Understanding Quantum Information and Computation Lesson 1 Single Systems John Watrous ### Descriptions of quantum information #### Simplified description (this unit) - Simpler and typically learned first - Quantum states represented by <u>vectors</u>; operations are represented by <u>unitary matrices</u> - Sufficient for an understanding of most quantum algorithms #### General description (covered in a later unit) - More general and more broadly applicable - Quantum states represented by <u>density matrices</u>; allows for a more general class of measurements and operations - Includes both the simplified description and classical information (including probabilistic states) as special cases ### Classical information Consider a physical system that stores information: let us call it X. Assume X can be in one of a finite number of *classical states* at each moment. Denote this classical state set by Σ . #### Examples - If X is a bit, then its classical state set is $\Sigma = \{0, 1\}$. - If X is a six-sided die, then $\Sigma = \{1, 2, 3, 4, 5, 6\}$. - If X is a switch on a standard electric fan, then perhaps $\Sigma = \{\text{high, medium, low, off}\}.$ There there may be *uncertainty* about the classical state of a system, where each classical state has some *probability* associated with it. ### Classical information For example, if X is a bit, then perhaps it is in the classical state 0 with probability 3/4 and in the classical state 1 with probability 1/4. This is a *probabilistic state* of X. $$Pr(X = 0) = \frac{3}{4}$$ and $Pr(X = 1) = \frac{1}{4}$ A succinct way to represent this probabilistic state is by a *column vector:* $$\begin{pmatrix} \frac{3}{4} \\ \frac{1}{4} \end{pmatrix} \leftarrow \text{entry corresponding to 0}$$ $$\leftarrow \text{entry corresponding to 1}$$ This vector is a *probability vector:* - All entries are nonnegative real numbers. - The sum of the entries is 1. ### Dirac notation (first part) Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$. We denote by $|\alpha\rangle$ the *column vector* having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries. #### Example 1 If $\Sigma = \{0, 1\}$, then $$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ### Dirac notation (first part) Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$. We denote by $|\alpha\rangle$ the *column vector* having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries. #### Example 2 If $\Sigma = \{ \spadesuit, \blacklozenge, \blacktriangledown, \spadesuit \}$, then we might choose to order these states like this: $\spadesuit, \blacklozenge, \blacktriangledown, \spadesuit$. This yields $$| \clubsuit \rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad | \blacklozenge \rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad | \blacktriangledown \rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad | \spadesuit \rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$ ### Dirac notation (first part) Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$. We denote by $|\alpha\rangle$ the *column vector* having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries. Vectors of this form are called *standard basis vectors*. Every vector can be expressed uniquely as a linear combination of standard basis vectors. ### Measuring probabilistic states What happens if we *measure* a system X while it is in some probabilistic state? We see a *classical state*, chosen at random according to the probabilities. Suppose we see the classical state $\alpha \in \Sigma$. This changes the probabilistic state of X (from our viewpoint): having recognized that X is in the classical state α , we now have $$Pr(X = a) = 1$$ This probabilistic state is represented by the vector $|\alpha\rangle$. ### Measuring probabilistic states #### Example Consider the probabilistic state of a bit X where $$Pr(X = 0) = \frac{3}{4}$$ and $Pr(X = 1) = \frac{1}{4}$ Measuring X selects (or reveals) a transition, chosen at random: ### Deterministic operations Every function $f: \Sigma \to \Sigma$ describes a <u>deterministic operation</u> that transforms the classical state α into $f(\alpha)$, for each $\alpha \in \Sigma$. Given any function $f: \Sigma \to \Sigma$, there is a (unique) matrix M satisfying $$M | \alpha \rangle = | f(\alpha) \rangle$$ (for every $\alpha \in \Sigma$) This matrix has exactly one 1 in each column, and 0 for all other entries: $$M(b, a) = \begin{cases} 1 & b = f(a) \\ 0 & b \neq f(a) \end{cases}$$ The action of this operation is described by *matrix-vector multiplication:* $$\nu \longmapsto M\nu$$ ### Deterministic operations #### Example For $\Sigma = \{0, 1\}$, there are four functions of the form $f : \Sigma \to \Sigma$: Here are the matrices corresponding to these functions: $$M_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$ $M_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $M_4 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ $$M(b, a) = \begin{cases} 1 & b = f(a) \\ 0 & b \neq f(a) \end{cases}$$ $$M |\alpha\rangle = |f(\alpha)\rangle$$ Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$. We denote by $\langle \alpha |$ the <u>row vector</u> having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries. #### Example If $\Sigma = \{0, 1\}$, then $$\langle 0| = \begin{pmatrix} 1 & 0 \end{pmatrix}$$ and $\langle 1| = \begin{pmatrix} 0 & 1 \end{pmatrix}$ Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$. We denote by $\langle \alpha |$ the <u>row vector</u> having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries. Multiplying a row vector to a column vector yields a scalar: $$\begin{pmatrix} * & * & * & \cdots & * \end{pmatrix} \begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} = \begin{pmatrix} * \end{pmatrix}$$ $$\langle a|b\rangle = \langle a||b\rangle = \begin{cases} 1 & a = b \\ 0 & a \neq b \end{cases}$$ Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$. We denote by $\langle \alpha |$ the <u>row vector</u> having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries. Multiplying a row vector to a column vector yields a scalar: $$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix}$$ $$\langle a|b\rangle = \langle a||b\rangle = \begin{cases} 1 & a = b \\ 0 & a \neq b \end{cases}$$ Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$. We denote by $\langle \alpha |$ the <u>row vector</u> having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries. Multiplying a row vector to a column vector yields a scalar: $$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix}$$ $$\langle a|b\rangle = \langle a||b\rangle = \begin{cases} 1 & a = b \\ 0 & a \neq b \end{cases}$$ Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$. We denote by $\langle \alpha |$ the <u>row vector</u> having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries. Multiplying a column vector to a row vector yields a matrix: $$\begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} (* \quad * \quad * \quad \cdots \quad *) = \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$ Multiplying a column vector to a row vector yields a matrix: $$\begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$ $$|0\rangle\langle 0| = \begin{pmatrix} 1\\0 \end{pmatrix} \begin{pmatrix} 1&0 \end{pmatrix} = \begin{pmatrix} 1&0\\0&0 \end{pmatrix}$$ Multiplying a column vector to a row vector yields a matrix: $$\begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$ $$|0\rangle\langle 1| = \begin{pmatrix} 1\\0 \end{pmatrix}\begin{pmatrix} 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1\\0 & 0 \end{pmatrix}$$ Multiplying a column vector to a row vector yields a matrix: $$\begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} (* \quad * \quad * \quad \cdots \quad *) = \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$ # $|1\rangle\langle 0| = \begin{pmatrix} 0\\1 \end{pmatrix} \begin{pmatrix} 1&0 \end{pmatrix} = \begin{pmatrix} 0&0\\1&0 \end{pmatrix}$ Multiplying a column vector to a row vector yields a matrix: $$\begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$ $$|1\rangle\langle 1| = \begin{pmatrix} 0\\1 \end{pmatrix} \begin{pmatrix} 0&1 \end{pmatrix} = \begin{pmatrix} 0&0\\0&1 \end{pmatrix}$$ Multiplying a column vector to a row vector yields a matrix: $$\begin{pmatrix} * \\ * \\ * \\ (* & * & * & \cdots & *) = \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$ In general, the matrix $$|a\rangle\langle b|$$ has a 1 in the (a, b)-entry and 0 for all other entries. ### Deterministic operations Every function $f: \Sigma \to \Sigma$ describes a <u>deterministic operation</u> that transforms the classical state α into $f(\alpha)$, for each $\alpha \in \Sigma$. Given any function $f: \Sigma \to \Sigma$, there is a (unique) matrix M satisfying $$M | \alpha \rangle = | f(\alpha) \rangle$$ (for every $\alpha \in \Sigma$) This matrix may be expressed as $$M = \sum_{b \in \Sigma} |f(b)\rangle\langle b|$$ Its action on standard basis vectors works as required: $$M|\alpha\rangle = \left(\sum_{b\in\Sigma} |f(b)\rangle\langle b|\right)|\alpha\rangle = \sum_{b\in\Sigma} |f(b)\rangle\langle b|\alpha\rangle = |f(\alpha)\rangle$$ ### Probabilistic operations *Probabilistic operations* are classical operations that may introduce randomness or uncertainty. #### Example Here is a probabilistic operation on a bit: If the classical state is 0, then do nothing. If the classical state is 1, then flip the bit with probability 1/2. $$\begin{pmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}$$ Probabilistic operations are described by *stochastic matrices*: - All entries are nonnegative real numbers - The entries in every column sum to 1 ### Probabilistic operations *Probabilistic operations* are classical operations that may introduce randomness or uncertainty. #### Example Here is a probabilistic operation on a bit: If the classical state is 0, then do nothing. If the classical state is 1, then flip the bit with probability 1/2. $$\begin{pmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$ Probabilistic operations are described by *stochastic matrices*: - All entries are nonnegative real numbers - The entries in every column sum to 1 ### Composing operations Suppose X is a system and M_1, \ldots, M_n are stochastic matrices representing probabilistic operations on X. Applying the first probabilistic operation to the probability vector v, then applying the second probabilistic operation to the result yields this vector: $$M_2(M_1v) = (M_2M_1)v$$ The probabilistic operation obtained by composing the first and second probabilistic operations is represented by the matrix product M_2M_1 . Composing the probabilistic operations represented by the matrices M_1, \ldots, M_n (in that order) is represented by this matrix product: $$M_n \cdots M_1$$ ### Composing operations Suppose X is a system and M_1, \ldots, M_n are stochastic matrices representing probabilistic operations on X. Composing the probabilistic operations represented by the matrices M_1, \ldots, M_n (in that order) is represented by this matrix product: $$M_n \cdots M_1$$ The order is important: matrix multiplication is *not commutative!* $$M_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$ $$M_2 M_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \qquad M_1 M_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$ ### Quantum information A *quantum state* of a system is represented by a *column vector* whose indices are placed in correspondence with the classical states of that system: - The entries are complex numbers. - The sum of the absolute values squared of the entries must equal 1. #### Definition The *Euclidean norm* for vectors with complex number entries is defined like this: $$v = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \implies ||v|| = \sqrt{\sum_{k=1}^n |\alpha_k|^2}$$ Quantum state vectors are therefore *unit vectors* with respect to this norm. ### Quantum information A *quantum state* of a system is represented by a *column vector* whose indices are placed in correspondence with the classical states of that system: - The entries are complex numbers. - The sum of the absolute values squared of the entries must equal 1. #### Examples of qubit states - Standard basis states: |0> and |1> - Plus/minus states: $$|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$ and $|-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$ • A state without a special name: $$\frac{1+2i}{3}\left|0\right\rangle - \frac{2}{3}\left|1\right\rangle$$ ### Quantum information A *quantum state* of a system is represented by a *column vector* whose indices are placed in correspondence with the classical states of that system: - The entries are complex numbers. - The sum of the absolute values squared of the entries must equal 1. #### Example A quantum state of a system with classical states Φ , \blacklozenge , \triangledown , and Φ : $$\frac{1}{2} | \clubsuit \rangle - \frac{i}{2} | \spadesuit \rangle + \frac{1}{\sqrt{2}} | \spadesuit \rangle = \begin{pmatrix} \frac{1}{2} \\ -\frac{i}{2} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$ ### Dirac notation (third part) The Dirac notation can be used for arbitrary vectors: any name can be used in place of a classical state. Kets are column vectors, bras are row vectors. #### Example The notation $|\psi\rangle$ is commonly used to refer to an arbitrary vector: $$|\psi\rangle = \frac{1+2i}{3}|0\rangle - \frac{2}{3}|1\rangle$$ For any column vector $|\psi\rangle$, the row vector $\langle\psi|$ is the *conjugate transpose* of $|\psi\rangle$: $$\langle \psi | = | \psi \rangle^{\dagger}$$ ### Dirac notation (third part) The Dirac notation can be used for arbitrary vectors: any name can be used in place of a classical state. Kets are column vectors, bras are row vectors. #### Example The notation $|\psi\rangle$ is commonly used to refer to an arbitrary vector: $$|\psi\rangle = \frac{1+2i}{3}|0\rangle - \frac{2}{3}|1\rangle$$ $$\langle \psi | = \frac{1-2i}{3} \langle 0 | -\frac{2}{3} \langle 1 |$$ For any column vector $|\psi\rangle$, the row vector $\langle\psi|$ is the *conjugate transpose* of $|\psi\rangle$: $$\langle \psi | = | \psi \rangle^{\dagger}$$ ### Dirac notation (third part) The Dirac notation can be used for arbitrary vectors: any name can be used in place of a classical state. Kets are column vectors, bras are row vectors. #### Example The notation $|\psi\rangle$ is commonly used to refer to an arbitrary vector: $$\begin{split} |\psi\rangle &= \frac{1+2i}{3} |0\rangle - \frac{2}{3} |1\rangle = \begin{pmatrix} \frac{1+2i}{3} \\ -\frac{2}{3} \end{pmatrix} \\ \langle \psi| &= \frac{1-2i}{3} \langle 0| - \frac{2}{3} \langle 1| = \begin{pmatrix} \frac{1-2i}{3} & -\frac{2}{3} \end{pmatrix} \end{split}$$ For this lesson will restrict our attention to standard basis measurements: - The possible outcomes are the classical states. - The probability for each classical state to be the outcome is the absolute value squared of the corresponding quantum state vector entry. #### Example 1 Measuring the quantum state $$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$ yields an outcome as follows: Pr(outcome is 0) = $$\left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$$ Pr(outcome is 1) = $\left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$ For this lesson will restrict our attention to standard basis measurements: - The possible *outcomes* are the *classical states*. - The probability for each classical state to be the outcome is the absolute value squared of the corresponding quantum state vector entry. #### Example 2 Measuring the quantum state $$|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$ yields an outcome as follows: Pr(outcome is 0) = $$\left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$$ Pr(outcome is 1) = $\left|-\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$ For this lesson will restrict our attention to standard basis measurements: - The possible outcomes are the classical states. - The probability for each classical state to be the outcome is the absolute value squared of the corresponding quantum state vector entry. #### Example 3 Measuring the quantum state $$\frac{1+2i}{3}\left|0\right\rangle - \frac{2}{3}\left|1\right\rangle$$ yields an outcome as follows: Pr(outcome is 0) = $$\left| \frac{1+2i}{3} \right|^2 = \frac{5}{9}$$ Pr(outcome is 1) = $\left| -\frac{2}{3} \right|^2 = \frac{4}{9}$ For this lesson will restrict our attention to standard basis measurements: - The possible outcomes are the classical states. - The probability for each classical state to be the outcome is the absolute value squared of the corresponding quantum state vector entry. #### Example 4 Measuring the quantum state $|0\rangle$ gives the outcome 0 with certainty, and measuring the quantum state $|1\rangle$ gives the outcome 1 with certainty. For this lesson will restrict our attention to standard basis measurements: - The possible outcomes are the classical states. - The probability for each classical state to be the outcome is the absolute value squared of the corresponding quantum state vector entry. Measuring a system changes its quantum state: if we obtain the classical state α , the new quantum state becomes $|\alpha\rangle$. ### Unitary operations The set of allowable *operations* that can be performed on a quantum state is different than it is for classical information. Operations on quantum state vectors are represented by unitary matrices. #### Definition A square matrix U having complex number entries is $\frac{\textit{unitary}}{\textit{unitary}}$ if it satisfies the equalities $$u^{\dagger}u = 1 = uu^{\dagger}$$ where U^{\dagger} is the conjugate transpose of U and 1 is the identity matrix. Both equalities are equivalent to $U^{-1} = U^{\dagger}$. ### Unitary operations #### Definition A square matrix U having complex number entries is unitary if it satisfies the equalities $$u^{\dagger}u = 1 = uu^{\dagger}$$ where U^{\dagger} is the conjugate transpose of U and 1 is the identity matrix. The condition that an $n \times n$ matrix U is unitary is equivalent to $$\|\mathbf{U}\mathbf{v}\| = \|\mathbf{v}\|$$ for every n-dimensional column vector v with complex number entries. If ν is a quantum state vector, then $U\nu$ is also a quantum state vector. #### 1. Pauli operations Pauli operations are ones represented by the Pauli matrices: $$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$ Common alternative notations: $X = \sigma_x$, $Y = \sigma_u$, and $Z = \sigma_z$. The operation σ_x is also called a *bit flip* (or a NOT operation) and the σ_z operation is called a *phase flip*: $$\sigma_{x}|0\rangle = |1\rangle$$ $\sigma_{z}|0\rangle = |0\rangle$ $\sigma_{x}|1\rangle = |0\rangle$ $\sigma_{z}|1\rangle = -|1\rangle$ #### 2. Hadamard operation The Hadamard operation is represented by this matrix: $$H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$ Checking that H is unitary is a straightforward calculation: $$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}^{\dagger} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \frac{1}{2} & \frac{1}{2} - \frac{1}{2} \\ \frac{1}{2} - \frac{1}{2} & \frac{1}{2} + \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$ #### 3. Phase operations A phase operation is one described by the matrix $$P_{\theta} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$$ for any choice of a real number θ . The operations $$S = P_{\pi/2} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \quad \text{and} \quad T = P_{\pi/4} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{pmatrix}$$ are important examples. Example 1 $H |0\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{5}} \end{pmatrix} = |+\rangle$ $H |1\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = |-\rangle$ $H \mid + \rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \mid 0 \rangle$ $H \mid - \rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \mid 1 \rangle$ ## Example 1 $H |0\rangle = |+\rangle$ $H |+\rangle = |0\rangle$ $H |1\rangle = |-\rangle$ $H |-\rangle = |1\rangle$ $H\left(\frac{1+2i}{3}\mid 0\right) - \frac{2}{3}\mid 1\right) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1+2i}{3} \\ -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{-1+2i}{3\sqrt{2}} \\ \frac{3+2i}{3\sqrt{2}} \end{pmatrix}$ $=\frac{-1+2i}{3\sqrt{2}}|0\rangle+\frac{3+2i}{3\sqrt{2}}|1\rangle$ # Example 2 $T|0\rangle = |0\rangle$ and $T|1\rangle = \frac{1+i}{\sqrt{2}}|1\rangle$ $T \mid + \rangle = T \left(\frac{1}{\sqrt{2}} \mid 0 \rangle + \frac{1}{\sqrt{2}} \mid 1 \rangle \right)$ $= \frac{1}{\sqrt{2}} T |0\rangle + \frac{1}{\sqrt{2}} T |1\rangle$ $=\frac{1}{\sqrt{2}}|0\rangle+\frac{1+i}{2}|1\rangle$ $$T = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{pmatrix}$$ $$T |+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1+i}{2} |1\rangle$$ $$HT|+\rangle = H\left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1+i}{2} |1\rangle\right)$$ $$= \frac{1}{\sqrt{2}} H|0\rangle + \frac{1+i}{2} H|1\rangle$$ $$= \frac{1}{\sqrt{2}} |+\rangle + \frac{1+i}{2} |-\rangle$$ $$= \left(\frac{1}{2} |0\rangle + \frac{1}{2} |1\rangle\right) + \left(\frac{1+i}{2\sqrt{2}} |0\rangle - \frac{1+i}{2\sqrt{2}} |1\rangle\right)$$ $$= \left(\frac{1}{2} + \frac{1+i}{2\sqrt{2}}\right) |0\rangle + \left(\frac{1}{2} - \frac{1+i}{2\sqrt{2}}\right) |1\rangle$$ $$H |0\rangle = |+\rangle$$ $H |1\rangle = |-\rangle$ ### Composing unitary operations Compositions of unitary operations are represented by matrix multiplication (similar to the probabilistic setting). Example: square root of NOT Applying a Hadamard operation, followed by the phase operation S, followed by another Hadamard operation yields this operation: $$HSH = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix}$$ Applying this unitary operation twice yields a NOT operation: $$(HSH)^{2} = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix}^{2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$