Sl0)@ [1) - 5|1) ® [0) - 5 1) @ 1)

1
§|0> ® |0) +

3 4
=10)® [0) - £]1) ® |1)

0) @ |1)



Quantum states

Quantum state vectors of multiple systems are represent by column vectors
whose indices correspond to the Cartesian product of the individual systems’

classical state sets.

Example

If X and Y are qubits, the classical state set for the pair (X,Y) is
{0,1} x {0,1} = {00, 01, 10, 11}

These are examples of quantum state vectors of the pair (X, Y):

1 1 1 i
§|0)x|0)v + §|0)x|1)v - §|1)x|0)v — §|1)x|1)v

3 4
§|0)X|O)Y— §|1>x|1)v

10)x [ 1)y



Quantum states

Quantum state vectors of multiple systems are represent by column vectors
whose indices correspond to the Cartesian product of the individual systems’

classical state sets.

Example

If X and Y are qubits, the classical state set for the pair (X,Y) is
{0,1} x {0,1} = {00, 01, 10, 11}

These are examples of quantum state vectors of the pair (X, Y):
1 i 1 i
§|00) + §|01) - §|10) - §|11)

3 4
=100) - £]11)

01)



Quantum states

Tensor products of quantum state vectors are also quantum state vectors.

Let | ) be a quantum state vector of a system X and let |1) be a quantum state
vector of a system Y. The tensor product

[d) @ [b)

is then a quantum state vector of the system (X, Y).

States of this form are called [gJgele Mg (elf=H They represent

between the systems X and Y.

More generally, if |[\1), ..., |\bn) are quantum state vectors of systems
X1, ..., Xn, then

V1) @ ® | hn)

is a quantum state vector representing a product state of the compound system
(X1, s X))



Quantum states

Example

The quantum state vector
1 i 1 i

is an example of a product state:

1 1 1 1

- (1o - ) e (o) +

V2 V2 V2

i

V2

)



Quantum states

Example

The quantum state vector

1 1

of two qubits is not a product state.



Quantum states

Suppose it were possible to write

1 1
ﬁ|00> + Elll) =|d) ® [))

It would then follow that

(0l ) (1) = {01[dp ® ) = 0

implying that

(0|p) =0o0r (1|P) = 0 (or both)

This contradicts these equalities:

(0l$){0|Wp) = (00[p ® ) =

Nl Nl

(1) (1) = (11[p ® ) =

Example
The quantum state vector

L 100y + L j11)
V2 V2

of two qubits is not a product
state.



Quantum states

The previous example of a quantum state vector is one of the four

which collectively form the [2ElINes 5

The Bell basis
o Ligrs L
) = —=100) + =11
67) = —=100) - —= [11)
I A
o Lioa L
') = —=lo) + —=110)
1 1

b ) = EIOD - ﬁ|10>



Quantum states

Here are a couple of well-known examples of quantum state vectors for
three-qubits.

GHZ state

L j000) + = 111)
V2 V2

W state

1 1 1
ﬁ|001) + ﬁ|01o) + ﬁuoo)



Measurements

Measurements of compound systems work in the same way measurements of
single systems — provided that all of the systems are measured.

If [\ ) a quantum state of a system (X, ..., X, ), and every one of the systems
is measured, then each n-tuple

(ai,...,an) E Xy X+ X X

(or string aq-++-ay) is obtained with probability

[(ar-an )|’



Measurements

Measurements of compound systems work in the same way measurements of
single systems — provided that all of the systems are measured.

Example

If the pair (X,Y) is in the quantum state

3 44

210)|®) - = [1)|#)

then measuring both systems yields the outcome (0, ®) with probability
9/25 and the outcome (1, #) with probability 16/25.



Measurements

Question

Suppose two systems (X, Y) are together in some state.
What happens when we measure X and do nothing to Y?

A quantum state vector of (X, Y) takes the form

W)= )  aaplab)
(a,b)eZxl

If both X and Y are measured, then each outcome (a, b) € X x I" appears with
probability

[(ablw)|? = |etap |



Measurements

Question

Suppose two systems (X, Y) are together in some state.
What happens when we measure X and do nothing to Y?

A quantum state vector of (X, Y) takes the form

W)= )  oaplab)
(a,b)eZxl

If just X is measured, the probability for each outcome a € X to appear must
therefore be equal to

Pr(outcomeis a) = Z |(ab|1|))|2 = Z |0€ab|2

bel’ bel’

Similar to the probabilistic setting, the quantum state of Y changes as a result...



Measurements

A quantum state vector of (X, Y) takes the form

W)= )  aaplab)
(a,b)eZxl

We can express the vector [1) as

W)= ) la)e|da)
aex
where
|da)= ) oaplb)
bel

foreach a € 2.



Measurements

A quantum state vector of (X, Y) takes the form

W)= ) la)®[ba) where |da)= ) oap|b)

aex bel’

1. The probability to obtain each outcome a € X is

Pr(outcomeis a) = Z |06ab|2 = || |¢a>||2
bel

2. As aresult of the standard basis measurement of X giving the outcome a,
the quantum state of (X, Y) becomes

|a>®M

o)l



Measurements

Example

Suppose that (X, Y) is in the state

1 1 1 1
= —|00) + 5|01) + —=|10) — —=|11
) = 7=100) + 5l01) + —=]10) - —=[11)
and X is measured.
We begin by writing
1 1 1 1
=10 —10)+ 51 1 —|0) - —=|1
W)= l0ye (10)+ 311 )+ I @ ( S=10) - —=1))



Measurements

Example

Suppose that (X, Y) is in the state

=10} =10)+ 5110 + 1y e (—10) - 1)

1
72 N Y

and X is measured.

The probability for the measurement to result in the outcome 0 is

> 1 1 3
“27317%

| 510+ 510

in which case the state of (X,Y) becomes

7100 +311)
0) o 2 \ﬁz =|o>®(\@|o>+%|1>)
4




Measurements

Example

Suppose that (X, Y) is in the state

=10} =10)+ 5110 + 1y e (—10) - 1)

1
72 N Y

and X is measured.

The probability for the measurement to result in the outcome 1 is

2

(I P
2V2 2V2 8 8 4
in which case the state of (X,Y) becomes
m®$m_%m=m%lm—im)
\E V2 V2



Measurements

Example

Suppose that (X, Y) is in the state

11)

1 1 i 1
W) = 25100) + 5101) + ~—=10) - =

V2 2V/2 2V/2

and Y is measured.

We begin by writing

W= (5100 + =)o lo)+ (310~ 1)@ 1

V2 2V/2 2V/2



Measurements

Example
Suppose that (X, Y) is in the state

1 i 1 1
= [ =0y + —|1)]|® |0) + [ =]0) - —[1) | ® |1
)= (510 + —=11) @10) + (310 - ==I1}) @ 1)
and Y is measured.

The probability for the measurement to result in the outcome 0 is

2

0|
ool o1

1
H |0) + |1) §+

in which case the state of (X,Y) becomes

1

5100+ zfll (\/10 +_|1)®|0>




Measurements

Example
Suppose that (X, Y) is in the state

1 i 1 1
= [ =0y + —|1)]|® |0) + [ =]0) - —[1) | ® |1
)= (510 + —=11) @10) + (310 - ==I1}) @ 1)
and Y is measured.

The probability for the measurement to result in the outcome 1 is

2

| W

1 1 1
1) 213

H%|0> 2V2

in which case the state of (X,Y) becomes

1|O> 2z (\f|o——|1>)®|1>




Unitary operations

Quantum operations on compound systems are represented by unitary matrices
whose rows and columns correspond to the Cartesian product of the classical
state sets of the individual systems.

Example

Suppose X has classical state set {1,2,3} and Y has classical state set
{0, 1}. This unitary matrix represents an operation on (X, Y):

: 2 3 0 0 3
B BRI
T T TR
ooo%%o
e
000—%%0



Unitary operations

The combined action of a collection of unitary operations applied independently

to a collection of systems is represented by the [{Ziel@slgeleiloif Of the unitary
matrices.

Thatis, if X¢, ..., X,, are quantum systems, U4, ..., U, are unitary matrices
representing operations on these systems, and the operations are performed
independently on the systems, the combined action on (Xq,..., X, ) is
represented by the matrix

ul ®"'®un

In particular, if we perform a unitary operation U on a system X and do nothing
to a system Y, the operation on (X, Y) we obtain is represented by the unitary
matrix

U®1 oralternatively U ® 1y



Unitary operations

The combined action of a collection of unitary operations applied independently

to a collection of systems is represented by the [{Ziel@slgeleiloif Of the unitary
matrices.

Thatis, if X¢, ..., X,, are quantum systems, U4, ..., U, are unitary matrices
representing operations on these systems, and the operations are performed
independently on the systems, the combined action on (Xq,..., X, ) is
represented by the matrix

ul ®"'®un

In particular, if we perform a unitary operation V on a system Y and do nothing
to a system X, the operation on (X, Y) we obtain is represented by the unitary
matrix

1 ® V oralternatively 1x ® V



Unitary operations

Example
Suppose X and Y are qubits.

Performing a Hadamard operation on X and doing nothing to Y is
equivalent to performing this unitary operation on (X, Y):

1 1
- .
H®]l=ﬁ E@l 0=O v 0 7
1 _1 0 1 = 0 -+ o

V2 V2 V2 V2
0 1 0 _1
V2 V2



Unitary operations

Example

Suppose X and Y are qubits.

Performing a Hadamard operation on Y and doing nothing to X is
equivalent to performing this unitary operation on (X, Y):

Sl -

<[ Nl

o oslsl

1
V2

-1
7
0
0

N

Sl=§- o o

S o o

Sil-



Unitary operations

Not every unitary operation on a compound system can be expressed as a tensor
product of unitary operations.

Example

Suppose that X and Y are systems that share the same classical state

set X. Theon the pair (X,Y) exchange the contents of
the two systems:

SWAP|b @ 1) = [ @ &)

It can be expressed using the Dirac notation as follows:

SWAP = % |a)(b|® |b)(al
a,bex



Unitary operations

Not every unitary operation on a compound system can be expressed as a tensor
product of unitary operations.

Example

The swap operation can be expressed using the Dirac notation as follows:

SWAP = ) |a)(b|&|b)(al
a,bex

For instance, when X and Y are qubits, we find that

SWAP =

o O O =~
o = O O
O O = O
_ O O O



Unitary operations

Not every unitary operation on a compound system can be expressed as a tensor
product of unitary operations.

Example
SWAP|¢+>= |¢+> |¢+>=i|00>+i|11>
SWAP| &™) = [&7) e
SWAP[p™) = [4™) 197) = —5100) ~ =[11)
SWAP[|Wp ) = =) . 1 1
W) = E|01> + EHO)
1 1

W) = ﬁlm) - Ello)



Unitary operations

Suppose that Xis a qubit and Y is an arbitrary system.

For every unitary operation U on 'Y, a[eelglige]lZle 88 operation is a unitary
operation on the pair (X, Y) defined as follows:

10)(0] ® Ty + |1)(1] ® U = (1(] 3)

Example

A controlled-NOT operation (where the first qubit is the control):

[0)(0] ® T +[1)(1] ® 0 =

o O O B~
o O = O
= O O O
o = O O



Unitary operations

Suppose that Xis a qubit and Y is an arbitrary system.

For every unitary operation U on 'Y, a[eelglige]lZle 88 operation is a unitary
operation on the pair (X, Y) defined as follows:

10)(0] ® Ty + |1)(1] ® U = (1(] 3)

Example

A controlled-NOT operation (where the second qubit is the control):

1 ®|0)(0] + ox ® [1)(1] =

o O O B~
= O O O
o = O O
o O = O



Unitary operations

Suppose that Xis a qubit and Y is an arbitrary system.

For every unitary operation U on 'Y, a[eelglige]lZle 88 operation is a unitary
operation on the pair (X, Y) defined as follows:

10)(0] ® Ty + |1)(1] ® U = (1(] 3)

Example

A controlled-o, (or controlled-Z) operation:

|0)(0] ® T + |1){1| ® 0, =

o O O B~
o O = O
o = O O



Unitary operations

Suppose that Xis a qubit and Y is an arbitrary system.

For every unitary operation U on 'Y, a[eelglige]lZle 88 operation is a unitary
operation on the pair (X, Y) defined as follows:

10)(0] ® Ty + |1)(1] ® U = (1(] 3)

Example

A controlled-o, (or controlled-Z) operation:

1 0 0 O
O 1 0 O

1®|[0)0|+0, ®|1)1]| =
10){(0] + o, ® [1)(1] 0o 0 1 o
0O 0 0 -1



Unitary operations

Example

A controlled-SWAP operation (on three qubits):

|0)(0] ® T + |1)(1| ® SWAP =

o O O B O O o o
o B O O O O O O
O O rH O O O O o
_ O O O O O O O

O O O O O O O =+
o O O O O O ~ O
O O O ©O O » O O
O O O O B O O o

This operation is also known as a [gglel{aNeJelIgetile)s] (or Fredkin gate).



Unitary operations

Example

A controlled-controlled-NOT operation (on three qubits):

[0)(0|®@ T ®1+|1){(1]| ® (|0

~

(0l ® 1+ [1)(1] ® o)

1 00 00 0 0 O
01 00 0 0 0 O
001 00 0 0 O
oo 0o 1 00 00
lo 0 0 01 0 0 O
000 001 0 O
0 00 00O 00 1
000 0 O0O0 1 0

This operation is better known as a jkeJjfelife)el=lgetilelg] (or Toffoli gate).



