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Descriptions of quantum information
Simplified description (this unit)

• Simpler and typically learned first
• Quantum states represented by vectors; operations are represented

by unitary matrices
• Sufficient for an understanding of most quantum algorithms

General description (covered in a later unit)

• More general and more broadly applicable
• Quantum states represented by density matrices; allows for a more

general class of measurements and operations
• Includes both the simplified description and classical information

(including probabilistic states) as special cases



Classical information
Consider a physical system that stores information: let us call it X.

Assume X can be in one of a finite number of classical states at each moment.
Denote this classical state set byΣ.

Examples

• If X is a bit, then its classical state set is Σ = {0, 1}.
• If X is a six-sided die, then Σ = {1, 2, 3, 4, 5, 6}.
• If X is a switch on a standard electric fan, then perhaps
Σ = {high,medium, low, off}.

There there may be uncertainty about the classical state of a system, where each
classical state has some probability associated with it.



Classical information
For example, if X is a bit, then perhaps it is in the classical state 0 with probability 3/4
and in the classical state 1 with probability 1/4. This is a probabilistic state of X.

Pr(X = 0) = 3
4 and Pr(X = 1) = 1

4

A succinct way to represent this probabilistic state is by a column vector:

⎛⎜⎝
3
4
1
4

⎞⎟⎠
⟵ entry corresponding to 0

⟵ entry corresponding to 1

This vector is a probability vector:

• All entries are nonnegative real numbers.
• The sum of the entries is 1.



Dirac notation (first part)
LetΣ be any classical state set, and assume the elements ofΣ have been placed
in correspondence with the integers 1, . . . , ∣Σ∣.
We denote by ∣a⟩ the column vector having a 1 in the entry corresponding to
a ∈ Σ, with 0 for all other entries.

Example 1

If Σ = {0, 1}, then

∣0⟩ = (1
0
) and ∣1⟩ = (0

1
)



Dirac notation (first part)
LetΣ be any classical state set, and assume the elements ofΣ have been placed
in correspondence with the integers 1, . . . , ∣Σ∣.
We denote by ∣a⟩ the column vector having a 1 in the entry corresponding to
a ∈ Σ, with 0 for all other entries.

Example 2

If Σ = {♣,♦,♥,♠}, then we might choose to order these states like
this: ♣, ♦, ♥, ♠. This yields

∣♣⟩ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣♦⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣♥⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∣♠⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Dirac notation (first part)
LetΣ be any classical state set, and assume the elements ofΣ have been placed
in correspondence with the integers 1, . . . , ∣Σ∣.
We denote by ∣a⟩ the column vector having a 1 in the entry corresponding to
a ∈ Σ, with 0 for all other entries.

Vectors of this form are called standard basis vectors. Every vector can be
expressed uniquely as a linear combination of standard basis vectors.

Example

⎛⎜⎜⎝
3
4
1
4

⎞⎟⎟⎠ = 3
4 ∣0⟩ + 1

4 ∣1⟩



Measuring probabilistic states
What happens if wemeasure a system X while it is in some probabilistic state?

We see a classical state, chosen at random according to the probabilities.

Suppose we see the classical statea ∈ Σ.

This changes the probabilistic state of X (from our viewpoint): having recognized
that X is in the classical statea, we now have

Pr(X = a) = 1

This probabilistic state is represented by the vector ∣a⟩.



Measuring probabilistic states
Example

Consider the probabilistic state of a bit X where

Pr(X = 0) = 3
4 and Pr(X = 1) = 1

4

Measuring X selects (or reveals) a transition, chosen at random:

3
4 ∣0⟩ + 1

4 ∣1⟩

∣0⟩ ∣1⟩
prob

abil
ity

3
4

probability 1
4



Deterministic operations
Every function f ∶ Σ→ Σ describes a deterministic operation that transforms
the classical statea into f(a), for eacha ∈ Σ.

Given any function f ∶ Σ→ Σ, there is a (unique) matrixM satisfying

M ∣a⟩ = ∣f(a)⟩ (for everya ∈ Σ)

This matrix has exactly one 1 in each column, and 0 for all other entries:

M(b,a) = {1 b = f(a)
0 b /= f(a)

The action of this operation is described bymatrix-vector multiplication:

v ⟼ Mv



Deterministic operations
Example

For Σ = {0, 1}, there are four functions of the form f ∶ Σ→ Σ:

a f1(a)
0 0
1 0

a f2(a)
0 0
1 1

a f3(a)
0 1
1 0

a f4(a)
0 1
1 1

Here are the matrices corresponding to these functions:

M1 = (1 1
0 0

) M2 = (1 0
0 1

) M3 = (0 1
1 0

) M4 = (0 0
1 1

)

M(b,a) = {1 b = f(a)
0 b /= f(a)

M ∣a⟩ = ∣f(a)⟩



Dirac notation (second part)
LetΣ be any classical state set, and assume the elements ofΣ have been placed
in correspondence with the integers 1, . . . , ∣Σ∣.
We denote by ⟨a∣ the row vector having a 1 in the entry corresponding toa ∈ Σ,
with 0 for all other entries.

Example

If Σ = {0, 1}, then
⟨0∣ = (1 0) and ⟨1∣ = (0 1)



Dirac notation (second part)
LetΣ be any classical state set, and assume the elements ofΣ have been placed
in correspondence with the integers 1, . . . , ∣Σ∣.
We denote by ⟨a∣ the row vector having a 1 in the entry corresponding toa ∈ Σ,
with 0 for all other entries.

Multiplying a row vector to a column vector yields a scalar:

(∗ ∗ ∗ ⋯ ∗)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗

∗

∗

⋮

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (∗)

⟨a∣b⟩ = ⟨a∣∣b⟩ = {1 a = b

0 a /= b



Dirac notation (second part)
LetΣ be any classical state set, and assume the elements ofΣ have been placed
in correspondence with the integers 1, . . . , ∣Σ∣.
We denote by ⟨a∣ the row vector having a 1 in the entry corresponding toa ∈ Σ,
with 0 for all other entries.

Multiplying a row vector to a column vector yields a scalar:

(0 1 0 ⋯ 0)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
⋮

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (1)

⟨a∣b⟩ = ⟨a∣∣b⟩ = {1 a = b

0 a /= b



Dirac notation (second part)
LetΣ be any classical state set, and assume the elements ofΣ have been placed
in correspondence with the integers 1, . . . , ∣Σ∣.
We denote by ⟨a∣ the row vector having a 1 in the entry corresponding toa ∈ Σ,
with 0 for all other entries.

Multiplying a row vector to a column vector yields a scalar:

(0 1 0 ⋯ 0)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
⋮

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (0)

⟨a∣b⟩ = ⟨a∣∣b⟩ = {1 a = b

0 a /= b



Dirac notation (second part)
LetΣ be any classical state set, and assume the elements ofΣ have been placed
in correspondence with the integers 1, . . . , ∣Σ∣.
We denote by ⟨a∣ the row vector having a 1 in the entry corresponding toa ∈ Σ,
with 0 for all other entries.

Multiplying a column vector to a row vector yields a matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗

∗

∗

⋮

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(∗ ∗ ∗ ⋯ ∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

⋮ ⋮ ⋮ ⋱ ⋮

∗ ∗ ∗ ⋯ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Dirac notation (second part)
Multiplying a column vector to a row vector yields a matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗

∗

∗

⋮

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(∗ ∗ ∗ ⋯ ∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

⋮ ⋮ ⋮ ⋱ ⋮

∗ ∗ ∗ ⋯ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Example

∣0⟩⟨0∣ = (1
0
) (1 0) = (1 0

0 0
)



Dirac notation (second part)
Multiplying a column vector to a row vector yields a matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗

∗

∗

⋮

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(∗ ∗ ∗ ⋯ ∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

⋮ ⋮ ⋮ ⋱ ⋮

∗ ∗ ∗ ⋯ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Example

∣0⟩⟨1∣ = (1
0
) (0 1) = (0 1

0 0
)



Dirac notation (second part)
Multiplying a column vector to a row vector yields a matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗

∗

∗

⋮

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(∗ ∗ ∗ ⋯ ∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

⋮ ⋮ ⋮ ⋱ ⋮

∗ ∗ ∗ ⋯ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Example

∣1⟩⟨0∣ = (0
1
) (1 0) = (0 0

1 0
)



Dirac notation (second part)
Multiplying a column vector to a row vector yields a matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗

∗

∗

⋮

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(∗ ∗ ∗ ⋯ ∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

⋮ ⋮ ⋮ ⋱ ⋮

∗ ∗ ∗ ⋯ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Example

∣1⟩⟨1∣ = (0
1
) (0 1) = (0 0

0 1
)



Dirac notation (second part)
Multiplying a column vector to a row vector yields a matrix:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗

∗

∗

⋮

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(∗ ∗ ∗ ⋯ ∗) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

∗ ∗ ∗ ⋯ ∗

⋮ ⋮ ⋮ ⋱ ⋮

∗ ∗ ∗ ⋯ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In general, the matrix

∣a⟩⟨b∣
has a 1 in the (a,b)-entry and 0 for all other entries.



Deterministic operations
Every function f ∶ Σ→ Σ describes a deterministic operation that transforms
the classical statea into f(a), for eacha ∈ Σ.

Given any function f ∶ Σ→ Σ, there is a (unique) matrixM satisfying

M ∣a⟩ = ∣f(a)⟩ (for everya ∈ Σ)

This matrix may be expressed as

M = ∑
b∈Σ

∣f(b)⟩⟨b∣
Its action on standard basis vectors works as required:

M∣a⟩ = (∑
b∈Σ

∣f(b)⟩⟨b∣)∣a⟩ = ∑
b∈Σ

∣f(b)⟩⟨b∣a⟩ = ∣f(a)⟩



Probabilistic operations
Probabilistic operations are classical operations that may introduce randomness
or uncertainty.

Example

Here is a probabilistic operation on a bit:
If the classical state is 0, then do nothing.
If the classical state is 1, then flip the bit
with probability 1/2.

⎛⎜⎝
1 1

2

0 1
2

⎞⎟⎠

Probabilistic operations are described by stochastic matrices:

• All entries are nonnegative real numbers
• The entries in every column sum to 1



Probabilistic operations
Probabilistic operations are classical operations that may introduce randomness
or uncertainty.

Example

Here is a probabilistic operation on a bit:
If the classical state is 0, then do nothing.
If the classical state is 1, then flip the bit with
probability 1/2.

⎛⎜⎝
1 1

2

0 1
2

⎞⎟⎠ = 1
2 (1 1

0 0
) +

1
2 (1 0

0 1
)

Probabilistic operations are described by stochastic matrices:

• All entries are nonnegative real numbers
• The entries in every column sum to 1



Composing operations
Suppose X is a system andM1, . . . ,Mn are stochastic matrices representing
probabilistic operations on X.

Applying the first probabilistic operation to the probability vector v, then
applying the second probabilistic operation to the result yields this vector:

M2(M1v) = (M2M1)v
The probabilistic operation obtained by composing the first and second
probabilistic operations is represented by thematrix productM2M1.

Composing the probabilistic operations represented by the matrices
M1, . . . ,Mn (in that order) is represented by this matrix product:

Mn ⋯M1



Composing operations
Suppose X is a system andM1, . . . ,Mn are stochastic matrices representing
probabilistic operations on X.

Composing the probabilistic operations represented by the matrices
M1, . . . ,Mn (in that order) is represented by this matrix product:

Mn ⋯M1

The order is important: matrix multiplication is not commutative!

M1 =
⎛⎜⎝
1 1

0 0
⎞⎟⎠ M2 =

⎛⎜⎝
0 1

1 0
⎞⎟⎠

M2M1 =
⎛⎜⎝
0 0

1 1
⎞⎟⎠ M1M2 =

⎛⎜⎝
1 1

0 0
⎞⎟⎠



Quantum information
A quantum state of a system is represented by a column vectorwhose indices are
placed in correspondence with the classical states of that system:

• The entries are complex numbers.
• The sum of the absolute values squared of the entries must equal 1.
Definition

The Euclidean norm for vectors with complex number entries is defined
like this:

v =
⎛⎜⎜⎜⎜⎜⎝
α1
⋮

αn

⎞⎟⎟⎟⎟⎟⎠ ⟹ ∥v∥ =

√√√√√√⎷ n

∑
k=1

∣αk∣2

Quantum state vectors are therefore unit vectors with respect to this norm.



Quantum information
A quantum state of a system is represented by a column vectorwhose indices are
placed in correspondence with the classical states of that system:

• The entries are complex numbers.
• The sum of the absolute values squared of the entries must equal 1.
Examples of qubit states

• Standard basis states: ∣0⟩ and ∣1⟩
• Plus/minus states:

∣+⟩ = 1√
2
∣0⟩ + 1√

2
∣1⟩ and ∣−⟩ = 1√

2
∣0⟩ − 1√

2
∣1⟩

• A state without a special name:

1 + 2i
3 ∣0⟩ − 2

3 ∣1⟩



Quantum information
A quantum state of a system is represented by a column vectorwhose indices are
placed in correspondence with the classical states of that system:

• The entries are complex numbers.
• The sum of the absolute values squared of the entries must equal 1.
Example

A quantum state of a system with classical states ♣, ♦, ♥, and ♠:

1
2 ∣♣⟩ − i

2 ∣♦⟩ + 1√
2
∣♠⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

− i
2

0
1√
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Dirac notation (third part)
The Dirac notation can be used for arbitrary vectors: any name can be used in
place of a classical state. Kets are column vectors, bras are row vectors.

Example

The notation ∣ψ⟩ is commonly used to refer to an arbitrary vector:
∣ψ⟩ = 1 + 2i

3 ∣0⟩ − 2
3 ∣1⟩

For any column vector ∣ψ⟩, the row vector ⟨ψ∣ is the conjugate transpose of ∣ψ⟩:
⟨ψ∣ = ∣ψ⟩†



Dirac notation (third part)
The Dirac notation can be used for arbitrary vectors: any name can be used in
place of a classical state. Kets are column vectors, bras are row vectors.

Example

The notation ∣ψ⟩ is commonly used to refer to an arbitrary vector:
∣ψ⟩ = 1 + 2i

3 ∣0⟩ − 2
3 ∣1⟩

⟨ψ∣ = 1 − 2i
3 ⟨0∣ − 2

3 ⟨1∣

For any column vector ∣ψ⟩, the row vector ⟨ψ∣ is the conjugate transpose of ∣ψ⟩:
⟨ψ∣ = ∣ψ⟩†



Dirac notation (third part)
The Dirac notation can be used for arbitrary vectors: any name can be used in
place of a classical state. Kets are column vectors, bras are row vectors.

Example

The notation ∣ψ⟩ is commonly used to refer to an arbitrary vector:

∣ψ⟩ = 1 + 2i
3 ∣0⟩ − 2

3 ∣1⟩ = ⎛⎜⎜⎝
1+2i

3

− 2
3

⎞⎟⎟⎠
⟨ψ∣ = 1 − 2i

3 ⟨0∣ − 2
3 ⟨1∣ = ( 1−2i

3 − 2
3 )



Measuring quantum states
For this lesson will restrict our attention to standard basis measurements:

• The possible outcomes are the classical states.
• The probability for each classical state to be the outcome is the

absolute value squared of the corresponding quantum state vector entry.
Example 1

Measuring the quantum state

∣+⟩ = 1√
2
∣0⟩ + 1√

2
∣1⟩

yields an outcome as follows:

Pr(outcome is 0) = 44444444
1√
2
44444444
2
= 1

2 Pr(outcome is 1) = 44444444
1√
2
44444444
2
= 1

2



Measuring quantum states
For this lesson will restrict our attention to standard basis measurements:

• The possible outcomes are the classical states.
• The probability for each classical state to be the outcome is the

absolute value squared of the corresponding quantum state vector entry.
Example 2

Measuring the quantum state

∣−⟩ = 1√
2
∣0⟩ − 1√

2
∣1⟩

yields an outcome as follows:

Pr(outcome is 0) = 44444444
1√
2
44444444
2
= 1

2 Pr(outcome is 1) = 44444444−
1√
2
44444444
2
= 1

2



Measuring quantum states
For this lesson will restrict our attention to standard basis measurements:

• The possible outcomes are the classical states.
• The probability for each classical state to be the outcome is the

absolute value squared of the corresponding quantum state vector entry.
Example 3

Measuring the quantum state

1 + 2i
3 ∣0⟩ − 2

3 ∣1⟩
yields an outcome as follows:

Pr(outcome is 0) = 44444444
1 + 2i

3
44444444
2
= 5

9 Pr(outcome is 1) = 44444444−
2
3
44444444
2
= 4

9



Measuring quantum states
For this lesson will restrict our attention to standard basis measurements:

• The possible outcomes are the classical states.
• The probability for each classical state to be the outcome is the

absolute value squared of the corresponding quantum state vector entry.
Example 4

Measuring the quantum state ∣0⟩ gives the outcome 0 with certainty, and
measuring the quantum state ∣1⟩ gives the outcome 1 with certainty.



Measuring quantum states
For this lesson will restrict our attention to standard basis measurements:

• The possible outcomes are the classical states.
• The probability for each classical state to be the outcome is the

absolute value squared of the corresponding quantum state vector entry.

Measuring a system changes its quantum state: if we obtain the classical
statea, the new quantum state becomes ∣a⟩.

1 + 2i
3 ∣0⟩ − 2

3 ∣1⟩

∣0⟩ ∣1⟩
prob

abil
ity

5
9

probability 4
9



Unitary operations
The set of allowable operations that can be performed on a quantum state is
different than it is for classical information.

Operations on quantum state vectors are represented by unitary matrices.

Definition
A square matrix U having complex number entries is unitary if it satisfies
the equalities

U
†
U = 1 = UU

†

where U
† is the conjugate transpose of U and 1 is the identity matrix.

Both equalities are equivalent toU−1 = U
†.



Unitary operations
Definition

A square matrix U having complex number entries is unitary if it satisfies
the equalities

U
†
U = 1 = UU

†

where U
† is the conjugate transpose of U and 1 is the identity matrix.

The condition that ann ×nmatrixU is unitary is equivalent to

∥Uv∥ = ∥v∥
for everyn-dimensional column vector v with complex number entries.

If v is a quantum state vector, thenUv is also a quantum state vector.



Qubit unitary operations
1. Pauli operations

Pauli operations are ones represented by the Pauli matrices:

1 = (1 0
0 1

) σx = (0 1
1 0

) σy = (0 −i

i 0
) σz = (1 0

0 −1
)

Common alternative notations:X = σx, Y = σy, andZ = σz.

The operationσx is also called a bit flip (or a NOT operation) and theσz

operation is called a phase flip:

σx∣0⟩ = ∣1⟩ σz∣0⟩ = ∣0⟩
σx∣1⟩ = ∣0⟩ σz∣1⟩ = −∣1⟩



Qubit unitary operations
2. Hadamard operation

The Hadamard operation is represented by this matrix:

H =
⎛⎜⎜⎜⎝

1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎟⎠
Checking thatH is unitary is a straightforward calculation:

⎛⎜⎜⎜⎝
1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎟⎠
† ⎛⎜⎜⎜⎝

1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎝

1
2 + 1

2
1
2 − 1

2
1
2 − 1

2
1
2 + 1

2

⎞⎟⎟⎠ = (1 0
0 1

)



Qubit unitary operations
3. Phase operations

A phase operation is one described by the matrix

Pθ = (1 0
0 e

iθ)
for any choice of a real number θ.

The operations

S = Pπ/2 = (1 0
0 i

) and T = Pπ/4 = (1 0
0 1+i√

2
)

are important examples.



Qubit unitary operations
Example 1

H ∣0⟩ = ⎛⎜⎜⎝
1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎠
⎛⎜⎜⎝
1

0

⎞⎟⎟⎠ =
⎛⎜⎜⎝

1√
2

1√
2

⎞⎟⎟⎠ = ∣+⟩

H ∣1⟩ = ⎛⎜⎜⎝
1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎠
⎛⎜⎜⎝
0

1

⎞⎟⎟⎠ =
⎛⎜⎜⎝

1√
2

− 1√
2

⎞⎟⎟⎠ = ∣−⟩

H ∣+⟩ = ⎛⎜⎜⎝
1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎠
⎛⎜⎜⎝

1√
2

1√
2

⎞⎟⎟⎠ =
⎛⎜⎜⎝
1

0

⎞⎟⎟⎠ = ∣0⟩

H ∣−⟩ = ⎛⎜⎜⎝
1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎠
⎛⎜⎜⎝

1√
2

− 1√
2

⎞⎟⎟⎠ =
⎛⎜⎜⎝
0

1

⎞⎟⎟⎠ = ∣1⟩



Qubit unitary operations
Example 1

H ∣0⟩ = ∣+⟩ H ∣+⟩ = ∣0⟩
H ∣1⟩ = ∣−⟩ H ∣−⟩ = ∣1⟩

H (1 + 2i
3 ∣0⟩ − 2

3 ∣1⟩) =
⎛⎜⎜⎜⎝

1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

1+2i
3

− 2
3

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎝
−1+2i

3
√

2
3+2i
3
√

2

⎞⎟⎟⎟⎠
= −1 + 2i

3
√

2
∣0⟩ + 3 + 2i

3
√

2
∣1⟩



Qubit unitary operations
Example 2

T ∣0⟩ = ∣0⟩ and T ∣1⟩ = 1 + i√
2

∣1⟩

T ∣+⟩ = T ( 1√
2
∣0⟩ + 1√

2
∣1⟩)

= 1√
2
T ∣0⟩ + 1√

2
T ∣1⟩

= 1√
2
∣0⟩ + 1 + i

2 ∣1⟩

T = (1 0
0 1+i√

2
)



Qubit unitary operations
Example 2

T ∣+⟩ = 1√
2
∣0⟩ + 1 + i

2 ∣1⟩
HT ∣+⟩ = H ( 1√

2
∣0⟩ + 1 + i

2 ∣1⟩)
= 1√

2
H∣0⟩ + 1 + i

2 H∣1⟩
= 1√

2
∣+⟩ + 1 + i

2 ∣−⟩
= (1

2 ∣0⟩ + 1
2 ∣1⟩) + (1 + i

2
√

2
∣0⟩ − 1 + i

2
√

2
∣1⟩)

= (1
2 +

1 + i

2
√

2
) ∣0⟩ + (1

2 −
1 + i

2
√

2
) ∣1⟩

H ∣0⟩ = ∣+⟩
H ∣1⟩ = ∣−⟩



Composing unitary operations
Compositions of unitary operations are represented bymatrix multiplication
(similar to the probabilistic setting).

Example: square root of NOT

Applying a Hadamard operation, followed by the phase operation S,
followed by another Hadamard operation yields this operation:

HSH =
⎛⎜⎜⎝

1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎠(
1 0
0 i

)⎛⎜⎜⎝
1√
2

1√
2

1√
2 − 1√

2

⎞⎟⎟⎠ =
⎛⎜⎜⎝

1+i
2

1−i
2

1−i
2

1+i
2

⎞⎟⎟⎠
Applying this unitary operation twice yields a NOT operation:

(HSH)2 =
⎛⎜⎜⎝

1+i
2

1−i
2

1−i
2

1+i
2

⎞⎟⎟⎠
2

=
⎛⎜⎜⎝
0 1

1 0

⎞⎟⎟⎠


