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Descriptions of quantum information

Simplified description (this unit)

e Simpler and typically learned first

e Quantum states represented byoperations are represented

2 unitary matrices

e Sufficient for an understanding of most quantum algorithms

General description (covered in a later unit)

e More general and more broadly applicable

e Quantum states represented by [elEEAuletidlo=:H allows for a more
general class of measurements and operations

e Includes both the simplified description and classical information
(including probabilistic states) as special cases



Classical information

Consider a physical system that stores information: let us call it X.
Assume X can be in one of a finite number of [gleEElelel R0l at each moment.
Denote this classical state set by ..

Examples

e If X is a bit, then its classical state set is X = {0, 1}.

e If X is a six-sided die, then X ={1,2,3,4,5,6}.

e If X is a switch on a standard electric fan, then perhaps
> = {high, medium, low, off}.

There there may beabout the classical state of a system, where each
classical state has some [algelalelafilis¥ associated with it.



Classical information

For example, if X is a bit, then perhaps it is in the classical state 0 with probability 3/4
and in the classical state 1 with probability 1/4. This is a[slgelelelstilEilexigeti=] Of X.

&=

3
Pr(X=0) = i and Pr(X=1)=
A succinct way to represent this probabilistic state is by a [l el

% «— entry corresponding to O
1
4

«— entry corresponding to 1

This vector is a[eJge)elelol1its/A%={o1{o) 8

e All entries are nonnegative real numbers.

e The sum of the entries is 1.



Dirac notation (first part)

Let 2 be any classical state set, and assume the elements of X have been placed
in correspondence with the integers 1, ..., |X|.

We denote by |a) the having a 1 in the entry corresponding to
a € 2, with O for all other entries.

Example 1
If ¥ ={0, 1}, then



Dirac notation (first part)

Let 2 be any classical state set, and assume the elements of X have been placed
in correspondence with the integers 1, ..., |X|.

We denote by |a) the having a 1 in the entry corresponding to
a € 2, with O for all other entries.

Example 2

If X = {&, & 9 &} then we might choose to order these states like
this: &, ¢, @ & This yields

o O O =~
o O = O
o = O O
= O O O



Dirac notation (first part)

Let 2 be any classical state set, and assume the elements of X have been placed
in correspondence with the integers 1, ..., |X|.

We denote by |a) the having a 1 in the entry corresponding to
a € 2, with O for all other entries.

Vectors of this form are called Ejfelalelelfe Nele IR =lo1(e)éH Every vector can be
expressed uniquely as a linear combination of standard basis vectors.

Example
3

1
=710+ 711

I TN



Measuring probabilistic states

What happens if wea system X while it is in some probabilistic state?
We see a[lelXjlee18501(=8 chosen at random according to the probabilities.
Suppose we see the classical state a € 2.

This changes the probabilistic state of X (from our viewpoint): having recognized
that X is in the classical state a, we now have

Pr(X=a)=1

This probabilistic state is represented by the vector |a).



Measuring probabilistic states

Example

Consider the probabilistic state of a bit X where

I

3
Pr(X=0) = i and Pr(X=1)=

Measuring X selects (or reveals) a transition, chosen at random:

3 1
Z|0>+Z|1>

& ko Prop,

o Q).
(0\0‘a~ ///’J/ \1
Q 4

0) 1)



Deterministic operations
Every function f : ¥ — X describes athat transforms

the classical state a into f(a), foreach a € X.

Given any function f : ¥ — X, there is a (unique) matrix M satisfying
M |a) = |[f(a)) (forevery a € X)

This matrix has exactly one 1 in each column, and O for all other entries:

1 b=1(a)

M(Ba) = {o b # f(a)

The action of this operation is described by [gleligh@V=loife)daal01iqTo) [ ololile]g K

v — Mv



Deterministic operations

Example
For X = {0, 1}, there are four functions of the form f: £ — X: M(b, a) = 1 b=fla)
0 b#f(a)
a|fi(@) _a|fle) _alfia) _afia) M a) = [(a))
0| o0 0| o o 1 o] 1 =i
1 0 1 1 1 0 1 1




Dirac notation (second part)

Let 2 be any classical state set, and assume the elements of X have been placed
in correspondence with the integers 1, ..., |2].

We denote by (a| the having a 1 in the entry correspondingto a € X,
with O for all other entries.

Example

If ¥ ={0, 1}, then



Dirac notation (second part)

Let 2 be any classical state set, and assume the elements of X have been placed
in correspondence with the integers 1, ..., |X|.

We denote by (a| the having a 1 in the entry correspondingto a € X,
with O for all other entries.

Multiplying a row vector to a column vector yields a scalar:

*

*

1 a=b
(alb)=<allb>={0 atb



Dirac notation (second part)

Let 2 be any classical state set, and assume the elements of X have been placed
in correspondence with the integers 1, ..., |X|.

We denote by (a| the having a 1 in the entry correspondingto a € X,
with O for all other entries.

Multiplying a row vector to a column vector yields a scalar:

0

1
(001 0 - o0)o|=(1)

0

1 a=b
(alb)=<allb>={0 aib



Dirac notation (second part)

Let 2 be any classical state set, and assume the elements of X have been placed
in correspondence with the integers 1, ..., |X|.

We denote by (a| the having a 1 in the entry correspondingto a € X,
with O for all other entries.

Multiplying a row vector to a column vector yields a scalar:

0
(0 1 0 - o0)|o|=(0)

0

1 a=b
(alb)=<allb>={0 aib



Dirac notation (second part)

Let 2 be any classical state set, and assume the elements of X have been placed
in correspondence with the integers 1, ..., |X|.

We denote by (a| the having a 1 in the entry correspondingto a € X,
with O for all other entries.

Multiplying a column vector to a row vector yields a matrix:

* * * * *
* * * * *
* (* * * *) = | * * * *




Dirac notation (second part)

Multiplying a column vector to a row vector yields a matrix:

* * * * *
* * * * *
* (* * * *) = | * * * *
* * * * *

Example



Dirac notation (second part)

Multiplying a column vector to a row vector yields a matrix:

* * * * *
* * * * *
* (* * * *) = | * * * *
* * * * *

Example



Dirac notation (second part)

Multiplying a column vector to a row vector yields a matrix:

* * k% *

* * k% *

* (* * % *) =|% *x % *

* * k% *
Example



Dirac notation (second part)

Multiplying a column vector to a row vector yields a matrix:

* * * * *
* * * * *
* (* * * *) = | * * * *
* * * * *

Example



Dirac notation (second part)

Multiplying a column vector to a row vector yields a matrix:

* * * * *
* * * * *
* (* * * *) = | * * * *

In general, the matrix

|a){b]

hasalinthe (a, b)-entry and O for all other entries.



Deterministic operations
Every function f : ¥ — X describes athat transforms

the classical state a into f(a), foreach a € X.

Given any function f : ¥ — X, there is a (unique) matrix M satisfying

M |a) = |[f(a)) (forevery a € X)

This matrix may be expressed as

M=) |f(b))(b]

bel

Its action on standard basis vectors works as required:

M|a) =(Z |f<b>><b|)|a> = ) [f(b))(bla) = |f(a))

beX beXx



Probabilistic operations
are classical operations that may introduce randomness

or uncertainty.

Example
Here is a probabilistic operation on a bit: L1
If the classical state is 0, then do nothing. ( 2)
o 1
2

If the classical state is 1, then flip the bit
with probability 1/2.

Probabilistic operations are described by Ej{elelglekaloNaalolig o5

e All entries are nonnegative real numbers

e The entries in every columnsumtol



Probabilistic operations

Zre)eleloNIIE floNe)ellgoile)g ks are classical operations that may introduce randomness

or uncertainty.

Example
Here is a probabilistic operation on a bit: .
If the classical state is 0, then do nothing. (
0

If the classical state is 1, then flip the bit with
probability 1/2.

Probabilistic operations are described by Ej{elelglekaloNaalolig o5

e All entries are nonnegative real numbers

e The entries in every columnsumto 1



Composing operations

Suppose X is a system and M, ..., M, are stochastic matrices representing
probabilistic operations on X.

Applying the first probabilistic operation to the probability vector v, then
applying the second probabilistic operation to the result yields this vector:

Mo(Myv) = (MaMy)v

The probabilistic operation obtained bythe first and second
probabilistic operations is represented by the M>M;j.

Composing the probabilistic operations represented by the matrices
My, ..., M, (inthat order) is represented by this matrix product:

M,, - M1



Composing operations

Suppose X is a system and M, ..., M, are stochastic matrices representing
probabilistic operations on X.

Composing the probabilistic operations represented by the matrices
My, ..., M, (in that order) is represented by this matrix product:

M,, --- M1

The order is important: matrix multiplication is
1 1 0 1
M]_ = M2 =]
0 O 1 0

0O O 1 1
MyM; = MM, =
1 0



Quantum information

A lelllat RS el of a system is represented by awhose indices are
placed in correspondence with the classical states of that system:

e The entries are complex numbers.
e The sum of the absolute values squared of the entries must equal 1.
Definition

Thefor vectors with complex number entries is defined
like this:

X1

n
v=| i | = vll=|) lel?
k=1

Xn

Quantum state vectors are therefore [lialaatle with respect to this norm.



Quantum information

A lelllat RS el of a system is represented by awhose indices are
placed in correspondence with the classical states of that system:

e The entries are complex numbers.
e The sum of the absolute values squared of the entries must equal 1.

Examples of qubit states

e Standard basis states: |0) and |1)
e Plus/minus states:

1 1 1 1
1+) = ﬁ'OHEM and |-) = EIO)—\—EIU

e A state without a special name:

1+21 2
=10 - 51




Quantum information

A lelllat RS el of a system is represented by awhose indices are
placed in correspondence with the classical states of that system:

e The entries are complex numbers.
e The sum of the absolute values squared of the entries must equal 1.

Example

A guantum state of a system with classical states &, ¢, ®, and #:

N =
e

IS N



Dirac notation (third part)

The Dirac notation can be used for arbitrary vectors: any name can be used in
place of a classical state. Kets are column vectors, bras are row vectors.

Example

The notation |1) is commonly used to refer to an arbitrary vector:

1+ 21 2
) = == 10) - = |1)

For any column vector |1), the row vector (1| is the [gelliiFfeli=Rigelielel = of | ):

(W] = )



Dirac notation (third part)

The Dirac notation can be used for arbitrary vectors: any name can be used in
place of a classical state. Kets are column vectors, bras are row vectors.

Example

The notation |1) is commonly used to refer to an arbitrary vector:

1+ 21 2
) = == 10) - = |1)

(W] = == (0] - 5 (1

For any column vector |1 ), the row vector (1| is the [Selalliteleli=Rige g5 elel= of | ):

(W] = )



Dirac notation (third part)

The Dirac notation can be used for arbitrary vectors: any name can be used in
place of a classical state. Kets are column vectors, bras are row vectors.

Example

The notation |1) is commonly used to refer to an arbitrary vector:

1+ 9 1+21
+
W)= 22— s =|
3
(W =257 0l - 3= (2 -2)
8




Measuring quantum states

For this lesson will restrict our attention to Efelalelelge Nsle N aal=lo kNig=1a g =1aV i
e The possible [l are the (Lo C

e The probability for each classical state to be the outcome is the

ol o)) NI=AVo 1 N=R e Ve ld=0o) OF the corresponding quantum state vector entry.
Example 1

Measuring the quantum state

1 1
|+) = EIO) + Ell)

yields an outcome as follows:

2

1
Pr(outcome is 1) = ‘—

V2

N| —=

Pr(outcome is 0) = 1 E
r = \/5 >




Measuring quantum states

For this lesson will restrict our attention to Efelalelelge Nsle N aal=lo kNig=1a g =1aV i
e The possible [l are the (Lo C

e The probability for each classical state to be the outcome is the

ol o)) NI=AVo 1 N=R e Ve ld=0o) OF the corresponding quantum state vector entry.
Example 2

Measuring the quantum state

1 1
|-) = EIO) - Ell)

yields an outcome as follows:

Pr(outcome is 0) = ‘—

= Pr(outcome is 1) = ‘——




Measuring quantum states

For this lesson will restrict our attention to Efelalelelge Nsle N aal=lo kNig=1a g =1aV i
e The possible [l are the (Lo C

e The probability for each classical state to be the outcome is the

ol o)) NI=AVo 1 N=R e Ve ld=0o) OF the corresponding quantum state vector entry.
Example 3

Measuring the quantum state

1+21
3

2
0) =3 (1)
yields an outcome as follows:

2

1+21
3

> 5

Pr(outcome is 0) = |

Ol

Pr(outcome is 1) = ‘—

3

Ol



Measuring quantum states

For this lesson will restrict our attention to Efelalelelge Nsle N aal=lo kNig=1a g =1aV i
e The possible [l are the (Lo C

e The probability for each classical state to be the outcome is the

ol o)) NI=AVo 1 N=R e Ve ld=0o) OF the corresponding quantum state vector entry.
Example 4

Measuring the quantum state |0) gives the outcome 0 with certainty, and
measuring the quantum state |1) gives the outcome 1 with certainty.



Measuring quantum states

For this lesson will restrict our attention to [Selglelelge Mol itV aa =le ;M= gal=la 1K
e The possibleare il classical states.

e The probability for each classical state to be the outcome is the
ol o)) NI=AVo 1 N=R e Ve ld=0o) OF the corresponding quantum state vector entry.

Measuring a system changes its quantum state: if we obtain the classical
state a, the new quantum state becomes | a).

1+21

2
7 10— 3 1)




Unitary operations

The set of allowablethat can be performed on a quantum state is
different than it is for classical information.

Operations on quantum state vectors are represented by
Definition
A square matrix U having complex number entries is if it satisfies
the equalities

utu=1=uu'

where U is the conjugate transpose of U and 1 is the identity matrix.

Both equalities are equivalent to ut=u



Unitary operations

A square matrix U having complex number entries is if it satisfies
the equalities

utu=1=uu’

where U is the conjugate transpose of U and 1 is the identity matrix.

The condition that an n X . matrix U is unitary is equivalent to

U] = [[v]

for every n-dimensional column vector v with complex humber entries.

If v is a quantum state vector, then Uv is also a quantum state vector.



Qubit unitary operations

Pauli operations are ones represented by the Pauli matrices:

o D) o) e 0T) 6 )

Common alternative notations: X = o, Y = oy, and Z = 0.

The operation oy is also called a[sJigilfel (or a NOT operation) and the o,

operation is called a[eJglekL=HiIoK

0x|0) = 1) 0,/0) = |0)
ox|1) =10) 0,[1) = 1)



Qubit unitary operations

The Hadamard operation is represented by this matrix:

1

1

V2

Sk sl

Checking that H is unitary is a straightforward calculation:

1 o1\t 1 1 1 \/L L 1,1
2 wllve v vz w2l|vw w|_ (272
1 _1)la _a) lx _aflr _af {1_1
vz V2l \v2 % 2RI\ T 273

NIR NI



Qubit unitary operations

A phase operation is one described by the matrix

for any choice of a real number 0.

The operations

ot Y rerae(t 2
= FPr/2 = . an = Pr/4 = 1+i
0 1 0 W

are important examples.



Qubit unitary operations

Example 1




Qubit unitary operations

Example 1
H[0) =[+) HI[+)=0)
H[1)=]-) HI[-)=]1)
1 49 1 1 1421 —1+2i
+ 21 V2 V2 3 3v2
(252 10-3 ) - (1 1)( )( )
B T A 3+2i
V2 V2 3 3v2
-1+21 3+2i
0 1
5 0) + > 1)



Qubit unitary operations

Example 2




Qubit unitary operations

Example 2

1 1+1

ﬁ|0> +— 1)

T|+) =

HT|+>=H(%|0> + 200

1 141
= —H|0) +
70
1 1+1
= —|+) +

I+ Ty )
- (3100 +310)+ (5100 - =)

(2202

H|1)

H |0)
H|1)

+)
=)



Composing unitary operations
(YT EERTEE of unitary operations are represented by [t aL LI et

(similar to the probabilistic setting).

Example: square root of NOT

Applying a Hadamard operation, followed by the phase operation S,
followed by another Hadamard operation yields this operation:

1 1 1 0 1 1 I+i 1-i
HSH = V2 V2 V2 V2 | | 2 2
1 1 J]\0o i/)|L _L 1-i 1+i
V2 V2 V2 V2 2 2

(HSH)? =



