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Lecture 1

Course overview and mathematical
foundations

1.1 Course overview

This course is about the theory of computation, which deals with mathematical prop-
erties of abstract models of computation and the problems they solve. An impor-
tant idea to keep in mind as we begin the course is this:

Computational problems, devices, and processes can themselves be viewed as
mathematical objects.

We can, for example, think about each program written in a particular program-
ming language as a single element in the set of all programs written in that lan-
guage, and we can investigate not only those programs that might be interesting
to us, but also properties that must hold for all programs. We can also classify com-
putational problems in terms of which models can solve them and which cannot.

The notion of a computation is very general. Examples of things that can be
viewed or described as computations include the following;:

Computers running programs (of course).

Networks of computers running protocols.

People performing calculations with a pencil and paper.

Mathematical proofs.

Certain biological processes.

The precise definition of what constitutes a computation can be debated (which is
something we will not do), but a reasonable starting point for a definition is that a
computation is a manipulation of symbols according to a fixed set of rules.
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CS 360 Introduction to the Theory of Computing

One interesting connection between computation and mathematics, which is
particularly important from the viewpoint of this course, is that mathematical proofs
and computations performed by the models we will discuss throughout this course
have a low-level similarity: they both involve symbolic manipulations according to
fixed sets of rules. Indeed, fundamental questions about proofs and mathematical
logic have played a critical role in the development of theoretical computer science.

We will begin the course with very simple models of computation (finite au-
tomata, regular expressions, context-free grammars, and related models), and later
on we will discuss more powerful computational models, such as the Turing ma-
chine model. Before we get to any of these models, however, it is appropriate that
we discuss some of the mathematical foundations and definitions upon which our
discussions will be based.

1.2 Sets and countability

It will be assumed throughout these notes that you are familiar with naive set
theory and basic propositional logic.

Basic set theory

Naive set theory treats the concept of a set to be self-evident. This will not be
problematic for the purposes of this course, but it does lead to problems and
paradoxes—such as Russell’s paradox—when it is pushed to its limits. Here is one
formulation of Russell’s paradox, in case you are interested:

Russell’s paradox. Let S be the set of all sets that are not elements of themselves:
S={T:T¢T}.

Is it the case that S is an element of itself?

If S € S, then by the condition that a set must satisfy to be included in S, it must
be that S ¢ S. On the other hand, if S ¢ S, then the definition of S says that S is
to be included in S. It therefore holds that S € S if and only if S ¢ S, which is a
contradiction.

If you want to avoid this sort of paradox, you need to replace naive set theory
with axiomatic set theory, which is quite a bit more formal and disallows objects
such as the set of all sets (which is what opens the door to let in Russell’s paradox).
Set theory is the foundation on which mathematics is built, so axiomatic set the-
ory is the better choice for making this foundation sturdy. Moreover, if you really
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Lecture 1

wanted to reduce mathematical proofs to a symbolic form that a computer can
handle, something along the lines of axiomatic set theory would be needed.

On the other hand, axiomatic set theory is more complicated than naive set
theory, and it is also outside of the scope of this course. Fortunately, there will be
no specific situations that arise in this course for which the advantages of axiomatic
set theory over naive set theory explicitly appear, and for this reason we are safe
in thinking about set theory from the naive point of view—and meanwhile we can
trust that everything would work out the same way if axiomatic set theory had
been used instead.

The size of a finite set is the number of elements if contains. If A is a finite set,
then we write |A| to denote this number. For example, the empty set is denoted @
and has no elements, so |&| = 0. A couple of simple examples are

l{a,b,c}| =3 and |{1,...,n}| =n. (1.1)

In the second example, we are assuming 7 is a positive integer, and {1,...,n}is
the set containing the positive integers from 1 to n.

Countability

Sets can also be infinite. For example, the set of natural numbers'
N=1{0,1,2,...} (1.2)
is infinite, as are the sets of integers
z={..,-2-1,012..}, (1.3)
and rational numbers "
Q:{a:n,mez,m%O}. (1.4)

The sets of real and complex numbers are also infinite, but we will not define these
sets here because they will not play a major role in this course and the definitions
are a bit more complicated than one might initially expect.

While it is sometimes sufficient to say that a set is infinite, we will require a
more refined notion, which is that of a set being countable or uncountable.

Definition 1.1. A set A is countable if either (i) A is empty, or (ii) there exists an
onto (or surjective) function of the form f : N — A. If a set is not countable, then
we say that it is uncountable.

1 Some people choose not to include 0 in the set of natural numbers, but in these notes 0 is
included among the natural numbers. It is not right or wrong to make such a choice, it is only a
definition, and what is most important is that we make clear the precise meaning of the terms we
use.
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These three statements are equivalent for any choice of a set A:
1. Ais countable.
2. There exists a one-to-one (or injective) function of the form g: A — IN.

3. Either A is finite or there exists a one-to-one and onto (or bijective) function of
the form i : IN — A.

It is not obvious that these three statements are actually equivalent, but it can be
proved. We will, however, not discuss the proof.

Example 1.2. The set of natural numbers IN is countable. Of course this is not sur-
prising, but it is sometimes nice to start out with a simple example. The fact that N
is countable follows from the fact that we may take f : IN — IN to be the identity
function, meaning f(n) = n for all n € IN, in Definition 1.1. Notice that substi-
tuting f for the function g in statement 2 above makes that statement true, and
likewise for statement 3 when f is substituted for the function /.

The function f(n) = n is not the only function that works to establish that N is
countable. For example, the function

f(n) = (1.5)

n+1 ifniseven
n—1 ifnisodd

also works. The first few values of this function are

fO) =1 f(1)=0, f(2)=3 f(8)=2 (1.6)

and it is not too hard to see that this function is both one-to-one and onto. There
are (infinitely) many other choices of functions that work equally well to establish
that IN is countable.

Example 1.3. The set Z of integers is countable. To prove that this is so, it suffices
to show that there exists an onto function of the form

f:N—Z. (1.7)

As in the previous example, there are many possible choices of f that work, one of
which is this function:

0 ifn=0
f(n) =< ifnisodd (1.8)
—% if 11 is even.

Thus, we have
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and so on. This is a well-defined? function of the correct form f:IN — Z,and itis
onto: for every integer m, there is a natural number n € IN so that f(n) = m, as is
evident from the pattern exhibited by (1.9).

Example 1.4. The set Q of rational numbers is countable, which we can prove by
defining an onto function taking the form f : IN — Q. Once again, there are many
choices of functions that would work, and we will pick just one.

First, imagine that we create a sequence of finite sequences (or lists)

(LOI Ll/ LZ/ .. ) (110)
that starts like this:
Lo = (0), (1.11)
Ly =(-1,1), (1.12)
11

LZ - (_21_51 512)/ (113)

3 2 1123
—(3'5 3 555?9' (119

1134
_( 4/ __/_111111514)/ (115)

5 4 3 2 11 g § é

5 5 555
L“—Cﬂ—a—y 75 5 5 555551555) (116)
In general, for any n > 1 we let L, be the sorted list of all numbers that can be writ-
ten as k/m for k,m € {—n, ..., n} satisfying m # 0, as well as not being included
in any of the previous lists L;, for j < n. The sequences get longer and longer, but
for every natural number 7 it is surely the case that L, is a finite sequence.

Now consider the single sequence S obtained by concatenating together the

sequences Ly, L1, Ly, etc. The beginning of S looks like this:

11 3 2 1123 4 3
= -1,1,-2,—%,-,2,-3,— 5, — 5, 5573334 ——75—,...|. 117
S (0/ 1/ 1/ 2/ 2/ 2/2/ 3/ 2/ 3/ 3/ 3/ 3/ 213/ 4/ 3/ 4/ ) (1 1 )
It is a well-defined sequence because each of the lists L; is finite. (In contrast, it
would not be clear what was meant by the concatenation of two or more infinite

sequences.)

2 We can think of well-defined as meaning that there are no “undefined” values, and moreover
that every reasonable person that understands the definition would agree on the values the function
takes, irrespective of when or where they consider the definition.
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Finally, let
f:N—=Q (1.18)

be the function we obtain by setting f(n) to be the number in position n of the
sequence S, assuming that S begins with position 0. For example,

f0)=0, f(1)=-1, and f(8) = —3/2. (1.19)

Even though we did not write down an explicit formula for the function f, it is a
well-defined function of the proper form (1.18).

Most importantly, f is an onto function—for any rational number you choose,
you will eventually find that rational number in the list constructed above. It fol-
lows from the fact that f is onto that Q is countable.

The function f also happens to be one-to-one, but we do not need to know this
to conclude that Q is countable.

An uncountable set

It is natural at this point to ask a question: Is every set countable? The answer is
no, and we will soon see an example of an uncountable set. First, however, we will
need the following definition.

Definition 1.5. For any set A, the power set of A is the set P(A) containing all
subsets of A:
P(A) = {B : BC A). (1.20)

For example, the power set of {1,2,3} is

P({1,2,3}) = {o {1}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3} }. (1.21)

Notice, in particular, that the empty set @ and the set {1, 2, 3} itself are contained in
the power set P({1,2,3}). For any finite set A, the power set P(A) always contains
2/4l elements, which is why it is called the power set.

Also notice that there is nothing that prevents us from taking the power set of
an infinite set. For instance, the power set of the natural numbers P(IN) is the set
containing all subsets of IN.

The set P(IN) is, in fact, is our first example of an uncountable set.

Theorem 1.6 (Cantor). The power set of the natural numbers, P(IN), is uncountable.

Proof. Assume toward contradiction that P(IN) is countable, so that there exists an
onto function of the form f : N — P(IN). From this function we may define a
subset of natural numbers as follows:

S={neN:né¢f(n)} (1.22)

6
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This definition makes sense because, for each n € IN, f(n) is an element of P(IN),
which is equivalent to f(n) being a subset of IN.

Now, the set S is a subset of IN, or equivalently, S € P(IN). We have assumed
that f is onto, and therefore there must exist a natural number m € N such that
f(m) = S. Fix such a choice of m for the remainder of the proof.

We will now consider whether or not the number m is contained in the set S.
The statement that m € S is equivalent to the statement that m € f(m) by the
requirement that S = f(m). The statement that m € f(m) is, however, equivalent
to the statement that m ¢ S by the definition of the set S. That is to say, m € S if
and only if m ¢ S, which is a contradiction.

Having obtained a contradiction, we conclude that our assumption that P(IN)
is countable was wrong, and so the theorem is proved. O

There is a technique at work in this proof, known as diagonalization. 1t is a fun-
damentally important technique in the theory of computation, and we will see
instances of it later.

Using this technique, one can also prove that the sets R and C of real and com-
plex numbers are uncountable. The central idea is the same as the proof above,
but there is a small inconvenience caused by the fact that the natural approach of
associating real numbers with infinite sequences of digits, as in the decimal or bi-
nary representation we are familiar with, does not define a one-to-one and onto
function—there will always be real numbers having multiple representations. If
you are interested, try to make it work!

1.3 Alphabets, strings, and languages

The last thing we will do for this lecture is to introduce some basic terminology
that will be used throughout the course.

Alphabets

First let us define what we mean by an alphabet.

Intuitively speaking, when we refer to an alphabet, we mean a collection of
symbols that could be used for writing, encoding information, or performing cal-
culations. Mathematically speaking, there is not much to say—there is nothing to
be gained by defining what is meant by the words symbol, writing, encoding, or cal-
culating in this context, so instead we keep things as simple as possible and stick to
the mathematical essence of the concept.

Definition 1.7. An alphabet is a finite and nonempty set.

7
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Typical names used for alphabets in this course are capital Greek letters such
as X, I', and A. We refer to elements of alphabets as symbols, and we will often use
lower-case letters appearing at the beginning of the Roman alphabet, such as a, b,
¢, and d, as variable names when referring to symbols.

Our favorite alphabet in these notes will be the binary alphabet ¥. = {0,1}.

Sometimes we will refer to the unary alphabet ¥ = {0} that has just one sym-
bol. Although it is not a very efficient choice for encoding information, the unary
alphabet is a valid alphabet, and we will find good uses for it.

We can also think about alphabets more abstractly. For instance, we may con-
sider the alphabet

Y ={01,...,n—1}, (1.23)

where 7 is a large positive integer, like n = 1,000, 000, or it may even be the case
that n is a hypothetical positive integer that has not been explicitly chosen. Of
course we do not need to dream up different symbols in order to contemplate such
an alphabet in a mathematical sense.

Alphabets can also contain other symbols, such as

>={AB,C,...,Z}, T={0,0, 8 &}, or T={x= 4 & 0O, (124

but from the viewpoint of this course the actual symbols that appear in alphabets
will not really matter all that much. From a mathematical point of view, there is
nothing special about the alphabets {©, <, #, &} and {&e, &, &, ©} that distin-
guishes them from the alphabet {0,1,2,3}. For this reason, when it is convenient
to do so, we may assume without loss of generality that a given alphabet we are
working with takes the form (1.23) for some positive integer 7.

On the other hand, when it is convenient for us to choose symbols other than
those suggested above, meaning 0, 1, 2, etc., we will not hesitate to do that. Some-
times it is very convenient to pick different symbols for alphabets, such as in a
construction (or formal description) of a machine or algorithm that performs a
complicated task, as we will see. A simple example is that we often choose the
symbol # to suggest a separator between strings not containing this symbol.

Strings

Next we have strings, which are defined with respect to a particular alphabet as
follows.

Definition 1.8. A string over an alphabet X is a finite sequence of symbols drawn
from X. The length of a string is the total number of symbols it contains, counting
repetitions.
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For example, 11010 is a string of length 5 over the binary alphabet £ = {0,1}.
It is also a string over the alphabet ' = {0, 1,2}; it just does not happen to include
the symbol 2.

On the other hand,

0101010101 --- (repeating forever) (1.25)

is not a string because it is not finite. There are situations where it is interesting or
useful to consider infinitely long sequences of symbols like this, but in this course
we will not refer to such things as strings.

There is a special string, called the empty string, that has length zero, meaning
that it is an empty sequence with no symbols in it. We will denote this string by e.
(You may find that other writers choose a different symbol, such as A, to represent
the empty string.)

We will typically use lower-case letters appearing near the end of the Roman
alphabet, such as u, v, w, x, y, and z, as names that refer to strings. Saying that these
are names that refer to strings is just meant to clarify that we are not thinking about
u,v,w, x, Yy, and z as being single symbols from the Roman alphabet in this context.
Because we are essentially using symbols and strings to communicate ideas about
symbols and strings, there is hypothetically a chance for confusion, but once we
establish some simple conventions, this will not be an issue.

If w is a string, we denote the length of w as |w]|.

Languages
Finally, the term language refers to any collection of strings over some alphabet.

Definition 1.9. A language over an alphabet X is any set of strings, with each one
being a string over the alphabet ..

Notice that there has to be an alphabet associated with a language. We would not,
for instance, consider a set of strings that includes infinitely many different sym-
bols appearing among all of the strings to be a language.

A simple but nevertheless important example of a language over a given al-
phabet . is the set of all strings over . We denote this language as ~*. Another
simple and important example of a language is the empty language, which is the
set containing no strings at all. The empty language is denoted & because it is the
same thing as the empty set; there is no point in introducing any new notation
here because we already have a notation for the empty set. The empty language is
a language over an arbitrary choice of an alphabet.

In this course we will typically use capital letters near the beginning of the
Roman alphabet, such as A, B, C, and D, to refer to languages. Sometimes we will

9
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also give special languages special names, such as PAL and DIAG, as you will see
later.

We will see many other examples of languages throughout the course. Here are
a few examples involving the binary alphabet £ = {0,1}:

A= {0010, 110110, 011000010110, 111110000110100010010}, (1.26)
B = {x € ¥* : x starts with 0 and ends with 1}, (1.27)
C = {x € £ : xis abinary representation of a prime number}, (1.28)
D = {x € X* : |x| and |x| + 2 are prime numbers }. (1.29)

The language A is finite, B and C are not finite (they both have infinitely many
strings), and at this point in time nobody knows if D is finite or infinite (because
the so-called twin primes conjecture remains unproved).

10
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Countability for languages;
deterministic finite automata

The main goal of this lecture is to introduce our first model of computation, the fi-
nite automata model, but first we will finish our introductory discussion of alpha-
bets, strings, and languages by connecting them with the notion of countability.

2.1 Countability and languages

We discussed a few examples of languages last time, and considered whether or
not those languages were finite or infinite. Now let us think about the notion of
countability in the context of languages.

Languages are countable
We will begin with the following proposition.!

Proposition 2.1. For every alphabet X, the language ~* is countable.

Let us focus on how this proposition may be proved just for the binary alphabet
¥ = {0,1} for simplicity; the argument is easily generalized to any other alphabet.
To prove that * is countable, it suffices to define an onto function

fiN— 2, 2.1)

1 In mathematics, names including proposition, theorem, corollary, and lemma refer to facts, and
which name you use depends on the nature of the fact. Informally speaking, theorems are important
facts that we are proud of, and propositions are also important facts, but we are embarrassed to
call them theorems because they are so easy to prove. Corollaries are facts that follow easily from
theorems, and lemmas (or lemmata for Latin purists) are boring technical facts that nobody cares
about except for the fact that they are useful for proving more interesting theorems.

11
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In fact, we can easily obtain a one-to-one and onto function f of this form by
considering the lexicographic ordering of strings. This is what you get by ordering
strings by their length, and using the “dictionary” ordering among strings of equal
length. The lexicographic ordering of 2* begins like this:

e, 0, 1, 00, 01, 10, 11, 000, 001, ... (2.2)

From this ordering we can define a function f of the form (2.1) simply by setting
f(n) to be the n-th string in the lexicographic ordering of ¥*, starting from 0. Thus,
we have

f(0)=¢ f(1) =0, f(2) =1, f(3) =00, f(4) =01, (2.3)

and so on. An explicit method for calculating f (1) is to write n 4 1 in binary nota-
tion and then throw away the leading 1.

It is not hard to see that the function f is an onto function; every binary string
appears as an output value of the function f. It therefore follows that X* is count-
able. It is also the case that f is a one-to-one function, which is to say that the
lexicographic ordering provides us with a one-to-one and onto correspondence
between IN and X*.

It is easy to generalize this argument to any other alphabet. The first thing we
need to do is to decide on an ordering of the alphabet symbols themselves. For the
binary alphabet we order the symbols in the way we were trained: first 0, then 1. If
we started with a different alphabet, suchasT' = {©, {, &, &}, it might not be clear
how to order the symbols, and people might disagree on what ordering is best. But
it does not matter to us so long as long as we pick a single ordering and remain
consistent with it. Once we have ordered the symbols in a given alphabet T', the
lexicographic ordering of the language I'* is defined in a similar way to what we
did above, using the ordering of the alphabet symbols to determine what is meant
by “dictionary” ordering. From the resulting lexicographic ordering we obtain a
one-to-one and onto function f : N — I'*.

Remark 2.2. A brief remark is in order concerning the term lexicographic order.
Some use this term to mean something different: dictionary ordering without first
ordering strings according to length. They then use the term quasi-lexicographic or-
der to refer to what we have called lexicographic order. There is no point in worry-
ing too much about such discrepancies; there are many cases in science and math-
ematics where people disagree on terminology. What is important is that everyone
is clear about what the terminology means when it is being used. With that in
mind, in this course lexicographic order means strings are ordered first by length,
and by “dictionary” ordering among strings of the same length.

12
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It follows from the fact that the language X" is countable, for any choice of an
alphabet ¥, that every language A C X* is countable. This is because every subset
of a countable set is also countable. (I will leave it to you to prove this yourself. It
is a good practice problem to gain familiarity with the concept of countability.)

The set of all languages over any alphabet is uncountable

Next we will consider the set of all languages over a given alphabet. If ¥ is an
alphabet, then saying that A is a language over X is equivalent to saying that A is
a subset of ¥, and being a subset of £* is the same thing as being an element of
the power set P(X*). The following three statements are therefore equivalent, for
any choice of an alphabet X:

1. Ais alanguage over the alphabet .
2. ACYR
3. AeP(X).

We have observed, for any alphabet ¥, that every language A C X* is count-
able. It is natural to ask next if the set of all languages over ¥ is countable. It is not.

Proposition 2.3. Let ¥ be an alphabet. The set P(%*) is uncountable.

To prove this proposition, we do not need to repeat the same sort of diagonal-
ization argument used to prove that P(IN) is uncountable. Instead, we can simply
combine that theorem with the fact that there exists a one-to-one and onto function
from IN to X*.

In greater detail, let

f:N—x* (2.4)

be a one-to-one and onto function, such as the function we obtained earlier from
the lexicographic ordering of *. We can use this function f to define a function

g:P(N) — P(X¥) (2.5)
as follows: for every A C IN, we define
g(A) = {f(n) : n e A}. 6)

In words, the function ¢ simply applies f to each of the elements in a given subset
of IN. It is not hard to see that g is one-to-one and onto; we can express the inverse
of ¢ directly, in terms of the inverse of f, as follows:

¢ 1(B) = {f‘l(w) : w € B} (2.7)
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for every B C ¥*.

Now, because there exists a one-to-one and onto function of the form (2.5), we
conclude that P(IN) and P(X*) have the “same size.” That is, because P(IN) is un-
countable, the same must be true of P(X*). To be more formal about this statement,
one may assume toward contradiction that P(%*) is countable, which implies that
there exists an onto function of the form

h:IN — P(Z%). (2.8)

By composing this function with the inverse of the function g specified above, we
obtain an onto function
g 'oh:N— P(N), (2.9)

which contradicts what we already know, which is that P(IN) is uncountable.

2.2 Deterministic finite automata

The first model of computation we will discuss in this course is a simple one,
called the deterministic finite automata model. Deterministic finite automata are also
known as finite state machines.

Remark 2.4. Computer science students at the University of Waterloo have already
encountered finite automata in a previous course (CS 241 Foundations of Sequential
Programs). Regardless of one’s prior exposure of the topic, however, it is natural to
begin with precise definitions—we need them to proceed mathematically.

Please keep in mind the following two points as you consider the definition of
the deterministic finite automata model:

1. The definition is based on sets (and functions, which can be formally described
in terms of sets, as you may have learned in a discrete mathematics course).
This is not surprising: set theory provides a foundation for much of mathemat-
ics, and it is only natural that we look to sets as we formulate definitions.

2. Although deterministic finite automata are not very powerful in computational
terms, the model is important nevertheless, and it is just the start. Do not be
bothered if it seems like a weak and useless model; we are not trying to model
general purpose computers at this stage, and the concept of finite automata is
an extremely useful one.

Definition 2.5. A deterministic finite automaton (or DFA, for short) is a 5-tuple
M= (Q,%,,q0,F), (2.10)

14
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!1 !
0,1 0

Figure 2.1: The state diagram of a DFA.

where Q is a finite and nonempty set (whose elements we will call states), X is an
alphabet, J is a function (called the transition function) having the form

5:Qx%—Q, 2.11)

go € Q is a state (called the start state), and F C Q is a subset of states (whose
elements we will call accept states).

State diagrams

It is common that DFAs are expressed using state diagrams, such as this one that
appears in Figure 2.1. State diagrams express all 5 parts of the formal definition of
DFAs:

1. States are denoted by circles.

2. Alphabet symbols label the arrows.

3. The transition function is determined by the arrows, their labels, and the circles
they connect.

4. The start state is determined by the arrow coming in from nowhere.

5. The accept states are those with double circles.

For the state diagram in Figure 2.1, for example, the state set is
Q - {‘70; q1,92, 93, Q4/115}/ (212)
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the alphabet is X = {0, 1}, the start state is go, the set of accepts states is

F= {qOI q2, ‘75}; (213)

and the transition function 6 : Q x £ — Q is as follows:

6(q0,0) =qo0,  0(q1,0) =q3,  6(92,0) = g5,

6(q0,1) =q1,  d(q1,1) =q2, 6(q2,1) = g5, (2.14)
6(q3,0) = g3,  9(q4,0) =qs,  6(95,0) = qa, '
6(93,1) =q3, 9(q4,1) =q1, 0(g5,1) = 92

In order for a state diagram to correspond to a DFA, and more specifically for it
to determine a valid transition function, it must be that for every state and every
symbol, there is exactly one arrow exiting from that state labeled by that symbol.

Note, by the way, that when a single arrow is labeled by multiple symbols, such
as in the case of the arrows labeled “0,1” in Figure 2.1, it should be interpreted that
there are actually multiple arrows, each labeled by a single symbol. This is just
a way of making our diagrams a bit less cluttered by reusing the same arrow to
express multiple transitions.

You can also go the other way and draw a state diagram from a formal descrip-
tion of a 5-tuple (Q, %, 4, 9o, F).

DFA computations

It is easy enough to say in words what it means for a DFA to accept or reject a given
input string, particularly when we think in terms of state diagrams: we start on the
start state, follow transitions from one state to another according to the symbols of
the input string (reading one at a time, left to right), and we accept if and only if
we end up on an accept state (and otherwise we reject).

This all makes sense, but it is useful nevertheless to think about how it is ex-
pressed formally. That is, how do we define in precise, mathematical terms what it
means for a DFA to accept or reject a given string? In particular, phrases like “fol-
low transitions” and “end up on an accept state” can be replaced by more precise
mathematical notions.

Here is one way to define acceptance and rejection more formally. Notice again
that the definition focuses on sets and functions.

Definition 2.6. Let M = (Q,X,J,qo, F) be a DFA and let w € X* be a string. The
DFA M accepts the string w if one of the following statements holds:

1. w=eand gg € F.
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2. w = ay - --ay for a positive integer n and symbols a4, ..., 4, € ¥, and there exist
states rg,...,7, € Q such thatrg = qo, ¥, € F, and 1y, = 6(ry, axyq) for all
ke{0,...,n—1}.

If M does not accept w, then M rejects w.

In words, the formal definition of acceptance is that there exists a sequence of states
ro,...,rn such that the first state is the start state, the last state is an accept state,
and each state in the sequence is determined from the previous state and the corre-
sponding symbol read from the input as the transition function dictates: if we are
in the state g and read the symbol 4, the new state becomes p = (g, a). The first
statement in the definition is simply a special case that handles the empty string.

It is natural to consider why we would prefer a formal definition like this to
what is perhaps a more human-readable definition. Of course, the human-readable
version beginning with “Start on the start state, follow transitions ...” is effective
for explaining the concept of a DFA, but the formal definition has the benefit that
it reduces the notion of acceptance to elementary mathematical statements about
sets and functions. It is also quite succinct and precise, and leaves no ambiguities
about what it means for a DFA to accept or reject.

It is sometimes useful to define a new function

QXX —=Q (2.15)
recursively, based on a given transition function d : Q x X — Q, as follows:

1. 6*(g,¢) = g for every g € Q, and
2. 6*(g,aw) = 6*(6(g,a),w) forallg € Q,a € £, and w € X*.

Intuitively speaking, 6*(g, w) is the state you end up on if you start at state 4 and
follow the transitions specified by the string w.

It is the case thata DFA M = (Q, %, 6, qo, F) accepts a string w € ¥* if and only
if *(qo,w) € F. A natural way to argue this formally, which we will not do in
detail, is to prove by induction on the length of w that §*(q, w) = p if and only if
one of these two statements is true:

1. w=¢eand p = 4.

2. w=ay---a, for a positive integer n and symbols a1, ..., a, € ¥, and there exist
states rg,...,tn € Q such thatry = ¢q, r, = p, and ryq = 6(rg, ax,1) for all
ke{0,...,n—1}.

Once that equivalence is proved, the statement §*(qo, w) € F can be equated to M
accepting w.
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Remark 2.7. By now it is evident that we will not formally prove every statement
we make in this course. If we did, we would not have sufficient time to cover
all of the course material, and even then we might look back and feel as if we
could probably have been even more formal. If we insisting on proving everything
with more and more formality, we could in principle reduce every mathematical
claim we make to axiomatic set theory—but then we would have covered little
material about computation in a one-term course. Moreover, our proofs would
most likely be incomprehensible, and would quite possibly contain as many errors
as you would expect to find in a complicated and untested program written in
assembly language.

Naturally we will not take this path, but from time to time we will discuss the
nature of proofs, how we would formally prove something if we took the time
to do it, and how certain high-level statements and arguments could be reduced
to more basic and concrete steps pointing in the general direction of completely
formal proofs that could be verified by a computer. If you are unsure at this point
what actually constitutes a proof, or how much detail and formality you should
aim for in your own proofs, do not worry—it is one of the aims of this course to
assist in sorting this out.

Languages recognized by DFAs and regular languages

Suppose M = (Q,%,6,qo, F) is a DFA. We may then consider the set of all strings
that are accepted by M. This language is denoted L(M), so that

L(M) = {w e X" : Maccepts w}. (2.16)

We refer to this as the language recognized by M.? It is important to understand that
this is a single, well-defined language consisting precisely of those strings accepted
by M and not containing any strings rejected by M.

For example, here is a simple DFA over the binary alphabet £ = {0,1}:

~(w) Do

If we call this DFA M, then it is easy to describe the language recognized by M:

L(M) = Z*. (2.17)

2 Some refer to L(M) as the language accepted by M. This terminology does have the potential to
cause confusion, though, as it overloads the term accept.
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This is because M accepts exactly those strings in *. Now, if you were to consider
a different language over X, such as

A={we X" : |w|isaprime number}, (2.18)

then of course it is true that M accepts every string in A. However, M also accepts
some strings that are not in A, so A is not the language recognized by M.

We have one more definition for this lecture, which introduces some important
terminology.

Definition 2.8. Let X be an alphabet and let A C ¥* be a language over X. The
language A is regular if there exists a DFA M such that A = L(M).

We have not seen many DFAs thus far, so we do not have many examples of regular
languages to mention at this point, but we will see plenty of them soon enough,
and throughout the course.

Let us finish off the lecture with a question: For a given alphabet %, is the set of
all regular languages over the alphabet X countable or uncountable?

The answer is that this is a countable set. The reason is that there are countably
many DFAs over any alphabet X, and we can combine this fact with the observa-
tion that the function that maps each DFA to the regular language it recognizes is,
by the definition of what it means for a language to be regular, an onto function.

When we say that there are countably many DFAs, we really should be a bit
more precise. In particular, we are not considering two DFAs to be different if they
are exactly the same except for the names we have chosen to give the states. This
is reasonable because the names we choose for different states of a DFA have no
influence on the language recognized by that DFA—we may as well assume that
the state set of a DFA is Q = {qo, . .., qm—1} for some choice of a positive integer m.
In fact, sometimes we do not even bother assigning names to states when drawing
state diagrams of DFAs, because the state names are irrelevant to the way DFAs
operates.

To see that there are countably many DFAs over a given alphabet X, we can use
a similar strategy to what we did when proving that the set rational numbers Q
is countable. First imagine that there is just one state: Q = {go}. There are only
finitely many DFAs with just one state over a given alphabet X. (In fact there are
just two, one where gq is an accept state and one where g is a reject state.) So,
we can form a finite sequence L; of all of the DFAs having just one state. Now
consider the set of all DFAs with two states: Q = {qo,41}. Again, there are only
finitely many, so we may take L, to be any finite sequence of these DFAs—the or-
dering does not matter, it can be chosen arbitrarily. Continuing on like this, for any
choice of a positive integer m, there will be only finitely many DFAs with m states
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for a given alphabet . The number of DFAs with m states happens to grow expo-
nentially with m, but this is not important at this moment, we just need to known
that the number is finite. Assuming that some way to order each of these finite lists
of DFAs as been chosen, we can then concatenate the lists together starting, begin-
ning with the 1 state DFAs, then the 2 state DFAs, and so on. We obtain a single
infinite sequence containing every DFA having alphabet Y. From such a list you
can obtain an onto function from IN to the set of all DFAs having alphabet X in a
similar way to what we did for the rational numbers.

Because there are uncountably many languages A C X*, and only countably
many regular languages A C X*, we can immediately conclude that some lan-
guages are not regular. This is just an existence proof, and does not give us a spe-
cific language that is not regular—it just tells us that there is one. We will see meth-
ods later that allow us to conclude that certain specific languages are not regular.
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Nondeterministic finite automata

This lecture is focused on the nondeterministic finite automata (NFA) model and its
relationship to the DFA model.

Nondeterminism is a critically important concept in the theory of computing. It
refers to the possibility of having multiple choices for what can happen at various
points in a computation. We then consider the possible outcomes that these choices
can have, usually focusing on whether or not there exists a sequence of choices that
leads to a particular outcome (such as acceptance for a finite automaton).

This may sound like a fantasy mode of computation not likely to be relevant
from a practical viewpoint, because real computers do not make nondeterministic
choices: each step a real computer makes is uniquely determined by its configura-
tion at any given moment. Our interest in nondeterminism does not suggest other-
wise. We will see that nondeterminism is a powerful analytic tool (in the sense that
it helps us to design things and prove facts), and its close connection with proofs
and verification has fundamental importance.

3.1 Nondeterministic finite automata basics

Let us begin our discussion of the NFA model with its definition. The definition is
similar to the definition of the DFA model, but with a key difference.

Definition 3.1. A nondeterministic finite automaton (or NFA, for short) is a 5-tuple
N =(Q,%,0,q0,F), (3.1)

where Q is a finite and nonempty set of states, X is an alphabet, § is a transition
function having the form

J0:Qx (Zu{e}) = P(Q), (3.2)

go € Qs a start state,and F C Q is a subset of accept states.
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The key difference between this definition and the analogous definition for
DFAs is that the transition function has a different form. For a DFA we had that
0(q,a) was a state, for any choice of a state g € Q and a symbol a € %, represent-
ing the next state that the DFA would move to if it was in the state g and read
the symbol a. For an NFA, each 6(g,a) is not a state, but rather a subset of states,
which is equivalent to §(g,a) being an element of the power set P(Q). This subset
represents all of the possible states that the NFA could move to when in state g4 and
reading symbol a. There could be just a single state in this subset, or there could
be multiple states, or there might even be no states at all—it is possible to have
o(g,a) = 2.

We also have that the transition function of an NFA is not only defined for
every pair (g,4) € Q x X, but also for every pair (g,¢). Here, as always in this
course, € denotes the empty string. By defining 6 for such pairs we are allowing for
so-called e-transitions, where an NFA may move from one state to another without
reading a symbol from the input.

State diagrams

Similar to DFAs, we sometimes represent NFAs with state diagrams. This time, for
each state g and each symbol 4, there may be multiple arrows leading out of the
circle representing the state g labeled by a, which tells us which states are contained
in 6(g,a), or there may be no arrows like this when d(g,a) = @. We may also label
arrows by ¢, which indicates where the e-transitions lead.

Figure 3.1 gives an example of a state diagram for an NFA. In this figure, we see
that Q = {q0,91, 92,93}, qo is the start state, and F = {g; }, just like we would have
if this diagram represented a DFA. It is reasonable to guess from the diagram that
the alphabet for the NFA it describes is £ = {0, 1}, although all we can be sure of
is that X includes the symbols 0 and 1; it could be, for instance, that ¥ = {0,1,2},
but it so happens that 6(q,2) = @ for every g € Q. Let us agree, however, that
unless we explicitly indicate otherwise, the alphabet for an NFA described by a
state diagram includes precisely those symbols (not including € of course) that
label transitions in the diagram, so that ¥. = {0, 1} for this particular example. The
transition function, which must take the form

J0:Qx (2U{e}) = P(Q), (3.3)
is given by
5(q0,0) = {q1}, 5(q0,1) = {90}, 5(q0,€) = 2,
6(91,0) = {q1}, 6(q1,1) = {qs}, 6(q1,€) = {q2}, (3.4)
6(q2,0) = {q1,92}, 6(q2,1) = 2, 5(q2,€) = {qs}, '
6(43,0) = {q0,93}, 6(q5,1) = 2, 6(q3,€) = @.
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Figure 3.1: The state diagram of an NFA.

NFA computations

Next let us consider the definition of acceptance and rejection for NFAs. This time
we will start with the formal definition and then try to understand what it says.

Definition 3.2. Let N = (Q, %, J,qo, F) be an NFA and let w € X* be a string. The
NFA N accepts w if there exists a natural number m € IN, a sequence of states
ro,--.,m, and a sequence of either symbols or empty strings ay,...,a, € LU {¢}
such that the following statements all hold:

1. ro = {o-
2. ry € F.
3. w=aq-- apm.

4. 1rpy1 € 6(rg, apyq) forevery k € {0,...,m —1}.
If N does not accept w, then we say that N rejects w.

We can think of the computation of an NFA N on an input string w as being
like a single-player game, where the goal is to start on the start state, make moves
from one state to another, and end up on an accept state. If you want to move from
a state g to a state p, there are two possible ways to do this: you can move from ¢
to p by reading a symbol a from the input, provided that p € (g,a); or you can
move from g to p without reading a symbol, provided that p € (g, ¢) (i.e., there is
an e-transition from g to p). To win the game, you must not only end on an accept
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state, but you must also have read every symbol from the input string w. To say
that N accepts w means that it is possible to win the corresponding game.

Definition 3.2 essentially formalizes the notion of winning the game we just
discussed: the natural number m represents the number of moves you make and
ro,...,rm represent the states that are visited. In order to win the game you have
to start on state gp and end on an accept state, which is why the definition requires
ro = qgo and ry, € F, and it must also be that every symbol of the input is read by the
end of the game, which is why the definition requires w = a; - - - a,. The condition
tkr1 € O(rk, agy1) for every k € {0,...,m — 1} corresponds to every move being a
legal move in which a valid transition is followed.

We should take a moment to note how the definition works when m = 0. The
natural numbers (as we have defined them) include 0, so there is nothing that
prevents us from considering m = 0 as one way that a string might potentially
be accepted. If we begin with the choice m = 0, then we must consider the exis-
tence of a sequence of states ry, ..., 7y and a sequence of symbols or empty strings
ai,...,ap € LU {e}, and whether or not these sequences satisfy the four require-
ments listed in the definition. There is nothing wrong with a sequence of states
having the form ry, ..., 7o, by which we really just mean the sequence ry having a
single element. The sequence a3, ...,ap € £ U {e}, on the other hand, looks like it
does not make any sense—but it actually does make sense if you interpret it as an
empty sequence having no elements in it. The condition w = a; - - - ag in this case,
which refers to a concatenation of an empty sequence of symbols or empty strings,
is that it means w = e.! Asking that the condition 71,1 € 6(r, ax41) should hold
for every k € {0,...,m — 1} when m = 0 is a vacuous statement, and is therefore
trivially true, because there are no values of k to worry about. Thus, if it is the case
that the initial state o of the NFA we are considering happens to be an accept state,
and our input is the empty string, then the NFA accepts—for we can take m = 0
and 1y = qo, and the definition is satisfied.

Note that we could have done something similar in our definition for when
a DFA accepts: if we allowed n = 0 in the second statement of that definition,
it would be equivalent to the first statement, and so we really did not need to
take the two possibilities separately. Alternatively, we could have added a special
case to Definition 3.2, but it would make the definition longer, and the convention
described above is good to know about anyway:.

Along similar lines to what we did for DFAs, we can define an extended ver-
sion of the transition function of an NFA. In particular, if 6 : Q x £ — P(Q) is a

! Note that it is a convention, and not something you can deduce, that the concatenation of an
empty sequence of symbols gives you the empty string. It is similar to the convention that the sum
of an empty sequence of numbers is 0 and the product of an empty sequence of numbers is 1.
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transition of an NFA, we define a new function
5 QxX* = P(Q) (3.5)
as follows. First, we define the e-closure of any set R C Q as

e(R) = { geQ 1 is reachable from some r € R by following}. (3.6)

Zero or more e-transitions

Another way of defining &(R) is to say that it is the intersection of all subsets T C Q
satisfying these conditions:

1. RCT.
2. 6(g,e) C Tforeveryq e T.

We can interpret this alternative definition as saying that ¢(R) is the smallest subset
of Q that contains R and is such that you can never get out of this set by following
an e-transition.

With the notion of the e-closure in hand, we define §* recursively as follows:

1. 6*(gq,¢) = e({q}) for every g € Q, and
2. 6"(9,aw) = Upee(q)) Ures(pa) 0" (r,w) forevery g € Q,a € L, and w € X*.

Intuitively speaking, 6* (g, w) is the set of all states that you could potentially reach
by starting on the state g, reading w, and making as many e-transitions along the
way as you like. To say that an NFA N = (Q, %, J, o, F) accepts a string w € X* is
equivalent to the condition that 6* (g9, w) N F # ©.
Also similar to DFAs, the notation L(N) denotes the language recognized by an
NFA N:
L(N) = {w € £* : N accepts w}. (3.7)

3.2 Equivalence of NFAs and DFAs

It seems like NFAs might potentially be more powerful than DFAs because NFAs
have the option to use nondeterminism. This is not the case, as the following theo-
rem states.

Theorem 3.3. Let X be an alphabet and let A C X* be a language. The language A is
reqular if and only if A = L(N) for some NFA N.

Let us begin by breaking this theorem down, to see what needs to be shown in
order to prove it. First, it is an “if and only if” statement, so there are two things to
prove:
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1. If Ais regular, then A = L(N) for some NFA N.
2. If A =L(N) for some NFA N, then A is regular.

If you were in a hurry and had to choose one of these two statements to prove,
you would be wise to choose the first: it is the easier of the two by far. In partic-
ular, suppose A is regular, so by definition there exists a DFA M = (Q, %, 4, qo, F)
that recognizes A. The goal is to define an NFA N that also recognizes A. This
is simple, as we can just take N to be the NFA whose state diagram is the same
as the state diagram for M. At a formal level, N is not exactly the same as M;
because N is an NFA, its transition function will have a different form from a
DFA transition function, but in this case the difference is only cosmetic. More for-
mally speaking, we can define N = (Q, X, u, qo, F) where the transition function
n:Qx (ZU{e}) — P(Q) is defined as

u(ga) ={6(q,a)} and p(ge) =2 (38)

forall g € Qand a € X. Itis the case that L(N) = L(M) = A, and so we are done.

Now let us consider the second statement listed above. We assume A = L(N)
for some NFA N = (Q,Z%,J,qo, F), and our goal is to show that A is regular. That
is, we must prove that there exists a DFA M such that L(M) = A. The most direct
way to do this is to argue that, by using the description of N, we are able to come
up with an equivalent DFA M. That is, if we can show how an arbitrary NFA N
can be used to define a DFA M such that L(M) = L(N), then the proof will be
complete.

We will use the description of an NFA N to define an equivalent DFA M using
a simple idea: each state of M will keep track of a subset of states of N. After reading
any part of its input string, there will always be some subset of states that N could
possibly be in, and we will design M so that after reading the same part of its input
string it will be in the state corresponding to this subset of states of N.

A simple example

Let us see how this works for a simple example before we describe it in general.
Consider the NFA N described in Figure 3.2. If we describe this NFA formally,
according to the definition of NFAs, it is given by

N = (le‘lélth F) (39)

where Q = {q0, 71}, £ = {0,1}, F = {g1},and 0 : Q x (ZU{e}) — P(Q) is defined
as follows:

5(90,0) = {q0,q1},  6(q0,1) ={q1},  0(q0,¢) = 2, (3.10)
6(q1,0) = 2, 6(q1,1) ={q0},  6(q1,8) = @. '
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Figure 3.2: An NFA that will be converted into an equivalent DFA.

=l )—

Figure 3.3: A DFA equivalent to the NFA from Figure 3.2.

We are going to define an DFA M having one state for every subset of states of N.
We can name the states of M however we like, so we may as well name them
directly with the subsets of Q. In other words, the state set of M will be the power
set P(Q).
Consider the state diagram in Figure 3.3. Formally speaking, this DFA is given
by
M = (P(Q), 2 1 {q0}, {{m}, {q0, 41} }), (3.11)

where the transition function p : P(Q) x X — P(Q) is defined as

#({90},0) = {q0,q1}, #({q0},1) = {q1},

n({q:1},0) = 2, ({gq1},1) = {q0}, (3.12)
#({q0,91},0) ={q0, 91},  n({q0,91},1) = {q0, 1}, '
1u(2,0) =g, uo, 1) =wo.

One can verify that this DFA description indeed makes sense, one transition at a
time.

For instance, suppose at some point in time N is in the state g¢. If a 0 is read, it
is possible to either follow the self-loop and remain on state gg or follow the other
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transition and end on g;. This is why there is a transition labeled 0 from the state
{go} to the state {qo, g1} in M; the state {go,q1} in M is representing the fact that
N could be either in the state gg or the state g;. On the other hand, if N is in the
state g1 and a 0 is read, there are no possible transitions to follow, and this is why
M has a transition labeled 0 from the state {g;} to the state &. The state @ in M
is representing the fact that there are not any states that N could possibly be in
(which is sensible because N is an NFA). The self-loop on the state @ in M labeled
by 0 and 1 represents the fact that if N cannot be in any states at a given moment,
and a symbol is read, there still are not any states it could be in. You can go through
the other transitions and verify that they work in a similar way.

There is also the issue of which state is chosen as the start state of M and which
states are accept states. This part is simple: we let the start state of M correspond
to the states of N we could possibly be in without reading any symbols at all,
which is {go} in our example, and we let the accept states of M be those states
corresponding to any subset of states of N that includes at least one element of F.

The construction in general

Now let us think about the idea suggested above in greater generality. That is, we
will specify a DFA M satisfying L(M) = L(N) for an arbitrary NFA

N = (Q,%,6,40,F). (3.13)

One thing to keep in mind as we do this is that N could have e-transitions, whereas
our simple example did not. It will, however, be easy to deal with e-transitions by
referring to the notion of the e-closure that we discussed earlier. Another thing to
keep in mind is that N really is arbitrary—maybe it has 1,000,000 states or more. It
is therefore hopeless for us to describe what is going on using state diagrams, so
we will do everything abstractly.

First, we know what the state set of M should be based on the discussion above:
the power set P(Q) of Q. Of course the alphabet is X because it has to be the same
as the alphabet of N. The transition function of M should therefore take the form

n:P(Q) xx — P(Q) (3.14)

in order to be consistent with these choices. In order to define the transition func-
tion u precisely, we must therefore specify the output subset

u(R,a) € Q (3.15)
for every subset R C Q and every symbol a € . One way to do this is as follows:
u(R,a) = e(é(q,a)). (3.16)

geR
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In words, the right-hand side of (3.16) represents every state in N that you can get
to by (i) starting at any state in R, then (ii) following a transition labeled a, and
finally (iii) following any number of e-transitions.

The last thing we need to do is to define the initial state and the accept states
of M. The initial state is ¢({q0}), which is every state you can reach from gg by just
following e-transitions, while the accept states are those subsets of Q containing at
least one accept state of N. If we write G C P(Q) to denote the set of accept states
of M, then we may define this set as

G={Re?P(Q): RNF #g}. (3.17)
The DFA M can now be specified formally as

M = (P(Q),Z, u,e({90}), G). (3.18)

Now, if we are being honest with ourselves, we cannot say that we have proved
that for every NFA N there is an equivalent DFA M satisfying L(M) = L(N). All
we have done is to define a DFA M from a given NFA N that seems like it should
satisfy this equality. It is, in fact, true that L(M) = L(N), but we will not go through
a formal proof that this really is the case. It is worthwhile, however, to think about
how we would do this if we had to.

First, if we are to prove that the two languages L(M) and L(N) are equal, the
natural way to do it is to split it into two separate statements:

1. L(M) C L(N).
2. L(N) C L(M).

This is often the way to prove the equality of two sets. Nothing tells us that the
two statements need to be proved in the same way, and by doing them separately
we give ourselves more options about how to approach the proof. Let us start with
the subset relation L(N) C L(M), which is equivalent to saying that if w € L(N),
then w € L(M). We can now fall back on the definition of what it means for N to
accept a string w, and try to conclude that M must also accept w. It is a bit tedious
to write everything down carefully, but it is possible and maybe you can convince
yourself that this is so. The other relation L(M) C L(N) is equivalent to saying
thatif w € L(M), then w € L(N). The basic idea here is similar in spirit, although
the specifics are a bit different. This time we start with the definition of acceptance
for a DFA, applied to M, and then try to reason that N must accept w.

A different way to prove that the construction works correctly is to make use
of the functions * and u*, which are defined from ¢ and y as we discussed in the

29



CS 360 Introduction to the Theory of Computing

previous lecture and earlier in this lecture. In particular, using induction on the
length of w, it can be proved that

W (e(R),w) = | 6"(q,w) (3.19)
geR

for every string w € X* and every subset R C Q. Once we have this, we see
that u*(e({qo}), w) is contained in G if and only if 6*(qo,w) N F # @, which is
equivalent to w € L(M) if and only if w € L(N).

In any case, you are not being asked to formalize and verify the proofs just
suggested at this stage, but only to think about how it would be done.

On the process of converting NFAs to DFAs

It is a typical type of exercise in courses such as this one that students are presented
with an NFA and asked to come up with an equivalent DFA using the construction
described above. This is a mechanical exercise, and it will be important later in the
course to observe that the construction itself can be performed by a computer. This
fact may become more clear once you have gone through a few examples by hand.

When performing this construction by hand, it is worth noting you do not need
to write down every subset of states of N and then draw the arrows. There will be
exponentially many more states in M than in N, and it will sometimes be that
many of these states are unreachable from the start state of M. A better option is to
tirst write down the start state of M, which corresponds to the e-closure of the set
containing just the start state of N, and then to only draw new states of M as you
need them.

In the worst case, however, you might actually need exponentially many states.
Indeed, there are examples known of languages that have an NFA with n states,
while the smallest DFA for the same language has 2" states, for every choice of
a positive integer n. So, while NFAs and DFAs are equivalent in computational
power, there is sometimes a significant cost to be paid in converting an NFA into a
DFA, which is that this might require the DFA to have a huge number of states in
comparison to the number of states of the original NFA.
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Regular operations and regular
expressions

This lecture focuses on three fundamentally important operations on languages—
union, concatenation, and Kleene star—which are collectively known as the regular
operations. We will prove that the regular languages are closed under the regular
operations, as well as some other basic operations defined on languages. We will
then formally define regular expressions, and prove that they offer an alternative
characterization of the regular languages.

4.1 Regular operations

Let us begin with a formal definition of the regular operations.

Definition 4.1. The regular operations are the operations union, concatenation, and
Kleene star (or just star, for short), which are defined as follows for any choice of an
alphabet £ and languages A, B C X*:

1. Union. The language A U B C 2* is defined as

AUB={w : we Aorw € B}. (4.1)

In words, this is just the ordinary union of two sets that happen to be languages.

2. Concatenation. The language AB C ¥* is defined as
AB ={wx : w € Aand x € B}. (4.2)

In words, this is the language of all strings obtained by concatenating together
a string from A and a string from B, with the string from A on the left and the
string from B on the right.
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Note that there is nothing about a string of the form wx that indicates where w
stops and x starts; it is just the sequence of symbols you get by putting w and x
together.

3. Kleene star. The language A* is defined as
A*={ef UAUAAU AAA U --- (4.3)

In words, A* is the language obtained by selecting any finite number of strings
from A and concatenating them together. (This includes the possibility to select
no strings at all from A, where we follow the convention that concatenating
together no strings at all gives the empty string.)

Note that the name reqular operations is just a name that has been chosen for
these three operations. They are special operations and they do indeed have a close
connection to the regular languages, but naming them the reqular operations is a
choice we have made and not something mandated in a mathematical sense.

4.2 Closure of regular languages under regular
operations

Now we will prove that when regular operations are performed on regular lan-
guages, the result must always be a regular language. That is to say, the regular
languages are closed with respect to the regular operations.

Theorem 4.2. The reqular languages are closed with respect to the reqular operations: if
A, B C X" are regular languages, then the languages A U B, AB, and A* are also regular.

Proof. Let us assume A and B are fixed regular languages for the remainder of the
proof. Because these languages are regular, there must exist DFAs

MA = (P,Z,é, po,F) and MB = (Q,Z, “l/l,q(),G) (4.4:)

such that L(M,4) = A and L(Mp) = B. We will make use of these DFAs as we
prove that the languages AU B, AB, and A* are regular. Because we are free to give
whatever names we like to the states of a DFA without influencing the language
it recognizes, there is no generality lost in assuming that P and Q are disjoint sets
(meaning that PN Q = O).

The first regular operation is union. From the previous lecture, we know that
if there exists an NFA N such that L(N) = A U B, then A U B is regular. With that
fact in mind, our goal will be to define such an NFA. We will define this NFA N
so that its states include all elements of both P and Q, as well as an additional

32



Lecture 4
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Figure 4.1: DFAs M4 and Mp are combined to form an NFA for the language
L(MA) U L(MB).

state r( that is in neither P nor Q. This new state 7y will be the start state of N. The
transition function of N is to be defined so that all of the transitions among the
states P defined by J and all of the transitions among the states Q defined by y are
present, as well as two e-transitions, one from r( to pp and one from r( to go.

Figure 4.1 illustrates what the NFA N looks like in terms of a state diagram.
You should imagine that the shaded rectangles labeled M4 and Mp are the state
diagrams of M4 and Mp. (The illustrations in the figure are only meant to suggest
hypothetical state diagrams for these two DFAs. The actual state diagrams for M4
and Mp can be arbitrary.)

We can specify N more formally as follows:

N = (R,%,1,r0, FUG) (4.5)

where
R=PUQU{ro} (4.6)

(and we assume P, Q, and {r¢} are disjoint sets as suggested above) and the tran-
sition function
n:Rx (ZU{e}) = P(R) (4.7)
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is defined as follows:

n(p,a) ={é(p,a)} (forallp € Pand a € ¥),
n(p,e) =2 (forall p € P),

n(gq,a) ={u(q,a)} (forallg € Qand a € %),
n(g,e) =2 (forallg € Q),

n(ro,a) = @ (foralla € X),

1(ro,€) = {po,qo}

The set of accept states of N in F U G.

Every string that is accepted by M4 is also accepted by N. This is because N
may first follow the e-transition from rj to pg and then follow the same transitions
that would be followed by M 4. Because the accept states of N include all of the
accept states of M4, this allows N to accept.

By similar reasoning, every string accepted by M3 is also accepted by N.

Finally, every string that is accepted by N must be accepted by either M, or
Mp (or both), because every accepting computation of N begins with one of the
two e-transitions and then necessarily mimics an accepting computation of either
M4 or Mp depending on which e-transition was taken. It therefore follows that

L(N) = L(M4) UL(Mp) = AUB, (4.8)

and so we conclude that A U B is regular.

The second regular operation is concatenation. The idea is similar to the proof
that A U B is regular: we will use the DFAs M4 and M to define an NFA N for the
language AB. This time we will take the state set of N to be the union P U Q, and
the start state py of M4 will be the start state of N. All of the transitions defined
by M and Mp will be included in N, and in addition we will add an e-transition
from each accept state of M4 to the start state of Mp. Finally, the accept states of N
will be just the accept states G of Mp (and not the accept states of M 4). Figure 4.2
illustrates the construction of N based on M 4 and M.

In formal terms, N is the NFA defined as
N = (PUQ,%,1,po,G) (4.9)
where the transition function
n:(PUQ)x (XZU{e}) - P(PUQ) (4.10)
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Ol

Figure 4.2: DFAs M, and Mp are combined to form an NFA for the language
L(Ma) L(Mp).

is given by
n(p,a) ={é(p,a)} (forallp € Pand a € X)),
n(g,a) ={u(q,a)} (forallg € Qanda € %),
1(p,e) = {40} (forall p € F),
n(pe) =2 (for all p € P\F),
n(g,e) =2 (forallg € Q).

Along similar lines to what was done in the proof that A U B is regular, one can
argue that N recognizes the language AB, from which it follows that AB is regular.

The third regular operation is star. We will prove that A* is regular, and once
again the proof proceeds along similar lines. This time we will just consider M4
and not Mp because the language B is not involved. Let us start with the formal
specification of N this time; define

N = (R, %, 1,70, {ro}) (4.11)
where R = P U {rg} and the transition function
n:Rx (ZU{e}) = P(R) (4.12)

is defined as

n(ro,a) = @ (foralla € X),

1(ro,€) = po,

n(p,a) ={é(p,a)} (forevery p € Pand a € ¥),
n(p,e) =A{ro} (for every p € F),

n(pe) =2 (for every p € P\F).
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Figure 4.3: The DFA M, is modified to form an NFA for the language L(M4)*.

In words, we take N to be the NFA whose states are the states of M4 along with
an additional state rp, which is both the start state of N and its only accept state.
The transitions of N include all of the transitions of M4, along with an e-transition
from ry to the start state pg of M4, and e-transitions from all of the accept states of
M 4 back to rg. Figure 4.3 provides an illustration of how N relates to M.

It is evident that N recognizes the language A*. This is because the strings it
accepts are precisely those strings that cause N to start at rg and loop back to ¢ zero
or more times, with each loop corresponding to some string that is accepted by M 4.
As L(N) = A%, it follows that A* is regular, and so the proof is complete. O

It is natural to ask why we could not easily conclude, for a regular language A,
that A* is regular using the fact that the regular languages are closed under both
union and concatenation. In more detail, we have that

A*={efUAUAAUAAAU--- (4.13)

It is easy to see that the language {e} is regular—here is the state diagram for an
NFA that recognizes the language {¢} (for any choice of an alphabet):

The language {e} U A is therefore regular because the union of two regular lan-
guages is also regular. We also have that AA is regular because the concatenation
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of two regular languages is regular, and therefore {e} U A U AA is regular because
it is the union of the two regular languages {¢} U A and AA. Continuing on like
this we find that the language

{efUAUAAUAAA (4.14)
is regular, the language
{efUAUAAUAAAUAAAA (4.15)

is regular, and so on. Does this imply that A* is regular?

The answer is no. Although it is true that A* is regular whenever A is regu-
lar, as we proved earlier, the argument just suggested based on combining unions
and concatenations alone does not establish it. This is because we can never con-
clude from this argument that the infinite union (4.13) is regular, but only that finite
unions such as (4.15) are regular.

If you are still skeptical or uncertain, consider this statement:

If A is a finite language, then A* is also a finite language.

This statement is false in general. For example, A = {0} is finite, but
A* ={¢,0,00,000,...} (4.16)

is infinite. On the other hand, it is true that the union of two finite languages is
finite, and the concatenation of two finite languages is finite, so something must
go wrong when you try to combine these facts in order to conclude that A* is
finite. The situation is similar when the property of being finite is replaced by the
property of being regular.

4.3 Other closure properties of regular languages

There are many other operations on languages aside from the regular operations
under which the regular languages are closed. For example, the complement of a
regular language is also regular. Just to be sure the terminology is clear, here is the
definition of the complement of a language.

Definition 4.3. Let A C X* be a language over the alphabet X. The complement of
A, which is denoted A4, is the language consisting of all strings over X. that are not
contained in A:

A=3*\A. (4.17)
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(For the sake of clarity, we will use a backslash to denote set differences: S\T is the
set of all elements in S that are notin T.)

Proposition 4.4. Let X be an alphabet and let A C X* be a reqular language over the
alphabet ¥.. The language A is also reqular.

This proposition is very easy to prove: because A is regular, there must exist a
DFA M = (Q,%, 9,40, F) such that L(M) = A. We obtain a DFA for the language
A simply by swapping the accept and reject states of M. That is, the DFA K =
(Q,%,0,90, Q\F) recognizes A.

While it is easy to obtain a DFA for the complement of a language if you have a
DFA for the original language simply by swapping the accept and reject states, this
does not work for NFAs. You might, for instance, swap the accept and reject states
of an NFA and end up with an NFA that recognizes something very different from
the complement of the language you started with. This is due to the asymmetric
nature of accepting and rejecting for nondeterministic models.

Within the next few lectures we will see more examples of operations under
which the regular languages are closed. Here is one more for this lecture.

Proposition 4.5. Let ¥ be an alphabet and let A and B be reqular languages over the
alphabet 2. The intersection A N B is also regular.

This time we can just combine closure properties we already know to obtain
this one. This is because De Morgan’s laws imply that

ANB=AUB. (4.18)

If A and B are regular, then it follows that A and B are regular, and therefore A U B
is regular, and because the complement of this regular language is A N B we have
that A N B is regular.

There is another way to conclude that A N B is regular, which is arguably more
direct. Because the languages A and B are regular, there must exist DFAs

Ma = (P,%,0,po,F) and Mp = (Q,%, 1 90,G) (4.19)

such that L(M,4) = A and L(Mp) = B. We can obtain a DFA M recognizing A N B
using a Cartesian product construction:

M= (P xQ,%1,(poq0), F x G) (4.20)

where

n((p,q),a) = (6(p,a),u(q,a)) (4.21)
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for every p € P,q € Q,and a € X. In essence, the DFA M is what you get if
you build a DFA that runs M4 and Mp in parallel, and accepts if and only if both
My and Mp accept. You could also get a DFA for A U B using a similar idea (but
accepting if and only if M 4 accepts or Mp accepts).

4.4 Regular expressions

Regular expressions are commonly used in programming languages and other ap-
plications to specify patterns for searching and string matching. When regular ex-
pressions are used in practice, they are typically endowed with a rich set of con-
venient operations, but in this course we shall take a minimal definition of regular
expressions allowing only the three regular operations (and no other operations
like negation or special symbols marking the first or last characters of an input).

Here is the formal definition of regular expressions. The definition is an ex-
ample of an inductive definition, and some comments on inductive definitions will
follow.

Definition 4.6. Let X be an alphabet. It is said that R is a reqular expression over the
alphabet X if any of these properties holds:

for some choice of a € X.

= (Ry URy) for regular expressions Rj and Rj.

AN S

R=a
R=(
R = (RyR;) for regular expressions R; and R;.
R=(

R7Y) for a regular expression R;.

When you see an inductive definition such as this one, you should interpret
it in the most sensible way, as opposed to thinking of it as something circular or
paradoxical. For instance, when it is said that R = (R}) for a regular expression
Ry, itis to be understood that R; is already well-defined as a regular expression. We
cannot, for instance, take R; to be the regular expression R that we are defining—
for then we would have R = (R)*, which might be interpreted as a strange, fractal-
like expression that looks like this:

R=(((-(---)* - )" (4.22)

Such a thing makes no sense as a regular expression, and is not valid according to
a sensible interpretation of the definition.
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Here are some valid examples of regular expressions over the binary alphabet
r={01}:

o o R

1
(0U1)
((ou1))
(((0Ue)*)1)

When we are talking about regular expressions over an alphabet X, you should
think of them as being strings over the alphabet

YU{(,),*,U¢e o} (4.23)

(assuming of course that L and { (, ), *, U, ¢, @} are disjoint). Some authors will
use a different font for regular expressions so that this is more obvious, but this
will not be done in these notes.

Next we will define the language recognized (or matched) by a given regular ex-
pression. Again it is an inductive definition, and it directly parallels the regular
expression definition itself. If it looks to you like it is stating something obvious,
then your impression is correct—we require a formal definition, but it essentially
says that we should define the language matched by a regular expression in the
most straightforward and natural way.

Definition 4.7. Let R be a regular expression over the alphabet X. The language
recognized by R, which is denoted L(R), is defined as follows:

1. If R =g, then L(R) = @.

2. If R =¢,then L(R) = {e}.

3. f R=afora € X, then L(R) = {a}.

4. If R = (Rq URy) for regular expressions Ry and Ry, then L(R) = L(R;) UL(Ry).
5. If R = (R1Ry) for regular expressions Ry and Ry, then L(R) = L(R7) L(R»).

6. If R = (R]) for a regular expression Ry, then L(R) = L(Ry)*.
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Order of precedence for regular operations

It might appear that regular expressions arising from Definition 4.6 have a lot of
parentheses. For instance, the regular expression (((0U¢)*)1) has more parenthe-
ses than it has non-parenthesis symbols. The parentheses ensure that every regular
expression has an unambiguous meaning.

We can, however, reduce the need for so many parentheses by introducing an
order of precedence for the regular operations. The order is as follows:

1. star (highest precedence)
2. concatenation

3. union (lowest precedence).

To be more precise, we are not changing the formal definition of regular expres-
sions, we are just introducing a convention that allows some parentheses to be
implicit, which makes for simpler-looking regular expressions. For example, we
write

10" U1 (4.24)

rather than
((1(0%))u1). (4.25)

Having agreed upon the order of precedence above, the simpler-looking expres-
sion is understood to mean the second expression.

A simple way to remember the order of precedence is to view the regular opera-
tions as being analogous to algebraic operations that you are already familiar with:
star looks like exponentiation, concatenation looks like multiplication, and unions
are similar to additions. So, just as the expression xy? + z has the same meaning as
((x(y?)) + z), the expression 10* U 1 has the same meaning as ((1(0*)) U 1).

Regular expressions characterize the regular languages

At this point it is natural to ask which languages have regular expressions. The
answer is that the class of languages having regular expressions is precisely the
class of regular languages. If it were otherwise, you would have to wonder why
the names were chosen as they were.

There are two implications needed to establish that the regular languages coin-
cide with the class of languages having regular expressions. Let us start with the
tirst implication, which is the content of the following proposition.

Proposition 4.8. Let X be an alphabet and let R be a reqular expression over the alpha-
bet X.. The language L(R) is regular.
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The idea behind the proof of this proposition is simple enough: we can easily build
DFAs for the languages &, {¢}, and {a} (for each symbol a € ¥), and by repeatedly
using the constructions described in the proof of Theorem 4.2, one can combine
together such DFAs to build an NFA recognizing the same language as any given
regular expression.

The other implication is the content of the following theorem, which is more
difficult to prove than the proposition above.

Theorem 4.9. Let X be an alphabet and let A C 3* be a regular language. There exists a
reqular expression over the alphabet ¥ such that L(R) = A.

Proof. Because A is regular, there must exist a DFA M = (Q, %, 4, 4o, F) such that
L(M) = A. We are free to use whatever names we like for the states of a DFA, so
no generality is lost in assuming Q = {1,...,n} for some positive integer n.

We are now going to define the language

k
Bk, C ¥, (4.26)

for every choice of states p,q € {1,...,n} and an integer k € {0,...,n}, to be the
set of all strings w that cause M to operate in the following way:

If we start M in the state p, then by reading w the DFA M moves to
the state g. Moreover, aside from the beginning state p and the ending
state g, the DFA M only touches states contained in the set {1,...,k}
when reading w in this way.

For example, the language B), , is simply the set of all strings causing M to move
from p to q because restricting the intermediate states that M touches to those con-
tained in the set {1,...,n} is no restriction whatsoever. At the other extreme, the
set 32,q must be a finite set; it could be the empty set if there are no direct transitions
from p to g, it includes the empty string in the case p = g, and in general it includes
a length-one string corresponding to each symbol that causes M to transition from
p togq.

Now, we will prove by induction on k that there exists a regular expression R’;,q
satisfying

k _ nk
L(Rk,) = Bt ,, (4.27)

for every choice of p,q € {1,...,n} and k € {0,...,n}. The base case is k = 0. The
language 32,q is finite for every p,q € {1,...,n}, consisting entirely of strings of
length 0 or 1, so it is straightforward to define a corresponding regular expression
Rg,q that matches Bg/q.
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For the induction step, we assume k > 1, and that there exists a regular expres-
sion R';,fql satisfying . .
L(RM ) = BM (4.28)
for every p,q € {1,...,n}. Itis the case that
k _ pk—1 k—1(pk—1\*pk—1
Byg=Bpg UB,, (Bix') By, (4.29)

This equality reflects the fact that the strings that cause M to move from p to g
through the intermediate states {1,...,k} are precisely those strings that either
(i) cause M to move from p to g through the intermediate states {1,...,k — 1}, so
that state k is not visited as an intermediate state, or (ii) cause M to move from p
to g through the intermediate states {1,...,k}, visiting the state k as an interme-
diate state one or more times. We may therefore define a regular expression R’;,q
satisfying (4.27) for every p,q € {1,...,n} as

ko _ pk=1,; pk—1/pk—1\*pk—1
Rpq =Ry UR, (Rk,k ) Ry, (4.30)
Finally, we obtain a regular expression R satisfying L(R) = A by defining

R=J Ry, (4.31)
qeF

In words, R is the regular expression we obtain by forming the union over all

regular expressions R; . where g is an accept state. This completes the proof. [

There is a procedure that can be used to convert a given DFA into an equivalent
regular expression. The idea behind this conversion process has some similarities
to the proof above. It tends to get messy, producing rather large and complicated-
looking regular expressions from relatively simple DFAs, but it works—and just
like the conversion of an NFA to an equivalent DFA, it can be implemented by a
computer.
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Proving languages to be nonregular

We already know, for any alphabet X, that there exist languages A C X* that are
nonregular. This is because there are uncountably many languages over X but only
countably many regular languages over . However, this observation does not al-
low us to conclude that specific nonregular languages are indeed nonregular. In
this lecture we will discuss a method that can be used to prove that a fairly wide
selection of languages are nonregular.

5.1 The pumping lemma for regular languages

We will begin by proving a simple fact—known as the pumping lemma—which
establishes that a certain property must hold for all regular languages. Later in
the lecture, in the section following this one, we will use this fact to conclude that
certain languages are nonregular.

Lemma 5.1 (Pumping lemma for regular languages). Let X be an alphabet and let
A C X be a regular language. There exists a positive integer n (called a pumping length
of A) that possesses the following property. For every string w € A with |w| > n, it is
possible to write w = xyz for some choice of strings x,y,z € X* such that

1. y#e
2. |xy| < n,and
3. xy'z € Aforalli € N.

The pumping lemma is essentially a precise, technical way of expressing one
simple consequence of the following fact:

If a DFA with n or fewer states reads n or more symbols from an input
string, at least one of its states must have been visited more than once.
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This means that if a DFA with n states reads a particular string having length at
least 1, then there must be a substring of that input string that causes a loop, mean-
ing that the DFA starts and ends on the same state. If the DFA accepts the original
string, then by repeating that substring that caused a loop multiple times, or alter-
natively removing it altogether, we obtain a different string that is also accepted by
the DFA. It may be helpful to try to match this intuition to the proof that follows.

Proof of Lemma 5.1. Let M = (Q,%,,q0,F) be a DFA that recognizes A and let
n = |Q| be the number of states of M. We will prove that the property stated
in the pumping lemma is satisfied for this choice of n.

Let us note first that if there is no string contained in A that has length n or
larger, then there is nothing more we need to do: the property stated in the lemma
is trivially satisfied in this case. We may therefore move on to the case in which A
does contain at least one string having length at least n. In particular, suppose that
w € A is a string such that |w| > n. We may write

w=aj---ay (5.1)

form = |w|and ay, ..., a, € X.Because w € A it mustbe the case that M accepts w,
and therefore there exist states

10,1, -+, tm € Q (5.2)

such that rg = g0, r, € F, and

k41 = (S(T’k, ak+1) (5.3)

forevery k € {0,...,m —1}.

Now, the sequencer, 11, ..., 1, has n + 1 members, but there are only n different
elements in Q, so at least one of the states of Q must appear more than once in this
sequence.1 Thus, there must exist indices s, t € {0, ...,n} satisfying s < t such that
Vs = tt.

Next, define strings x,y,z € ~* as follows:

X=ay---4as, Y =dgy1---ay, Z=0qp11" " . (5.4)

It is the case that w = xyz for this choice of strings, so to complete the proof, we
just need to demonstrate that these strings fulfill the three conditions that are listed
in the lemma. The first two conditions are immediate: we see that y has length
t — s, which is at least 1 because s < t, and therefore y # ¢; and we see that xy has

IThis is an example of the so-called pigeon hole principle: if n + 1 pigeons fly into 1 holes, then at
least one of the holes must contain two or more pigeons.
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length t, which is at most n because t was chosen from the set {0, ..., n}. It remains
to verify that xy'z € A, which is equivalent to M accepting xy'z, for every i € IN.
That fact that xy'z is accepted by M follows from the verification that the sequence
of states

Y0, « ooy Vsy Tstly -ovr Yty Vily ov ey I'm (5.5)
N———

repeated i times

satisfies the definition of acceptance of the string xy'z by the DFA M. O

The pumping lemma for an example DFA

If the proof of the pumping lemma, or the idea behind it, is not clear, it may be

helpful to see it in action for an actual DFA and a long enough string accepted

by that DFA. For instance, let us take M to be the DFA having the state diagram
~(#)—

illustrated in Figure 5.1.
1 1

0 0

Figure 5.1: The state diagram of a DFA M, to be used to provide an example to
explain the pumping lemma.

Now consider any string w having length at least 6 (which is the number of states
of M) that is accepted by M. For instance, let us take w = 0110111. This causes M
to move through this sequence of states:

0 1 1 0 1 1 1
Jgo — q1 72 gs — a4 — q1 —> 2 — g5 (5.6)

(The arrows represent the transitions and the symbols above the arrows indicate
which input symbol has caused this transition.) Sure enough, there is at least one
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state that appears multiple times in the sequence, and in this particular case there
are actually three such states: g1, 42, and g5, each of which appear twice. Let us
focus on the two appearances of the state g, just because this state happens to be
the one that gets revisited first. It is the substring 1101 that causes M to move in a
loop starting and ending on the state g;. In the statement of the pumping lemma
this corresponds to taking

x =0, y = 1101, and z =11. (5.7)

Because the substring y causes M to move from the state gq; back to g, it is as if
reading y when M is in the state g; has no effect. So, given that x causes M to move
from the initial state g to the state g1, and z causes M to move from g; to an accept
state, we see that M must not only accept w = xyz, but it must also accept xz, xyyz,
xyyyz, and so on.

There is nothing special about the example just described; something similar
always happens. Pick any DFA whatsoever, and then pick any string accepted by
that DFA that has length at least the number of states of the DFA, and you will
be able to find a loop like we did above. By repeating input symbols in the most
natural way so that the loop is followed multiple times (or no times) you will ob-
tain different strings accepted by the DFA. This is essentially all that the pumping
lemma is saying.

5.2 Using the pumping lemma to prove nonregularity

It is helpful to keep in mind that the pumping lemma is a statement about regular
languages: it establishes a property that must always hold for every chosen regular
language.

Although the pumping lemma is a statement about regular languages, we can
use it to prove that certain languages are not regular using the technique of proof
by contradiction. In particular, we take the following steps:

1. For A being the language we hope to prove is nonregular, we make the assump-
tion that A is regular. Operating under the assumption that the language A is
regular, we apply the pumping lemma to it.

2. Using the property that the pumping lemma establishes for A, we derive a
contradiction. The contradiction will almost always be that we conclude that
some particular string is contained in A that we know is actually not contained
in A.

3. Having derived a contradiction, we conclude that it was our assumption that A
is regular that led to the contradiction, and so we deduce that A is nonregular.
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Examples of nonregularity proved through the pumping lemma

Let us illustrate this method for a few example languages. These examples will be
stated as propositions, with the proofs showing you how the argument works.

Proposition 5.2. Let ¥ = {0,1} be the binary alphabet and define a language over X as
follows:
SAME = {0"1" : m € N}. (5.8)

The language SAME is not regular.

Remark 5.3. Whenever we give a language a special name like this, it is to be un-
derstood that this language is so defined for the remainder of the course (although
reminders will often appear). It is a good idea to remember the languages that
are given special names—they will serve well as examples. Two additional named
languages will appear in this lecture.

Proof. Assume toward contradiction that SAME is regular. By the pumping lemma
for regular languages, there must exist a pumping length n > 1 for SAME for
which the property stated by that lemma holds. We will fix such a pumping length
n for the remainder of the proof.

Define w = 0"1" (where n is the pumping length we just fixed). It is the case
that w € SAME and |w| = 2n > n, so the pumping lemma tells us that there exist
strings x,y,z € X* so that w = xyz and the following conditions hold:

1.y #e
2. |xy| <mn,and
3. xy'z € SAME for all i € IN.

Now, because xyz = 0"1" and |xy| < n, the substring y cannot have any 1s in
it, as the substring xy is not long enough to reach the 1s in xyz. This means that
Yy = 0% for some choice of k € IN, and because y # &, we conclude moreover that
k > 1. We may also conclude that

xy?z = xyyz = 0" k1", (5.9)

This is because xyyz is the string obtained by inserting y = 0 somewhere in the
initial portion of the string xyz = 0"1", before any 1s have appeared. More gener-
ally it holds that

xy'z = o=k (5.10)

for each i € IN. (We do not actually need this more general formula for the sake of
the current proof, but in other similar cases a formula like this can be helpful.)
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However, because k > 1, we see that the string xyzz = 0"*1" is not contained in
SAME. This contradicts the third condition stated by the pumping lemma, which
guarantees us that xy’z € SAME for all i € N.

Having obtained a contradiction, we conclude that our assumption that SAME
is regular was wrong. The language SAME is therefore nonregular, as required. [J

Proposition 5.4. Let . = {0, 1} be the binary alphabet and define a language over X as
follows:
A={0"1":mreN, m>r}. (5.11)

The language A is not regular.

Proof. Assume toward contradiction that A is regular. By the pumping lemma for
regular languages, there must exist a pumping length n > 1 for A for which the
property stated by that lemma holds. We will fix such a pumping length n for the
remainder of the proof.

Define w = 0"*11". We see that w € A and |w| = 2n + 1 > n, so the pumping
lemma tells us that there exist strings x,y,z € ¥* so that w = xyz and the following
conditions are satisfied:

1.y #e,
2. |xy| < n,and
3. xy'z € Aforalli € N.

Now, because xyz = 011" and |xy| < #, it must be that y = 0¥ for some choice
of k > 1. (The reasoning here is just like in the previous proposition.) This time we
have

xyiz = gDk (5.12)

for each i € IN. In particular, if we choose i = 0, then we have
xy'z = xz = 0"k, (5.13)

However, because k > 1, and therefore n +1 — k < n, we see that the string xyoz
is not contained in A. This contradicts the third condition stated by the pumping
lemma, which guarantees us that xy’z € A forall i € IN.

Having obtained a contradiction, we conclude that our assumption that A is
regular was wrong. The language A is therefore nonregular, as required. O

Remark 5.5. In the previous proof, it was important that we could choose i = 0 to
get a contradiction—no other choice of i would have worked.
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Proposition 5.6. Let . = {0} and define a language over X. as follows:
SQUARE = {om2 cme ]N}. (5.14)
The language SQUARE is not regular.

Proof. Assume toward contradiction that SQUARE is regular. By the pumping
lemma for regular languages, there exists a pumping length n > 1 for SQUARE for
which the property stated by that lemma holds. We will fix such a pumping length
n for the remainder of the proof.

Define w = 0. We observe that w ¢ SQUARE and |w| = n? > n, so the
pumping lemma tells us that there exist strings x,y,z € ¥* so that w = xyz and
the following conditions are satisfied:

1.y #e,
2. |xy| <mn,and
3. xy'z € SQUARE for all i € N.

There is only one symbol in the alphabet %, so this time it is immediate that
y = 0F for some choice of k € IN. Because y # ¢ and |y| < |xy| < n, it must be the
case that 1 < k < n, and therefore

xy'z = =Dk (5.15)
for each i € IN. In particular, if we choose i = 2, then we have
xy*z = xyyz = 07k, (5.16)

However, because 1 < k < n, it cannot be that n%2 + k is a perfect square; the
number n? + k is larger than 12, but the next perfect square after n? is

(n+1)?=n*>+2n+1, (5.17)

which is strictly larger than n? + k because k < n. The string xy?z is therefore not
contained in SQUARE, which contradicts the third condition stated by the pump-
ing lemma, which guarantees us that xy'z € SQUARE for all i € N.

Having obtained a contradiction, we conclude that the assumption of SQUARE
being regular was wrong. The language SQUARE is therefore nonregular. O

In advance of the next example, let us introduce some notation that will be
useful from time to time throughout the course. For a given string w, the string
w® denotes the reverse of the string w. Formally speaking, assuming w is a string
over an alphabet ¥, we may define the string reversal operation inductively as
follows:
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1. R =¢, and

2. (aw)R = wRa forevery w € ¥* and a € %.
Let us also define the language
PAL = {w € L* : w = w"} (5.18)

over the binary alphabet £ = {0,1}. This language is named PAL because it is
short for palindrome, which (as you may know) is something that reads the same
forward and backward.

Proposition 5.7. The language PAL is not regular.

Proof. Assume toward contradiction that PAL is regular. By the pumping lemma
for regular languages, there must exist a pumping length n > 1 for PAL for which
the property stated by that lemma holds. We will fix such a pumping length n for
the remainder of the proof.

Define w = 0"10". We observe that w € PAL and |w| = 2n+1 > n, so the
pumping lemma tells us that there exist strings x,y,z € ¥* so that w = xyz and
the following conditions are satisfied:

1.y #e,
2. |xy| < n,and
3. xy'z € PAL foralli € N.

Once again, we may conclude that y = 0F for k > 1. This time it is the case that
xy'z = = Dkyor (5.19)

for each i € IN. In particular, if we choose i = 2, then we have
xy?z = xyyz = 0"Hk10". (5.20)

Because k > 1, this string is not equal to its own reverse, and therefore xyzz is
therefore not contained in PAL. This contradicts the third condition stated by the
pumping lemma, which guarantees us that xy'z € PAL for all i € IN.

Having obtained a contradiction, we conclude that our assumption that PAL is
regular was wrong. The language PAL is therefore nonregular, as required. O

The four propositions above should give you an idea of how the pumping
lemma can be used to prove languages are nonregular. The set-up is always the
same: we assume toward contradiction that a particular language is regular, and
observe that the pumping lemma gives us a pumping length n. At that point it is
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time to choose the string w, try to use some reasoning, and derive a contradiction.
It may not always be clear what string w to choose or how exactly to get a contra-
diction; these steps will depend on the language you are working with, there may
be multiple good choices for w, and there may be some creativity and/or insight
involved in getting it all to work.

If you do not know what string w to choose, take a guess and aim for a contra-
diction. If you do not succeed, you may find that you have gained some intuition
on what a better choice might be. Of course, you should thoroughly be convinced
by your own arguments and actively look for ways they might be going wrong; if
you do not truly believe your own proof, it is not likely anyone else will believe it
either.

5.3 Nonregularity from closure properties

Sometimes we can prove that a particular language is nonregular by combining to-
gether closure properties for regular languages our knowledge of other languages
being nonregular. Here are two examples, again stated as propositions.

Proposition 5.8. Let ¥ = {0, 1} and define a language over ¥. as follows:
B={weX": w#uw"} (5.21)
The language B is not regular.

Proof. Assume toward contradiction that B is regular. The regular languages are
closed under complementation, and therefore B is regular. However, B = PAL,
which we already proved is nonregular. This is a contradiction, and therefore our
assumption that B is regular was wrong. We conclude that B is nonregular, as
claimed. O

Proposition 5.9. Let ¥ = {0, 1} and define a language over ¥. as follows:
C = {w e X" : whas more Os than 1s}. (5.22)

The language C is not reqular.

Proof. Assume toward contradiction that C is regular. We know that the language
L(0*1*) is regular because it is the language matched by a regular expression. The
regular languages are closed under intersection, so C N L(0*1*) is regular. How-
ever, we have that

C NL(0"1") = A, (5.23)
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the language defined in Proposition 5.4, which we already proved is nonregular.

This is a contradiction, and therefore our assumption that C is regular was wrong.
We conclude that C is nonregular. O

It is important to remember, when using this method, that it is the regular lan-
guages that are closed under operations such as intersection, union, and so on, not
the nonregular languages. For instance, it is not always the case that the intersec-

tion of two nonregular languages is nonregular—so a proof would not be valid if
it were to rely on such a claim.
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Further discussion of regular
languages

In this lecture we will discuss some additional operations under which the regu-
lar languages are closed and go over a few example problems concerning regular
languages. This is the last lecture of the course to be devoted to regular languages,
but we will refer back to regular languages frequently and relate them to various
computational models and classes of languages as the course progresses.

6.1 Other operations on languages

We have discussed some basic operations on languages, including the regular op-
erations (union, concatenation, and star) and a few others (such as complementa-
tion and intersection). There are many other operations that one can consider—you
could probably sit around all day thinking of increasingly obscure examples if you
wanted to—but for now we will take a look at just a few more.

Reverse

Suppose X is an alphabet and w € ¥* is a string. The reverse of the string w, which
we denote by w®, is the string obtained by rearranging the symbols of w so that
they appear in the opposite order. As we observed in the previous lecture, the
reverse of a string may be defined inductively as follows:

1. Ifw =¢, then w® = &.

2. If w=axfora € ¥ and x € ¥, then wR = xRa.

Now suppose that A C ¥* is a language. We define the reverse of A, which we
denote by AR, to be the language obtained by taking the reverse of each element
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of A. That is, we define
AR ={uw® :we A} (6.1)

You can check that the following identities hold that relate the reverse operation to
the regular operations:

(AUB)R = ARUBR, (AB)® =BRAR, and (A")f= (4%)".  (6.2)
A natural question concerning the reverse of a languages is this one:
If a language A is regular, must its reverse AX also be regular?

The answer to this question is yes. Let us state this fact as a proposition and then
consider two ways to prove it.

Proposition 6.1. Let 2. be an alphabet and let A C ¥* be a reqular language. The lan-

quage AR is reqular.

First proof. There is a natural way of defining the reverse of a regular expression
that mirrors the identities (6.2) above. In particular, if S is a regular expression,
then its reverse regular expression can be defined inductively as follows:

If S = & then SR = .

If S=¢ethen SR =e.

If S = a for some choice of a € ¥, then SR = a.

If S = (51 US,) for regular expressions S; and S, then S® = (S§ U S¥).

If S = (515,) for regular expressions S; and Sy, then S® = (S5SY).

SANES L S e

If S = (S7) for a regular expression Sy, then S® = ((S¥)*).

It is evident that L(S®) = L(S)¥; for any regular expression S, the reverse regular
expression S® matches the reverse of the language matched by S.

Now, under the assumption that A is regular, there must exist a regular expres-
sion S such that L(S) = A, because every regular language is matched by some
regular expression. The reverse of the regular expression S is S®, which is also a
valid regular expression. The language matched by any regular expression is reg-
ular, and therefore L(S®) is regular. Because L(SR) = L(S)R = AR, we have that AR
is regular, as required. O

Second proof (sketch). We will consider this as a proof “sketch” because it just sum-
marizes the main idea without covering the details of why it works.
Under the assumption that A is regular, there must exist a DFA

M= (Q/ 2,0, qo, F) (63)
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such that L(M) = A. We can design an NFA N such that L(N) = AR, thereby
implying that AR is regular, by effectively running M backwards in time (using
the power of nondeterminism to do this because deterministic computations are
generally not reversible).

Here is the natural way to define an NFA N that does what we want:

N = (QU{ro}, X, 1,70, {q0}), (6.4)

where it is assumed that 7 is not contained in Q (i.e., we are letting N have the
same states as M along with a new start state rp), and we take the transition func-
tion u to be defined as follows:

]1(7’0,8) = F/
]1(1’0,(1) =9,

6.5
nige) =2, ¢9)
u(ga)={peQ:dépa =q}

forallg € Qanda € X.

The way N works is to first nondeterministically guess an accepting state of M,
then it reads symbols from the input and nondeterministically chooses to move
to a state for which M would allow a move in the opposite direction on the same
input symbol, and finally it accepts if it ends on the start state of M.

The most natural way to formally prove that L(N) = L(M)R is to refer to the
definitions of acceptance for N and M, and to check that a sequence of states sat-
isfies the definition for M accepting a string w if and only if the reverse of that
sequence of states satisfies the definition of acceptance for N accepting w®. O

Symmetric difference

Given two sets A and B, we define the symmetric difference of A and B as
AAB = (A\B)U(B\A). (6.6)

In words, the elements of the symmetric difference A A B are those objects that
are contained in either A or B, but not both. Figure 6.1 illustrates the symmetric
difference in the form of a Venn diagram.

It is not hard to conclude that if 3. is an alphabet and A, B C ~* are regular lan-
guages, then the symmetric difference A A B of these two languages is also regular.
This is because the regular languages are closed under the operations union, inter-
section, and complementation, and the symmetric difference can be described in
terms of these operations. More specifically, if we assume that A and B are regular,
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Figure 6.1: The shaded region denotes the symmetric difference A A B of two sets
A and B.

then their complements A and B are also regular; which implies that the intersec-
tions A N B and A N B are also regular; and therefore the union (AN B) U (AN B)
of these two intersections is regular as well. Observing that we have

AAB=(ANB)U(ANB), (6.7)

we see that the symmetric difference of A and B is regular.

Prefix, suffix, and substring

Let X be an alphabet and let w € ¥* be a string. A prefix of w is any string that
can be obtained from w by removing zero or more symbols from the right-hand
side of w; a suffix of w is any string that can be obtained by removing zero or more
symbols from the left-hand side of w; and a substring of w is any string that can be
obtained by removing zero or more symbols from either or both the left-hand side
and right-hand side of w. We can state these definitions more formally as follows:
(i) a string x € X" is a prefix of w € X" if there exists v € X* such that w = xv, (ii) a
string x € X" is a suffix of w € X if there exists u € X* such that w = ux, and (iii) a
string x € X" is a substring of w € X* if there exist u,v € X* such that w = uxv.
For any language A C ¥*, we will write Prefix(A), Suffix(A), and Substring(A)
to denote the languages containing all prefixes, suffixes, and substrings (respec-
tively) that can be obtained from any choice of a string w € A. That is, we define

Prefix(A) = {x € £* : there exists v € ¥* such that xv € A}, (6.8)
Suffix(A) = {x € =¥ : there exists u € L* such that ux € A}, (6.9)
Substring(A) = {x € £* : there exist u,v € £* such that uxv € A}.  (6.10)
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Again we have a natural question concerning these concepts:

If a language A is regular, must the languages Prefix(A), Suffix(A), and
Substring(A) also be regular?

The answer is yes, as the following proposition establishes.

Proposition 6.2. Let X be an alphabet and let A C X* be a reqular language over the
alphabet X.. The languages Prefix(A), Suffix(A), and Substring(A) are reqular.

Proof. Because A is regular, there must exist a DFA M = (Q, %, J, qo, F) such that
L(M) = A.Some of the states in Q are reachable from the start state go, by following
zero or more transitions specified by the transition function J.! We may call this
set R, so that

R = {q € Q : there exists w € £* such that §* (g0, w) = q}. (6.11)

Also, from some of the states in Q, it is possible to reach an accept state of M, by
following zero or more transitions specified by the transition function 6. We may
call this set P, so that

P = {q € Q : there existw € * such that §*(q,w) € F}. (6.12)

(See Figure 6.2 for a simple example illustrating the definitions of these sets.)
First, definea DFA K = (Q, %, 4, 4o, P). In words, K is the same as M except that
its accept states are all of the states in M from which it is possible to reach an accept
state of M. We see that L(K) = Prefix(A), and therefore Prefix(A) is regular.
Next, definean NFA N = (QU {ro}, %, 7, 1o, F), where the transition function 7
is defined as

n(ro,€) = R,
n(g,a) = {é(q,a)} (foreachg € Qanda € X),

and 7 takes the value & in all other cases. In words, we define N from M by adding
a new start state r(, along with e-transitions from r( to every reachable state in M.
It is the case that L(N) = Suffix(A), and therefore Suffix(A) is regular.

Finally, the fact that Substring(A) is regular follows from the observation that
Substring(A) = Suffix(Prefix(A)) (or that Substring(A) = Prefix(Suffix(A))). O

L If you were defining a DFA for some purpose, there would be no point in having states that
are not reachable from the start state—but there is nothing in the definition of DFAs that forces all
states to be reachable.
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Figure 6.2: An example of a DFA M. In this case, the set R of reachable states is
R = {q0,91,92,93} while the set P of states from which it is possible to reach an
accepting state of M is P = {qo,q1,92, 94,95}

6.2 Example problems concerning regular languages

We will conclude with a few other examples of problems concerning regular lan-
guages along with their solutions.

Problem 6.1. Let ¥ = {0,1} and let A C X* be a regular language. Prove that the
language

B ={uv : u,v € X*and uav € A for some choice of a € L} (6.13)

is regular.

The language B can be described in intuitive terms as follows: it is the language
of all strings that can be obtained by choosing a nonempty string w from A and
deleting exactly one symbol of w.

Solution. A natural way to solve this problem is to describe an NFA for B, based
on a DFA for A, which must exist by the assumption that A is regular. This will
imply that B is regular, as every language recognized by an NFA is necessarily
regular.

Along these lines, let us suppose that

M= (Q,%,5,q0,F) (6.14)
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is a DFA for which A = L(M). Define an NFA
N = (P,%,1,po,G) (6.15)
as follows. First, we will define
P={0,1} xQ, (6.16)
and we will take the start state of N to be
po = (0,90)- (6.17)
The accept states of N will be
G=1{(1,9) : g€ F}. (6.18)

It remains to describe the transition function # of N, which will be as follows:

1. 71((0,q),a) = {(0,6(q,a))} foreveryg € Qand a € X.
2. 7((0,q),€) = {(1,6(4,0)),(1,6(q,1))} for every g € Q.
3. 1((1,9),a) ={(1,6(g,a))} forevery g € Qand a € X.
4. 7((1,9),¢) = @ forevery g € Q.

The idea behind the way that N operates is as follows. The NFA N starts in
the state (0,g9) and simulates M for some number of steps. This is the effect of the
transitions listed as 1 above. At some point, which is nondeterministically chosen,
N follows an e-transition from a state of the form (0, g) to either the state (1,5(qg,0))
or the state (1,5(g,1)). Intuitively speaking, N is reading nothing from its input
while “hypothesizing” that M has read some symbol a (which is either 0 or 1).
This is the effect of the transitions listed as 2. Then N simply continues simulating
M on the remainder of the input string, which is the effect of the transitions listed
as 3. There are no e-transitions leading out of the states of the form (1, g), which is
why we have the values for 7 listed as 4.

If you think about the NFA N for a moment or two, it should become evident
that it recognizes B.

Alternative Solution. Here is a somewhat different solution to the same problem.
Part of its appeal is that it illustrates a method that may be useful in other cases.
In this case we will also discuss a somewhat more detailed proof of correctness
(partly because it happens to be a bit easier for this solution).
Again, let
M= (Q,%,6,4q0,F) (6.19)
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be a DFA for which L(M) = A. For each choice of p,q € Q, define a new DFA

Mpq = (Q,%,9,p,{q}), (6.20)

and let A,; = L(Mp,). In words, A,, is the regular language consisting of all
strings that cause M to transition to the state g when started in the state p. For any
choice of p, g, and r, we must surely have A, A, C Ay 4. Indeed, Ay, A; 4 repre-
sents all of the strings that cause M to transition from p to g, touching r somewhere
along the way.

Now consider the language

U ApprAspar 6.21)
(par)€EQxXLXF

This is a regular language because each A, ; is regular and the regular languages
are closed under finite unions and concatenations. To complete the solution, let us
observe that the language above is none other than B:

B= U Ago,pAs(pa) - (6.22)
(p,ar)EQxXLXF

To prove this equality, we do the natural thing, which is to separate it into two
separate set inclusions. First let us prove that

BC U Ago,pAs(pa) - (6.23)
(p,ar)EQxXLXF

Every string in B takes the form uv, for some choice of u,v € ¥* and a2 € X for
which uav € A. Let p € Q be the unique state for which u € A, ,, which we could
alternatively describe as the state of M reached from the start state on input ©, and
let r € F be the unique state (which is necessarily an accepting state) for which
uav € Ag,r. As a causes M to transition from p to 6(p,a), it follows that v must
cause M to transition from 6(p,a) tor, i.e., v € As(, ), It therefore the case that
uv € Agy,pAs(p,a),r» Which implies the required inclusion.
Next we will prove that

U AgopAs(pa)r S B (6.24)
(pa,r)eQxLXF

The argument is quite similar to the other inclusion just considered. Pick any
choice of p € Q,a € ¥, and r € F. An element of Ay, A5, ) must take the
form uv for u € Agp and v € Ay, - One finds that uav € Ay, € A, and
therefore uv € B, as required.
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Problem 6.2. Let ¥ = {0,1} and let A C X* be an arbitrary regular language.
Prove that the language

C={vu:uveXlanduv e A} (6.25)
is regular.

Solution. Again, a natural way to solve this problem is to give an NFA for C. Let
us assume
M= (Q,%,,q0,F) (6.26)

is a DFA for which L(M) = A, like we did above. This time our NFA will be
slightly more complicated. In particular, let us define

N = (P,%,1,po,G) (6.27)
as follows. First, we will define
P=({0,1} x Qx Q) U{po}, (6.28)

for po being a special start state of N that is not contained in {0,1} x Q x Q. The
accept states of N will be

G=1{(,9,9) : 9€Q}. (6.29)

It remains to describe the transition function 77 of N, which will be as follows:

1. n(poe) = {(0,q,9) : 9 € Q}-

2. 7((0,7,9),a) = {(0,6(r,a),q)} forallg,r € Qand a € X.
3. 71((0,7,9),¢) = {(1,90,9) } forevery r € Fand g € Q.

4. n((1,7,9),a) ={(1,6(r,a),q)} forallg,r € Qand a € .

All other values of 77 that have not been listed are to be understood as &.

Let us consider this definition in greater detail to understand how it works. N
starts out in the start state pp, and the only thing it can do is to make a guess for
some state of the form (0, g,4q) to jump to. The idea is that the 0 indicates that N
is entering the first phase of its computation, in which it will read a portion of its
input string corresponding to v in the definition of C. It jumps to any state g of M,
but it also remembers which state it jumped to. Every state N ever moves to from
this point on will have the form (a,7,q) for some a € {0,1} and r € Q, but for
the same ¢ that it first jumped to; the third coordinate g represents the memory
of where it first jumped, and it will never forget or change this part of its state.
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Intuitively speaking, the state g is a guess made by N for the state that M would
be on after reading u (which N has not seen yet, so it is just a guess).

Then, N starts reading symbols and essentially mimicking M on those input
symbols—this is the point of the transitions listed in item 2. At some point, nonde-
terministically chosen, N decides that it is time to move to the second phase of its
computation, reading the second part of its input, which corresponds to the string
u in the definition of C. It can only make this nondeterministic move, from a state
of the form (0,7,q) to (1,40,9), when r is an accepting state of M. The reason is
that N only wants to accept vu when M accepts uv, so M should be in the initial
state at the start of u and in an accepting state at the end of v. This is the point of
the transitions listed in item 3. Finally, in the second phase of its computation, N
simulates M on the second part of its input, which corresponds to the string u. It
accepts only for states of the form (1, g, 7), because those are the states that indicate
that N made the correct guess on its first step for the state that M would be in after
reading u.

This is just an intuitive description, not a formal proof. It is the case, however,
that L(N) = C, as a low-level, formal proof would reveal, which implies that C is
regular.

Alternative Solution. Again, there is another solution along the same lines as the
alternative solution to the previous problem. This time it is actually a much easier
solution. Let M be a DFA for A, precisely as above, and define A, ; foreach p,q € Q
as in the alternative solution to the previous problem. The language

U AprAgyp (6.30)
(pr)€EQXF

is regular, again by the closure of the regular languages under finite unions and
concatenations. It therefore suffices to prove

C= U Ay (6.31)
(pr)EQXF

By definition, every element of C may be expressed as vu for u, v € X* satisfying
uv € A. Let p € Qand r € F be the unique states for which u € A, , and
uv € A, r- It follows that v € A, ,, and therefore vu € Ay, Ay ,, implying

cCc U Aphpy (6.32)
(pr)€QxF

Along similar lines, for any choiceof p € Q,r € F,u € Ay, p,and v € Ay, we have
uv € Agy pApr € A, and therefore vu € C, from which the inclusion

U ApAg,pyCC (6.33)
(pr)€QxF
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follows.

The final problem demonstrates that closure properties holding for all regular
languages may fail for nonregular languages. In particular, the nonregular lan-
guages are not closed under the regular operations.

Problem 6.3. For each of the following statements, give specific examples of lan-
guages over some alphabet X for which the statements are satisfied.

(a) There exist nonregular languages A, B C X* such that A U B is regular.
(b) There exist nonregular languages A, B C £* such that AB is regular.

(c) There exists a nonregular language A C ~* such that A* is regular.

Solution. For statement (a), let us let ¥ = {0}, let A C X* be any nonregular
language whatsoever, such as A = {0" : nis a perfect square}, and let B = A.
We know that B is also nonregular (because if it were regular, then its complement
would also be regular, but its complement is A which we know is nonregular). On
the other hand, A U B = ¥*, which is regular.

For statement (b), let us let ¥ = {0}, and let us start by taking C C ¥* to be any
nonregular language (such as C = {0" : n is a perfect square}). Then let us take

A=CuU{e} and B=CU/{e}. (6.34)

The languages A and B are nonregular, by virtue of the fact that C is nonregular
(and therefore C is nonregular as well). On the other hand, AB = %*, which is
regular.

Finally, for statement (c), let us again take ¥ = {0}, and let A C X* be any
nonregular language that contains the single-symbol string 0. (Again, the language
A = {0" : nisa perfect square} will work.) We have that A is nonregular, but
A* = X%, which is regular.

65






Lecture 7

Context-free grammars and languages

The next class of languages we will study in this course is the class of context-free
languages, which are defined by the notion of a context-free grammar, or a CFG for
short.

7.1 Definitions of context-free grammars and
languages

We will start with the following definition for context-free grammars.
Definition 7.1. A context-free grammar (or CFG for short) is a 4-tuple
G=(V,%RS), (7.1)

where V is a finite and non-empty set (whose elements we will call variables), X is
an alphabet (disjoint from V), R is a finite and nonempty set of rules, each of which
takes the form

A—w (7.2)

for some choiceof A € Vandw € (VUZX)*,and S € V is a variable called the start
variable.

Example 7.2. For our first example of a CFG, we may consider G = (V,%,R,S),
where V = {S} (so that there is just one variable in this grammar), ~ = {0,1}, S is
the start variable, and R contains these two rules:

S —0S1

S e 7:3)

It is often convenient to describe a CFG just by listing the rules, like in (7.3).
When we do this, it is to be understood that the set of variables V and the alphabet
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2 are determined implicitly: the variables are the capital letters appearing on the
left-hand side of the rules and the alphabet contains the symbols on the right-hand
side of the rules that are left over. Moreover, the start variable is understood to
be the variable appearing on the left-hand side of the first rule that is listed. Note
that these are just conventions that allow us to save time, and you could simply
list each of the elements V, %, R, and S if it was likely that the conventions would
cause confusion.

Every context-free grammar G = (V, %, R, S) generates a language L(G) C X*.
Informally speaking, this is the language consisting of all strings that can be ob-
tained by the following process:

1. Write down the start variable S.
2. Repeat the following steps any number of times:

2.1 Choose any rule A — w from R.

2.2 Within the string of variables and alphabet symbols you currently have
written down, replace any instance of the variable A with the string w.

3. If you are eventually left with a string of the form x € X%, so that no vari-
ables remain, then stop. The string x has been obtained by the process, and is
therefore among the strings generated by G.

Example 7.3. The CFG G described in Example 7.2 generates the language
SAME = {0"1" : n € N}. (7.4)

This is because we begin by writing down the start variable S, then we choose one
of the two rules and perform the replacement in the only way possible: there will
always be a single variable S in the middle of the string, and we replace it either
by 0S1 or by e. The process ends precisely when we choose the rule S — ¢, and
depending on how many times we chose the rule S — 0S1 we obtain one of the
strings

e, 01, 0011, 000111, ... (7.5)
and so on. The set of all strings that can possibly be obtained is therefore given
by (7.4).

The description of the process through which the language generated by a CFG
is determined provides an intuitive, human-readable way to explain this concept,
but it is not very satisfying from a mathematical viewpoint. We would prefer a
definition based on sets, functions, and so on (rather than one that refers to “writ-
ing down” variables, for instance). One way to define this notion mathematically
begins with the specification of the yields relation of a grammar that captures the
notion of performing a substitution.
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Definition 7.4. Let G = (V,X%, R, S) be a context-free grammar. The yields relation
defined by G is a relation defined for pairs of strings over the alphabet V U X as
follows:

uAv =g uwv (7.6)

for every choice of strings u,v,w € (VUZX)* and a variable A € V, provided that
the rule A — w is included in R.!

The interpretation of this relation is that x =¢ y, for x,y € (V UX)*, when it is
possible to replace one of the variables appearing in x according to one of the rules
of G in order to obtain y.

It will also be convenient to consider the reflexive transitive closure of this re-
lation, which is defined as follows.

Definition 7.5. Let G = (V, X%, R, S) be a context-free grammar. For any two strings
x,y € (VUZX)* one has that

XScy (7.7)

if there exists a positive integer m and strings z1, ...,z € (V UX)* such that

1. x =2z,
2. y = zy, and

3. zx =G zpyq forevery k € {1,...,m —1}.

In this case, the interpretation of this relation is that x :*>G y holds when it is
possible to transform x into y by performing zero or more substitutions according
to the rules of G.

When a CFG G is fixed or can be safely taken as implicit, we will sometimes
write = rather than =, and likewise for the starred version.

We can now use the relation just defined to formally define the language gen-
erated by a given context-free grammar.

Definition 7.6. Let G = (V, %, R, S) be a context-free grammar. The language gener-
ated by G is

L(G)={xeX": S=gx}. (7.8)

If x € L(G) foraCFG G = (V,%,R,S),and z1, ...,z € (VUZX)" is a sequence
of strings for which z; = S, z;, = x, and zx =g zg4q forallk € {1,...,m — 1}, then

! Recall that a relation is a subset of a Cartesian product of two sets. In this case, the relation
is the subset {(#Av, uwv) : u,v,w € (VUXL)*, A € V, and A — wis arule in R}. The notation
uAv =g uwv is a more readable way of indicating that the pair (1Av, uwv) is an element of the
relation.
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the sequence zy, ...,z is said to be a derivation of x. If you unravel the definitions
above, it becomes clear that there must (of course) exist at least one derivation for
every string x € L(G), but in general there might be more than one derivation of a
given string x € L(G).

Finally, we define the class of context-free languages to be those languages that
are generated by context-free grammars.

Definition 7.7. Let X be an alphabet and let A C ¥* be a language. The language
A is context free if there exists a context-free grammar G such that L(G) = A.

Example 7.8. The language SAME is a context-free language, as has been estab-
lished in Example 7.3.

7.2 Examples of context-free grammars and languages

We have seen one example of a context-free language so far: SAME. Let us now
consider a few more examples.

Basic examples

Example 7.9. The language
PAL={we ¥ : w=uw"} (7.9)

over the alphabet X~ = {0,1}, which we first encountered in Lecture 5, is context
free. (In fact this is true for any choice of an alphabet %, but let us stick with the bi-
nary alphabet for now for simplicity). To verify that this language is context free, it
suffices to exhibit a context-free grammar that generates it. Here is one that works:

S —0S0

S — 1851

S—0 (7.10)
S—1

S—e

We often use a short-hand notation for describing grammars in which the same
variable appears on the left-hand side of multiple rules, as is the case for the gram-
mar described in the previous example. The short-hand notation is to write the
variable on the left-hand side and the arrow just once, and to draw a vertical bar
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(which can be read as “or”) among the possible alternatives for the right-hand side
like this:

S—0S0|1S1|0|1]e (7.11)

When you use this short-hand notation when you are writing by hand, such as on
an exam, be sure to make your bars tall enough so that they are easily distinguished
from 1s.

Sometimes it is easy to see that a particular CFG generates a given language—
for instance, I would consider this to be obvious in the case of the previous exam-
ple. In other cases it can be more challenging, or even impossibly difficult, to verify
that a particular grammar generates a particular language. The next example illus-
trates a case in which such a verification is nontrivial.

Example 7.10. Let £ = {0, 1} be the binary alphabet, and define a language A C X*
as follows:

A={weX : |wlp=|w)}. (7.12)

Here we are using a convenient notation: |w|y denotes the number of times the
symbol 0 appears in w, and similarly |w|; denotes the number of times the symbol 1
appears in w. The language A therefore contains all binary strings having the same
number of Os and 1s. This is a context-free language, as it is generated by this
context-free grammar:

S — 0515]150S | (7.13)

Now, it is clear that every string generated by this grammar, which we will
call G, is contained in A: we begin any derivation with the variable S alone, so
there are an equal number of Os and 1s at the start (zero of each, to be precise), and
every rule maintains this property as an invariant.

On the other hand, it is not immediately obvious that every element of A can
be generated by G. Let us prove that this is indeed the case.

Claim 7.11. A C L(G).

Proof. Let w € A be a string contained in A and let n = |w|. We will prove that
w € L(G) by (strong) induction on 7.

The base case is n = 0, which means that w = e. We have that S = e represents
a derivation of ¢, and therefore w € L(G).

For the induction step, we assume that n > 1, and the hypothesis of induction
is that x € L(G) for every string x € A with |x| < n. Our goal is to prove that G
generates w. Let us write

w=aj---a (7.14)
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foray,...,a, € £. We have assumed that w € A, and therefore
ay - - anlo = |ay -+ - aqlr. (7.15)
Next, let m € {1,...,n} be the minimum value for which
|ay - amlo = |ar - - - amli; (7.16)

we know that this equation is satisfied when m = n, and there might be a smaller
value of m that works. We will now prove that a; # a,.

The fact that a; # a,, follows from a proof by contradiction. Toward this goal,
assume a; = da,,, and define

Ni=lar---agly — a1 arlo (7.17)

forevery k € {1,...,m}. We know that N,, = 0 because equation (7.16) is satisfied.
Moreover, using the assumption a4; = a,,, we observe the equations

|a1 .. 'am|1 = |a1 .. -am_1|1 + |am|1 - |a1 oo 'am—1|1 + |a1|1

(7.18)
|a1 .o 'am|0 = |{11 .- '(Zm71|() + |am|0 = |a1 e 'am71|0 + |611|0,

and conclude that
Ny = Ny-1+ Ny (7.19)

by subtracting the second equation from the first. Therefore, because N;;, = 0 and
Nj is nonzero, it must be that N,,,_; is also nonzero, and more importantly N; and
N,,—1 must have opposite sign. However, because consecutive values of Ny must
always differ by 1 and can only take integer values, we conclude that there must
exist a choice of k in the range {2,...,m — 2} for which Ny = 0, for otherwise it
would not be possible for N; and N,,_; to have opposite sign. This, however, is
in contradiction with m being the minimum value for which (7.16) holds. We have
therefore proved that a; # a,.

At this point it is possible to describe a derivation for w. We have w = a; - - - ay,
and we have that

a1« amlo=l|ar---am|r and ay # ay (7.20)
for some choice of m € {1,...,n}. We conclude that
lag - am_1lo=laz- - ay_1)1 and |ayi1---anlo = |ame1 - anl1- (7.21)
By the hypothesis of induction it follows that
SScay- -y and S =g ayiq - an. (7.22)
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Therefore the string w satisfies

S=¢c051S =5 0ay- a1 lampr---an = w (7.23)
(incasea; =0and a, = 1) or

S=¢c150S =¢ 1ar- -y 10ays1 -y = W (7.24)
(in case a1 = 1 and a,, = 0). We have proved that w € L(G) as required. O

Here is another example that is related to the previous one. It is an important
example and we will refer to it from time to time throughout the course.

Example 7.12. Consider the alphabet £ = {(, ) }. That is, we have two symbols in
this alphabet: left-parenthesis and right-parenthesis.

To say that a string w over the alphabet X is properly balanced means that by
repeatedly removing the substring (), you can eventually reach . More intuitively
speaking, a string over X is properly balanced if it would make sense to use this
pattern of parentheses in an ordinary arithmetic expression (ignoring everything
besides the parentheses). These are examples of properly balanced strings:

(OO0, ((O0)), (), and e (7.25)

These are examples of strings that are not properly balanced:
((0)(), and () (. (7.26)
Now define a language
BAL = {w € ¥ : wis properly balanced }. (7.27)
The language BAL is context free; here is a simple CFG that generates it:
S—(S)S]e. (7.28)

See if you can convince yourself that this CFG indeed generates BAL!

A more advanced example

Sometimes it is more challenging to come up with a context-free grammar for a
given language. The following example concerns one such language.
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Example 7.13. Let £ = {0,1} and T = {0, 1, #}, and define
A={u#v : u,ve X and u # v}. (7.29)
Here is a context-free grammar for A:

S — WolY |W10Y | Z
Wo — XWX | 0Y#
Wi — XWX | 1Y#

Z — XZX | XY#|#XY
X—0]1

Y = XY |e.

(7.30)

The idea behind this CFG is as follows. First, the variable Z generates strings of the
form u#v where u and v have different lengths. The variable Wy generates strings
that look like this:

ogo---gopg---g#00d---0d (7.31)

n bits m bits n bits

(where Ll means either 0 or 1), so that Wy1Y generates strings that look like this:

oo---gopo---g#00---0100---0 (7.32)
n Brits mEts n ?)rits k bits

(for any choice of n, m, k € IN). Similarly, W; 0Y generates strings that look like this:

0oo---0100---04#00---0000---0 (7.33)

~~ ~

N
n bits m bits n bits k bits

Taken together, these two possibilities generate u#v for all binary strings u and v
that differ in at least one position (and that may or may not have the same length).
The three options together cover all possible u#v for which u and v are non-equal
binary strings.
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Parse trees, ambiguity, and Chomsky
normal form

In this lecture we will discuss a few important notions connected with context-
free grammars, including parse trees, ambiguity, and a special form for context-free
grammars known as Chomsky normal form.

8.1 Left-most derivations and parse trees

In the previous lecture we covered the definition of context-free grammars as well
as derivations of strings by context-free grammars. Let us consider one of the
context-free grammars from the previous lecture:

S — 0515|1808 |e. (8.1)
Again we will call this CFG G, and as we proved last time we have
L(G) = {w € =" : Julo = [w]:}, 82)

where X = {0,1} is the binary alphabet and |w|p and |w|; denote the number of
times the symbols 0 and 1 appear in w, respectively.

Left-most derivations

Here is an example of a derivation of the string 0101:
S = 0515 = 015051S = 010515 = 0101S = 0101. (8.3)

This is an example of a left-most derivation, which means that it is always the left-
most variable that gets replaced at each step. For the first step there is only one
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variable that can possibly be replaced; this is true both in this example and in gen-
eral. For the second step, however, one could choose to replace either of the occur-
rences of the variable S, and in the derivation above it is the left-most occurrence
that gets replaced. That is, if we underline the variable that gets replaced and the
symbols and variables that replace it, we see that this step replaces the left-most
occurrence of the variable S:

0S1S = 01S0S1S. (8.4)

The same is true for every other step: always we choose the left-most variable
occurrence to replace, and that is why we call this a left-most derivation. The same
terminology is used in general, for any context-free grammar.

If you think about it for a moment, you will quickly realize that every string
that can be generated by a particular context-free grammar can also be generated
by that same grammar using a left-most derivation. This is because there is no “in-
teraction” among multiple variables and/or symbols in any context-free grammar
derivation; if we know which rule is used to substitute each variable, then it does
not matter what order the variable occurrences are substituted, so you might as
well always take care of the left-most variable during each step.

We could also define the notion of a right-most derivation, in which the right-
most variable occurrence is always evaluated first, but there is not really anything
important about right-most derivations that is not already represented by the no-
tion of a left-most derivation, at least from the viewpoint of this course. For this
reason, we will not have any reason to discuss right-most derivations further.

Parse trees

With any derivation of a string by a context-free grammar we may associate a tree,
called a parse tree, according to the following rules:

1. We have one node of the tree for each new occurrence of either a variable, a
symbol, or an ¢ in the derivation, with the root node of the tree corresponding
to the start variable. We only have nodes labeled ¢ when rules of the form
V — e are applied.

2. Each node corresponding to a symbol or an ¢ is a leaf node (having no chil-
dren), while each node corresponding to a variable has one child for each sym-
bol, variable, or ¢ with which it is replaced. The children of each variable node
are ordered in the same way as the symbols and variables in the rule used to
replace that variable.

For example, the derivation (8.3) yields the parse tree illustrated in Figure 8.1.
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Figure 8.1: The parse tree corresponding to the derivation (8.3) of the string 0101.

There is a one-to-one and onto correspondence between parse trees and left-
most derivations, meaning that every parse tree uniquely determines a left-most
derivation and each left-most derivation uniquely determines a parse tree.

8.2 Ambiguity

Sometimes a context-free grammar will allow multiple parse trees (or, equivalently,
multiple left-most derivations) for some strings in the language that it generates.
For example, a left-most derivation of the string 0101 by the CFG (8.1) that is dif-
ferent from (8.3) is

S = 0S1S = 015 = 010S1S = 0101S = 0101. (8.5)

The parse tree corresponding to this derivation is illustrated in Figure 8.2.

When it is the case, for a given context-free grammar G, that there exists at least
one string w € L(G) having at least two different parse trees, the CFG G is said to
be ambiguous. Note that this is so even if there is just a single string having multiple
parse trees; in order to be unambiguous, a CFG must have just a single, unique parse
tree for every string it generates.

Being unambiguous is generally considered to be a positive attribute of a CFG,
and indeed it is a requirement for some applications of context-free grammars.

Designing unambiguous CFGs

In some cases it is possible to come up with an unambiguous context-free gram-
mar that generates the same language as an ambiguous context-free grammar. For
example, we can come up with a different context-free grammar for the language

77



CS 360 Introduction to the Theory of Computing

S
] T
0O S 1 S
| AN
e 0 S 1 S
L]

Figure 8.2: The parse tree corresponding to the derivation (8.5) of the string 0101.

L(G) described in (8.2) that, unlike the CFG (8.1), is unambiguous. Here is such a
CFG:
S — 0X1S|1Y0S |«
X—>0X1X‘s (8.6)
Y = 1Y0Y | ¢

We will not take the time to go through a proof that this CFG is unambiguous, but
if you think about it for a few moments you should be able to convince yourself
that it is unambiguous. The variable X generates strings having the same number
of Os and 1s, where the number of 1s never exceeds the number of Os when you
read from left to right, and the variable Y is similar except the role of the Os and 1s
is reversed. If you try to generate a particular string by a left-most derivation with
this CFG, you will never have more than one option as to which rule to apply.

Here is another example of how an ambiguous CFG can be modified to make it
unambiguous. Let us define an alphabet

Z:{a,b,+,*,(,)} (8.7)
along with a CFG
S—S+S|S«S|(S)|alb (8.8)

This grammar generates strings that look like arithmetic expressions in variables a
and b, where we allow the operations * and -+, along with parentheses.

For example, the string (a + b) * a + b corresponds to such an expression, and
one derivation for this string is as follows:

S=5%xS5=(S)*S=(S+S5)*S=(a+S)*S= (a+b) xS

8.9
= (a+b)xS+S=(a+b)xa+S= (a+Db)*xa+D. (89)

This happens to be a left-most derivation, as it is always the left-most variable
that is substituted. The parse tree corresponding to this derivation is shown in
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Figure 8.3: Parse tree for (a + b) % a + b corresponding to the derivation (8.9).

Figure 8.3. You can of course imagine a more complex version of this grammar
allowing for other arithmetic operations, variables, and so on, but we will stick to
the grammar in (8.8) for the sake of simplicity.

The CFG (8.8) is ambiguous. For instance, a different (left-most) derivation for
the same string (a + b) * a + b as before is

S=S5+5=85%5+S5=(S)*xS+S
= (54+S5)*S+S=(a+S)*xS+S=(a+b)*S+S (8.10)
= (a+b)xa+S=(a+b)xa+b,

and the parse tree for this derivation is shown in Figure 8.4.

Notice that the parse tree illustrated in Figure 8.4 is appealing because it actu-
ally carries the meaning of the expression (2 + b) * a + b, in the sense that the tree
structure properly captures the order in which the operations should be applied
according to the standard order of precedence for arithmetic operations. In con-
trast, the parse tree shown in Figure 8.3 seems to represent what the expression
(a+b) *a+ b would evaluate to if we lived in a society where addition was given
higher precedence than multiplication.

The ambiguity of the grammar (8.8), along with the fact that parse trees may
not represent the meaning of an arithmetic expression in the sense just described,
is a problem in some settings. For example, if we were designing a compiler and
wanted a part of it to represent arithmetic expressions (presumably allowing much
more complicated ones than our grammar from above allows), a CFG along the
lines of (8.8) would be completely inadequate.

We can, however, come up with a new CFG for the same language that is much
better, in the sense that it is unambiguous and properly captures the meaning of
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Figure 8.4: Parse tree for (a 4+ b) * a + b corresponding to the derivation (8.10).

arithmetic expressions (given that we give multiplication higher precedence than

addition). Here it is:
S—T|S+T

T—F|TxF
F—1I[(S)
I—alb

(8.11)

For example, the unique parse tree corresponding to the string (a + b) *xa + b is as
shown in Figure 8.5.

To better understand the CFG (8.11), it may help to associate meanings with
the different variables. In this CFG, the variable T generates terms, the variable F
generates factors, and the variable I generates identifiers. An expression is either a
term or a sum of terms, a term is either a factor or a product of factors, and a factor
is either an identifier or an entire expression inside of parentheses.

Inherently ambiguous languages

While we have seen that it is sometime possible to come up with an unambiguous
CFG that generates the same language as an ambiguous CFG, it is not always pos-
sible. There are some context-free languages that can only be generated by ambigu-
ous CFGs. Such languages are called inherently ambiguous context-free languages.
An example of an inherently ambiguous context-free language is this one:

{0M1"2% . n=morm=k}. (8.12)
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Figure 8.5: Unique parse tree for (a + ) % a + b for the CFG (8.11).

We will not prove that this language is inherently ambiguous, but the intuition is
that no matter what CFG you come up with for this language, the string 0"1"2"
will always have multiple parse trees for some sufficiently large natural number .

8.3 Chomsky normal form

Some context-free grammars are strange. For example, the CFG
S — 855S| € (8.13)

simply generates the language {e}; but it is obviously ambiguous, and even worse
it has infinitely many parse trees (which of course can be arbitrarily large) for the
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Figure 8.6: A hypothetical example of a parse tree for a CFG in Chomsky normal
form.

only string ¢ it generates. While we know we cannot always eliminate ambiguity
from CFGs, as some context-free languages are inherently ambiguous, we can at
least eliminate the possibility to have infinitely many parse trees for a given string.
Perhaps more importantly, for any given CFG G, we can always come up with a
new CFG H for which L(H) = L(G), and for which we are guaranteed that every
parse tree for a given string w € L(H) has the same size and a very simple, binary-
tree-like structure.

To be more precise about the specific sort of CFGs and parse trees we are talking
about, it is appropriate at this point to define Chomsky normal form for context-free
grammars.

Definition 8.1. A context-free grammar G is in Chomsky normal form if every rule
of G has one of the following three forms:

1. X — YZ, for variables X, Y, and Z, and where neither Y nor Z is the start
variable,

2. X — a, for a variable X and a symbol g, or

3. S — ¢, for S the start variable.

Now, the reason why a CFG in Chomsky normal form is nice is that every parse
tree for such a grammar has a simple form: the variable nodes form a binary tree,
and for each variable node that does not have two variable node children, a single
symbol node hangs off. A hypothetical example meant to illustrate the structure
we are talking about is given in Figure 8.6. Notice that the start variable always
appears exactly once at the root of the tree because it is never allowed on the right-
hand side of any rule.
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Figure 8.7: The unique parse tree for ¢ for a CFG in Chomsky normal form, assum-
ing it includes the rule S — .

If the rule S — ¢ is present in a CFG in Chomsky normal form, then we have
a special case that does not match the structure described above. In this case we
can have the very simple parse tree shown in Figure 8.7 for ¢, and this is the only
possible parse tree for this string.

Because of the special form that a parse tree must take for a CFG G in Chomsky
normal form, we have that every parse tree for a given string w € L(G) must have
exactly 2|w| — 1 variable nodes and |w/| leaf nodes (except for the special case w = ¢,
in which we have one variable node and 1 leaf node). An equivalent statement is
that every derivation of a (nonempty) string w by a CFG in Chomsky normal form
requires exactly 2|w| — 1 substitutions.

The following theorem establishes that every context-free language is gener-
ated by a CFG in Chomsky normal form.

Theorem 8.2. Let X be an alphabet and let A C X* be a context-free language. There
exists a CFG G in Chomsky normal form such that A = L(G).

The usual way to prove this theorem is through a construction that converts an
arbitrary CFG G into a CFG H in Chomsky normal form for which L(H) = L(G).
The conversion is, in fact, fairly straightforward—a summary of the steps one may
perform to do this conversion for an arbitrary CFG G = (V,%,R,S) appear be-
low. To illustrate how these steps work, let us start with the following CFG, which
generates the balanced parentheses language BAL from the previous lecture:

S—(S)S|e (8.14)

1. Add a new start variable Sy along with the rule Sy — S.

Doing this will ensure that the start variable Sy never appears on the right-hand
side of any rule.

Applying this step to the CFG (8.14) yields

So— S

S—(S)S|e (8.15)
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2. Introduce a new variable X, for each symbol a € X.

First include the new rule X, — a. Then, for every other rule in which 4 appears
on the right-hand side, except for the cases when a appears all by itself on the
right-hand side, replace each a with X,.

Continuing with our example, the CFG (8.15) is transformed into this CFG
(where we will use the names L and R rather than the weird-looking variables
X and Xj in the interest of style):

So— S
S — LSRS | ¢
L—(
R—)

(8.16)

3. Split up rules of the form X — Yj---Y},;, whenever m > 3, using auxiliary
variables in a straightforward way.

In particular, X — Yj - - - Y}, can be broken up as

X —=>Y17Z,
Z2 — Y2Z3
(8.17)
Zim—2 = Ym—2Zm
Zm—l — Ym—lym

Note that we must use separate auxiliary variables for each rule so that there
is no “cross talk” between different rules—so do not reuse the same auxiliary
variables to break up multiple rules.

Transforming the CFG (8.16) in this way results in the following CFG:

So— S
S—LZ|e
Zo — 573
Z3 — RS
L—(
R—)

(8.18)

7

4. Eliminate e-rules of the form X — ¢ and “repair the damage.’
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Aside from the special case Sg — ¢, there is never any need for rules of the form
X — & you can get the same effect by simply duplicating rules in which X
appears on the right-hand side, and directly replacing or not replacing X with ¢
in each possible combination. You might introduce new e-rules in this way, but
they can be handled recursively—and any time a new e-rule is generated that
was already eliminated, it is not added back in.

Transforming the CFG (8.18) in this way results in the following CFG:

So—S|e
S—LZy
Zy — SZ3| Z3
Zg—>RS\R
L—(

R —)

(8.19)

Note that we do end up with the e-rule So — ¢, but we do not eliminate this
one because Sy — ¢ is the special case that we allow as an e-rule.

5. Eliminate unit rules, which are rules of the form X — Y.

Rules like this are never necessary, and they can be eliminated provided that
we also include the rule X — w in the CFG whenever Y — w appears as a rule.
If you obtain a new unit rule that was already eliminated (or is the unit rule
currently being eliminated), it is not added back in.

Transforming the CFG (8.19) in this way results in the following CFG:

So—LZy | ¢
S—LZy

Zy —SZ3 | RS |)
Z3—RS|)
L—(

R—)

(8.20)

At this point we are finished; this context-free grammar is in Chomsky normal
form.

The description above is only meant to give you the basic idea of how the construc-
tion works and does not constitute a formal proof of Theorem 8.2. It is possible,
however, to be more formal and precise in describing this construction in order to
obtain a proper proof of Theorem 8.2.
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We will make use of the theorem from time to time. In particular, when we are
proving things about context-free languages, it is sometimes extremely helpful to
know that we can always assume that a given context-free language is generated
by a CFG in Chomsky normal form.

Finally, it must be stressed that the Chomsky normal form says nothing about
ambiguity in general. A CFG in Chomsky normal form may or may not be am-
biguous, just like we have for arbitrary CFGs.
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Properties of context-free languages

In this lecture we will examine various properties of the class of context-free lan-
guages, including the fact that it is closed under the regular operations, that every
regular language is context free, and that the intersection of a context-free language
and a regular language is always context free.

9.1 Closure under the regular operations

Let us begin by proving that the context-free languages are closed under the regu-
lar operations.

Theorem 9.1. Let X be an alphabet and let A,B C X* be context-free languages. The
languages A U B, AB, and A* are context free.

Proof. Because A and B are context-free languages, there must exist context-free
grammars
GA = (VA,Z,RA,SA) and GB = (VB,Z,RB,SB) (9.1)

such that L(G4) = A and L(Gp) = B. Because the specific names we choose for
the variables in a context-free grammar have no effect on the language it generates,
there is no loss of generality in assuming V4 and Vp are disjoint sets.

First let us construct a CFG G for the language A U B. This CFG will include
all of the variables and rules of G4 and Gp together, along with a new variable S
(which we assume is not already contained in V4 or Vp, and which we will take to
be the start variable of G) and two new rules:

S— 5y ‘ Sg. (9.2)
Formally speaking we may write

G=(V,%,R,S) (9.3)
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where V=V, UVpU{S} and R = R4 URpU{S — Sa, S — Sp}. In the typical
style in which we write CFGs, the grammar G looks like this:

S—>SA‘SB

all rules of G4

all rules of Gp

Itis evident that L(G) = AU B; each derivation may begin with S = S4 or S = Sp,
after which either S 4 generates any string in A or Sg generates any string in B. As
the language A U B is generated by the CFG G, we have that it is context free.
Next we will construct a CFG H for the language AB. The construction of H
is very similar to the construction of G above. The CFG H will include all of the
variables and rules of G4 and G, along with a new start variable S and one new
rule:
S — 548S3. (9.4)

Formally speaking we may write
H=(V,LR,S) (9.5)

where V =V, UVpU{S} and R = R4 URg U {S — S4Sp}. In the typical style in
which we write CFGs, the grammar G looks like this:

S — 54538

all rules of G4

all rules of Gg

It is evident that L(G) = AB; each derivation must begin with S = S4Sg, and then
S 4 generates any string in A and Sp generates any string in B. As the language AB
is generated by the CFG H, we have that it is context free.
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Finally we will construct a CFG K for A*. This time the CFG K will include just
the rules and variables of G4, along with a new start variable S and two new rules:

S—S54 e (9.6)
Formally speaking we may write
K= (V,%,R,S) 9.7)

where V. = V4 U {S} and R = R4U{S — 554,55 — ¢}. In the typical style in
which we write CFGs, the grammar K looks like this:

S—554 ¢

all rules of G4

Every possible left-most derivation of a string by K must begin with zero or more
applications of therule S — S S 4 followed by the rule S — . This means that every
left-most derivation begins with a sequence of rule applications that is consistent
with one of the following relationships:

S=¢

S= Sy,

S= 5454 (9.8)
S= 545454

and so on. After this, each occurrence of S 4 generates any string in A. It is therefore
the case that L(K) = A*, so that A* is context free. O

9.2 Relationships to regular languages

This section discusses relationships between context-free languages and regular
languages. In particular, we will prove that every regular language is context free,
and (more generally) that the intersection between a context-free language and a
regular language is always context free.
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Every regular language is context free

Let us begin with the first fact suggested above, which is that every regular lan-
guage is also context free. We will discuss two different ways to prove this fact.

Theorem 9.2. Let X be an alphabet and let A C X* be a reqular language. The language
A is context free.

First proof. With every regular expression R over the alphabet 2, one may associate
a CFG G by recursively applying these simple constructions:

1. If R = @, then G is the CFG
S—S, (9.9)

which generates the empty language @.

2. If R = ¢, then G is the CFG
S —e¢, (9.10)

which generates the language {¢}.
3. If R =afora € X, then G is the CFG

S —a, (9.11)

which generates the language {a}.

4. If R = (R UR;y), then G is the CFG generating the language L(G1) UL(Gy), as
described in the proof of Theorem 9.1, where G; and G, are CFGs associated
with the regular expressions R and Ry, respectively.

5. If R = (R1Ry), then G is the CFG generating the language L(G;) L(Gy), as
described in the proof of Theorem 9.1, where G; and G; are CFGs associated
with the regular expressions R; and R, respectively.

6. If R = (R}), then G is the CFG generating the language L(G;)*, as described
in the proof of Theorem 9.1, where G; is the CFG associated with the regular
expression Rj.

In each case, we observe that L(G) = L(R).

Now, by the assumption that A is regular, there must exist a regular expression
R such that L(R) = A. For the CFG G obtained from R as described above, we find
that L(G) = A, and therefore A is context free. O
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Second proof. Because A is regular, there must exist a DFA
M = (QI ZI 5/ qOI F) (912)

such that L(M) = A.
We will define a CFG G that effectively simulates M, generating exactly those
strings that are accepted by M. In particular, we will define

G=(V,%,R, Xg) (9.13)

where the variables are V = {X; : g € Q} (one variable for each state of M) and
the following rules are to be included in R:

1. For each choice of p,q € Q and a € X satisfying 6(p,a) = g, the rule
X, — aX, 9.14)

is included in R.

2. For each state g € F, the rule
Xy — e (9.15)

is included in R.

Now, by examining the rules suggested above, we see that every derivation
of a string by G begins with the start variable (of course), involves zero or more
applications of rules of the first type listed above, and then ends when a rule of the
second type is applied. There will always be a single variable appearing after each
step of the derivation, until the very last step in which this variable is eliminated. It
is important that this final step is only possible when the variable X; corresponds
to an accept state g € F. By considering the rules of the first type, it is evident that

[Xg = wX,] < [6%(q0,w) =q]. (9.16)

We therefore have X, = w if and only if there exists a choice of g € F for which
0*(qo,w) = g. This is equivalent to the statement that L(G) = L(M), which com-
pletes the proof. O

Intersections of regular and context-free languages

The context-free languages are not closed under some operations for which the reg-
ular languages are closed. For example, the complement of a context-free language
may fail to be context free, and the intersection of two context-free languages may
fail to be context free. We will observe both of these facts in the next lecture.
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It is the case, however, that the intersection of a context-free language and a
regular language is always context free, as we will now prove. The proof is more
complicated than most of the other proofs we have seen thus far in the course—if
it is not immediately clear, just do your best to try to understand the idea behind it.

Theorem 9.3. Let X be an alphabet, let A, B C ¥ be languages, and assume A is context
free and B is regular. The language A N B is context free.

Proof. The language A is context free, so there exists a CFG that generates it. As
discussed in the previous lecture, we may in fact assume that there exists a CFG in
Chomsky normal form that generates A. Having this CFG be in Chomsky normal
form will greatly simplify the proof. Hereafter we will assume

G=(V,5R,S) 9.17)

is a CFG in Chomsky normal form such that L(G) = A. Because the language B is
regular, there must also exist a DFA

M= (Q,%,5,q0,F) (9.18)

such that L(M) = B.

The main idea of the proof is to define a new CFG H such that L(H) = AN B.
The CFG H will have |Q|? variables for each variable of G, which may be a lot but
that is not a problem—it is a finite number, and that is all we require of a set of
variables of a context-free grammar. In particular, for each variable X € V, we will
include a variable X, ; in H for every choice of p,q € Q. In addition, we will add a
new start variable Sy to H.

The intended meaning of each variable X, ; is that it should generate all strings
that (i) are generated by X with respect to the grammar G, and (ii) cause M to move
from state p to state g. We will accomplish this by adding a collection of rules to H
for each rule of G. Because the grammar G is assumed to be in Chomsky normal
form, there are just three possible forms for its rules, and they can be handled one
at a time as follows:

1. For each rule of the form X — a in G, include the rule
Xpq — a (9.19)

in H for every pair of states p,q € Q for which 6(p,a) = g.
2. For each rule of the form X — Y Z in G, include the rule

in H for every choice of states p,q,7 € Q.
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3. If the rule S — e isincluded in G and g¢ € F (i.e., ¢ € AN B), then include the
rule
Sog— ¢ (9.21)

in H, where S is the new start variable for H mentioned above.

Once we have added all of these rules in H, we also include the rule

in H for every accept state p € F.

The intended meaning of each variable X, in H has been suggested above.
More formally speaking, we wish to prove that the following equivalence holds
for every nonempty string w € X*, every variable X € V, and every choice of
states p,q € Q:

[Xp0 =0 w] & [(X 26 w) A (5 (p,w) =9q)]. (9.23)

The two implications can naturally be handled separately, and one of the two im-
plications naturally splits into two parts.
First, it is almost immediate that the implication

[Xpq =1 w] = [X 56 w] (9.24)

holds, as a derivation of w starting from X, ; in H gives a derivation of w starting
from X in G if we simply remove all of the subscripts on all of the variables.
Next, we can prove the implication

[Xpq =nw] = [6(p,w) = q] (9.25)

by induction on the length of w. The base case is |w| = 1 (because we are assuming
w # ¢), and in this case we must have X, ; =y a for some a € X. The only rules
that allow such a derivation are of the first type above, which require 6(p,a) = g.
In the general case in which |w| > 2, it must be that

Xp’q # Yp’r Zr,q (9.26)
for variables Y, and Z, ; satisfying
Ypr =yvy and Zyq =z (9.27)

for strings y,z € ¥* for which w = yz. By the hypothesis of induction we conclude
that 6*(p,y) = r and 6*(r,z) = g, so that 6*(p, w) = ¢q.
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Finally, we can prove
(X 26 w) A (0" (p,w) =q)] = [Xpg =5 w], (9.28)

again by induction on the length of w. The base case is |w| = 1, which is straight-
forward: if X = a and é(p,a) = g, then X,, =g a because the rule that al-
lows for this derivation has been included among the rules of H. In the general
case in which |w| > 2, the relation X =; w implies that X =¢ YZ for vari-
ables Y,Z € V such that Y = y and Z =¢ z, for strings y,z € X* satisfying
w = yz. Choosing r € Q so that 6*(p,y) = r (and therefore 6*(r,z) = gq), we
have that Y) = yand Zrg = z by the hypothesis of induction, and therefore
Xpq =H YprZrg :*>H Yz = w.
Because every derivation of a nonempty string by H must begin with

for some p € F, we find that the nonempty strings w generated by H are precisely
those strings that are generated by G and satisfy 0*(qo,w) = p for some p € F.
Equivalently, for w # ¢ it is the case that w € L(H) < w € AN B. The empty
string has been handled as a special case, so it follows that L(H) = A N B. The
language A N B is therefore context free. O

Remark 9.4. Notice that Theorem 9.3 implies Theorem 9.2; one is free to choose
A = X* (which is context free) and B to be any regular language, and the implica-
tion is that 2* N B = B is context free. Because the two proofs of Theorem 9.2 that
we already discussed are much simpler than the one above, however, it makes
sense that we considered them first.

9.3 Prefixes, suffixes, and substrings

Let us finish off the lecture with just a few quick examples. Recall from Lecture 6
that for any language A C X* we define

Prefix(A) = {x € £* : there exists v € ¥* such that xv € A}, (9.30)
Suffix(A) = {x € " : there exists u € £* such that ux € A}, (9.31)
Substring(A) = {x € ¥* : there exist u,v € ¥* such thatuxv € A}.  (9.32)

Let us prove that if A is context free, then each of these languages is also context
free. In the interest of time, we will just explain how to come up with context-free
grammars for these languages and not go into details regarding the proofs that

94



Lecture 9

these CFGs are correct. In all three cases, we will assume that G = (V,%,R,S) isa
CFG in Chomsky normal form such that L(G) = A.

We will need to make one additional assumption on the grammar G, which is
that none of the variables in G generates the empty language. A variable that gen-
erates the empty language is called a useless variable, and it should not be hard
to convince yourself that useless variables are indeed useless (with one excep-
tion). That is, if you have any CFG G in Chomsky normal form that generates a
nonempty language, you can easily come up with a new CFG in Chomsky normal
form for the same language that does not contain any useless variables simply by
removing the useless variables and every rule in which a useless variable appears.

The one exception is the empty language itself, which by definition requires
that the start variable is useless (and you will need at least one additional useless
variable to ensure that the grammar has a nonempty set of rules and obeys the
conditions of a CFG in Chomsky normal form). However, we do not need to worry
about this case because Prefix(@), Suffix(&), and Substring (<) are all equal to the
empty language, and are therefore context free.

For the language Prefix(A), we will design a CFG H as follows. First, for every
variable X € V used by G we will include this variable in H, and in addition we
will also include a variable Xj. The idea is that X will generate exactly the same
strings in H that it does in G, while X will generate all the prefixes of the strings
generated by X in G. We include rules in H as follows:

1. For every rule of the form X — Y Z in G, include these rules in H:

X—=YZ
(9.33)
Xo — YZ ‘ Yo
2. For every rule of the form X — a in G, include these rules in H:
X —a
(9.34)
Xo—ale

Finally, we take Sy to be the start variable of H.

The idea is similar for the language Suffix(A), for which we will construct a
CFG K. This time, for every variable X € V used by G we will include this variable
in K, and in addition we will also include a variable X;. The idea is that X will
generate exactly the same strings in K that it does in G, while X; will generate all
the suffixes of the strings generated by X in G. We include rules in K as follows:

1. For every rule of the form X — Y Z in G, include these rules in K:

X=YZ

(9.35)
X1 —> Y12 ‘ 71
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2. For every rule of the form X — 4 in G, include these rules in K:

X —a
(9.36)
X1 —a ‘ €

Finally, we take S; to be the start variable of K.

To obtain a CFG ] for Substring(A), we can simply combine the two construc-
tions above (i.e., apply either one to G, then apply the other to the resulting CFG).
Equivalently, we can include variables X, Xy, X1, and X, in | for every X € V and
include rules as follows:

1. For every rule of the form X — Y Z in G, include these rules in J:

X—=YZ

Xo = YZ | Yo

X1 —=>NZ|Z

Xo = Y1Zy | Ya | Z2

(9.37)

2. For every rule of the form X — ain G, include these rules in J:

X —a
Xo—al|e 938)
Xi—ale

X, —ale
Finally, we take S to be the start variable of |. The meaning of the variables X, Xy,

X1, and X3 in | is that they generate precisely the strings generated by X in G, the
prefixes, the suffixes, and the substrings of these strings, respectively.
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Proving languages to be non-context
free

In this lecture we will study a method through which certain languages can be
proved to be non-context free. The method will appear to be quite familiar, because
it closely resembles the one we discussed in Lecture 5 for proving certain languages
to be nonregular.

10.1 The pumping lemma for context-free languages

Along the same lines as the method we discussed in Lecture 5 for proving some
languages to be nonregular, we will start with a variant of the pumping lemma
that holds for context-free languages.

The proof of this lemma is, naturally, different from the proof of the pumping
lemma for regular languages, but there are similar underlying ideas. The main
idea is that if you have a parse tree for the derivation of a particular string by some
context-free grammar, and the parse tree is sufficiently deep, then there must be a
variable that appears multiple times on some path from the root to a leaf—and by
modifying the parse tree in certain ways, one obtains a similar type of pumping
effect that we had in the case of the pumping lemma for regular languages.

Lemma 10.1 (Pumping lemma for context-free languages). Let . be an alphabet and
let A C X* be a context-free language. There exists a positive integer n (called a pumping
length of A) that possesses the following property. For every string w € A with |w| > n,
it is possible to write w = wvxyz for some choice of strings u,v, x,y,z € X* such that

1. vy #¢,
2. |oxy| < n,and
3. uvixy'z € Aforalli € N.
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Im—i—l

Figure 10.1: At least one path from the root to a leaf in a CNF parse tree for a string
of length 2™ or more must have m + 1 or more variable nodes. If this were not
so, the total number of variable nodes (which are collectively represented by the
shaded region) would be at most 2" — 1, contradicting the fact that there must be
at least 2" variable nodes.

Proof. Given that A is context free, we know that there must exist a CFG G in
Chomsky normal form such that A = L(G). Let m be the number of variables in
G. We will prove that the property stated in the lemma holds for n = 2.

Suppose that a string w € A satisfies |w| > n = 2™. As G is in Chomsky normal
form, every parse tree for w has exactly 2|w| — 1 variable nodes and |w| leaf nodes.
Hereafter let us fix any one of these parse trees, and let us call this tree T. For
the sake of this proof, what is important about the size of T is that the number of
variable nodes is at least 2. This is true because 2|w| —1 > 22" —1 > 2™ In fact,
the last inequality must be strict because m > 1, but this makes no difference to
the proof. Because the number of variable nodes in T is at least 2", there must exist
at least one path in T from the root to a leaf along which there are at least m + 1
variable nodes—for if all such paths had m or fewer variable nodes, there could be
at most 2" — 1 variable nodes in the entire tree.

Next, choose any path in T from the root to a leaf having the maximum possible
length. (There may be multiple choices, but any one of them is fine.) We know
that at least m + 1 variable nodes must appear in this path, as argued above—and
because there are only m different variables in total, there must be at least one
variable that appears multiple times along this path. In fact, we know that some
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Figure 10.2: An illustration of the subtrees T; and T of T.

variable (let us call it X) must appear at least twice within the m + 1 variable nodes
closest to the leaf on the path we have selected. Let T} and T, be the subtrees of T
rooted at these two bottom-most occurrences of this variable X, with T, being the
smaller of these two trees. By the way we have chosen these subtrees, we know
that T is a proper subtree of T;, and Tj is not very large: every path from the root
of the subtree T; to one of its leaves can have at most m + 1 variable nodes, and
therefore T; has no more than 2™ = n leaf nodes.

Now, let x be the string for which T is a parse tree (starting from the variable X)
and let v and y be the strings formed by the leaves of T; to the left and right,
respectively, of the subtree T, so that vxy is the string for which T; is a parse tree
(also starting from the variable X). Finally, let u and z be the strings represented
by the leaves of T to the left and right, respectively, of the subtree T}, so that w =
uvxyz. Figure 10.2 provides an illustration of the strings u, v, x, y, and z and how
they related to the trees T, Ty, and T5.

It remains to prove that u, v, x, y, and z have the properties required by the
statement of the lemma. Let us first prove that uv'xy'z € A for alli € IN. To see
that uxz = uvxy’z € A, we observe that we can obtain a valid parse tree for uxz
by replacing the subtree T; with the subtree Ty, as illustrated in Figure 10.3. This
replacement is possible because both T; and T, have root nodes corresponding to
the variable X. Along similar lines, we have that uv?xy?z € A because we can
obtain a valid parse tree for this string by replacing the subtree T, with a copy
of Ty, as suggested by Figure 10.4. By repeatedly replacing T, with a copy of Ty, a
valid parse tree for any string of the form uv'xy'z is obtained.
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Figure 10.3: By replacing the subtree T; by the subtree T, in T, a parse tree for the
string uxz = uv’xyz is obtained.

Figure 10.4: By replacing the subtree T, by the subtree T; in T, a parse tree for the
string uv?xy?z is obtained. By repeatedly replacing T, with Tj in this way, a parse
tree for the string uv'xy'z is obtained for any positive integer i > 2.
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Next, the fact that vy # ¢ follows from the fact that every parse tree for a string
corresponding to a CFG in Chomsky normal form has the same size. It therefore
cannot be that the parse tree suggested by Figure 10.3 generates the same string
as the one suggested by Figure 10.2, as the two trees have differing numbers of
variable nodes. This implies that uvxyz # uxz, so vy # e.

Finally, we have |vxy| < n because the subtree T} has at most 2™ = n leaf nodes,
as was already argued above. O

10.2 Using the context-free pumping lemma

Now that we have the pumping lemma for context-free languages in hand, we can
prove that certain languages are not context free. The methodology is very similar
to what we used in Lecture 5 to prove some languages to be nonregular. Some
examples, stated as propositions, follow.

Proposition 10.2. Let ¥ = {0,1,2} and let A be a language defined as follows:
A= {0"1"2" : m e N}. (10.1)
The language A is not context free.

Proof. Assume toward contradiction that A is context free. By the pumping lemma
for context-free languages, there must exist a pumping length n for A. We will fix
such a pumping length n for the remainder of the proof.
Let
w = 0"1"2". (10.2)

We have that w € A and |w| = 3n > n, so the pumping lemma guarantees that
there must exist strings u, v, x, y,z € ¥* so that w = uvxyz and the three properties
in the statement of that lemma hold: (i) vy # &, (ii) |[vxy| < n, and (iii) uv'xy'z € A
foralli € IN.

Now, given that |vxy| < #, it cannot be that the symbols 0 and 2 both appear
in the string vy; the Os and 2s are too far apart for this to happen. On the other
hand, at least one of the symbols of X must appear within vy, because this string is
nonempty. This implies that the string

uvoxyoz = uUxz (10.3)

must have strictly fewer occurrences of either 1 or 2 than 0, or strictly fewer occur-
rences of either 0 or 1 than 2. That is, if the symbol 0 does not appear in vy, then it
must be that either

luxz|y < |uxzlp or |uxz|y < |uxz|o, (10.4)
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and if the symbol 2 does not appear in vy, then it must be that either
luxz|g < |uxzly or |uxz|; < |uxzl|s. (10.5)

This, however, is in contradiction with the fact that uvoxyoz = uxz is guaranteed
to be in A by the third property.

Having obtained a contradiction, we conclude that A is not context free, as
claimed. O

In some cases, such as the following one, a language can be proved to be non-
context free in almost exactly the same way that it can be proved to be nonregular.

Proposition 10.3. Let ¥ = {0} and recall the language
SQUARE = {omz me N} (10.6)

defined in Lecture 5. The language SQUARE is not context free.

Proof. Assume toward contradiction that SQUARE is context free. By the pumping
lemma for context-free languages, there must exist a pumping length n > 1 for
SQUARE for which the property stated by that lemma holds. We will fix such a
pumping length n for the remainder of the proof.
Define
w = 0", (10.7)

We see that w € SQUARE and |w| = n? > n, so the pumping lemma tells us that
there exist strings u, v, x,y,z € £* so that w = uvxyz and the following conditions
hold:

1. vy #¢,
2. |vxy| < n,and
3. uvixy'z € SQUARE for all i € IN.

There is only one symbol in the alphabet ¥, so it is immediate that vy = 0 for
some choice of k € IN. Because vy # ¢ and |vy| < |vxy| < n it must be the case that
1 < k < n. Observe that

uv'xy'z = g Hi-Dk (10.8)

for each i € IN. In particular, if we choose i = 2, then we have
uvxy’z = 0"k, (10.9)
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However, because 1 < k < n, it cannot be that n2 + k is a perfect square. This is
because n? + k is larger than 12, but the next perfect square after n? is

(n+12=n*>+2n+1, (10.10)

which is strictly larger than n? + k because k < n. The string uv’xy?z is there-
fore not contained in SQUARE, which contradicts the third condition stated by the
pumping lemma, which guarantees us that uv'xy'z € SQUARE for all i € N.
Having obtained a contradiction, we conclude that SQUARE is not context free,
as claimed. O

Remark 10.4. We will not discuss the proof, but it turns out that every context-free
language over a single-symbol alphabet must be regular. By combining this fact
with the fact that SQUARE is nonregular, we obtain a different proof that SQUARE
is not context free.

Here is one more example of a proof that a particular language is not context
free using the pumping lemma for context-free languages. For this one things get
a bit messy because there are multiple cases to worry about as we try to get a
contradiction, which turns out to be fairly common when using this method. Of
course, one has to be sure to get a contradiction in all of the cases in order to have
a valid proof by contradiction, so be sure to keep this in mind.

Proposition 10.5. Let ¥ = {0, 1, #} and define a language B over X. as follows:
B = {r#s : r,s € {0,1}, risasubstring of s}. (10.11)
The language B is not context free.

Proof. Assume toward contradiction that B is context free. By the pumping lemma
for context-free languages, there exists a pumping length n for B. We will fix such
a pumping length n for the remainder of the proof.

Let

w = 0"1"#0"1". (10.12)

It is the case that w € B (because 0"1" is a substring of itself) and |w| = 4n+1 > n.
The pumping lemma therefore guarantees that there exist strings u,v, x,y,z € X~
so that w = uvxyz and the three properties in the statement of that lemma hold:
(i) vy # ¢, (ii) |oxy| < n, and (iii) uv'xy'z € B forall i € N.

There is just one occurrence of the symbol # in w, so it must appear in one of
the strings u, v, x, y, or z. We will consider each case separately:
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Case 1: the # lies within u. In this case we have that all of the symbols in v and y
appear to the right of the symbol # in w. It follows that

ur®xy¥z = 0"1"# 0" 11k (10.13)

for some choice of integers j and k with j + k > 1, because by removing v and y
from w we must have removed at least one symbol to the right of the symbol #
(and none from the left of that symbol). The string (10.13) is not contained in B,
even though the third property guarantees it is, and so we have a contradiction in
this case.

Case 2: the # lies within v. This is an easy case: because the # symbol lies in v, the
string uv’xy%z = uxz does not contain the symbol # at all, so it cannot be in B. This
is in contradiction with the third property, which guarantees that uv’xy’z € B, and
so we have a contradiction in this case.

Case 3: the # lies within x. In this case, we know that vxy = 1U#0* for some choice of
integers j and k for which j +k > 1. The reason why vxy must take this form is that
lvxy| < n, so this substring cannot both contain the symbol # and reach either the
first block of Os or the last block of 1s, and the reason why j 4+ k > 1 is that vy # e.
If it happens that j > 1, then we may choose i = 2 to obtain a contradiction, as

uvlxy?z = "1 H# 0", (10.14)

which is not in B because the string to the left of the # symbol has more 1s than the
string to the right of the # symbol. If it happens that k > 1, then we may choose
i = 0 to obtain a contradiction: we have

ur®xy®z = 0"1"I# 0" k1" (10.15)
in this case, which is not contained in B because the string to the left of the # symbol
has more 0Os than the string to the right of the # symbol.

Case 4: the # lies within y. This case is identical to case 2—the string uv'xy’z cannot
be in B because it does not contain the symbol #.

Case 5: the # lies within z. In this case we have that all of the symbols in v and y
appear to the left of the symbol # in w. Because vy # ¢, it follows that

uvxy’z = r#0"1" (10.16)

for some string r that has length strictly larger than 2n. The string (10.16) is not
contained in B, even though the third property guarantees it is, and so we have a
contradiction in this case.

Having obtained a contradiction in all of the cases, we conclude that there must
really be a contradiction—so B is not context free, as claimed. O
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10.3 Non-context-free languages and
closure properties

In the previous lecture it was stated that the context-free languages are not closed
under either intersection or complementation. That is, there exist context-free lan-
guages A and B such that neither A N B nor A are context free. We can now verify
these claims.
First, let us consider the case of intersection. Suppose we define languages A
and B as follows:
A ={0"1"2" : n,m € N},
B ={0"1"2" : n,m € N}.

These are certainly context-free languages—a CFG generating A is given by

(10.17)

S— XY
X—0X1]e (10.18)
Y —2Y e

and a CFG generating B is given by

S— XY
X—0X]|e (10.19)
Y —=1Y2|e

On the other hand, the intersection A N B is not context free, as our first proposition
from the previous section established.

Having proved that the context-free languages are not closed under intersec-
tion, it follows immediately that the context-free languages are not closed under
complementation. This is because we already know that the context-free languages
are closed under union, and if they were also closed under complementation we
would conclude that they must also be closed under intersection by De Morgan'’s
laws.

Finally, let us observe that one can sometimes use closure properties to prove
that certain languages are not context free. For example, consider the language

D= {w e {0,1,2}" : |w|o = |w) = |w|2}. (10.20)

It would be possible to prove that D is not context free using the pumping lemma
in a similar way to the first proposition from the previous section. A simpler way to
conclude this fact is as follows. We assume toward contradiction that D is context
free. Because the intersection of a context-free language and a regular language
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must always be context free, it follows that D N L(0*1*2*) is context free (because
L(0*1*2*) is the language matched by a regular expression and is therefore regu-
lar). However,

DNL(0"1*2%) = {0™1™2™ : m € N}, (10.21)

which we already know is not context free. Having obtained a contradiction, we
conclude that D is not context free, as required.
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Pushdown automata

This is the last lecture of the course devoted to context-free languages. We will,
however, refer to context-free languages from time to time throughout the remain-
der of the course, just as for regular languages.

The first part of the lecture focuses on the pushdown automata model of com-
putation, which provides an alternative characterization of context-free languages
to the definition based on CFGs. The second part of the lecture is devoted to some
further properties of context-free languages that we have not discussed thus far,
and that happen to be useful for understanding pushdown automata.

11.1 Pushdown automata

The pushdown automaton (or PDA) model of computation is essentially what you
get if you equip an NFA with a stack. As we shall see, the class of languages rec-
ognized by PDAs is precisely the class of context-free languages, which provides a
useful tool for reasoning about this class of languages.

A few simple examples

Let us begin with an example of a PDA, expressed in the form of a state diagram in
Figure 11.1. The state diagram naturally looks a bit different from the state diagram
of an NFA or DFA, because it includes instructions for operating with the stack, but
the basic idea is the same. A transition labeled by an input symbol or € means that
we read a symbol or take an e-transition, just like an NFA; a transition labeled
(J,a) means that we push the symbol a onto the stack; and a transition labeled
(1,a) means that we pop the symbol a off of the stack.

Thus, the way the PDA P illustrated in Figure 11.1 works is that it first pushes
the stack symbol ¢ onto the stack (which we assume is initially empty) and enters
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Figure 11.1: The state diagram of a PDA recognizing BAL.

sy

Figure 11.2: The state diagram of a PDA recognizing SAME.

state g1 (without reading anything from the input). From state g; it is possible
to either read the left-parenthesis symbol “(“ and move to ry or read the right-
parenthesis symbol “)” and move to r;. To get back to g; we must either push the
symbol x onto the stack (in the case that we just read a left-parenthesis) or pop the
symbol « off of the stack (in the case that we just read a right-parenthesis). Finally,
to get to the accept state g, from g1, we must pop the symbol ¢ off of the stack. Note
that a transition requiring a pop operation can only be followed if that symbol is
on the top of the stack.

It is not too hard to see that the language recognized by this PDA is the lan-
guage BAL of balanced parentheses; these are precisely the input strings for which
it will be possible to perform the required pushes and pops to land on the accept
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state g after the entire input string is read.
A second example is given in Figure 11.2. In this case the PDA recognizes the
language
SAME = {0"1" : n € N}. (11.1)

In this case the stack is essentially used as a counter: we push a star for every 0,
pop a star for every 1, and by using the “bottom of the stack marker” ¢ we check
that an equal number of the two symbols have been read.

Definition of pushdown automata

The formal definition of the pushdown automata model is similar to that of nonde-
terministic finite automata, except that one must also specify the alphabet of stack
symbols and alter the form of the transition function so that it specifies how the
stack operates.

Before we get to the definition, let us introduce some notation that will be useful
for discussing stack operations. For any alphabet I', which we will refer to as the
stack alphabet, the stack operation alphabet T is defined as

IT = {],1} xT. (11.2)

The alphabet | T represents the possible stack operations for a stack that uses the
alphabet I'; for each a € T we imagine that the symbol (], a) represents pushing a
onto the stack, and that the symbol (1, a) represents popping a off of the stack.

Definition 11.1. A pushdown automaton (or PDA for short) is 6-tuple
P = (lelrlélqO/F) (113)

where Q is a finite and nonempty set of states, X is an alphabet (called the input
alphabet), T is an alphabet (called the stack alphabet), which must satisfy XN [ T = &,
d is a function of the form

5:Qx (ZUlTU{e}) — P(Q), (11.4)
qo € Q is the start state, and F C Q is a set of accept states.

The way to interpret a transition function having the above form is that the set
of possible labels on transitions is X U [T U {¢}; we can either read a symbol a,
push a symbol from I' onto the stack, pop a symbol from I off of the stack, or take
an e-transition.
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Strings of valid stack operations

Before we discuss the formal definition of acceptance for PDAs, it will be helpful
to think about stacks and valid sequences of stack operations. Consider any stack
alphabet I', and let the stack operation alphabet ] T be as defined previously.

We can view a string v € (T')* as either representing or failing to represent
a valid sequence of stack operations, assuming we read it from left to right and
imagine starting with an empty stack. If a string does represent a valid sequence
of stack operations, we will say that it is a valid stack string; and if a string fails to
represent a valid sequence of stack operations, we will say that it is an invalid stack
string.

For example, if T = {0, 1}, then these strings are valid stack strings:

(L 0)(L D, 1)L 0)(1,0)(T,0),

(11.5)
(1,0)(4, (1, 1)({,0)(1,0).

In the first case the stack is transformed like this (where the left-most symbol rep-
resents the top of the stack):

e—-0—-10—-0—-00—0—c¢ (11.6)
The second case is similar, except that we do not leave the stack empty at the end:
e—=-0—-10—-0—00—0. (11.7)

On the other hand, these strings are invalid stack strings:

(L 0) (L D) (1,00, 0)(1,1)(1,0),

(11.8)
(4 0)({L (1, 1)L, 0)(1,0)(1,0) (1, 1).

For the first case we start by pushing 0 and then 1, which is fine, but then we try
to pop 0 even though 1 is on the top of the stack. In the second case the very last
symbol is the problem: we try to pop 1 even through the stack is empty.

It is the case that the language over the alphabet ] T consisting of all valid stack
strings is a context-free language. To see that this is so, let us first consider the
language of all valid stack strings that also leave the stack empty after the last op-
eration. For instance, the first sequence in (11.5) has this property while the second
does not. We can obtain a CFG for this language by mimicking the CFG for the bal-
anced parentheses language, but imagining a different parenthesis type for each
symbol.
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To be more precise, let us define a CFG G so that it includes the rule
S~ (4,a)S(1,a)S (11.9)

for every symbol a € T, as well as the rule S — &. This CFG generates the language
of valid stack strings for the stack alphabet I' that leave the stack empty at the end.

If we drop the requirement that the stack be left empty after the last operation,
then we still have a context-free language. This is because this is the language of
all prefixes of the language generated by the CFG in the previous paragraph, and
the context-free languages are closed under taking prefixes.

Definition of acceptance for PDAs

Next let us consider a formal definition of what it means for a PDA P to accept or
reject a string w.

Definition 11.2. Let P = (Q, %, T, 6, qo, F) be a PDA and let w € X* be a string. The
PDA P accepts the string w if there exists a natural number m € IN, a sequence of
states rg,...,r,, and a sequence

a,...,am € 2ULT U {e} (11.10)
for which these properties hold:

1. 70 = qo and ry, € F.
2. tyyq € 6(rg, a5y ) forevery k € {0,...,m —1}.

3. By removing every symbol from the alphabet J I’ from a; - - - a,,, the input string
w is obtained.

4. By removing every symbol from the alphabet X from ay - - - a,;, a valid stack
string is obtained.

If P does not accept w, then P rejects w.

For the most part the definition is straightforward. In order for P to accept w,
there must exist a sequence of states, along with moves between these states, that
agree with the input string and the transition function. In addition, the usage of
the stack must be consistent with our understanding of how stacks work, and this
is represented by the fourth property.

As you would expect, for a given PDA P, we let L(P) denote the language rec-
ognized by P, which is the language of all strings accepted by P.
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Figure 11.3: The shorthand notation for PDAs appears on the top, and the actual
PDA states and transitions represented by this shorthand notation appears on the
bottom.

Some useful shorthand notation for PDA state diagrams

There is a shorthand notation for PDA state diagrams that is sometimes useful,
which is essentially to represent a sequence of transitions as if it were a single
transition. In particular, if a transition is labeled

athblc, (11.11)

the meaning is that the symbol a is read, b is popped off of the stack, and then ¢
is pushed onto the stack. Figure 11.3 illustrates how this shorthand is to be inter-
preted. It is to be understood that the “implicit” states in a PDA represented by this
shorthand are unique to each edge. For instance, the states r; and r, in Figure 11.3
are only used to implement this one transition from p to g, and are not reachable
from any other states or used to implement other transitions.

This sort of shorthand notation can also be used in case multiple symbols are
to be pushed or popped. For instance, an edge labeled

aTblbzbg\LClC2C3C4 (11.12)

means that a is read from the input, b1b,b3 is popped off the top of the stack, and
then cjcac3cy is pushed onto the stack. We will always follow the convention that
the top of the stack corresponds to the left-hand side of any string of stack sym-
bols, so such a transition requires b; on the top of the stack, b, next on the stack,
and b3 third on the stack—and when the entire operation is done, c; is on top of
the stack, c; is next, and so on. One can follow a similar pattern to what is shown
in Figure 11.3 to implement such a transition using the ordinary types of transi-
tions from the definition of PDAs, along with intermediate states to perform the
operations in the right order.

Finally, we can simply omit parts of a transition of the above form if those parts
are not used. For instance, the transition label

ath (11.13)

112



Lecture 11

H‘L@ : @ te ;

0l * 11
Figure 11.4: The state diagram of a PDA for SAME.

means “read a from the input, pop a off of the stack, and push nothing,” the tran-
sition label

Tblcic (11.14)

means “read nothing from the input, pop b off of the stack, and push cjc;,” and so
on. Figure 11.4 illustrates the same PDA as in Figure 11.2 using this shorthand.

A remark on deterministic pushdown automata

It must be stressed that pushdown automata are, by default, considered to be non-
deterministic.

It is possible to define a deterministic version of the PDA model, but if we do
this we end up with a strictly weaker computational model. That is, every determin-
istic PDA will recognize a context-free language, but some context-free languages
cannot be recognized by a deterministic PDA. One example is the language PAL of
palindromes over the alphabet > = {0, 1}; this language is recognized by the PDA
in Figure 11.5, but no deterministic PDA can recognize it.

We will not prove this fact, and indeed we have not even discussed a formal
definition for deterministic PDAs, but the intuition is clear enough. Deterministic
PDAs cannot detect when they have reached the middle of a string, and for this
reason the use of a stack is not enough to recognize palindromes; no matter how
you do it, the machine will never know when to stop pushing and start popping.
A nondeterministic machine, on the other hand, can simply guess when to do this.

11.2 Further examples

Next we will consider a few additional operations under which the context-free
languages are closed. These include string reversals, symmetric differences with
finite languages, and a couple of operations that involve inserting and deleting
certain alphabet symbols from strings.
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Figure 11.5: A PDA recognizing the language PAL.

Reverse

We already discussed string reversals in Lecture 6, where we observed that the
reverse of a regular language is always regular. The same thing is true of context-
free languages, as the following proposition establishes.

Proposition 11.3. Let X be an alphabet and let A C ¥* be a context-free language. The
language AR is context free.

Proof. Because A is context free, there must exists a CFG G such that A = L(G).
Define a new CFG H as follows: H contains exactly the same variables as G, and
for each rule X — w of G we include the rule X — w® in H. In words, H is the
CFG obtained by reversing the right-hand side of every rule in G. It is evident that
L(H) = L(G)R = AR, and therefore AR is context free. O

Symmetric difference with a finite language

Next we will consider symmetric differences, which were also defined in Lecture 6.
It is certainly not the case that the symmetric difference between two context-free
languages is always context free, or even that the symmetric difference between a
context-free language and a regular language is context free.

For example, if A C X* is context free but A is not, then the symmetric differ-
ence between A and the regular language X~* is not context free, because

AAYF = A, (11.15)

On the other hand, the symmetric difference between a context-free language
and a finite language must always be context free, as the following proposition
shows. This is interesting because the symmetric difference between a given lan-
guage and a finite language carries an intuitive meaning: it means we modify that
language on a finite number of strings, by either including or excluding these
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strings. The proposition therefore shows that the property of being context free
does not change when a language is modified on a finite number of strings.

Proposition 11.4. Let . be an alphabet, let A C X* be a context-free language, and let
and B C X% be a finite language. The language A A B is context free.

Proof. First, given that B is finite, we have that B is regular, and therefore B is
regular as well, because the regular languages are closed under complementation.
This implies that A N B is context free, because the intersection of a context-free
language and a regular language is context free.

Next, we observe that A N B is contained in B, and is therefore finite. Every
finite language is context free, and therefore A N B is context free.

Finally, given that we have proved that both A N B and A N B are context free,
it follows that AA B = (AN B) U (AN B) is context free because the union of two
context-free languages is necessarily context free. O

Closure under string projections

Suppose that X and I' are disjoint alphabets, and we have a string w € (X UT)*
that may contain symbols from either or both of these alphabets. We can imagine
deleting all of the symbols in w that are contained in the alphabet I', which leaves
us with a string over X. We call this operation the projection of a string over the
alphabet X UT onto the alphabet X..

We will prove two simple closure properties of the context-free languages that
concern this notion. The first one says that if you have a context-free language over
the alphabet £ U T, and you project all of the strings in A onto the alphabet ~, you
are left with a context-free language.

Proposition 11.5. Let ¥ and T be disjoint alphabets, let A C (X UT)* be a context-free
language, and define

B {w cyr there exists a string x € A such that w is }

obtained from x by deleting all symbols in T (11.16)

The language B is context free.

Proof. Because A is context free, there exists a CFG G in Chomsky normal form
such that L(G) = A. We will create a new CFG H as follows:

1. For every rule of the form X — Y Z appearing in G, include the same rule in H.
Also, if the rule S — e appears in G, include this rule in H as well.

2. For every rule of the form X — a in G, where a € %, include the same rule
X —ain H.
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3. For every rule of the form X — b in G, where b € T, include the rule X — ¢
in H.

It is apparent that L(H) = B, and therefore B is context free. [

We can also go the other way, so to speak: if A is a context-free language over
the alphabet ¥, and we consider the language consisting of all strings over the
alphabet X UT that result in a string in A when they are projected onto the alpha-
bet %, then this new language over X U T will also be context free. In essence, this
is the language you get by picking any string in A, and then inserting any number
of symbols from I' anywhere into the string.

Proposition 11.6. Let X and I' be disjoint alphabets, let A C Z* be a context-free lan-
guage, and define

B— {x € (ZUT)" : the string w obtained from x by deleting } (11.17)

" all symbols in T satisfies w € A
The language B is context free.

Proof. Because A is context free, there exists a CFG G in Chomsky normal for such
that L(G) = A. Define a new CFG H as follows:

1. Include the rule
W — bW (11.18)

in H for each b € T, as well as the rule W — ¢, for a new variable W not already
used in G. The variable W generates any string of symbols from T, including
the empty string.

2. For each rule of the form X — YZ in G, include the same rule in H without
modifying it.

3. For each rule of the form X — a in G, include this rule in H:

X — WaW (11.19)

4. If the rule S — ¢is contained in G, then include this rule in H:

S W (11.20)

Intuitively speaking, H operates in much the same way as G, except that any
time G generates a symbol or the empty string, H is free to generate the same
string with any number of symbols from I inserted. We have that L(H) = B, and
therefore B is context free. O
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Figure 11.6: A PDA recognizing the language of an arbitrary CFG.

11.3 Equivalence of PDAs and CFGs

As suggested earlier in the lecture, it is the case that a language is context free if
and only if it is recognized by a PDA. This section gives a high-level description of
one way to prove this equivalence.

Every context-free language is recognized by a PDA

To prove that every context-free language is recognized by some PDA, we can
define a PDA that corresponds directly to a given CFG. That is, if

G=(V,%,R,S) (11.21)

is a context-free grammar, then we can obtain a PDA P such that L(P) = L(G)
in the manner suggested by Figure 11.6. The stack symbols of P are taken to be
V UZ, along with a special bottom of the stack marker ¢ (which we assume is not
contained in V' UY), and during the computation the stack provides a way to store
the symbols and variables needed to carry out a derivation with respect to G.

If you consider how derivations of strings by a grammar G and the operation
of the corresponding PDA P work, it will be evident that P accepts precisely those
strings that can be generated by G. We start with just the start variable on the stack
(in addition to the bottom of the stack marker). In general, if a variable appears
on the top of the stack, we can pop it off and replace it with any string of symbols
and variables appearing on the right-hand side of a rule for the variable that was
popped; and if a symbol appears on the top of the stack we essentially just match
it up with an input symbol—so long as the input symbol matches the symbol on
the top of the stack we can pop it off, move to the next input symbol, and process
whatever is left on the stack. We can move to the accept state whenever the stack
is empty (meaning that just the bottom of the stack marker is present), and if all of
the input symbols have been read we accept. This situation is representative of the
input string having been derived by the grammar.
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Every language recognized by a PDA is context free

We will now argue that every language recognized by a PDA is context free. There
is a method through which a given PDA can actually be converted into an equiva-
lent CFG, but it is messy and the intuition tends to get lost in the details. Here we
will summarize a different way to prove that every language recognized by a PDA
is context free that is pretty simple, given the tools that we have already collected
in our study of context-free languages. If you wanted to, you could turn this proof
into an explicit construction of a CFG for a given PDA, and it would not be all that
different from the method just mentioned, but we will focus just on the proof and
not on turning it into an explicit construction.
Suppose we have a PDA P = (Q,%,T,6,qo, F). The transition function ¢ takes
the form
§:Qx (ZUlTU{e}) = P(Q), (11.22)

so if we wanted to, we could think of P as being an NFA for some language over
the alphabet ¥ U ] T. Slightly more formally, let N be the NFA defined as

N = (QZULT,8q0,F); (11.23)

we do not even need to change the transition function because it already has the
right form of a transition function for an NFA over the alphabet X U] T'. Also define
B =L(N) C (£UJT)* to be the language recognized by N. In general, the strings
in B include symbols in both X and  T. Even though symbols in { I may be present
in the strings accepted by N, there is no requirement on these strings to actually
represent a valid use of a stack, because N does not have a stack with which to
check this condition.

Now let us consider a second language C C (X U JT)*. This will be the lan-
guage consisting of all strings over the alphabet £ U T having the property that
by deleting every symbol in ¥, a valid stack string is obtained. We already dis-
cussed the fact that the language consisting of all valid stack strings is context free,
and so it follows from Proposition 11.6 that the language C is also context free.

Next, we consider the intersection D = B N C. Because D is the intersection
of a regular language and a context-free language, it is context free. The strings
in D actually correspond to valid computations of the PDA P that lead to an accept
state; but in addition to the input symbols in X that are read by P, these strings also
include symbols in { T that represent transitions of P that involve stack operations.

The language D is therefore not the same as the language A, but it is closely
related; A is the language that is obtained from D by deleting all of the symbols in
1T and leaving the symbols in ¥ alone. Because we know that D is context free,
it therefore follows that A is context free by Proposition 11.5, which is what we
wanted to prove.
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Turing machines

In this lecture we will discuss the Turing machine model of computation. This model
is named after Alan Turing (1912-1954), who proposed it in 1936. It is difficult to
overstate Alan Turing’s influence on the subject of this course—theoretical com-
puter science effectively started with Turing’s work, and for this reason he is some-
times referred to as the father of theoretical computer science.

The Church-Turing thesis

The intention of the Turing machine model is to provide a simple mathematical
abstraction of general computations. The idea that Turing machine computations
are representative of a fully general computational model is called the Church—
Turing thesis. Here is one statement of this thesis, but understand that it is the idea
rather than the exact choice of words that is important.

Church-Turing thesis: Any function that can be computed by a mechanical pro-
cess can be computed by a Turing machine.

Note that this is not a mathematical statement that can be proved or disproved.
If you wanted to try to prove a statement along these lines, the first thing you
would most likely do is to look for a mathematical definition of what it means for
a function to be “computed by a mechanical process,” and this is precisely what
the Turing machine model was intended to provide.

There are alternative models of computation that offer abstractions of general
computations. One example is A-calculus, which was proposed by Alonzo Church
a short time prior to Turing’s introduction of what we now call Turing machines.
These two models, Turing machines and A-calculus, are equivalent in the sense
that any computation that can be performed by one of them can be performed by
the other. Turing sketched a proof of this fact in his 1936 paper. We will see another
example in Lecture 14 when we show that a model called the stack machine model

119



CS 360 Introduction to the Theory of Computing

is equivalent to the Turing machine model. Based on the stack machine model, or
directly on the Turing machine model, it is not conceptually difficult to envision
the simulation of a model of computation abstracting the notion of a random access
machine.

While machines behaving like Turing machines have been built, this is mainly
a recreational activity. The Turing machine model was never intended to serve
as a practical approach to performing computations, but rather was intended to
provide a rigorous mathematical foundation for reasoning about computation—
and it has served this purpose very well since its introduction.

12.1 Definition of the Turing machine model

We will begin with an informal description of the Turing machine model before
stating the formal definition. There are three components of a Turing machine:

1. The finite state control. This component is in one of a finite number of states at
each instant.

2. The tape. This component consists of an infinite number of tape squares, each of
which can store one of a finite number of tape symbols at each instant. The tape
is infinite both to the left and to the right.

3. The tape head. The tape head can move left and right on the tape, and is under-
stood to be scanning exactly one of the tape squares at the start of each com-
putational step. The tape head can read which symbol is stored in the square it
scans, and it can write a new symbol into that square.

Figure 12.1 illustrates these three components. It is natural to imagine that the tape
head is connected in some way to the finite state control.

The idea is that the action of a Turing machine at each instant is determined
by the state of the finite state control together with the single symbol stored in the
tape square that the tape head is currently reading. Thus, the action is determined
by a finite number of possible alternatives: one action for each state/symbol pair.
Depending on the state and the symbol being scanned, the action that the machine
is to perform may involve changing the state of the finite state control, changing
the symbol in the tape square being scanned, and moving the tape head to the left
or right. Once this action is performed, the machine will again have some state for
its finite state control and will be reading some symbol on its tape, and the process
continues. One may consider both deterministic and nondeterministic variants of
the Turing machine model, but our main focus will be on the deterministic variant
of the model.
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Figure 12.1: An illustration of the three components of a Turing machine: the finite
state control, the tape head, and the tape. The tape is infinite in both directions
(although it appears that this Turing machine’s tape was torn at both ends to fit it
into the figure).

When a Turing machine begins a computation, an input string is written on its
tape, and every other tape square is initialized to a special blank symbol, which may
not be included in the input alphabet. We need an actual symbol to represent the
blank symbol in these notes, and we will use the symbol . for this purpose. More
generally, we will allow the possible symbols written on the tape to include other
non-input symbols in addition to the blank symbol, as it is sometimes convenient
to allow this possibility.

We also give Turing machines an opportunity to stop the computational process
and produce an output by requiring them to have two special states: an accept state
facc and a reject state qrj. These two states are deemed halting states, and all other
states are non-halting states. If the machine enters a halting state, the computation
immediately stops and accepts or rejects accordingly. When we discuss language
recognition, our focus is naturally on whether or not a given Turing machine even-
tually reaches one of the states gacc OT grej, but we can also use the Turing machine
model to describe the computation of functions by taking into account the contents
of the tape if and when a halting state is reached.

Formal definition of DTMs

With the informal description of Turing machines from above in mind, we will
now proceed to the formal definition.

Definition 12.1. A deterministic Turing machine (or DTM, for short) is a 7-tuple
M = (Q/ 2, T,9, 40, Jaccs Qrej)/ (12.1)

where Q is a finite and nonempty set of states, ¥ is an alphabet called the input
alphabet, which may not include the blank symbol ., I' is an alphabet called the
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qo

Figure 12.2: The initial configuration of a DTM when run on input w = ayas - - - ay.

tape alphabet, which must satisfy 2 U { .} C T, ¢ is a transition function having the
form

0 Q\{Face/ Jrej} X T = Q X T x {«—, =}, (12.2)
qo € Q is the initial state, and qacc, Grej € Q are the accept and reject states, which
must satisfy gacc 7# Grej-

The interpretation of the transition function is as follows. Suppose the DTM is
currently in a state p € Q, the symbol stored in the tape square being scanned by
the tape head is 2 € I', and it is the case that

d(p,a) = (q,b,D) (12.3)
for D € {<, —}. The action performed by the DTM is then to

1. change state to g,

2. overwrite the contents of the tape square being scanned by the tape head
with b, and

3. move the tape head in direction D (either left or right).

In the case that the state is gacc OT grej, the transition function does not specify an
action, because we assume that the DTM halts once it reaches one of these two
states.

Turing machine computations

If we havea DTM M = (Q, X%, T, 4,90, Jace, qrej), and we wish to consider its opera-
tion on some input string w € X*, we assume that it is started with its components
initialized as illustrated in Figure 12.2. That is, the input string is written on the
tape, one symbol per square, with every other tape square containing the blank
symbol, and with the tape head scanning the tape square immediately to the left of
the first input symbol. In the case that the input string is ¢, all of the tape squares
start out storing blanks.
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Once the initial arrangement of the DTM is set up, the DTM begins taking steps,
as determined by the transition function ¢ in the manner suggested above. So long
as the DTM does not enter one of the two states gacc or qrej, the computation con-
tinues. If the DTM eventually enters the state gacc, it accepts the input string, and
if it eventually enters the state gy, it rejects the input string. Thus, there are three
possible alternatives for a DTM M on a given input string w:

1. M accepts w.
2. M rejects w.
3. M runs forever on input w.

In some cases one can design a particular DTM so that the third alternative does
not occur, but in general it might.

Representing configurations of DTMs

In order to speak more precisely about Turing machines and state a formal defini-
tion concerning their behavior, we will require a bit more terminology. When we
speak of a configuration of a DTM, we are speaking of a description of all of the
Turing machine’s components at some instant. This includes

1. the state of the finite state control,
2. the contents of the entire tape, and
3. the tape head position on the tape.
Rather than drawing pictures depicting the different parts of Turing machines,
like in Figure 12.2, we use the following compact notation to represent configu-

rations. If we have a DTM M = (Q, %, T, 4, 90, Gace, qrej), and we wish to refer to a
configuration of this DTM, we express it in the form

u(g,a)v (12.4)

for some state g € Q, a tape symbol a € T, and (possibly empty) strings of tape
symbols u and v such that

weT\{LIT* and o€ \I*{_}. (12.5)

In words, u and v are strings of tape symbols, u does not start with a blank, and v
does not end with a blank. The interpretation of the expression (12.4) is that it refers
to the configuration in which the string uav is written on the tape in consecutive
squares, with all other tape squares containing the blank symbol, the state of M
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is g, and the tape head of M is positioned over the symbol a that occurs between u
and v. For example, the configuration of the DTM in Figure 12.1 is expressed as

0$1(q4,0)0# (12.6)
while the configuration of the DTM in Figure 12.2 is

(90, =)w (12.7)

forw=ay---ay,.

When working with descriptions of configurations, it is convenient to define a
few functions as follows. We define o : I — I'\{_}T" and B : I'* — I"\I'*{_}
recursively as

a(w) =w (forw € T*\{_}I'™)
a(ww) = a(w) (forw € T'*) (128)
and
B(w) =w (forw e T*\I'"{_}) 129)
B(wo) = B(w) (forw € T7),
and we define
v THQ x T)T* — (T\{o}T%)(Q x T) (T \T*{}) (12.10)
as
v(u(g,a)v) = a(u)(q,a)B(v) (12.11)

forall u,v € I'*, g € Q, and a € I'. This is not as complicated as it might appear:
the function 7 just throws away all blank symbols on the left-most end of u and
the right-most end of v, so that a proper expression of a configuration remains.

A yields relation for DTMs

In order to formally define what it means for a DTM to accept, reject, compute
a function, and so on, we will define a yields relation, similar to what we did for
context-free grammars.

Definition 12.2. Let M = (Q, %, T, 6, qo, Jacc, Grej) be a DTM. The yields relation Iy,
defined on pairs of configurations of M, includes exactly these pairs:

1. Moving right. For every choice of p € Q\{qacc/rej}, 9 € Q, and a,b € T satisfy-
ing
6(p,a) = (q,b,—), (12.12)
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the yields relation includes these pairs for all u € T*\{_}I'*, v € T*\I""{_},
andc cI:
u(p,a)co by y(ub(g,c)v)

u(p,a) bmy(ub(g, o).
2. Moving left. For every choice of p € Q\{qacc/ rej}, 9 € Q,and a,b € T satistying
é(p,a) = (9,b,+), (12.14)

the yields relation includes these pairs for all u € T*\{_}I'™*, v € T*\I""{_},
andc cI:

(12.13)

uc(p,a)v b y(u(g,c)bo)
(p,a)vFum v ((q, 2)bo).

We also let -3, denote the reflexive, transitive closure of 4. That is, we have

u(p,a)o i v(q,b)z (12.16)
if and only if there exists an integer m > 1, strings wy,..., Wy, x1,..., X € I'Y,
symbols ¢1,...,c, € T, and states rq, ..., 7y, € Q such that u(p,a)v = wy(rq,c1)x1,
y(q,b)v = Wy (rm, Cm)xXm, and

(12.15)

Wi (T €)Xk Em Wit (T 1, Crg1) X1 (12.17)
forallk € {1,...,m—1}.

A more intuitive description of these relations is that the expression

u(p,a)vFpmy(q,b)z (12.18)

means that by running M for one step we move from the configuration u(p,a)v to
the configuration y (g, b) z; and

u(p,a)vt3y(q,b)z (12.19)

means that by running M for some number of steps, possibly zero steps, we will
move from the configuration u(p, a)v to the configuration y(g,b)z.

12.2 Semidecidable and decidable languages;
computable functions

Now we will define the classes of semidecidable and decidable languages as well as
the notion of a computable function.

To define the classes of decidable and semidecidable languages, we must first
express formally, in terms of the yields relation defined in the previous section,
what it means for a DTM to accept or reject.
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Definition 12.3. Let M = (Q,%,T,J, qo,qacc,qrej) be a DTM and let w € X* be a
string. If there exist strings u,v € I'* and a symbol a € I such that

(90, =) w Fig u(Gace, 2) 0, (12.20)

then M accepts w. If there exist strings u,v € I'* and a symbol a € T such that

(90, w)w Fig u(qrej, @) 0, (12.21)
then M rejects w. If neither of these conditions hold, then M runs forever on input w.

In words, if a DTM is set in its initial configuration, for some input string w, and
starts running, it accepts w if it eventually enters its accept state, it rejects w if it even-
tually enters its reject state, and it run forever if neither of these possibilities holds.
It is perhaps obvious, but nevertheless worth noting, that accepting and rejecting
are mutually exclusive—because DTMs are deterministic, each configuration has
a unique next configuration, and it follows that a DTM M cannot simultaneously
accept a string w and reject w.

Similar to what we have done for other computational models, we write L(M)
to denote the language of all strings that are accepted by a DTM M. In the case of
DTMs, the language L(M) does not really tell the whole story—a string w ¢ L(M)
might either be rejected or it may cause M to run forever—but the notation is useful
nevertheless.

We now define the class of semidecidable languages to be those languages rec-
ognized by some DTM.

Definition 12.4. Let ¥ be an alphabet and let A C ¥* be a language. The language
A is semidecidable if there exists a DTM M such that A = L(M).

The name semidecidable reflects the fact that if A = L(M) for some DTM M, and
w € A, then running M on w will necessarily lead to acceptance; but if w ¢ A, then
M might either reject or run forever on input w. That is, M does not really decide
whether a string w is in A or not, it only “semidecides”; for if w ¢ A, you might
never learn this with certainty as a result of running M on w. There are several
alternative names that people often use in place of semidecidable, including Turing
recognizable, partially decidable, and recursively enumerable (or r.e. for short).

Next, as the following definition makes clear, we define the class of decidable
languages to be those languages for which there exists a DTM that correctly an-
swers whether or not a given string is in the language, never running forever.

Definition 12.5. Let ¥ be an alphabet and let A C X* be a language. The language
A is decidable if there exists a DTM M with these two properties:
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1. M accepts every string w € A.
2. M rejects every string w € A.

The names recursive and computable are sometimes used in place of decidable.

Finally, let us define what it means for a function to be computable. We do this
for functions mapping strings to strings, but not necessarily having the same input
and output alphabets, as this generality will be important in future lectures.

Definition 12.6. Let > and I' be alphabets and let f : £* — I'* be a function. The
function f is computable if there existsa DTM M = (Q, %, A, 6, 90, ace, qrej) such that
the relation

(q0, =)w it (Gace, =) f (w) (12.22)
holds for every string w € X*. In this case we also say that DTM M computes f.

In this definition, A can be any tape alphabet; by definition it must include all of
the symbols in the input alphabet X, and it must also include all symbols from the
alphabet I' that appear in any output string in order for the relation (12.22) to hold.

In words, a function is computed by a DTM if, when run on any choice of
an input string to that function, it eventually accepts, leaving the correct output
written on the tape surrounded by blanks, with the tape head one square left of
this output string.

12.3 A simple example of a Turing machine

Let us now see an example of a DTM, which we will describe using a state diagram.
In the DTM case, we can represent the property that the transition function satisfies
d(p,a) = (q,b, —) with a transition of the form

()=o)

and similarly we represent the property that 6(p,a) = (g,b, <) with a transition

of the form
: : a,b< @

The state diagram for the example is given in Figure 12.3. The DTM M de-
scribed by this diagram recognizes the language

SAME = {0"1" : n € N}, (12.23)
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1, o«

0,0«
1,1+

Figure 12.3: A DTM M for the language SAME = {0"1" : n € N}.

To be more precise, M accepts every string in SAME and rejects every string in
SAME, so never does the DTM run forever. Thus, SAME is decidable.

The specific way that the DTM M works can be summarized as follows. The
DTM M starts out with its tape head scanning the blank symbol immediately to
the left of its input. It moves the tape head right, and if it sees a 1 it rejects: the
input string must not be of the form 0"1" if this happens. On the other hand, if it
sees another blank symbol, it accepts: the input must be the empty string, which
corresponds to the n = 0 case in the description of SAME. Otherwise, it must have
seen the symbol 0, and in this case the 0 is erased (meaning that it replaces it with
the blank symbol), the tape head repeatedly moves right until a blank is found,
and then it moves one square back to the left. If a 1 is not found at this location the
DTM rejects: there were not enough 1s at the right end of the string. Otherwise, if a
1is found, it is erased, and the tape head moves all the way back to the left, where
we essentially recurse on a slightly shorter string.

Of course, the summary just suggested does not tell you precisely how the DTM
works—but if you did not already have the state diagram from Figure 12.3, the
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summary would probably be enough to give you a good idea for how to come up
with the state diagram (or perhaps a slightly different one operating in a similar
way).

In fact, an even higher-level summary is enough to convey the basic idea of

how this DTM operates. We could, for instance, describe the functioning of the
DTM M as follows:

1. Accept if the input is the empty string.

2. Check that the left-most non-blank symbol on the tape is a 0 and that the right-
most non-blank symbol is a 1. Reject if this is not the case, and otherwise erase
these symbols and goto step 1.

There will, of course, be several specific ways to implement this algorithm with a
DTM, with the DTM M from Figure 12.3 being one of them.

The DTM M being discussed is very simple, which makes it atypical. The DTMs
we will be most interested in will almost always be much more complicated—so
complicated, in fact, that the idea of representing them by state diagrams would
be absurd. The reality is that state diagrams turn out to be almost totally useless
for describing DTMs, and so we will rarely employ them. Doing so would be anal-
ogous to describing a complex program using machine language instructions.

The more usual way to describe DTMs is in terms of algorithms, often expressed
in the form of pseudo-code or high-level descriptions like the last description of M
above. It may not be immediately apparent precisely which high-level algorithm
descriptions can be run on Turing machines, but as an intuitive guide one may
have confidence that if an algorithm can be implemented using your favorite pro-
gramming language, then it can also be run on a deterministic Turing machine. The
discussions in the two lectures to follow this one are primarily intended to help to
build this intuition.
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Variants of Turing machines

In this lecture we will continue to discuss the Turing machine model, focusing on
ways in which the model can be changed without affecting its power.

13.1 Simple variants of Turing machines

There is nothing sacred about the specific definition of DTMs that we covered in
the previous lecture. In fact, if you look at two different books on the theory of
computation, you are pretty likely to see two definitions of Turing machines that
differ in one or more respects.

For example, the definition we discussed specifies that a Turing machine’s tape
is infinite in both directions, but sometimes people choose to define the model
so that the tape is only infinite to the right. Naturally, if there is a left-most tape
square on the tape, the definition must clearly specify how the Turing machine is
to behave if it tries to move its tape head left from this point. Perhaps the Turing
machine immediately rejects if its tape head tries to move off the left edge of the
tape, or the tape head might simply remain on the left-most tape square in this
situation.

Another example concerns tape head movements. Our definition states that
the tape head must move left or right at every step, while some alternative Turing
machine definitions allow the possibility for the tape head to remain stationary. It
is also common that Turing machines with multiple tapes are considered, and we
will indeed consider this Turing machine variant shortly.

DTMs allowing stationary tape heads

Let us begin with a very simple Turing machine variant already mentioned above,
where the tape head is permitted to remain stationary on a given step if the DTM
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designer wishes. This is an extremely minor change to the Turing machine defi-
nition, but because it is our first example of a Turing machine variant we will go
through it in detail (perhaps more than it actually deserves).

If the tape head of a DTM is allowed to remain stationary, we would naturally
expect that instead of the transition function taking the form

6 Q\{ace, rej} X T = Q x T x {4—, =}, (13.1)

it would instead take the form

6 Q\{ace, Grej} X T = Q x T x {4—, 1, =}, (13.2)

where the arrow pointing down indicates that the tape head does not move. Specif-
ically, if it is the case that 6(p,a) = (g,b,]), then whenever the machine is in the
state p and its tape head is positioned over a square that contains the symbol a,
it overwrites a with b, changes state to q, and leaves the position of the tape head un-
changed.

For the sake of clarity let us give this new model a different name, to distinguish
it from the ordinary DTM model we already defined in the previous lecture. In
particular, we will define a stationary-head-DTM to be a 7-tuple

M = (Q/ 2, T,9, 40, Jaccs Qrej)/ (13.3)

where each part of this tuple is just like an ordinary DTM except that the transition
function ¢ takes the form (13.2).

Now, if we wanted to give a formal definition of what it means for a stationary-
head-DTM to accept or reject, we could of course do that. This would require that
we extend the yields relation defined in the previous lecture to account for the
possibility that é(p,a) = (q,b,]) for some choices of p € Q and a € T. This is
actually quite easy—we simply include the following third rule to the rules that
define the yields relation for ordinary DTMs:

3. Remaining stationary. For every choice of p € Q\{qacc, qrej}, 9 € Q,and a,b € T
satisfying

(p,a) = (q.b,1), (13.4)

the yields relation includes these pairs forall u € I'"\{_ }I"™ and v € I*\T""{_ }:

u(p,a)vtpu(gb)o. (13.5)

As suggested before, allowing the tape head to remain stationary does not actu-
ally change the computational power of the Turing machine model. The standard
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way to argue that this is so is through the technique of simulation. A standard DTM
cannot leave its tape head stationary, so it cannot behave precisely like a stationary-
head-DTM, but it is straightforward to simulate a stationary-head-DTM with an
ordinary one—by simply moving the tape head to the left and back to the right
(for instance), we can obtain the same outcome as we would have if the tape head
had remained stationary. Naturally, this requires that we remember what state we
are supposed to be in after moving left and back to the right, but it can be done
without difficulty.
To be more precise, if

M = (Q/ Z"/ I_‘/ 5/ UERY, I]rej> (136)

is a stationary-head-DTM, then we can simulate this machine with an ordinary
DTM

K - (RI Z‘/ r/ 77/ qOI Qacc/ Qrej) (137)

as follows:

1. For each state g € Q of M, the state set R of K will include g, as well as a distinct
copy of this state that we will denote g’. The intuitive meaning of the state g’ is
that it indicates that K needs to move its tape head one square to the right and
enter the state .

2. The transition function # of K is defined as

(9,6, =) ifé(p,a) = (q,b,¢)
n(p,a) =< (q,b,—) ifé(p,a)=(q,b,—) (13.8)
(q,b,«) ifd(pa)=(q,b1)

for each p € Q\{qacc, Grej} and a € T, as well as
n(q,c) = (q,c,—) (13.9)
foreachg € Qandc € T.

Written in terms of state diagrams, one can describe this simulation as follows.
Suppose that the state diagram of a stationary-head-DTM M contains a transition

that looks like this:
()

The state diagram for K replaces this transition as follows:
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OO0

Here, the transition from ¢’ to g is to be included for every tape symbol ¢ € T. The
same state ¢’ can safely be used for every stationary tape head transition into 4.

It is not hard to see that the computation of K will directly mimic the compu-
tation of M. The DTM K might take longer to run, because it sometimes requires
two steps to simulate one step of M, but this does not concern us. The bottom line
is that every language that is either decided or semidecided by a stationary-head-
DTM is also decided or semidecided by an ordinary DTM.

The other direction is trivial: a stationary-head-DTM can easily simulate an or-
dinary DTM by simply not making use of its ability to leave the tape head station-
ary. Consequently, the two models are equivalent.

Thus, if you were to decide at some point that it would be more convenient
to work with the stationary-head-DTM model, you could switch to this model—
and by observing the equivalence we just proved, you would be able to conclude
interesting facts concerning the original DTM model.

In reality, however, the stationary-head-DTM model just discussed is not a sig-
nificant enough departure from the ordinary DTM model for us to be concerned
with it—we went through this equivalence in detail only because it is a first exam-
ple, and there will not likely be a need for us to refer specifically to the stationary-
head-DTM model again.

DTMs with multi-track tapes

Another useful variant of the DTM model is one in which the tape has multiple
tracks, as suggested by Figure 13.1. More specifically, we may suppose that the tape
has k tracks for some positive integer k, and for each tape head position the tape
has k separate tape squares that can each store a symbol. It is useful to allow the k
different tracks to have possibly different tape alphabets I'y, ..., I'x. When the tape
head scans a particular location on the tape, it can effectively see and modify all of
the symbols stored on the tape tracks for this tape head location simultaneously.

For example, based on the picture in Figure 13.1 it appears as though the first
tape track of this DTM stores symbols from the tape alphabet I'1 = {0,1, .}, the
second track stores symbols from the tape alphabet I', = {#, .}, and the third
track stores symbols from the tape alphabet I's; = {&, O, {, &, . }.

It turns out that this is not really even a variant of the DTM definition at all—it
is just an ordinary DTM whose tape alphabet I is equal to the Cartesian product

I= F1 X oo X Fk. (1310)
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Figure 13.1: A DTM with a three-track tape.

qs

Figure 13.2: A DTM with a one-way infinite tape.

The tape alphabet of any DTM must include the input alphabet and a blank sym-
bol, and so it should be understood that we identify each input alphabet symbol
o € X with the tape symbol (o, ,..., ), and also that we consider the symbol
(..., w) to be the blank symbol of the multi-track DTM.

DTMs with one-way infinite tapes

DTMs with one-way infinite tapes were mentioned before as a common alternative
to DTMs with two-way infinite tapes. Figure 13.2 illustrates such a DTM. Let us say
that if the DTM ever tries to move its tape head left when it is on the leftmost tape
square, its head simply remains on this square and the computation continues—
maybe it makes an unpleasant crunching sound in this situation.

It is easy to simulate a DTM with a one-way infinite tape using an ordinary
DTM (with a two-way infinite tape). For instance, we could drop a special symbol,
such as &<, on the two-way infinite tape at the beginning of the computation, to the
left of the input. The DTM with the two-way infinite tape will exactly mimic the
behavior of the one-way infinite tape, but if the tape head ever scans the special &<
symbol during the computation, it moves one square right without changing state.
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qs

Figure 13.3: A DTM with a two-way infinite tape can easily simulate a DTM with
a one-way infinite tape, like the one pictured in Figure 13.2, by writing a special
symbol on the tape (in this case the symbol is <) that indicates where we should
imagine the tape has been cut. When the tape head scans this symbol, the DTM
adjusts its behavior accordingly.

(q5/ T)

Figure 13.4: A DTM with a one-way infinite tape that simulates an ordinary DTM
having a two-way infinite tape. The top track represents the portion of the two-way
infinite tape that extends to the right and the bottom track represents the portion
extending to the left.

This exactly mimics the behavior of the DTM with a one-way infinite tape that was
suggested above.

Simulating an ordinary DTM having a two-way infinite tape with one having
just a one-way infinite tape is slightly more challenging, but not difficult. Two nat-
ural ways to do it come to mind. The first way is suggested by Figure 13.4. In
essence, the one-way infinite, two-track tape of the DTM suggested by the figure
represents the tape of the original DTM being simulated, folded in half. The finite
state control keeps track of the state of the DTM being simulated and which track
of the tape stores the symbol being scanned. A special tape symbol, such as =,
could be placed on the first square of the bottom track to assist in the simulation.

The second way to perform the simulation of a two-way infinite tape with a
one-way infinite tape does not require two tracks, but will result in a simulation
that is somewhat less efficient with respect to the number of steps required. A
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Figure 13.5: A DTM with three tapes.

special symbol could be placed in the left-most square of the one-way infinite tape,
and anytime this symbol is scanned the DTM can transition into a subroutine in
which every other symbol on the tape is shifted one square to the right in order to
“make room” for a new square to the left. This would presumably require that we
also use a special symbol marking the right-most non-blank symbol on the tape, so
that the shifting subroutine can be completed—for otherwise we might not know
when every (non-blank) symbol on the tape had been shifted one square to the
right.

13.2 Multi-tape Turing machines

The last variant of the Turing machine model that we will consider is perhaps
the most useful variant. A multi-tape DTM works in a similar way to an ordinary
(single-tape) DTM, except that it has k tape heads that operate independently on
k tapes, for some fixed positive integer k. For example, Figure 13.5 illustrates a
multi-tape DTM with three tapes.

In general, a k-tape DTM is defined in a similar way to an ordinary DTM, except
that the transition function has a slightly more complicated form. In particular,
if the tape alphabets of a k-tape DTM are I'y, ..., I, then the transition function
might take this form:

01 Q\{Gace Grej} X T1 X -« X T = Q x Ty x - - x T x {«, 1, =} (@311)
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If we make the simplifying assumption that the same alphabet is used for each
tape (which does not restrict the model, as we could always take this single tape
alphabet to be the union I' = T’y U - - - U Tx of multiple alphabets), the transition
function takes the form

6 : Q\{face Grej} X TF = Q x TF x {«,], —=1}". (13.12)

(In both of these cases it is evident that the tape heads are allowed to remain sta-
tionary. Naturally you could also consider a variant in which every one of the tape
heads must move at each step, but we may as well allow for stationary tape heads
when considering the multi-tape DTM model—it is meant to be flexible and gen-
eral, so as to make it easier to perform complex computations.) The interpretation
of the transition function taking the form (13.12) is as follows. If it holds that

5(p,a1,. . .,ak) = (q,bl,. . .,bk,Dl,. . .,Dk), (1313)

then if the DTM is in the state p and is reading the symbols a4, ..., ax on its k tapes,
then

1. the new state becomes g,

2. the symbols by, ..., by are written onto the k tapes (overwriting the symbols
ai,...,a), and

3. the j-th tape head either moves or remains stationary depending on the value
D; € {«-,],—} foreachj=1,... k.

One way to simulate a multi-tape DTM with a single-tape DTM is to store the
contents of the k tapes, as well as the positions of the k tape heads, on separate
tracks of a single-tape DTM whose tape has multiple tracks. For example, the con-
tiguration of the multi-tape DTM pictured in Figure 13.5 could be represented by
a single-tape DTM as suggested by Figure 13.6.

Naturally, a simulation of this sort will require many steps of the single-tape
DTM to simulate a single step of the multi-tape DTM. Let us refer to the multi-tape
DTM as K and the single-tape DTM as M. To simulate one step of K, the DTM M
needs many steps: it must first scan through the tape in order to determine which
symbols are being scanned by the k tape heads of K, and store these symbols within
its finite state control. Once it knows these symbols, it can decide what action K is
supposed to take, and then implement this action—which means again scanning
through the tape in order to update the symbols stored on the tracks that represent
the tape contents of K and the positions of the tape heads, which may have to
move. It would be complicated to write this all down carefully, and there are many
specific ways in which this general idea could be carried out—but with enough
time and motivation it would certainly be possible to give a formal definition for a
single-tape DTM M that simulates a given multi-tape DTM K in this way.
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Figure 13.6: A single-tape DTM with a multi-track tape can simulate a multi-tape
DTM. Here, the odd numbered tracks represent the contents of the tapes of the
DTM illustrated in Figure 13.5, while the even numbered tracks store the locations
of the tape heads of the multi-tape DTM. The finite state control of this single-tape
DTM stores the state of the multi-tape DTM it simulates, but it would also need to
store other information (represented by the component r in the picture) in order to
carry out the simulation.
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Stack machines

We will now define a new computational model, the stack machine model, and ob-
serve that it is equivalent in power to the deterministic Turing machine model.
There are two principal motives behind the introduction of the stack machine
model at this point in the course:

1. Stack machines are easier to work with than Turing machines, at least at lower
levels of detail.

Whereas formally specifying Turing machines for even the most basic compu-
tations is a tedious task prone to errors, the analogous task for stack machines
is simpler in comparison. Through the equivalence of the two models, one
might therefore be more easily convinced that Turing machines abstract the
capabilities of ordinary computers.

2. The equivalence of stack machines and Turing machines provides us with a
nice example in support of the Church-Turing thesis.

The stack machine model is natural and intuitive, particularly within the con-
text of this course and the other models we have studied, and you can certainly
imagine building one—or even just emulating one yourself using sheets of pa-
per to implement stacks. That is, they represent mechanical processes. As the
Church-Turing thesis predicts, anything you can compute with this model can
also be computed with a deterministic Turing machine.

The stack machine model resembles the pushdown automata model, but unlike
that model the stack machine model permits the use of multiple stacks. This makes
all the difference in the world. In fact, as we will see, just two stacks endow a
stack machine with universal computational power. Also unlike the pushdown
automata model, we will only consider a deterministic variant of the stack machine
model (although one can easily define nondeterministic stack machines).
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14.1 Definition of stack machines

In this section we will formally define the deterministic stack machine model, but
before proceeding to the definition it will be helpful to first mention a few specific
points about the model.

1. As was already suggested, this model may be viewed as a deterministic, multi-
stack version of a PDA. We may have any number r of stacks, so long as the
number is fixed. Formally we do this by defining r-stack deterministic stack
machines for every positive integer r.

2. For simplicity we assume that every stack has the same stack alphabet A.! This
alphabet must include a special bottom-of-the-stack symbol ¢, and it must also
include the input alphabet X (which itself may not include the symbol ©). We
require that the input alphabet is contained in the stack alphabet because the
input is assumed to be stored (left-most symbol on top) in the first stack when
the computation begins.

3. The state set Q of a stack machine must include a start state gy as well as the
halting states gacc and grej (Which cannot be equal, naturally).

4. Each non-halting state of a stack machine, meaning any element of Q except
Jacc and grej, always has exactly one of the r stacks associated with it, and
must be either a push state or a pop state. When the stack machine transitions
from a push state to another state, a symbol is always pushed onto the stack
associated with that state, and similarly when a stack machine transitions from
a pop state to another state, a symbol is popped off of the stack associated with
that state (assuming it is non-empty).

Definition 14.1. An r-stack deterministic stack machine (r-DSM, for short) is an
7-tuple

M = (QI Z‘/ A/ 5/ q0/ Qacc/ Clrej)/ (141)

where

1. Qs a finite and nonempty set of states,
2. XY.is an input alphabet, which may not include the bottom-of-the-stack symbol o,
3. A s a stack alphabet, which must satisfy Z U {¢} C A,

Tt would be straightforward to generalize the model to allow for each stack to have a different
stack alphabet—we are just opting for a simpler definition.
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4. ¢ is a transition function of the form

5+ (Q\{Guce, grei}) = ({1,..., 7} x Ax Q) U ({1,...,7} x Q), (14.2)

and

5. G0, qacc, Grej € Q are the initial state, accept state, and reject state, respectively,
which must satisfy gacc # rej-

When we refer to a DSM without specifying the number of stacks r, we simply
mean an 7-DSM for some choice of a fixed positive integer . Sometimes we may
not care specifically how many stacks a given DSM has, and we leave the number
unspecified for simplicity.

In the specification of the transition function §, the notation Q* refers to the set
of all functions from A to Q. The interpretation of the transition function ¢ is as
follows:

1. If p is a non-halting state and 6(p) € {1,...,r} x A X Q, then the state p is a
push state; if it is the case that

6(p) = (k,a,q), (14.3)

then when the machine is in state p, it pushes the symbol a onto stack number k
and transitions to state g.

2. If p is a non-halting state and §(p) € {1,...,r} x Q?, then the state p is a pop
state; if it is the case that

(p) = (k. f) (14.4)

for f : A — Q, then when the machine is in state p, it pops whatever symbol
a € Ais on the top of stack number k and transitions to the state f(a). Notice
specifically that this allows for conditional branching: the state f(a) that the
machine transitions to may depend on the symbol a that is popped.

If it so happens that stack number k is empty in this situation, the machine sim-
ply transitions to the state gy. That is, popping an empty stack immediately
causes the machine to reject.

The computation of a stack machine M on an input x € ¥* begins in the initial
state go with the input string x € X* is stored in stack 1. Specifically, the top symbol
of stack 1 is the first symbol of x, the second to top symbol of stack 1 contains the
second symbol of x, and so on. At the bottom of stack 1, underneath all of the
input symbols, is the bottom-of-the-stack symbol ¢. All of the other stacks initially
contain just the bottom-of-the-stack symbol ©.
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The computation then continues in the natural way so long as the machine is
in a non-halting state. If either of the states gacc Or grej is reached, the computation
halts, and the input is accepted or rejected accordingly. Of course, just like a Turing
machine, there is also a possibility for computations to carry on indefinitely, and
in such a situation we will refer to the machine running forever.

State diagrams for DSMs

Deterministic stack machines may be represented by state diagrams in a way that
is similar to, but in some ways different from, the other models we have discussed.
As usual, states are represented by nodes in a directed graph, directed edges (with
labels) represent transitions, and the accept and reject states are labeled as such.
You will be able to immediately recognize that a state diagram represents a DSM in
these notes from the fact that the nodes are square-shaped (with slightly rounded
corners) rather than circle or oval shaped.

In the state diagram of a DSM, the nodes themselves, rather than the transitions,
indicate which operation (push or pop) is performed as the machine transitions
from a given state, and to which stack the operation refers. Each push state must
have a single transition leading from it, with the label indicating which symbol is
pushed, with the transition pointing to the next state. Each pop state must have one
directed edge leading from it for each possible stack symbol, indicating to which
state the computation is to transition (depending on the symbol popped).

We will also commonly assign names like X, Y, and Z to different stacks, rather
than calling them stack 1, stack 2, and so on, as this makes for more natural, algo-
rithmically focused descriptions of stack machines, where we view the stacks as
being akin to variables in a computer program.

Figure 14.1 gives an example of a state diagram of a 3-DSM. In this diagram,
stack 1 (which stores the input when the computation begins) is named X and the
other two stacks are named Y and Z. This DSM accepts every string in the language

{wHw : we {0,1}*} (14.5)

and rejects every string in the complement of this language (over the alphabet
{0,1,#}).

Two additional comments on state diagrams for DSMs are in order. First, aside
from the accept and reject states, we tend not to include the names of individual
states in state diagrams. This is because the names we choose for the states are
irrelevant to the functioning of a given machine, and omitting them makes for less
cluttered diagrams. In rare cases in which it is important to include the name of
a state in a state diagram, we will just write the state name above or beside its
corresponding node.
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Figure 14.1: A 3-DSM for the language {w#w : w € {0,1}*}.

Second, although every deterministic stack machine is assumed to have a re-
ject state, we often do not bother to include it in state diagrams. Whenever there
is a state with which a pop operation is associated, and one or more of the possi-
ble stack symbols does not appear on any transition leading out of this state, it is
assumed that the “missing” transitions lead to the reject state.

For example, in Figure 14.1, there is no transition labeled ¢ leading out of the
initial state, so it is implicit that if ¢ is popped off of X from this state, the machine
enters the reject state.

Subroutines

Just like we often do with ordinary programming languages, we can define sub-
routines for stack machines. This can sometimes offer a major simplification to the
descriptions of stack machines.

For example, consider the DSM whose state diagram is shown in Figure 14.2.
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Figure 14.2: An example of a state diagram describing a 1-DSM, whose sole stack
is named X. This particular machine is not very interesting from a language-
recognition viewpoint—it accepts every string—but it performs the useful task
of erasing the contents of a stack. Here the stack alphabet is assumed to be
A ={0,1,¢}, but the idea is easily extended to other stack alphabets.

Before discussing this machine, let us agree that whenever we say that a particular
stack stores a string x, we mean that the bottom-of-the-stack marker ¢ appears on
the bottom of the stack, and the symbols of x appear above this bottom-of-the-
stack marker on the stack, with the leftmost symbol of x on the top of the stack.
We will never use this terminology in the situation that the symbol ¢ itself appears
in x. Using this terminology, the behavior of the DSM illustrated in Figure 14.2 is
that if its computation begins with X storing an arbitrary string x € {0,1}*, then
the computation always results in acceptance, with X storing e. In other words, the
DSM erases the string stored by X and halts.

The simple process performed by this DSM might be useful as a subroutine in-
side of some more complicated DSM, and of course a simple modification allows
us to choose any stack in place of X that gets erased. Rather than replicating the de-
scription of the DSM from Figure 14.4 inside of this more complicated hypothetical
DSM, we can simply use the sort of shorthand suggested by Figure 14.3.

More explicitly, the diagram on the left-hand side of Figure 14.3 suggests a
small part of a hypothetical DSM, where the DSM from Figure 14.2 appears in-
side of the dashed box. Note that we have not included the accept state in the
dashed box because, rather than accepting, we wish for control to be passed to the
state labeled “another state” as the erasing process completes. We also do not have
that the “pop X” state is the initial state any longer, because rather than starting
at this state, we have that control passes to this state from the state labeled “some
state.” There could, in fact, be multiple transitions from multiple states leading to
the “pop X” state in the hypothetical DSM being considered.
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some state

some state

X<+¢

[ another state }

[ another state }

Figure 14.3: The diagrams on the left and right describe equivalent portions of a
larger DSM; the contents of the dotted rectangle in the left-hand diagram is viewed
as a subroutine that is represented by a single rectangle labeled “X <— ¢” in the right-
hand diagram.

In the diagram on the right-hand side of Figure 14.3 we have replaced the
dashed box with a single rectangle labeled “X <— e.” This is just a label that we
have chosen, but of course it is a fitting label in this case. The rectangle labeled
“X <= €” looks like a state, and we can think of it as being like a state with which
a more complicated operation than push or pop is associated, but the reality is
that it is just a short-hand for the contents of the dashed box on the left-hand side
diagram.

The same general pattern can be replicated for just about any choice of a DSM.
That is, if we have a DSM that we would like to use as a subroutine, we can always
do this as follows:

1. Let the original start state of the DSM be the state to which some transition
points.

2. Remove the accept state, modifying transitions to this removed accept state so
that they point to some other state elsewhere in the larger DSM to which control
is to pass once the subroutine is complete.

Naturally, one must be careful when defining and using subroutines like this, as
computations could easily become corrupted if subroutines modify stacks that are
being used for other purposes elsewhere in a computation. The same thing can, of
course, be said concerning subroutines in ordinary computer programs.
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;

Figure 14.4: An example of a state diagram describing a 3-DSM (with stacks named
X, Y, and Z). This machine performs the task of copying the contents of one stack
to another: X is copied to Y. The stack Z is used as workspace to perform this
operation.

Another example of a subroutine is illustrated in Figure 14.4. This stack ma-
chine copies the contents of one stack to another, using a third stack as an auxiliary
(or workspace) stack to accomplish this task. Specifically, under the assumption
that a stack X stores a string x € {0,1}* and stacks Y and Z store the empty string,
the illustrated 3-DSM will always lead to acceptance—and when it does accept, the
stacks X and Y will both store the string x, while Z will revert to its initial config-
uration in which it stores the empty string. In summary, if initially (X,Y, Z) stores
(x, ¢ €), then upon certain acceptance (X, Y, Z) will store (x, x, €).

If we wish to use this DSM as a subroutine in a more complicated DSM, we
could again represent the entire DSM (minus the accept state) by a single rectangle,
just like we did in Figure 14.3. A fitting label in this case is “Y < X.”

One more example of a DSM that is useful as a subroutine is pictured in Fig-
ure 14.5. Notice that in this state diagram we have made use of the two previous
subroutines to make the figure simpler. After each new subroutine is defined, we
are naturally free to use it to describe new DSMs. The DSM in the figure reverses
the string stored by X. It uses a workspace stack Y to accomplish this task—but in
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rex
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push Y

Figure 14.5: A DSM that reverses the string stored by a stack X.

fact it also uses a workspace stack Z, which is hidden inside the subroutine labeled
“Y = X.” In summary, it transforms (X, Y, Z) from (x, ¢, ¢) to (xR}, ¢, ¢€).

Note, by the way, that we do not in general need to list all of the workspace
stacks used by stack machines—we have only done this here to make their use
clear. So long as workspace stacks are used correctly, they can safely be ignored.

14.2 Equivalence of DTMs and DSMs

We will now argue that deterministic Turing machines and deterministic stack ma-
chines are equivalent computational models. This will require that we establish
two separate facts:

1. Given a DTM M, there exists a DSM K that simulates M.
2. Given a DSM M, there exists a DTM K that simulates M.

Just like in the previous lecture, this does not necessarily mean that one step of the
original machine corresponds to a single step of the simulator: the simulator might
require many steps to simulate one step of the original machine. A consequence of
both facts listed above is that, for every input string w, K accepts w whenever M
accepts w, K rejects w whenever M rejects w, and K runs forever on w whenever M
runs forever on w.

The two simulations are described in the subsections that follow. These de-
scriptions are not intended to be formal proofs, but they should provide enough
information to convince you that the two models are indeed equivalent.
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Figure 14.6: For each state/symbol pair (p,a) € (Q\{qacc, qrej}) X I of M, there are
two possibilities: if 6(p,a) = (g,b, <), then K includes the states and transitions
in the left-hand diagram, and if 6(p,a) = (g,b, —), then K includes the states and
transitions in the right-hand diagram. (The diagrams are symmetric under swap-
ping L and R.)

Simulating a DTM with a DSM

First we will discuss how a DSM can simulate a DTM. To simulate a given DTM M,
we will define a DSM K having two stacks, called L and R (for “left” and “right,”
respectively). The stack L will represent the contents of the tape of M to the left
of the tape head (in reverse order, so that the topmost symbol of L is the symbol
immediately to the left of the tape head of M) while R will represent the contents
of the tape of M to the right of the tape head. The symbol in the tape square of
M that is being scanned by its tape head will be stored in the internal state of K,
so this symbol does not need to be stored on either stack. Our main task will be
to define K so that it pushes and pops symbols to and from L and R in a way that
mimics the behavior of M.

To be more precise, suppose that M = (Q, %, T, , 9o, Gace, Grej) is the DTM to be
simulated. The DSM K will require a collection of states for every state/symbol
pair (p,a) € Q x I. Figure 14.6 illustrates these collections of states in the case
that p is a non-halting state. If it is the case that §(p,a) = (g,b, +), then the states
and transitions on the left-hand side of Figure 14.6 mimic the actions of M in this
way:

1. The symbol b gets written to the tape of M and the tape head moves left, so K
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(Qacc/ LI) (Qrej/ ﬂ)

a

Figure 14.7: For each state/symbol pair (p,a) € {qacc, qrej} x T of M, the DSM K
simply transitions to its accept or reject state accordingly. The symbol a stored in
the finite state memory of K is pushed onto the stack L as this transition is followed.
(The choice to push this symbol onto L rather than R is more or less arbitrary,
and this operation is not important if one is only interested in whether M accepts,
rejects, or runs forever; this operation only has relevance when the contents of the
tape of M when it halts are of interest.)

i

pushes the symbol b onto R to record the fact that the symbol b is now to the
right of the tape head of M.

2. The symbol that was one square to the left of the tape head of M becomes the
symbol that M scans because the tape head moved left, so K pops a symbol
off of L in order to learn what this symbol is and stores it in its finite state
memory. In case K pops the bottom-of-the-stack marker, it pushes this symbol
back, pushes a blank, and tries again; this has the effect of inserting extra blank
symbols as M moves to previously unvisited tape squares.

3. As K pops the top symbol off of L, as described in the previous item, it transi-
tions to the new state (g, c), for whatever symbol c it popped. This sets up K
to simulate the next step of M.

The situation is analogous in the case 6(p,a) = (q,b, —), with left and right (and
the stacks L and R) swapped.

For each pair (p,a) where p € {qacc, Grej }, there is no next-step of M to simulate,
so K simply transitions to its accept or reject state accordingly, as illustrated in Fig-
ure 14.7. Note that if we only care about whether M accepts or rejects, as opposed
to what is left on its tape in case it halts, we could alternatively eliminate all states
of the form (gacc, @) and (gyej, @), and replace transitions to these eliminated states
with transitions to the accept or reject state of K.

The start state of K is the state (go, —) and it is to be understood that stack R
is stack number 1 (and therefore contains the input along with the bottom-of-the-
stack marker) while L is stack number 2. The initial state of K therefore represents
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the initial state of M, where the tape head scans a blank symbol and the input is
written in the tape squares to the right of this blank tape square.

Simulating a DSM with a DTM

Now we will explain how a DSM can be simulated by a DTM. The idea behind this
simulation is fairly straightforward: the DTM will use its tape to store the contents
of all of the stacks of the DSM it is simulating, and it will update this information
appropriately so as to mimic the DSM. This will require many steps in general, as
the DTM will have to scan back and forth on its tape to manipulate the information
representing the stacks of the original DSM.

In greater detail, suppose that M = (Q, X, A, 9, qo, Jace, qrej) is an -DSM. The
DTM K that we will define to simulate M will have the Cartesian product alphabet:

I=(Au{# o)) (14.6)

That is, we are thinking about K as having a tape with multiple tracks, just like
in the previous lecture. We assume that # is a special symbol that is not contained
in the stack alphabet A of M, and that the blank symbol .. is also not contained
in A. Figure 14.8 provides an illustration of how the tape will simulate k stacks.
As before, it is to be understood that the true blank symbol of K is the symbol
(..., w), and that an input string a; - - - a, € £* of M is to be identified with the
string of tape symbols

(a1,|_|,...,|_|)---(an,u,...,n_n)GF*. (147)

The purpose of the symbol # is to mark a position on the tape of K; the contents
of the stacks of M will always be to the left of these # symbols. The first thing that
K does, before any steps of M are simulated, is to scan the tape (from left to right)
to find the end of the input string. In the first tape square after the input string, it
places the bottom-of-the-stack marker ¢ in every track, and in the next square to
the right it places the # symbol in every track. Once these # symbols are written
to the tape, they will remain there for the duration of the simulation. The DTM
then moves its tape head to the left, so that it is positioned over the # symbols, and
begins simulating steps of the DSM M.

The DTM K will store the current state of M in its internal memory, and one
way to think about this is to imagine that K has a collection of states for every state
g € Q of M (which is similar to the simulation in the previous subsection, except
there we had a collection of states for every state/symbol pair rather than just for
each state). The DTM K is defined so that this state will initially be set to g¢ (the
start state of M) when it begins the simulation.
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Figure 14.8: An example of a DTM whose tape has 6 tracks, each representing a
stack. This figure is consistent with the stack alphabet of the DSM that is being sim-
ulated being A = {0, 1, o}; the situation pictured is that the DSM stacks 0 through
5 store the strings 01100, ¢, 011100, 00010, 1, and ¢, respectively.

There are two possibilities for each non-halting state g € Q of M: it is either a
push state or a pop state. In either case, there is a stack index k that is associated
with this state. The behavior of K is as follows for these two possibilities:

1. If g is a push state, then there must be a symbol a € I that is to be pushed
onto stack k. The DTM K scans left until it finds a blank symbol on track k,
overwrites this blank with the symbol 4, and changes the state of M stored in
its internal memory exactly as M does.

2. If g is a pop state, then K needs to find out what symbol is on the top of stack k.
It scans left to find a blank symbol on track k, moves right to find the symbol
on the top of stack k, changes the state of M stored in its internal memory ac-
cordingly, and overwrites this symbol with a blank. Naturally, in the situation
where M attempts to pop an empty stack, K will detect this (as there will be no
non-blank symbols to the left of the # symbols), and it immediately transitions
to its reject state.

In both cases, after the push or pop operation was simulated, K scans its tape head
back to the right to find the # symbols, so that it can simulate another step of M.
Finally, if K stores a halting state of M when it would otherwise begin simulat-
ing a step of M, it accepts or rejects accordingly. In a situation in which the contents
of the tape of K after the simulation are important, such as when M computes a
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function rather than simply accepting or rejecting, one may of course define K so
that it first removes the # symbols and ¢ symbols from its tape prior to accepting
or rejecting.
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Encodings; examples of decidable
languages

Now that we have studied basic aspects of the Turing machine model, including
variants of Turing machines and the computationally equivalent stack machine
model, it is time to discuss some examples of decidable languages. In this lecture
we will focus on examples based on finite automata and context-free grammars.
These languages will have a somewhat different character from most of the lan-
guages we discussed previously in the course; their definitions are centered on
fundamental mathematical concepts, as opposed to simple syntactic patters.

Before doing this, however, we will discuss encodings, which allow us to rep-
resent complicated mathematical objects using strings over a given alphabet. For
example, we may wish to consider a DTM that takes as input a number, a graph, a
DFA, a CFG, another DTM (maybe even a description of itself), or a list of objects
of multiple types. We will make use of the notion of an encoding for the remainder
of the course.

15.1 Encodings of interesting mathematical objects

The idea that we can encode different sorts of objects as strings will be familiar to
students of computer science, and for this reason we will not belabor this issue—
but it will nevertheless be helpful to establish a few conventions and introduce
useful ideas concerning the encoding of different objects of interest.

Encoding multiple strings into one

Let us begin by considering the following task that concerns two hypothetical in-
dividuals: Alice and Bob. Alice has two binary strings x € {0,1}* and y € {0,1}",

155



CS 360 Introduction to the Theory of Computing

and she would like to communicate these two strings to Bob. However, for some
hypothetical reason, Alice is only allowed to transmit a single binary string to Bob,
so somehow x and y must be packed into a single string z € {0,1}* from which Bob
can recover both x and y. The two of them may agree ahead of time on a method
through which this will be done, but naturally the method must be agreed upon
prior to Alice knowing which strings x and y are to be communicated. That is, the
method must work for an arbitrary choice of binary strings x and y. There are dif-
ferent methods through which this task may be accomplished, but let us describe
just one method.

The first step is to introduce a new symbol, which we will call #. We then choose
to encode the pair (x,y) into a single string x#y € {0,1,#}*. Obviously, if Alice
were to send this string to Bob, he could recover x and y without difficulty, so it
is a good method in that sense—but unfortunately it does not solve the original
problem because it makes use of the alphabet {0, 1,#} rather than {0,1}.

The second step of the method will take us back to the binary alphabet: we can
encode the string x#y as a binary string by substituting the individual symbols
according to this pattern:!

0— 00

1—01 (15.1)
#— 1.

The resulting binary string will be the encoding of the two strings x and y that Alice
sends to Bob.

For example, if the two strings are x = 0110 and y = 01111, we first consider the
string 0110#01111, and then perform the substitution suggested above to obtain

(0110,01111) = 0001010010001010101. (15.2)

Here we have used a notation that we will use frequently throughout much of the
remainder of the course: whenever we have some object X, along with an encoding
scheme that encodes a class of objects that includes X as strings, we write (X) to
denote the string that encodes X. In the equation above, the notation (0110,01111)
therefore refers to the encoding of the two strings 0110 and 01111, viewed as an
ordered pair.

Let us make a few observations about the encoding scheme just described:

1. Tt is easy to recover the strings x and y from the encoding (x,y). Specifically,
so long as we find the symbol 0 in each odd-numbered position, the symbols

! There are other patterns that would work equally well. The one we have selected is an exam-
ple of a prefix-free code; because none of the strings appearing on the right-hand side of (15.1) is a
prefix of any of the other strings, we are guaranteed that by concatenating together a sequence of
these strings we can recover the original string without ambiguity.
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in the even-numbered positions that follow belong to x; and once we find a 1
in an odd-numbered position, we know that x is determined and it is time to
recover y through a similar process.

2. The scheme works not only for two strings x and y, but for any finite number of
binary strings x1, ..., x; such a list of strings may be encoded by first forming
the string x1#x,# - - - #x, € {0,1,#}*, and then performing the substitutions
described above to obtain (x1,...,x,) € {0,1}*.

3. Every n-tuple (x1, ..., x,) of binary strings has a unique encoding (x, ..., xx),
but it is not the case that every binary string encodes an n-tuple of binary
strings. In other words, the encoding is one-to-one but not onto. For instance,
the string 10 does not decode to any string over the alphabet {0,1,#}, and
therefore does not encode an n-tuple of binary strings. This is not a problem;
most of the encoding schemes we will consider in this course have the same
property that not every string is a valid encoding of some object of interest.

4. You could easily generalize this scheme to larger alphabets by adding a new
symbol to mark the division between strings over the original alphabet, and
then choosing a suitable encoding in place of (15.1).

This one method of encoding multiple strings into one turns out to be incredi-
bly useful, and by using it repeatedly we can devise encoding schemes for highly
complex mathematical objects.

Encoding strings over arbitrary alphabets using a fixed alphabet

Next, let us consider the task of encoding a string over an alphabet I' whose size
we do not know ahead of time by a string over a fixed alphabet X.. In the interest
of simplicity, let us take X = {0,1} to be the binary alphabet.

Before we discuss a particular scheme through which this task can be per-
formed, let us take a moment to clarify the task at hand. In particular, it should
be made clear that we are not looking for a way to encode strings over any possi-
ble alphabet I" that you could ever imagine. For instance, consider the alphabet

[={&, &4 & 0} (15.3)

from the very first lecture of the course. Some might consider this to be an interest-
ing alphabet, but in some sense there is nothing special about it—all that is really
relevant from the viewpoint of the theory of computation is that it has four sym-
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bols, so there is little point in differentiating it from the alphabet I' = {0, 1,2, 3}.2
That is, when we think about models of computation, all that really matters is the
number of symbols in our alphabet, and sometimes the order we choose to put
them in, but not the size, shape, or color of the symbols.

With this understanding in place, we will make the assumption that our encod-
ing task is to be performed for an alphabet of the form

r={0,1,...,n—1} (15.4)

for some positive integer 1, where we are imagining that each integer between 0
and n — 1 is a single symbol.

The method from the previous subsection provides a simple means through
which the task at hand can be accomplished. First, for every nonnegative integer
k € IN, let us decide that the encoding (k) of this number is given by its represen-
tation using binary notation:

0y=0, (1)=1, (2)=10, (3)=11, (4) =100, etc. (15.5)

Then, to encode a given string kik; - - - k;;, we simply encode the m binary strings
(k1), (k2),..., (km) into a single binary string

(k1) ko), -, e ) (15.6)

using the method from the previous subsection.

For example, let us consider the string 001217429, which we might assume is
over the alphabet {0, ...,9} (although this assumption will not influence the en-
coding that is obtained). The method from the previous subsection suggests that
we first form the string

0#0#1#10#1#111#100#10#1001 (15.7)

and then encode this string using the substitutions (15.1). The binary string we
obtain is

(001217429) = 00100101101001011010101101000010100101000001. (15.8)

Finally, let us briefly discuss the possibility that the alphabet X is the unary
alphabet X = {0} rather than the binary alphabet. You can still encode strings over
any alphabet I' = {0, ...,n — 1} using this alphabet, although (not surprisingly) it

2 You could of course consider encoding schemes that represent the shapes and sizes of dif-
ferent alphabet symbols—the symbols appearing in (15.3), for example, are in fact the result of a
binary string encoding obtained from an image compression algorithm—but this is not what we
are talking about.
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will be extremely inefficient. One way to do this is to first encode strings over I' as
strings over the binary alphabet, exactly as discussed above, and then to encode
binary strings as unary strings with respect to the lexicographic ordering:

E— €
0—0,
1 — 00,
10 — 000,
11 — 0000,
100 — 00000,

(15.9)

and so on.

This means that you could, in principle, encode an entire book in unary. Think
of an ordinary book as a string over the alphabet that includes upper- and lower-
case letters, spaces, and punctuation marks, and imagine encoding this string over
the unary alphabet as just described. You open the unary-encoded book and see
that every page is filled with 0Os, and as you are reading the book you have abso-
lutely no idea what it is about. All you can do is to eliminate the possibility that the
book corresponds to a shorter string of Os than the number you have seen so far,
just like when you rule out the possibility that it is 3 o’clock when the bells at City
Hall have (thus far) rung four times. Finally you finish the book and in an instant
it all becomes clear, and you say “Wow, what a great book!”

Numbers, vectors, and matrices

We already used the elementary fact that nonnegative integers can be encoded
as binary strings using binary notation in the previous subsection. One can also
encode arbitrary integers using binary notation by interpreting the first bit of the
encoding to be a sign bit. Rational numbers can be encoded as pairs of integers
(representing the numerator and denominator), by first expressing the individual
integers in binary, and then encoding the two strings into one using the method
from earlier in the lecture. One could also consider floating point representations,
which are of course very common in practice, but also have the disadvantage that
they only represent rational numbers for which the denominator is a power of two.

With a method for encoding numbers as binary strings in mind, one can rep-
resent vectors by simply encoding the entries as strings, and then encoding these
multiple strings into a single string using the method described at the start of the
lecture. Matrices can be represented as lists of vectors. Indeed, once you know how
to encode lists of strings as strings, you can very easily devise encoding schemes
for highly complex mathematical objects.
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An encoding scheme for DFAs and NFAs

Now let us devise an encoding scheme for DFAs and NFAs. We will start with
DFAs, and once we are finished we will observe how the scheme can be easily
modified to obtain an encoding scheme for NFAs.

What we are aiming for is a way to encode every possible DFA

M= (Q,T,5,q,F) (15.10)

as a binary string (M).? Intuitively speaking, given the binary string (M) € ¥,
it should be possible to recover a description of exactly how M operates without
difficulty. There are, of course, many possible encoding schemes that one could
devise—we are just choosing one that works but otherwise is not particularly spe-
cial.

Along similar lines to the discussion above concerning the encoding of strings
over arbitrary alphabets, we will make the assumption that the alphabet I' of M
takes the form

r={0,...,n—1} (15.11)

for some positive integer 1. For the same reasons, we will assume that the state set
of M takes the form

Q=1{q0,--- qm-1} (15.12)

for some positive integer m.
There will be three parts of the encoding:

1. A positive integer n representing |I'|. This number will be represented using
binary notation.

2. A specification of the set F together with the number of states m. These two
things together can be described by a binary string s of length m. Specifically,
the string

s = bObl tt bm—l (1513)

specifies that
F={g :ke{0,....m—1}, b =1}, (15.14)

and of course the number of states m is given by the length of the string s.
Hereafter we will write (F) to refer to the encoding of the subset F that is
obtained in this way.

3 Notice that we are taking the alphabet of M to be T rather than T to be consistent with the
conventions used in the previous subsections: I is an alphabet having an arbitrary size, and we
cannot assume it is fixed as we devise our encoding scheme, while £ = {0,1} is the alphabet we
are using for the encoding.
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Figure 15.1: A simple example of a DFA.

3. The transition function § will be described by listing all of the inputs and out-
puts of this function, in the following way. First, for j, k € {0,...,m — 1} and
ael ={0,...,n—1}, the string

({7}, (@), (k)) (15.15)

specifies that
6(gj,4) = qr. (15.16)

Here, (j), (k), and (a) refer to the strings obtained from binary notation, which
makes sense because j, k, and a are all nonnegative integers. We then encode
the list of all of these strings, in the natural ordering that comes from iterating
over all pairs (j,a), into a single string (J).

For example, the DFA depicted in Figure 15.1 has a transition function § whose
encoding is
(6) = ({0,0,1),(0,1,0),(1,0,1),(1,1,0)). (15.17)

(We will leave it in this form rather than expanding it out as a binary string in
the interest of clarity.)

Finally, the encoding of a given DFA M is just a list of the three parts just described:

(M) = ((n), (F), (6)). (15.18)

This encoding scheme can easily be modified to obtain an encoding scheme for
NFAs. This time, the values the transition function takes are subsets of Q rather
than elements of Q, and we must also account for the possibility of e-transitions.
Fortunately, we already know how to encode subsets of Q; we did this for the set F,
and exactly the same method can be used to encode any one of the subsets J(g;,a)
as a binary string (6(g;,a)) having length equal to the total number of states in Q.
That is, the string

((7), (a), (0(qj,a))) (15.19)
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describes the value of the transition function for the pair (q;,4). To specify the e-
transitions of M, we may use the string

((7) e (6(q;.9))), (15.20)

which takes advantage of the fact that we never have (1) = ¢ for any symbola € T
As before, we simply list all of the strings corresponding to the different inputs of
J in order to encode J.

Encoding schemes for regular expressions, CFGs, PDAs, etc.

We could continue on and devise encoding schemes through which regular expres-
sions, CFGs, PDAs, DTMs, and DSMs can be specified. Because of its importance,
we will in fact return to the case of DTMs in the next lecture, but for the others I
will leave it to you to think about how you might design encoding schemes. There
are countless specific ways to do this, but it turns out that the specifics are not re-
ally all that important—the reason why we did this carefully DFAs and NFAs is
to illustrate how it can be done for those models, with the principal aim being to
clarify the concept rather than to create an encoding scheme whose specific aspects
are conceptually relevant.

15.2 Decidability of formal language problems

Now let us turn our attention toward languages that concern the models of com-
putation we have studied previously in the course.

Languages based on DFAs, NFAs, and regular expressions

The first language we will consider is this one:
Appa = {((D),(w)) : DisaDFA and w € L(D)}. (15.21)

Here we assume that (D) is the encoding of a given DFA D, (w) is the encoding
of a given string w, and ((D), (w)) is the encoding of the two strings (D) and (w),
all as described earlier in the lecture. Thus, (D), (w), and ((D), (w)) are all binary
strings. It could be the case, however, that the alphabet of D is any alphabet of the
formT = {0,...,n — 1}, and likewise for the string w.

It is a natural question to ask whether or not the language Apga is decidable. It
certainly is. For a given input string x € {0,1}*, one can easily check that it takes
the form x = ((D), (w)) for a DFA D and a string w, and then check whether or
not D accepts w by simply simulating, just like you would do with a piece of paper
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The DTM M operates as follows on input x € {0,1}*:

1. If itis not the case that x = ((D), (w)) for D being a DFA and w being
a string over the alphabet of D, then reject.

2. Simulate D on input w; accept if D accepts w and reject if D rejects w.

Figure 15.2: A high-level description of a DTM M that decides the language Apga.

and a pencil if you were asked to make this determination for yourself. Figure 15.2
gives a high-level description of a DTM M that decides the language Apgpa along
these lines.

Now, you might object to the claim that Figure 15.2 describes a DTM that de-
cides Apga. It does describe the main idea of how M operates, which is that it
simulates D on input w, but it offers hardly any detail at all. It seems more like a
suggestion for how to design a DTM than an actual description of a DTM.

This is a fair criticism, but as we move forward with the course, we will need
to make a transition along these lines. The computations we will consider will be-
come more and more complicated, and in the interest of both time and clarity we
must abandon the practice of describing the DTMs that perform these computa-
tions explicitly. Hopefully our discussions and development of the DTM model
have convinced you that the process of taking a high-level description of a DTM,
such as the one in Figure 15.2, and producing an actual DTM that performs the
computation described would be a more or less routine task.

Because the description of the DTM M suggested by Figure 15.2 is our first
example of such a high-level DTM description, let us take a moment to consider
in greater detail how it could be turned into a formal specification of a DTM. Be-
cause we know that any deterministic stack machine can be simulated by a DTM,
it suffices to describe a DSM M that operates as described in Figure 15.2.

1. The input x to the DSM M is initially stored in stack number 1, which we might
instead choose to name X for clarity. The first step in Figure 15.2 is to check
that the input takes the form x = ((D), (w)). Assuming that the input does
take this form, it is convenient for the sake of the second step of M (meaning
the simulation of D on input w) that the input is split into two parts, with
the string (D) being stored in a stack called D and (w) being stored in a stack
called W. This splitting could easily be done as a part of the check that the
input does take the form x = ((D), (w)).

163



CS 360 Introduction to the Theory of Computing

2. To simulate D on input w, the DSM M will need to keep track of the current
state of D, so it is natural to introduce a new stack Q for this purpose. At the
start of the simulation, Q is initialized it so that it stores O (the encoding of the
state qo).

3. The actual simulation proceeds in the natural way, which is to examine the
encodings of the symbols of w stored in W, one at a time, updating the state
contained in Q accordingly. While an explicit description of the DSM states and
transitions needed to do this would probably look rather complex, it could be
done in a conceptually simple manner. In particular, each step of the simu-
lation would presumably involve M searching through the transitions of D
stored in D to find a match with the current state encoding stored in Q and the
next input symbol encoding stored in W, after which Q is updated. Naturally,
M can make use of additional stacks and make copies of strings as needed so
that the encoding (D) is always available at the start of each simulation step.

4. Once the simulation is complete, an examination of the state stored in Q and
the encoding (F) of the accepting states of D leads to acceptance or rejection
appropriately.

Allin all, it would be a tedious task to write down the description of a DSM M that
behaves in the manner just described—but I hope you will agree that with a bit of
time, patience, and planning, it would be feasible to do this. An explicit description
of such a DSM M would surely be made more clear if a thoughtful use of subrou-
tines was devised (not unlike the analogous task of writing a computer program
to perform such a simulation). Once the specification of this DSM is complete, it
can then be simulated by a DTM as described in the previous lecture.

Next let us consider a variant of the language Apga for NFAs in place of DFAs:

Anpa = {((N), (w)) : NisanNFA and w € L(N)}. (15.22)

Again, it is our assumption that the encodings with respect to which this language
is defined are as discussed earlier in the lecture. The language Anga is also de-
cidable. This time, however, it would not be reasonable to simply describe a DSM
that “simulates N on input w,” because it is not at all clear how a deterministic
computation can simulate a nondeterministic finite automaton computation.
What we can do instead is to make use of the process through which NFAs
are converted to DFAs that we discussed in Lecture 3; this is a well-defined deter-
ministic procedure, and it can certainly be performed by a DTM. Figure 15.3 gives
a high-level description of a DTM M that decides Anga. Once again, although it
would be a time-consuming task to explicitly describe a DTM that performs this
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The DTM M operates as follows on input x € {0,1}*:

1. Ifitis not the case that x = ((N), (w)) for N being an NFA and w being
a string over the alphabet of N, then reject.

2. Convert N into an equivalent DFA D using the subset construction
described in Lecture 3.

3. Simulate D on input w; accept if D accepts w and reject if D rejects w.
Figure 15.3: A high-level description of a DTM M that decides the language Anga.

computation, it is reasonable to view this as a straightforward task in a conceptual
sense.

One can also define a language similar to Appa and Anga, but for regular ex-
pressions in place of DFAs and NFAs:

Arex = {((R), (w)) : Ris a regular expression and w € L(R)}. (15.23)

We did not actually discuss an encoding scheme for regular expressions, so it will
be left to you to devise or imagine your own encoding scheme—but as long as
you picked a reasonable one, the language Argx would be decidable. In particular,
given a reasonable encoding scheme for regular expressions, a DTM could first
convert this regular expression into an equivalent DFA, and then simulate this
DFA on the string w.

Here is a different example of a language, which we will argue is also decidable:

Eppa = {(D) : Disa DFA and L(D) = &}. (15.24)

In this case, one cannot decide this language simply by “simulating the DFA D,”
because a priori there is no particular string on which to simulate it; we care about
every possible string that could be given as input to D and whether or not D
accepts any of them. Deciding the language Epga is therefore not necessarily a
straightforward simulation task.

What we can do instead is to treat the decision problem associated with this
language as a graph reachability problem. The DTM M suggested by Figure 15.4
takes this approach and decides Eppa. By combining this DTM with ideas from the
previous examples, one can prove that analogously defined languages Enpa and
ERrgx are also decidable:

Enra = {(N) : NisanNFA and L(N) = @},

15.25
Erex = {(R) : Ris aregular expression and L(R) = & }. ( )
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The DTM M operates as follows on input x € {0,1}*:

1. If itis not the case that x = (D) for D being a DFA, then reject.
2. SetS « {0}.

3. Seta <« 1.
4

For every pair of integers j, k € {0, ..., m — 1}, where m is the number
of states of D, do the following;:

41 Ifje€ Sandk € S, and D includes a transition from g; to gy, then
setS < SU{k}and a < 0.

5. If a = 0 then goto step 3.

6. Reject if there exists k € S such that g, € F (i.e., gi is an accept state
of D), otherwise accept.

Figure 15.4: A high-level description of a DTM M that decides the language Eppa.

One more example of a decidable language concerning DFAs is this language:
EQpra = {((A),(B)) : Aand Bare DFAsand L(A) = L(B)}. (15.26)

Figure 15.5 gives a high-level description of a DTM that decides this language. One
natural way to perform the construction in step 2 is to use the Cartesian product
construction described in Lecture 4.

Languages based on CFGs

Next let us turn to a couple of examples of decidable languages concerning context-
free grammars. Following along the same lines as the examples discussed above,
we may consider these languages:

Acrg = {({G), (w)) : GisaCFGand w € L(G)},

Ecrc = {(G) : GisaCFGand L(G) = o}. (15.27)

Once again, although we have not explicitly described an encoding scheme for
context-free grammars, it is not difficult to come up with such a scheme (or to
just imagine that such a scheme has been defined). A DTM that decides the first
language is described in Figure 15.6. It is worth noting that this is a ridiculously
inefficient way to decide the language Acrg, but right now we do not care! We are
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The DTM M operates as follows on input x € {0,1}*:

1. If it is not the case that x = ((A), (B)) for A and B being DFAs, then
reject.

2. Construct a DFA C for which L(C) = L(A) AL(B).

3. Acceptif (C) € Epga and otherwise reject.

Figure 15.5: A high-level description of a DTM M that decides the language EQpga .

The DTM M operates as follows on input x € {0,1}*:

1. Ifitis not the case that x = ((G), (w)) for G a CFG and w a string, then
reject.

2. Convert G into an equivalent CFG H in Chomsky normal form.
3. Ifw = ethenacceptif S — eis arule in H and reject otherwise.

4. Search over all possible derivations by H having 2|w| — 1 steps (of
which there are finitely many). Accept if a valid derivation of w is
found, and reject otherwise.

Figure 15.6: A high-level description of a DTM M that decides the language Acrc.
This DTM is ridiculously inefficient, but there are more efficient ways to decide
this language.

just trying to prove that this language is decidable. There are, in fact, much more
efficient ways to decide this language, but we will not discuss them now.

Finally, the language Ecrg can be decided using a variation on the reachability
technique. In essence, we keep track of a set containing variables that generate at
least one string, and then test to see if the start variable is contained in this set. A
DTM that decides this language is described in Figure 15.7.

Now, you may be wondering about this next language, as it is analogous to one
concerning DFAs from above:

EQcrg = {((G), (H)) : Gand H are CFGs and L(G) = L(H) }. (15.28)

As it turns out, this language is undecidable. We will not go through the proof be-
cause it would take us a bit too far off the path of the rest of the course—but some
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The DTM M operates as follows on input x € {0,1}*:

1. If it is not the case that x = (G) for G a CFG, then reject.
2. Set T < X (for X being the alphabet of G).

3. Seta <« 1.
4

For each rule X — w of G do the following:

4.1 If X is not contained in T, and every variable and every symbol
of w is contained in T, thenset T <~ T U {X} and a < 0.

5. If a = 0 then goto step 3.

o

Reject if the start variable of G is contained in T, otherwise accept.

Figure 15.7: A high-level description of a DTM M that decides the language Ecrc.

of the facts we will prove in the next lecture may shed some light on why this lan-
guage is undecidable. Some other examples of undecidable languages concerning
context-free grammars are these:

{(G) : GisaCFG that generates all strings over its alphabet},
{(G) : Gis an ambiguous CFG}, (15.29)
G) : Gisa CFG and L(G) is inherently ambiguous ;.
y &
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Universal Turing machines and
undecidable languages

In this lecture we will describe a universal Turing machine. This is a deterministic
Turing machine that, when given the encoding of an arbitrary DTM, can simulate
that machine on a given input.

To describe such a universal machine, we must naturally consider encodings
of DTMs, and this will be the first order of business for the lecture. The very no-
tion of an encoding scheme for DTMs allows us to obtain our first example of a
language that is not semidecidable (and is therefore not decidable). Through the
non-semidecidability of this language, many other languages can be shown to be
either undecidable or non-semidecidable. We will see two simple examples in this
lecture and more in the lecture following this one.

16.1 An encoding scheme for DTMs

In the previous lecture we discussed in detail an encoding scheme for DFAs, and
we observed that this scheme is easily adapted to obtain an encoding scheme for
NFAs. While we did not discuss specific encoding schemes for regular expressions
and context-free grammars, we made use of the fact that one can devise encoding
schemes for these models without difficulty.

We could follow a similar route for DTMs, as there are no new conceptual diffi-
culties that arise for this model in comparison to the other models just mentioned.
However, given the high degree of importance that languages involving encod-
ings of DTMs will have in the remainder of the course, it is fitting to take a few
moments to be careful and precise about this encoding. As is the case for just about
every encoding scheme we consider, there are many alternatives to the encoding of
DTMs we will define—our focus on the specifics of this encoding scheme is done
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in the interest of clarity and precision, and not because the specifics themselves are
essential to the study of computability.
Throughout the discussion that follows, we will assume that

M= (Q/ Z1‘/ I_‘/ 5/ 40, Jacc, I]rej> (161)

is a given DTM whose encoding is to be described. We make the assumption that
the state set Q of M takes the form

Q=190 qm-1} (16.2)

for some positive integer m, and that the input and tape alphabets of M take the
form
x={0,...,k—1} and T ={0,...,n—1} (16.3)

for positive integers k and n. Given that X is properly contained in T, it follows
that k < n; it is to be assume that the blank symbol .. € I' corresponds to the last
symboln — 1 of I'.

First, the encoding of a state g € Q should be understood as referring to the
string () € {0,1}* obtained by expressing the index of that state written in binary
notation, so that

(go) =0, (q1) =1, {(g2) =10, etc (16.4)
Tape symbolds are encoded in a similar way, so that
(0)=0, (1)=1, (2)=10, etc. (16.5)

We shall encode the directions left and right as
(«)=0 and (—)=1. (16.6)

Next we need a way to encode the transition function ¢, and this will be done in
a similar way to the encoding of DFAs from the previous lecture. For each choice
of states ¢ € Q\{Jace, qrej} and r € Q, tape symbols a,b € T, and a direction
D € {«,—}, the encoding

({q), (a), (r), (b), (D)) € {0,1}* (16.7)

indicates that
d(g,a) = (r,b,D). (16.8)
The encoding of the transition function J is then obtained by encoding the list
of binary strings of the form above, for each pair (7,4) € Q\{qacc,qrej} X I in
lexicographic order.
Finally, by means of these encodings, we obtain from every DTM M the binary
string encoding (M) € {0,1}* as follows:

(M) = ((m), (k), (n), (8), (qace), (dxej) )- (16.9)
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Example 16.1. Consider the DTM M for the language SAME whose state diagram
is shown in Figure 12.3. We have

6(40,0) = (90,0, <),
6(q0,1) = (90,1, 4-),
6(q0, =) = (q1, =, =),
(16.10)

5(%/0) = (Qrejrox <_)/
6(q3,1) = (qo, =, <),
5(‘13, '—') = (Qrej/ = <_)

We will make the identification gacc = g4 and grej = g5, and we note explicitly that

there are m = 6 states, k = 2 input symbols, and n = 3 tape symbols, with the
blank symbol .. being identified with the last tape symbol 2.

The transition 6(go,0) = (90,0, <) is encoded as

({0, (0), (q0), (0), (+-)) = (0,0,0,0,0), (16.11)

the transition 6(go, 1) = (g0, 1, <) is encoded as

((q0), (1), {q0), (1), (+=)) = (0,1,0,1,0), (16.12)

and, skipping to the last one, the transition 6(q3,2) = (g5, 2, <) is encoded as

{g3), (=), (arej), (), (<))

= ((43), (2), (g5), (2), {+=)) = (11,10,101,10,0). (16.13)

The entire transition function ¢ is encoded as

(0) = ({{q0),(0), (q0), (0), (+=)), ({g0), (1), {70), (1), (+-)),
e ((a3), (2)) (Grei)s (), ())) (16.14)
= ((0,0,0,0,0),(0,1,0,1,0),...,(11,10,101,10,0)).

And, finally, and M is encoded as

(M) = ((6),(2), (3),(6),(0), (4), (5))- (16.15)
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16.2 A universal Turing machine

Now that we have defined an encoding scheme for DTMs, we can consider the
computational task of simulating a given DTM on a given input. A universal Turing
machine is a DTM that can perform such a simulation—it is universal in the sense
that it is one single DTM that is capable of simulating all other DTMs.

Recall from Lecture 12 that a configuration of a DTM

M = (Q/ Z‘I 1_1/ 5/ ‘70/ qaCC/ qrej) (1616)

may be expressed in the form
u(q,a)v (16.17)

for a state g € Q, a tape symbol a € I, and strings of tape symbols u,v € I'*,
where u does not start with a blank and v does not end with a blank. Such a con-
figuration may be encoded as

(u(q,a)v) = ({u), (q), (a}), (0)) (16.18)

where (u), (q), (a), and (v) refer to fitting encoding schemes we have already dis-
cussed in this lecture.

Now, if we wish to simulate the computation of a given DTM M on a given
input string w, a natural approach is to keep track of the configurations of M and
update them appropriately, as the computations themselves dictate. Specifically,
we will begin with the initial configuration of M on input w, which is

(90, =)w. (16.19)

We then repeatedly compute the next configuration of M, over and over, until per-
haps we eventually reach a configuration whose state is gacc O grej, at which point
we can stop. We might never reach such a configuration; if M runs forever on in-
put w, our simulation will also run forever. There is no way to avoid this, as we
shall see.

With this approach in mind, let us focus on the task of simply determining
the next configuration, meaning the one that results from one computational step,
for a given DTM M and a given configuration of M. That is, we will consider the
function

next: {0,1}* — {0,1}" (16.20)

defined as follows. For every DTM M = (Q,%,T,J, qo,qacc,qre]-) and every non-
halting configuration u(q,a)v of M, we define

next(((M), (u(q,a)0))) = (x(p,b)y), (1621)
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for x(p,b)y being the configuration obtained by running M for one step starting
from the configuration u(g,a)v, i.e., the unique configuration for which

u(g,a)v Fp x(p,b)y. (16.22)

We recall that Definition 12.2 describes this relation in precise terms. For every
halting configuration u(q,a)v of M, let us define (as a matter of convenience)

next(((M), (u(q,a)v))) = (u(q,a)v). (16.23)

On inputs x € {0,1}* not having the form ((M), (u(q,a)v)), for M a DTM and
u(q,a)v a configuration of M, we shall take next(x) = e.

Let us consider how this function might be computed using a stack machine. A
natural first step is to process the input so that, upon conclusion of this processing,
we have a stack M that stores (M), as well as four stacks, S, T, L, and R, that initially
store the encodings (g), (a), (1), and (v), respectively. During this processing, we
naturally stop and output ¢ if the input is not an encoding as we expect.

Next, the encoding (M), which includes within it the encoding (J) of the tran-
sition function ¢, must be examined to determine 6(q,a) = (p, b, D). This requires
a scan through () to obtain, after finding a match involving the strings (g) and (a)
stored by S and T, the encodings (p), (b), and (D). These encodings may each be
stored in their own stacks, which we need not name. A processing of S, T, L, and
R that updates their contents to (p), (b), (x), and (y), for p, b, x, and y satisfying
(16.22), is then performed.

Finally, these strings are recombined to form the output string

(), ({p), (b)), ())- (16.24)

It would be a time-consuming process to explicitly describe a DSM that operates in
this way, but at a conceptual level this computation could reasonably be described
as fairly straightforward. String matching subroutines would surely be helpful.

With the function next in hand, one can simulate the computation of a given
DTM M on a given input w in the manner suggested above, by starting with the
initial configuration (g, — )w of M on w and repeatedly applying the function next.

Now consider the following language, which is the natural DTM analogue of
the languages Apra, AnNra, AReG, and Acrg discussed in the previous lecture:

Aptm = {<<M>, <w)> : MisaDTMand w € L(M)} (16.25)

We conclude that Apty is semidecidable: the DSM U described in Figure 16.1 is
such that L(U) = Aprwm. This DSM has been named U to reflect the fact that it is a
universal DSM. As described in Lecture 14, the DSM U can be simulated by a DTM.
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The DSM U operates as follows on input x € {0,1}*:

1. If x takes the form x = ((M), (w)), for M being a DTM and w being
a string over the alphabet of M, then initialize the stack M so that it
stores (M) and initialize C so that it stores ((qo, = )w). Reject if not.

2. Repeat the following steps:

2.1 If C stores a halting configuration of M, then halt and accept or
reject accordingly. If C stores a non-halting configuration of M, the
computation continues.

2.2 Compute the configuration next((M), (u(g,a)v)), for the encod-
ings (M) and (u(g, a)v) stored in M and C, and update C so that it
stores this new configuration.

Figure 16.1: A high-level description of a DSM U that recognizes the language
ApTMm.

Proposition 16.2. The language Aptwm is semidecidable.

Before moving on to the next section, let us note that the following language is
decidable:

. Mis a DIM, w is an input string to M,
"t € N, and M accepts w within ¢ steps

Sorae = { (), (o), (1) L (629
This language could be decided by a DTM following essentially the same simula-
tion described previously, but where the simulation cuts off and rejects after ¢ steps

if M has not yet halted on input w.

16.3 A few undecidable languages

It is natural at this point to ask whether or not Apty is decidable, given that it
is semidecidable. It is undecidable, as we will soon prove. Before doing this, how-
ever, we will consider a different language and prove that this language is not even
semidecidable. Here is the language:

DIAG = {(M) : MisaDTM and (M) ¢ L(M)}. (16.27)

That is, the language DIAG contains all binary strings (M) that, with respect to the
encoding scheme we discussed at the start of the lecture, encode a DTM M that
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The DTM K operates as follows on input x € {0,1}*:

1. If it is not the case that x = (M) for M being a DTM, then reject.
2. Run T oninput ((M), (M)).If T accepts, then reject, otherwise accept.

Figure 16.2: A DTM that decides DIAG, assuming that there exists a DTM T for
ApTM™-

does not accept this encoding of itself. Note that if it so happens that the string
(M) encodes a DTM whose input alphabet has just one symbol, so that it does not
include 0 and 1, then it will indeed be the case that (M) ¢ L(M).

Theorem 16.3. The language DIAG is not semidecidable.

Proof. Assume toward contradiction that the language DIAG is semidecidable.
There must therefore exist a DTM M such that L(M) = DIAG.
Now, consider the encoding (M) of M. By the definition of the language DIAG
one has
(M) € DIAG & (M) € L(M). (16.28)

On the other hand, because M recognizes DIAG, it is the case that

(M) € DIAG & (M) € L(M). (16.29)
Consequently,

(M) ¢ L(M) & (M) € L(M), (16.30)
which is a contradiction. We conclude that DIAG is not semidecidable. O]

Remark 16.4. Note that this proof is very similar to the proof that P(IN) is not
countable from the very first lecture of the course. It is remarkable how simple this
proof of the non-semidecidability of DIAG is; it has used essentially none of the
specifics of the DTM model or the encoding scheme we defined.

Now that we know DIAG is not semidecidable, we may prove that Aptys is not
decidable.

Theorem 16.5. The language Apry is undecidable.

Proof. Assume toward contradiction that Apty is decidable. There must therefore
exista DTM T that decides Apty. Define a new DTM K as described in Figure 16.2.
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The DTM K operates as follows on input x € {0,1}*:

1. If it is not the case that x = ((M), (w)) for M being a DTM and w an
input string to M, then reject.

2. Run T on input ((M), (w)) and reject if T rejects. Otherwise, continue
to the next step.

3. Simulate M on input w; accept it M accepts and reject if M rejects.

Figure 16.3: A DTM that decides Apty, assuming that there exists a DTM T that
decides HALT.

For a given DTM M, we may now ask ourselves what K does on the input (M).
If it is the case that (M) € DIAG, then by the definition of DIAG it is the case that
(M) ¢ L(M), and therefore ((M), (M)) ¢ Aprm (because M does not accept (M)).
This implies that T rejects the input ((M), (M)), and so K must accept the input
(M). If, on the other hand, it is the case that (M) ¢ DIAG, then (M) € L(M), and
therefore ((M), (M)) € Appm. This implies that T accepts the input ((M), (M)),
and so K must reject the input (M). One final possibility is that K is run on an input
string that does not encode a DTM at all, and in this case it rejects.

Considering these possibilities, we find that K decides DIAG. This, however,
is in contradiction with the fact that DIAG is non-semidecidable (and is therefore
undecidable). Having obtained a contradiction, we conclude that Apry is unde-
cidable, as required. O

Here is another example, which is a famous relative of Apym.
HALT = {((M), (w)) : M is a DTM that halts on input w}. (16.31)

To say that M halts on input w means that it stops, either by accepting or rejecting.
Let us agree that the statement “M halts on input w” is false in case w contains
symbols not in the input alphabet of M—purely as a matter of terminology.

It is easy to prove that HALT is semidecidable, we just run a modified version
of our universal Turing machine U on input ((M), (w)), except that we accept in
case the simulation results in either accept or reject—and when it is the case that
M does not halt on input w this modified version of U will run forever on input

(M), {w)).
Theorem 16.6. The language HALT is undecidable.
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Proof. Assume toward contradiction that HALT is decidable, so that there exists a
DTM T that decides it. Define a new DTM K as in Figure 16.3. The DTM K decides
AprtM, as a case analysis reveals:

1. If it is the case that M accepts w, then T will accept ((M), (w)) (because M
halts on w), and the simulation of M on input w will result in acceptance.

2. If itis the case that M rejects w, then T will accept ((M), (w)) (because M halts
on w), and the simulation of M on input w will result in rejection.

3. If it is the case that M runs forever on w, then T will reject ((M), (w)), and
therefore K rejects without running the simulation of M on input w.

This, however, is in contradiction with the fact that Apty is undecidable. Having
obtained a contradiction, we conclude that HALT is undecidable. O
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More undecidable languages;
reductions

In the previous lecture we saw a few examples of undecidable languages: DIAG is
not semidecidable, and therefore not decidable, while Apty and HALT are semide-
cidable but not decidable. In this lecture we will see a few more examples. We will
also introduce the notion of a reduction from one language to another, which can
be utilized when proving languages are undecidable.

Before doing this, however, we will take a few moments to observe a couple of
basic but useful tricks involving Turing machines.

17.1 A couple of basic Turing machine tricks

This section describes two ideas that can be helpful when proving certain lan-
guages are undecidable (or non-semidecidable), and in other situations as well.
The first involves a simple way to manage a search over an infinite domain and
the second is concerned with the surprisingly powerful technique of hard coding
inputs of Turing machines.

Limiting infinite search spaces

Sometimes we would like a Turing machine to effectively search over an infinitely
large search space, but it may not always be immediately clear how this can be
done. One way to address this issue is to set up a loop in which a single positive
integer serves simultaneously as a bound on multiple parameters in the search
space.

The proof of the following theorem, which is very important in its own right,
illustrates this idea.
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The DTM M operates as follows on input x € {0,1}*:

1. Sett <+ 1.

2. Run M on input w for ¢ steps. If My has accepted, then accept.
3. Run M; on input w for ¢ steps. If M; has accepted, then reject.
4. Sett < t+1and goto step 2.

Figure 17.1: A high-level description of a DTM M that decides A, assuming that

My and M; are DTMs satisfying L(My) = A and L(M;) = A.

Theorem 17.1. Let X be an alphabet and let A C X* be a language such that both A and
A are semidecidable. The language A is decidable.

Proof. Because A and A are semidecidable languages, there must exist DTMs M,
and M;j such that A = L(Mj) and A = L(M;). Define a new DTM M as described
in Figure 17.1.

Now let us consider the behavior of the DTM M on a given input string w. If it
is the case that w € A, then My eventually accepts w, while M; does not. (It could
be that M either rejects or runs forever, but it cannot accept w.) It is therefore the
case that M accepts w. On the other hand, if w ¢ A, then M; eventually accepts w
while M, does not, and therefore M rejects w. Consequently, M decides A, so A is
decidable. O

To be clear, the technique being suggested involves the use of the variable ¢ in
the description of the DTM M in Figure 17.1; it is a single variable, but it is used
to limit the simulations of both My and M; (in steps 2 and 3) so that neither runs
forever. We will see further examples of this technique later in this lecture and in
the next lecture.

Hard-coding input strings

Suppose that we have a DTM M along with a string x over the input alphabet of M.
Consider the new DTM M, described in Figure 17.2.

This may seem like a rather useless Turing machine: M, always leads to the
same outcome regardless of what input string it is given. In essence, the input
string x has been “hard-coded” directly into the description of M,. We will see,
however, that it is sometimes useful to consider a DTM defined in this way, partic-
ularly when proving that certain languages are undecidable or non-semidecidable.
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The DTM M operates as follows on input w € {0,1}*:

1. Discard w and run M on input x.

Figure 17.2: The DTM M, erases its input and runs M on the string x.

Figure 17.3: A state diagram for the DTM Myp11. The contents of the gray box is in-
tended to represent the state diagram of an arbitrary DTM M having start state go.

Let us also note that if we have an encoding ((M), (x)) of both a DTM M and
a string x over the input alphabet of M, it is not difficult to compute an encoding
(My) of the DTM My. The DTM M, can be described as having three phases:

1. Move the tape head to the right across whatever input string w has been given,
replacing the symbols of w with blanks, until all of w has been erased.

2. Starting at the end of the string x, write each symbol of x on the tape and move
the tape head left.

3. Once the string x has been written to the tape, pass control to M.
The first phase can easily be done with a couple of states, and the second phase
can be done using one state of My for each symbol of x. The third phase operates

exactly like M. Figure 17.1 illustrates what the state diagram of the DTM M4
looks like.
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The DTM K operates as follows on input w € {0,1}*:

1. Reject unless w = ((M), (x)) for M being a DTM and x being an input
string to M.

2. Compute an encoding (M) of the DTM M, defined from M as de-
scribed in Figure 17.1.

3. Run T on input (M,): if T accepts (My), then reject, otherwise accept.

Figure 17.4: The DTM K used in the proof of Proposition 17.2.

Here is an example that illustrates the usefulness of this construction. Define a
language
Eprm = {(M) : Misa DTM with L(M) = & }. (17.1)

Proposition 17.2. The language Epry is undecidable.

Proof. Assume toward contradiction that Epty is decidable, so that there exists a
DTM T that decides this language. Define a new DTM K as in Figure 17.4.

Now, suppose that M is a DTM and x € L(M), and consider the behavior of K
on input ((M), (x)). Because M accepts x, it is the case that M, accepts every string
over its alphabet—because whatever string you give it as input, it erases this string
and runs M on x, leading to acceptance. It is therefore certainly not the case that
L(My) = @, so T must reject (M), and therefore K accepts ((M), (w)).

On the other hand, if M is a DTM and x ¢ L(M) then K will reject the input
((M), (w)). Either x is not a string over the alphabet of M, which immediately
leads to rejection, or M either rejects or runs forever on input x. In this second
case, My either rejects or runs forever on every string, and therefore L(M,) = @.
The DTM T therefore accepts (M, ), causing K to reject the input ((M), (w)).

Thus, K decides Aptp, which contradicts the fact that this language is undecid-
able. We conclude that Epry is undecidable, as required. O

17.2 Proving undecidability through reductions

The proofs that we have seen so far that establish certain languages to be undecid-
able or non-semidecidable have followed a general pattern that can often be used
to prove that a chosen language A is undecidable:

1. Assume toward contradiction that A is decidable.
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2. Use that assumption to construct a DTM that decides a language B that we
already know to be undecidable.

3. Having obtained a contradiction from the assumption that A is decidable, we
conclude that A is undecidable.

A similar approach can sometimes be used to prove that a language A is non-
semidecidable, and in both cases we might potentially obtain a contradiction by
using our assumption toward contradiction about A to semidecide a language B
that we already know to be non-semidecidable.

A different method through which languages may be proved to be undecidable
or non-semidecidable makes use of the notion of a reduction.

Reductions

The notion of a reduction is, in fact, very general, and many different types of
reductions are considered in theoretical computer science—but for now we will
consider just one type of reduction (sometimes called a mapping reduction or many-
to-one reduction), which is defined as follows.

Definition 17.3. Let X and I" be alphabets and let A C >* and B C I'* be languages.
It is said that A reduces to B if there exists a computable function f : ¥* — I'"* such
that

weAs f(w)eB (17.2)

forall w € X*. One writes A <;, B to indicate that A reduces to B, and any function
f that establishes that this is so may be called a reduction from A to B.

Figure 17.5 illustrates the action of a reduction. Intuitively speaking, a reduction
is a way of transforming one computational decision problem into another. Imag-
ine that you receive an input string w € ¥, and you wish to determine whether
or not w is contained in some language A. Perhaps you do not know how to make
this determination, but you happen to have a friend who is able to tell you whether
or not a particular string y € I'* is contained in a different language B. If you have
a reduction f from A to B, then you can determine whether or not w € A using
your friend’s help: you compute y = f(w), ask your friend whether or not y € B,
and take their answer as your answer to whether or not w € A.

The following theorem has a simple and direct proof, but it will nevertheless
have central importance with respect to the way that we use reductions to reason
about decidability and semidecidability.

Theorem 17.4. Let X and I" be alphabets, let A C X* and B C I'* be languages, and
assume A <, B. The following two implications hold:
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f

—

Figure 17.5: An illustration of a reduction f from A to B.

The DTM M4 operates as follows on input w € X*:
1. Compute y = f(w).
2. Run Mp on input y.

Figure 17.6: Given a reduction f from A to B, and assuming the existence of a DTM
Mp that either decides or semidecides B, the DTM M 4 described either decides or
semidecides A.

1. If B is decidable, then A is decidable.
2. If B is semidecidable, then A is semidecidable.

Proof. Let f : ¥* — I'* be a reduction from A to B. We know that such a function
exists by the assumption A <,,; B.

We will first prove the second implication. Because B is semidecidable, there
must exist a DTM Mj such that B = L(Mgp). Define a new DTM M4 as described
in Figure 17.6. It is possible to define a DTM in this way because f is a computable
function.

For a given input string w € A, we have that y = f(w) € B, because this
property is guaranteed by the reduction f. When M, is run on input w, it will
therefore accept because Mp accepts y. Along similar lines, if it is the case that
w ¢ A, theny = f(w) ¢ B. When M4 is run on input w, it will therefore not accept
because Mp does not accepts y. (It may be that these machines reject or run forever,
but we do not care which.) It has been established that A = L(Mj), and therefore
A is semidecidable.
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The proof for the first implication is almost identical, except that we take Mp to
be a DTM that decides B. The DTM M4 defined in Figure 17.6 then decides A, and
therefore A is decidable. O

We will soon use this theorem to prove that certain languages are undecidable
(or non-semidecidable), but let us first take a moment to observe two useful facts
about reductions.

Proposition 17.5. Let X, T', and A be alphabets and let A C ¥*, B C I'*, and C C A* be
languages. If A <,, Band B <, C, then A <,, C. (In words, <, is a transitive relation
among languages.)

Proof. As A <,, Band B <;, C, there must exist computable functions f : ¥* — I'*
and g : I'" — A* such that

weA<s f(lw)eB and yeB&g(y) eC (17.3)

forallw € X*and y € I'*.

Define a function i : ¥* — A* as h(w) = g(f(w)) for all w € £*. It is evident
that /1 is a computable function: if we have DTMs My and M that compute f and
g, respectively, then we can obtain a DTM M}, that computes & by first running My
and then running M.

It remains to observe that /1 is a reduction from A to C.If w € A, then f(w) € B,
and therefore h(w) = g(f(w)) € C;and if w ¢ A, then f(w) ¢ B, and therefore

h(w) = g(f(w)) & C. O

Proposition 17.6. Let X and I" be alphabets and let A C ¥* and B C I'* be languages. It
is the case that A <,, B if and only if A <,, B.

Proof. For a given function f : ¥* — I'* and a string w € X*, the statements
weEAs f(w) e Bandw € A & f(w) € B are logically equivalent. If we have a
reduction f from A to B, then the same function also serves as a reduction from A
to B, and vice versa. O

Undecidability through reductions

It is possible to use Theorem 17.4 to prove that certain languages are either decid-
able or semidecidable, but we will focus mainly on using it to prove that languages
are either undecidable or non-semidecidable. When using the theorem in this way,
we consider the two implications in the contrapositive form. That is, if two lan-
guages A C X* and B C I'* satisfy A <,; B, then the following two implications
hold:

185



CS 360 Introduction to the Theory of Computing

The DTM Kj operates as follows on input w € X*:

1. Run M on input w.

1.1 If M accepts w then accept.

1.2 If M rejects w, then run forever.

Figure 17.7: Given a DTM M, we can easily obtain a DTM K) that behaves as
described by replacing any transitions to the accept state of M with transitions to
a state that intentionally causes an infinite loop.

1. If A is undecidable, then B is undecidable.

2. If A is non-semidecidable, then B is non-semidecidable.

So, if we want to prove that a particular language B is undecidable, then it suffices
to pick any language A that we already know to be undecidable, and then prove
A <, B. The situation is similar for proving languages to be non-semidecidable.
The examples that follow illustrate how this may be done.

Example 17.7. For our first example of a reduction, we shall prove

Aptv <m HALT. (17.4)

The first thing we will need to consider is a simple way of modifying an arbi-
trary DTM M to obtain a slightly different one. In particular, for an arbitrary DTM
M, let us define a new DTM K as described in Figure 17.7. The idea behind the
DTM Ky is very simple: if M accepts a string w, then so does Ky, if M rejects w
then Kj runs forever on w, and of course if M runs forever on input w then so
does Kjs. Thus, Ky halts on input w if and only if M accepts w. Note that if you are
given a description of a DTM M, it is very easy to come up with a description of a
DTM K that operates as suggested: just replace the reject state of M with a new
state that purposely causes an infinite loop (by repeatedly moving the tape head
right, say).

Now let us define a function f : {0,1}* — {0,1}* as follows:

((Km), (w)) ifx = ((M), (w)) fora DTM M and a string w
flx) = over the alphabet of M

X0 otherwise,
(17.5)
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where xg € {0,1}* is any fixed string that is not contained in HALT. (For example,
we could take xp = ¢, because ¢ does not encode a DTM together with an input
string—but it is not important which string we choose as x(, so long as it is not in
HALT.) The function f is computable: all it does is that it essentially looks at an
input string, determines whether or not this string is an encoding ((M), (w)) of a
DTM M and a string w over the alphabet of M, and if so it replaces the encoding
of M with the encoding of the DTM K suggested above.

Now let us check to see that f is a reduction from Apry to HALT. Suppose first
that we have an input ((M), (w)) € Aprm. These implications hold:

((M),(w)) € Aprm = M accepts w = Kjs halts on w

= ((Km), (w)) € HALT = f({{M), (w))) € HALT. (17.6)
We therefore have
(M), (w)) € Aprm = f({(M), (w))) € HALT, (17.7)

which is half of what we need to verify that f is indeed a reduction from Apy to
HALT.

It remains to consider the output of the function f on inputs that are not con-
tained in Apty, and here there are two cases: one is that the input takes the form
((M), (w)) for a DTM M and a string w over the alphabet of M, and the other is
that it does not. For the first case, we have these implications:

((M),(w)) & Aprm = M does not accept w
= Ky runs foreveronw = ((Ky), (w)) € HALT (17.8)

= f(({M), (w))) ¢ HALT.

The key here is that K is defined so that it will definitely run forever in case M
does not accept (regardless of whether that happens by M rejecting or running
forever). The remaining case is that we have a string x € X* that does not take the
form ((M), (w)) for a DTM M and a string w over the alphabet of M, and in this
case it trivially holds that f(x) = xo ¢ HALT. (This is why we defined f as we did
in this case, and we will generally do something similar for other examples).

We have therefore proved that

X € Aptm <& f(x) € HALT, (17.9)

and therefore Aprv <, HALT.
We already proved that HALT is undecidable, but the fact that Apmy <, HALT

provides an alternative proof: because we already know that Apty is undecidable,
it follows that HALT is also undecidable.
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It might not seem that there is any advantage to this proof over the proof we
saw in the previous lecture that HALT is undecidable (which was not particularly
difficult). We have, however, established a closer relationship between Apmy and
HALT than we did previously. In general, using a reduction is sometimes an easy
shortcut to proving that a language is undecidable (or non-semidecidable).

Example 17.8. For our next example of a reduction, we will prove
DIAG <,; Eptm, (17.10)
where we recall that Epry is defined as follows:
Epmm = {(M) : MisaDTMand L(M) = @}. (17.11)

We will now prove that DIAG <, Epty. Because we already know that DIAG is
non-semidecidable, we conclude from this reduction that Epty is not just unde-
cidable, but in fact it is also non-semidecidable.

For this one we will again use the hardcoding trick from the beginning of the
lecture: for a given DTM M, let us define a new DTM M,y just like in Figure 17.2,
for the specific choice of the hardcoded string x = (M). This actually only makes
sense if the input alphabet of M includes the symbols {0, 1} used in the encoding
(M), so let us agree that My, immediately rejects if this is not the case.

Now let us define a function f : {0,1}* — {0,1}* as follows:

f(x):{<M<M>> if x = (M) fora DTM M 17.12)

X0 otherwise,

for any fixed binary string xp not contained in Epmy. If you think about it for a
moment, it should not be hard to convince yourself that f is computable. It remains
to verify that f is a reduction from DIAG to Epry.

For any string x € DIAG we have that x = (M) for some DTM M that satisfies
(M) ¢ L(M). In this case we have that f(x) = (M), and because (M) ¢ L(M)
it must therefore be that My, never accepts, and so f(x) = (M ( M>> € Epmum.

Now suppose that x ¢ DIAG. There are two cases: either x = (M) for a DTM
M such that (M) € L(M), or x does not encode a DTM at all. If it is the case that
x = (M) for a DTM M such that (M) € L(M), we have that M, accepts every
string over its alphabet, and therefore f(x) = (M) & Eprm. If it is the case that
x does not encode a DTM, then it trivially holds that f(x) = xy € Eprum.

We have proved that

x € DIAG < f(x) € Epmwm, (17.13)

so the proof that DIAG <, Epmy is complete.
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Example 17.9. Our third example of a reduction is
Aptm <m AE, (17.14)
where the language AE is defined like this:
AE = {(M) : Misa DTM that accepts ¢}. (17.15)

The name AE stands for “accepts the empty string.”

To prove this reduction, we can use the same hardcoding trick that we have
now used twice already. For every DTM M and every string x over the alphabet
of M, define a new DTM M, as in Figure 17.2, and define a function f : {0,1}* —
{0,1}* as follows:

(My) ifw = ((M),(x)) fora DTM M and a string x
f(w) = over the alphabet of M (17.16)

wo otherwise,

where, as you likely now expect, wy is any fixed binary string not contained in AE.
Now let us check that f is a valid reduction from Apry to AE.

First, for any string w € Appv we have w = ((M), (x)) for a DTM M that
accepts the string x. In this case, f(w) = (M,). We have that M, accepts every
string, including the empty string, because M accepts x. Therefore f(w) = (My) €
AE.

Now consider any string w ¢ Apty, for which there are two cases. If it is the
case that w = ((M), (x)) for a DTM M and x a string over the alphabet of M,
then w ¢ Apmy implies that M does not accept x. In this case we have f(w) =
(M) ¢ AE, because M, does not accept any strings at all (including the empty
string). If w # ((M), (x)) for a DTM M and string x over the alphabet of M, then
f(w) =wy ¢ AE.

We have shown that w € Apty < f(w) € AE for every string w € {0,1}*, and
therefore Aptv < AE, as required.

Example 17.10. The last example of a reduction for the lecture will be a bit more
difficult than the others. We will prove that

Eprm <m DEC (17.17)
where
DEC = {(M) : Misa DTM such that L(M) is decidable}. (17.18)
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The DTM K operates as follows on input x € {0,1}*:

1. Sett « 1.

2. For every string w over the input alphabet of M satisfying |w| < t:
21 Run M for t steps on input w, and if M accepts then goto step 4.

3. Sett <« t+1and goto step 2.
4. Run H on x.

Figure 17.8: The DTM Kj; in Example 17.10. We assume that H is any fixed DTM
with L(H) = HALT.

Notice that the inclusion (M) € DEC does not imply that M always halts—but
rather that there exists some DTM K, not necessarily M, that decides the language
recognized by M.

Given an arbitrary DTM M, let us define a new DTM K}, as in Figure 17.8. In
this description, assume H is any fixed DTM satisfying L(H) = HALT. We know
there is such an H; we can easily adapt a universal DTM U so that it semidecides
HALT. If one asks why we define Kj in this way, the answer is nothing more than
that it makes the reduction work—but notice that within the definition of K»; we
are making use of the infinite search technique from the start of the lecture.

Now let us define a function f : {0,1}* — {0,1}* as

. (17.19)
X0 otherwise,

fla) = {(KM) if x = (M) fora DTM M
where x is any fixed binary string not contained in DEC. This is a computable
function, and it remains to verify that it is a reduction from Eptys to DEC.

Suppose (M) € Epry. We therefore have that L(M) = &; and by considering
the way that Kj; behaves we see that L(Kp;) = @ as well; the computation alter-
nates between steps 2 and 3 forever if M never accepts. The empty language is
decidable, and therefore f({M)) = (Kyp;) € DEC.

On the other hand, if M is a DTM and (M) ¢ Eprv, then M must accept at
least one string. This means that L(Ky;) = HALT, because Kj; will eventually find
a string accepted by M, reach step 4, and then accept if and only if x € HALT.
Therefore f({M)) = (Ky) ¢ DEC. The remaining case in which x does not encode
a DTM is, as always, straightforward: in this case we have f(x) = xo € DEC.
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We have shown that x € Eprv < f(x) € DEC for every string x € {0,1}*, and
therefore Eprv <;; DEC, as required.

We conclude that the language DEC is non-semidecidable, as we already know
that Epmy is non-semidecidable.
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Further discussion of computability

In this lecture we will discuss a few points relating to Turing machines and com-
putability that were not covered in previous lectures. We will begin with some
basic closure properties of decidable and semidecidable languages. We will then
briefly discuss nondeterministic Turing machines, and relate them to the semide-
cidable and decidable languages. Finally we will prove an interesting characteri-
zation of semidecidability, which is that a nonempty language is semidecidable if
and only if it is equal to the range of a computable function.

18.1 Closure properties of decidable and
semidecidable languages

The decidable and semidecidable languages are closed under many (but not all) of
the operations on languages that we have considered thus far in the course. Some
examples are described in this section.

Closure properties of decidable languages

First let us observe that the decidable languages are closed under the regular op-
erations. The proof is quite straightforward.

Proposition 18.1. Let X be an alphabet and let A,B C %* be decidable languages. The
languages AU B, AB, and A* are decidable.

Proof. Because the languages A and B are decidable, there must exist a DTM M4
that decides A and a DTM Mp that decides B. The DTMs described in Figures 18.1,
18.2, and 18.3 decide the languages A U B, AB, and A*, respectively. It follows that
these languages are all decidable. O
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The DTM M operates as follows on input w € X*:

1. Run M, on input w.
2. Run Mp on input w.

3. If either M4 or Mp has accepted, then accept, otherwise reject.

Figure 18.1: A DTM M that decides A U B, given DTMs M4 and Mp that decide A
and B, respectively.

The DTM M operates as follows on input w € ¥*:
1. For every choice of strings u, v € 2* satistying w = uv:

1.1 Run M4 on input u.
1.2 Run Mp on input v.
1.3 If both M4 and Mp have accepted, then accept.

2. Reject.

Figure 18.2: A DTM M that decides AB, given DTMs M4 and Mjp that decide A
and B, respectively.

The DTM M operates as follows on input w € ¥*:

1. If w = g, then accept.

2. For every way of writing w = u; - - - u,, for nonempty strings
ul, c ey um:

2.1 Run My on each of the strings uy, ..., uy.

2.2 If M4 has accepted on all of these runs, then accept.

3. Reject.

Figure 18.3: A DTM M that decides A*, given a DTM M 4 that decides A.
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The decidable languages are also closed under complementation, as the next
proposition states. Perhaps this one is simple enough that we can safely skip the
proof; it is clear that if a DTM M decides A, and we simply swap the accept and
reject states of M, we obtain a DTM deciding A.

Proposition 18.2. Let X be an alphabet and let A C X* be a decidable language. The
language A is decidable.

There are a variety of other operations under which the decidable languages are
closed. For example, because the decidable languages are closed under union and
complementation, we immediately have that they are closed under intersection
and symmetric difference. Another example is string reversal: if a language A is
decidable, then AR is also decidable, because a DTM can decide AR simply by
reversing its input string and then deciding whether or not that string is contained
in A.

There are, however, some natural operations under which the decidable lan-
guages are not closed. The following example shows that this is the case for the
prefix operation.

Example 18.3. The language Prefix(A) might not be decidable, even if A is decid-
able. To construct an example that illustrates that this is so, let us first take H to be
a DTM satisfying L(H) = HALT. We may then define a language A C {0,1,#}* as
follows:

A = {w#0" : H accepts w within ¢ steps}. (18.1)

This is a decidable language, but Prefix(A) is not—for if Prefix(A) were decidable,
then one could easily decide HALT by using the fact that a string w € {0,1}* is
contained in HALT if and only if w# € Prefix(A); both inclusions are equivalent to
the existence of a positive integer t such that w#0! € A.

Closure properties of semidecidable languages

The semidecidable languages are also closed under a variety of operations, al-
though not precisely the same operations under which the decidable languages
are closed.

Let us begin with the regular operations, under which the semidecidable lan-
guages are indeed closed. In this case, one needs to be a bit more careful than in the
proof of the analogous proposition for decidable languages; the DTMs semidecid-
ing the languages in question might run forever on inputs not in those languages.
However, it is nothing that the method for searching infinite spaces from the pre-
vious lecture cannot handle.
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The DTM M operates as follows on input w € X*:

Sett + 1.

Run M4 on input w for ¢ steps.

1

2

3. Run Mg on input w for ¢ steps.

4. If either M4 or Mp has accepted, then accept.
5

Set t <— t + 1 and goto step 2.

Figure 18.4: A DTM M that semidecides A U B, given DTMs M, and Mp that
semidecide A and B, respectively.

The DTM M operates as follows on input w € X*:

1. Sett <« 1.
2. For every choice of strings u, v satisfying w = uuv:
1.1 Run M4 on input u for t steps.

1.2 Run Mp on input v for ¢ steps.
1.3 If both M4 and Mp have accepted, then accept.

3. Sett <« t+1and goto step 2.

Figure 18.5: A DTM M that semidecides AB, given DTMs M 4 and Mp that semide-
cide A and B, respectively.

Proposition 18.4. Let X be an alphabet and let A,B C X* be semidecidable languages.
The languages A U B, AB, and A* are semidecidable.

Proof. Because the languages A and B are semidecidable, there must exist DTMs
M, and Mg such that L(M4) = A and L(Mpg) = B. The DTMs described in Fig-
ures 18.4, 18.5, and 18.6 semidecide the languages A U B, AB, and A*, respectively.
It follows that these languages are all semidecidable. O

The semidecidable languages are also closed under intersection. This can be
proved through a similar method to closure under union, but in fact this is a situ-
ation in which we do not actually need to be as careful about running forever.
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The DTM M operates as follows on input w € X*:

1. If w = g, then accept.
2. Sett <« 1.

3. For every way of writing w = uy - - - u,, for nonempty strings
ul, e ey um:

3.1 Run M4 on each of the strings uj, ..., u,, for t steps.

3.2 If M4 has accepted in all m of these runs, then accept.

4. Sett <« t+1and goto step 3.

Figure 18.6: A DTM M that semidecides A*, given a DTM M4 that semidecides A.

The DTM M operates as follows on input w € X*:

1. Run M4 on input w. If M4 rejects w, then reject.
2. Run Mg on input w. If Mp rejects w, then reject.

3. Accept.

Figure 18.7: A DTM M that semidecides A N B, given DTMs M, and Mjp that
semidecide A and B, respectively. Note that if either M4 or Mp runs forever on

input w, then so does M, but this does not change the fact that M semidecides
ANB.

Proposition 18.5. Let X be an alphabet and let A,B C X* be semidecidable languages.
The language A N B is semidecidable.

Proof. Because the languages A and B are semidecidable, there must exist DTMs
My and Mg such that L(My) = A and L(Mp) = B. The DTM M described in
Figure 18.7 semidecides A N B, which implies that A N B is semidecidable. O

The semidecidable languages are not closed under complementation. This fol-
lows from Theorem 17.1 from the previous lecture. In particular, if A were semide-
cidable for every semidecidable language A, then we would conclude from that
theorem that every semidecidable language is decidable, which is not the case. For
example, HALT is semidecidable but not decidable.
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Finally, there are some operations under which the semidecidable languages
are closed, but under which the decidable languages are not. For example, if A is
semidecidable, then so are the languages Prefix(A), Suffix(A), and Substring(A).

18.2 Nondeterministic Turing machines

We have focused on a deterministic variant of the Turing machine model, but it
is possible to define a nondeterministic variant of it. This is done in a way that
is completely analogous to the definition of nondeterministic finite automata, as
compared with deterministic finite automata.

Definition 18.6. A nondeterministic Turing machine (or NTM, for short) is a 7-tuple

N = (Q/ 2, T,9, 40, 9accs Qrej)/ (18.2)

where Q is a finite and nonempty set of states, X is an alphabet called the input
alphabet, which may not include the blank symbol ., I is an alphabet called the
tape alphabet, which must satisfy X U {~} C T, ¢ is a transition function having
the form

61 Q\{Gace/ Grej} X T = P(Q X T x {,—=}), (18.3)

go € Q is the initial state, and gacc, grej € Q are the accept and reject states, which
must satisfy gacc 7# Grej-

As one would naturally guess, nondeterministic Turing machines may have
multiple choices for which actions can be performed on a given step. Specifically,
for a given nonhalting state g € Q\{acc, qrej} and tape symbol a, the value 6(q, a)
taken by the transition function is a subset of Q x I' x {<—, —}, rather than a single
element of this set, indicating a set of choices for the machine’s actions when it is
in state g and reading the tape symbol a.

For example, if we have an NTM N whose transition function satisfies

5(p,a) ={(q,b,),(r,c, =)}, (18.4)

then when N is in state p and scanning a tape square containing the symbol 4, then
it may either change state to g, overwrite a with b on the tape, and move the tape
head left; or it may change state to r, overwrite a with ¢, and move the tape head
right.
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Yields relation and acceptance for an NTM

The yields relation of an NTM is defined in a similar manner to DTMs, allowing for
multiple choices of configurations that are reachable from a given one. Specifically,
the definition is precisely the same as Definition 12.2, except that the conditions

d(p,a) =(q,b,—) and d(p,a)=1(q,b,<) (18.5)
are replaced by
(,b,—) € é(p,a) and (q,b,<) € é(p,a), (18.6)

respectively.

Acceptance for an NTM is defined in a similar way to NFAs (and PDAs as well).
That is, if there exists a sequence of computation steps that reach an accepting con-
tiguration, then the NTM accepts, and otherwise it does not. Formally speaking,
an NTM N accepts an input string w if there exist strings u,v € I and a symbol
a € I' such that

(q0, w)w =y 1(qace, a)v. (18.7)

As usual, we write L(N) to denote the language of all strings w accepted by an
NTM N, which we refer to as the language recognized by N.

Computation trees

When we think about the computation of an NTM N on an input string w, it is
natural to envision a computation tree. This is a (possibly infinite) tree in which
each node is labeled by a configuration: the root node of the tree is labeled by
the initial configuration of N on input w, and in general each node in the tree has
one child labeled by each configuration that can be reached in one step from the
one labeling the original node. As a point of clarification, note that distinct nodes
in the computation tree may be labeled by the same configuration. That is to say,
there could be more than one computational path that leads to a given configuration.
Finally, note that the leaves of the computation tree are the ones labeled by halting
configurations.

It should perhaps be noted that the computation tree of a deterministic Turing
machine on a given input can be defined in exactly the same way, but it just does
not happen to be very interesting. It is a stick, finite or infinite, without branching.

In terms of the computation tree of N on input w, saying that N accepts w is
equivalent to saying that somewhere in the computation tree there exists an accept-
ing configuration. There might or might not exist rejecting configurations in the
computation tree, and there might or might not exist infinitely long branches in
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the tree, but it does not matter: all that matters when it comes to defining accep-
tance is whether or not there exists an accepting configuration that is reachable
from the initial configuration.

Semidecidability and decidability through NTMs

As the following theorem states, the class of languages recognized by NTMs is
exactly the same as for DTMs.

Theorem 18.7. Let X be an alphabet and let A C X* be a language. The language A is
semidecidable if and only if there exists an NTM N such that L(N) = A.

It is not difficult to prove this theorem, but these notes will only briefly discuss the
main idea behind the proof.

It is clear that every semidecidable language is recognized by some NTM, as
we may view a DTM as being an NTM just like we can view a DFA as being an
NFA. The other implication required to prove the theorem is that every language
recognized by an NTM is semidecidable. That is, one must prove thatif A = L(N)
for an NTM N, then A is semidecidable. The key idea through which this may
be proved is to perform a breadth-first search of the computation tree of N on a
given input, using a DTM. If there is an accepting configuration anywhere in the
tree, a breadth-first search will find it. Of course, because computation trees may
be infinite, the search might never terminate—this is unavoidable, but it is not an
obstacle for proving the theorem.

It should perhaps be noted that an alternative approach of performing a depth-
first search of the computation tree would not work: it might happen that such a
search descends down an infinite path of the tree, potentially missing an accepting
configuration elsewhere in the tree.

One may also characterize decidable languages through nondeterministic Tur-
ing machines, although the required conditions on nondeterministic computations
for decidable languages is not quite as simple to state. The following theorem pro-
vides such a characterization.

Theorem 18.8. Let X be an alphabet and let A C X* be a language. The language A is
decidable if and only if there exists an NTM N for which the following two conditions are
met:

1. A =L(N).

2. For every input string w € X*, the computation tree of N on input w is finite.
Yy mp 8 P P

This theorem can be proved using exactly the same technique, using breadth-
tirst search, as the previous theorem. In this case, the DTM performing the search
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The DTM M operates as follows on input w € X*:

1. Setx < e
2. Compute y = f(x), and accept if w = y.

3. Increment x with respect to the lexicographic ordering of I'* and goto
step 2.

Figure 18.8: A DTM M that semidecides A = range(f) for a computable function
f:I =2

rejects whenever the entire computation tree has been searched and an accepting
configuration has not been found.

18.3 The range of a computable function

Finally, we will observe an interesting alternative characterization of semidecid-
able languages (excepting the empty language), which is that they are precisely
the languages that are equal to the range of a computable function. Recall that the
range of a function f : I'* — X* is defined as follows:

range(f) = {f(w) : w e T*}. (18.8)

Theorem 18.9. Let ¥ and I be alphabets and let A C X* be a nonempty language. The
following two statements are equivalent:

1. A is semidecidable.

2. There exists a computable function f : T* — X* such that A = range(f).

Proof. Let us first prove that the second statement implies the first. That is, we
will prove that if there exists a computable function f : I'" — X* such that A =
range(f), then A is semidecidable. Consider the DTM M described in Figure 18.8.
In essence, this DTM searches over I'* to find a string that f maps to a given input
string w. If it is the case that w € range(f), then M will eventually find x € I'"* such
that f(x) = w and accept, while M will run forever if w ¢ range(f). Thus, we have
L(M) = range(f) = A, which implies that A is semidecidable.

For the other implication, which is slightly more difficult, suppose that A is
semidecidable. Thus, there exists a DTM M such that L(M) = A. We will also
make use of the assumption that A is nonempty—there exists at least one string
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in A, so we may take wy to be such a string. If you like, you may define wy more
concretely as the first string in A with respect to the lexicographic ordering of X%,
but it is not important for the proof that we make this particular choice.

Now define a function f : I'* — X* as follows:

w ifx = ((w),(t)), forw € *and t € N,
f(x) = and M accepts w within ¢ steps (18.9)

wy otherwise.

Here we assume that ((w), (t)) refers to any encoding scheme through which the
string w € X* and the natural number t € IN are encoded into a single string
over the alphabet I'. As we discussed earlier in the course, this is possible for any
alphabet I, even if it contains only a single symbol.

It is evident that the function f is computable: a DTM M/ can compute f by
checking to see if the input has the form ((w), (t)), simulating M for t steps on
input w if so, and then outputting either w or wy depending on the outcome. If M
accepts a particular string w, then it must be that w = f(((w), (t))) for some suffi-
ciently large natural number ¢, so A C range(f). On the other hand, every output
of f is either a string w accepted by M or the string wy, and therefore range(f) C A.
It is therefore the case that A = range(f), which completes the proof. O

Remark 18.10. The assumption that A is nonempty is essential in the previous
theorem because it cannot be that range(f) = @ for a computable function f.
Indeed, it cannot be that range(f) = @ for any function whatsoever.

Theorem 18.9 provides a very useful characterization of semidecidable lan-
guages. For instance, one can use this theorem to come up with alternative proofs
for all of the closure properties of the semidecidable languages stated in the first
section of this lecture.

For example, suppose that A, B C £* are nonempty semidecidable languages.
By Theorem 18.9, for whatever alphabet I we choose, there must exist computable
functions f : T* — X* and g : I'" — £* such that range(f) = A and range(g) = B.
Define a new function

h:(TU{#}H)* - X" (18.10)

as follows:
fy)g(z) ifx=y#zfory €™ andz € T*

g(x) = _ (18.11)
f(e)g(e) otherwise.

Here, we are naturally assuming that # ¢ I'. One sees that h is computable, and
range(h) = AB, which implies that AB is semidecidable.
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The DTM M operates as follows on input w € X*:

Set x + ¢.

Compute y + f(x).

1

2

3. If y = w then accept.

4. Ify > w (with respect to the lexicographic ordering of >*) then reject.
5

Increment x with respect to the lexicographic ordering of 2* and goto
step 2.

Figure 18.9: A DTM M for Corollary 18.11.

Here is another example of an application of Theorem 18.9, establishing that
every infinite semidecidable language must have an infinite decidable language as
a subset.

Corollary 18.11. Let X be an alphabet and let A C X* be any infinite semidecidable
language. There exists an infinite decidable language B C A.

Proof. Because A is infinite (and therefore nonempty), there exists a computable
function f : ¥* — X* such that A = range(f).

We will now define a language B by first defining a DTM M and then taking
B = L(M). In order for us to be sure that B satisfies the requirements of the corol-
lary, it will need to be proved that M never runs forever (so that B is decidable),
that M only accepts strings that are contained in A (so that B C A), and that M
accepts infinitely many different strings (so that B is infinite). The DTM M is de-
scribed in Figure 18.9.

The fact that M never runs forever follows from the assumption that A is in-
finite. That is, because A is infinite, the function f must output infinitely many
different strings, so regardless of what input string w is input into M, the loop will
eventually reach a string x so that f(x) = w or f(x) > w, causing M to halt.

The fact that M only accepts strings in A follows from the fact that the condi-
tion for acceptance is that the input string w is equal to y, which is contained in
range(f) = A.

Finally, let us observe that M accepts precisely the strings in this set:

{w v there exists x € ¥* such thatw = f(x)}

"and w > f(z) forallz < x (18.12)
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The fact that this set is infinite follows from the assumption that A = range(f) is
infinite—for if the set were finite, there would necessarily be a maximal output of
f with respect to the lexicographic ordering of ¥*, contradicting the assumption
that range( f) is infinite.

The language B = L(M) therefore satisfies the requirements of the corollary,
which completes the proof. O
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Time-bounded computations

In the final couple of lectures of the course, we will discuss the topic of compu-
tational complexity theory, which is concerned with the inherent difficulty (or hard-
ness) of computational problems and the effect of resource constraints on models
of computation. We will only have time to scratch the surface; complexity theory
is a rich subject, and many researchers around the world are engaged in a study
of this field. Unlike formal language theory and computability theory, many of the
central questions of complexity theory remain unanswered to this day.

In this lecture we will focus on the most important resource (from the view
of computational complexity theory), which is time. The motivation is, in some
sense, obvious: in order to be useful, computations generally need to be performed
within a reasonable amount of time. In an extreme situation, if we have some com-
putational task that we would like to perform, and someone gives us a compu-
tational device that will perform this computational task, but only after running
for one million years or more, it is practically useless. One can also consider other
resources besides time, such as space (or memory usage), communication in a dis-
tributed scenario, or a variety of more abstract notions concerning resource usage.

We will start with a definition of the running time of a DTM.

Definition 19.1. Let M be a DTM with input alphabet X.. For each string w € %%, let
T(w) denote the number of steps (possibly infinite) for which M runs on input w.
The running time of M is the function t : IN — IN U {oo} defined as

t(n) = max{T(w) : we X*, |w| =n} (19.1)

for every n € IN. In words, t(n) is the maximum number of steps required for M
to halt, over all input strings of length n.

We will restrict our attention to DTMs whose running time is finite for all input
lengths.
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19.1 DTIME and time-constructible functions

Deterministic time complexity classes

For every function f : N — IN, we define a class of languages called DTIME(f),
which represents those languages decidable in time O(f(n)).

Definition 19.2. Let f : N — IN be a function. A language A is contained in the
class DTIME( f) if there exists a DTM M that decides A and whose running time ¢
satisfies t(n) = O(f(n)).

We define DTIME(f) in this way, using O(f(n)) rather than f(n), because we are
generally not interested in constant factors or in what might happen in finitely
many special cases. One fact that motivates this choice is that it is usually possible
to “speed up” a DTM by defining a new DTM, having a larger tape alphabet than
the original, that succeeds in simulating multiple computation steps of the original
DTM with each step it performs.

When it is reasonable to do so, we generally reserve the variable name 7 to
refer to the input length for whatever language or DTM we are considering. So,
for example, we may refer to a DTM that runs in time O(n?) or refer to the class of
languages DTIME(n2) with the understanding that we are speaking of the function
f(n) = n?, without explicitly saying that 7 is the input length.

We also sometimes refer to classes such as

DTIME (/i) or DTIME(n?log(n)), (19.2)

where the function f that we are implicitly referring to appears to take non-integer
values for some choices of 7. This is done in an attempt to keep the expressions of
these classes simple and intuitive, and you can interpret these things as referring to
functions of the form f : IN — IN obtained by rounding up to the next nonnegative
integer. For instance, DTIME (1% log(1)) means DTIME( f) for

f(n) = {O ifn=0 (19.3)

[n?log(n)] otherwise.

Example 19.3. The DTM for the language SAME = {0™1" : m € IN} from Lec-
ture 12 runs in time O(n?) on inputs of length 7, and therefore SAME is contained
in the class DTIME(n?).

It is, in fact, possible to do better: it is the case that SAME € DTIME(n log(n)).
To do this, one may define a DTM that repeatedly “crosses out” every other symbol
on the tape, and compares the parity of the number of Os and 1s crossed out after
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each pass over the input. Through this method, SAME can be decided in time
O(nlog(n)) by making just a logarithmic number of passes over the portion of
the tape initially containing the input.

After considering the previous example, it is natural to ask if one can do even
better than O(nlog(n)) for the running time of a DTM deciding the language
SAME. The answer is that this is not possible. This is a consequence of the fol-
lowing theorem (which we will not prove).

Theorem 19.4. Let A be a language. If there exists a DTM M that decides A in time
o(nlog(n)), meaning that the running time t of M satisfies

L tm)

then A is regular.

It is, of course, critical that we understand the previous theorem to be referring to
ordinary, one-tape DTMs. With a two-tape DTM, for instance, it is easy to decide
some nonregular languages, including SAME, in time O(n).

Time-constructible functions

The complexity class DTIME( f) has been defined for an arbitrary function of the
form f : IN — IN, but there is a sense in which most functions of this form are un-
interesting from the viewpoint of computational complexity—because they have
absolutely nothing to do with the running time of any DTM.

There are, in fact, some choices of functions f : IN — IN that are so strange that
they lead to highly counter-intuitive results. For example, there exists a function f
such that

DTIME(f) = DTIME(g),  for g(n) = 2/"; (19.5)

even though g is exponentially larger than f, they both result in exactly the same
deterministic time complexity class. This does not necessarily imply something
important about time complexity, it is more a statement about the strangeness of
the function f.

For this reason we define a collection of functions, called time-constructible func-
tions, that represent well-behaved upper bounds on the possible running times of
DTMs. Here is a precise definition.
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Definition 19.5. Let f : IN — IN be a function satisfying f(n) = Q(nlog(n)). The
function f is said to be time constructible if there exists a DTM M that operates as
follows:

1. On each input 0" the DTM M outputs f(n) (written in binary notation), for
every n € IN.
2. M runs in time O(f(n)).

It might not be clear why we would define a class of functions in this particular
way, but the essence is that these are functions that can serve as upper bounds for
DTM computations. That is, a DTM can compute f(n) on any input of length n,
and doing this does not take more than O(f(n)) steps—and then it has the number
f(n) stored in binary notation so that it can then use this number to limit some
subsequent part of its computation (perhaps the number of steps for which it runs
during a second phase of its computation).

As it turns out, just about any reasonable function f with f(n) = Q(nlog(n))
that you are likely to care about as a bound on running time is time constructible.
Examples include the following:

1. For any choice of an integer k > 2, the function f(n) = n* is time constructible.
2. For any choice of an integer k > 2, the function f(n) = k" is time constructible.

3. For any choice of an integer k > 1, the functions

fn) = {O ifn=0 (19.6)

[n*log(n)] otherwise

and

fln) = [nv/n| (197
are time constructible.

4. If f and g are time-constructible functions, then the functions

h(n) = f(n)+8(n), ha(n)=f(n)g(n), and h3(n) = f(g(n)) (19.8)

are also time constructible.

19.2 The time-hierarchy theorem

What we will do next is to discuss a fairly intuitive theorem concerning time com-
plexity. A highly informal statement of the theorem is this: more languages can
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The DTM K operates as follows on input w € {0,1}*:

1. If the input w does not take the form w = (M)01* for a DTM M with
input alphabet {0,1} and k € IN, then reject.

2. Compute t = f(|w|).

3. Simulate M on input w for t steps. If M has rejected w within ¢ steps,
then accept, otherwise reject.

Figure 19.1: This DTM decides a language that cannot be decided in time o(f(n)).

be decided with more time. While this is indeed an intuitive idea, it is not obvi-
ous how a formal version of this statement is to be proved. We will begin with a
somewhat high-level discussion of how the theorem is proved, and then state the
strongest-known form of the theorem (without going through the low-level details
needed to obtain the stronger form).

Suppose that a time-constructible function f has been selected, and define a
DTM K as described in Figure 19.1. It is not immediately apparent what the run-
ning time is for K, because this depends on precisely how the simulation of M in
step 3 is done; different ways of performing the simulation could of course lead to
different running times. For the time being, let us take g to be the running time of
K, and we will worry later about how specifically g relates to f.

Next, let us think about the language L(K) decided by K. This is a language
over the binary alphabet, and it is obvious that L(K) € DTIME(g), because K itself
is a DTM that decides L(K) in time g¢(n). What we will show is that L(K) cannot
possibly be decided by a DTM that runs in time o(f(n)).

To this end, assume toward contradiction that there does exist a DTM M that
decides L(K) in time o(f(n)). Because the running time of M is o(f(n)), we know
that there must exist a natural number 7y such that, for all n > ny, the DTM M
halts on all inputs of length n in strictly fewer than f(n) steps. Choose k to be
large enough so that the string w = (M) 01" satisfies |w| > 19, and (as always) let
n = |w|. Because M halts on input w after fewer than f(n) steps, we find that

weL(K) & w¢L(M). (19.9)
The reason is that K simulates M on input w, it completes the simulation because
M runs for fewer than f(n) step, and it answers opposite to the way M answers (i.e.,

if M accepts, then K rejects; and if M rejects, then K accepts). This contradicts the
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assumption that M decides L(K). We conclude that no DTM whose running time
iso(f(n)) can decide L(K).

It is natural to wonder what the purpose is for taking the input to K to have the
form (M)01%, as opposed to just (M) (for instance). The reason is pretty simple: it
is just a way of letting the length of the input string grow, so that the asymptotic
behavior of the function f and the running time of M take over (even though we
are really interested in fixed choices of M). If we were to change the language, so
that the input takes the form w = (M) rather than (M)01*, we would have no way
to guarantee that K is capable of finishing the simulation of M on input (M) within
f([{M)]|) steps—for it could be that the running time of M on input (M) exceeds
f([{M)]) steps, even though the running time of M is small compared with f for
significantly longer input strings.

What we have proved is that, for any choice of a time-constructible function
f :IN — IN, the proper subset relation

DTIME(h) C DTIME(g) (19.10)

holds whenever h(n) = o(f(n)), where g is the running time of K (which depends
somehow on f).

Remark 19.6. There is an aspect of the argument just presented that is worth not-
ing. We obtained the language L(K), which is contained in DTIME(g) but not
DTIME(h) assuming h(n) = o(f(n)), not by actually describing the language ex-
plicitly, but by simply describing the DTM K that decides it. Indeed, in this case it
is hard to imagine a description of the language L(K) that would be significantly
more concise than the description of K itself. This technique can be useful in other
situations. Sometimes, when you wish to prove the existence of a language having
a certain property, rather than explicitly defining the language, it is possible to de-
fine a DTM M that operates in a particular way, and then take the language you
are looking for to be L(M).

If you work very hard to make K run as efficiently as possible, the following
theorem can be obtained.

Theorem 19.7 (Time-hierarchy theorem). If f,g : N — IN are time-constructible
functions for which f(n) = o(g(n)/log(g(n))), then

DTIME(f) C DTIME(g). (19.11)

The main reason that we will not go through the details required to prove this
theorem is that optimizing K to simulate a given DTM as efficiently as possible
gets very technical. For the sake of this course, it is enough that you understand
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the basic idea of the proof. In particular, notice that it is another example of a proof
that uses the diagonalization technique; while it is a bit more technical, it has a
very similar flavor to the proof that DIAG is not semidecidable, and to the proof
that P(IN) is uncountable.

From the time-hierarchy theorem, one can conclude the following down-to-
earth corollary.

Corollary 19.8. For all k > 1, it is the case that DTIME(n*) C DTIME(n**1).

19.3 Polynomial and exponential time

We will finish off the lecture by introducing a few important notions based on
deterministic time complexity. First, let us define two complexity classes, known
as P and EXP, as follows:

P = | JDTIME(r*) and EXP = | J DTIME(2"). (19.12)
k>1 k>1

In words, a language A is contained in the complexity class P if there exists a DTM
M that decides A and has polynomial running time, meaning a running time that
is O(n¥) for some fixed choice of k > 1; and a language A is contained in the
complexity class EXP if there exists a DTM M that decides A and has exponential
running time, meaning a running time that is O (Z”k) for some fixed choice of k > 1.

As a very rough but nevertheless useful simplification, we often view the class
P as representing languages that can be efficiently decided by a DTM, while EXP
contains languages that are decidable by a brute force approach. These are undoubt-
edly over-simplifications in some respects, but for languages that correspond to
“natural” computational problems that arise in practical settings, this is a reason-
able picture to keep in mind.

By the time-hierarchy theorem, we can conclude that P C EXP. In particular, if
we take f(n) = 2" and g(n) = 22", then the time hierarchy theorem establishes the
middle (proper) inclusion in this expression:

P C DTIME(2") C DTIME(2%") C EXP. (19.13)

There are many examples of languages contained in the class P. If we restrict
our attention to languages we have discussed thus far in the course, we may say
the following.

e The languages Apra, Epra, EQpga, and Ecgg from Lecture 15 are all certainly
contained in P; if you analyzed the running times of the DTMs we described
for those languages, you would find that they run in polynomial time.
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e The languages Anra, Arex, Enra, and Ergx are also in P, but the DTMs we
described for these languages in Lecture 15 do not actually show this. Those
DTMs have exponential running time, because the conversion of an NFA or
regular expression to a DFA could result in an exponentially large DFA. It is,
however, not too hard to decide these languages in polynomial time through
different methods.

In particular, we can decide Anga in polynomial time through a more direct
simulation in which we keep track of the set of all states that a given NFA
could be in when reading a given input string, and we can decide Aggx by
performing a polynomial-time conversion of a given regular expression into
an equivalent NFA, effectively reducing the problem in polynomial time to
Anra- The language Enpa can be decided in polynomial time by treating it as
a graph reachability problem, and Egrgx can be reduced to ENga in polynomial
time.

e The language Acrg is also contained in P, but once again, the DTM for this
language that we discussed in Lecture 15 does not establish this. A more so-
phisticated approach based on the algorithmic technique of dynamic program-
ming does, however, allow one to decide Acpg in polynomial time. This fact
allows one to conclude that every context-free language is contained in P.

There does not currently exist a proof that the languages EQyga and EQggx
fall outside of the class P, but this is conjectured to be the case. This is because
these languages are complete for the class PSPACE of languages that are decidable
within a polynomial amount of space. If EQNga and EQggy are in P, then it would
then follow that P = PSPACE, which seems highly unlikely. It is the case, however,
that EQnpa and EQggx are contained in EXP, for in exponential time one can afford
to perform a conversion of NFAs or regular expressions to DFAs and then test the
equivalence of the two (possibly exponential size) DFAs in the same way that we
considered earlier.

Finally, let us observe that one may consider not only languages that are de-
cided by DTMs having bounded running times, but also functions that can be com-
puted by time-bounded DTMs. For example, the class of polynomial-time computable
functions, which are functions that can be computed by a DTM with running time
O(n*) for some fixed positive integer k, are critically important in theoretical com-
puter science, and algorithms courses typically discuss many practically important
examples of such functions.!

1 Algorithms courses usually consider computational models that represent machines having
random access memory, as opposed to Turing machines. However, because a Turing machine can
simulate such a model with no more than a polynomial slowdown, the class of polynomial-time
computable functions is the same for the two types of models.
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NP, polynomial-time mapping
reductions, and NP-completeness

In the previous lecture we discussed deterministic time complexity, along with the
time-hierarchy theorem, and introduced two complexity classes: P and EXP. In
this lecture we will introduce another complexity class, called NP, and study its
relationship to P and EXP. In addition, we will define a polynomial-time variant
of mapping reductions along with the notion of completeness for the class NP.

Remark 20.1. The concept of NP-completeness is certainly among the most im-
portant contributions theoretical computer science has made to science in general;
NP-complete problems, so recognized, are ubiquitous throughout the mathemati-
cal sciences. It is therefore fitting that this concept should be mentioned in a course
titled Introduction to the Theory of Computing.

At the University of Waterloo, however, the complexity class NP and the notion
of NP-completeness are covered in a different course, CS 341 Algorithms. For this
reason, in the present course we do not place the focus on these notions that they
deserve—here we are essentially just treating the class NP as an important example
of a complexity class. In particular, we will not cover techniques for proving spe-
cific languages are NP-complete, but those new to this topic may rest assured that
thousands of interesting examples, including ones of great practical importance,
are known.

20.1 The complexity class NP

There are two equivalent ways to view the complexity class NP. The first way is
where NP gets its name, as the class of languages decidable in nondeterministic
polynomial time. The second way, which is more intuitive and more easily applied,
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is as the class of languages that are verifiable in polynomial time, given a polynomial-
length certificate for the membership of any string in the language in question.

NP as polynomial-time nondeterministic computations

As suggested above, we may define the class NP as its name suggests, as nondeter-
ministic polynomial time.

To begin, let us first be precise about what is meant by the running time of a
nondeterministic Turing machine.

Definition 20.2. Let N be an NTM having input alphabet . For each input string
w € X*, let T(w) be the maximum number of steps (possibly infinite) for which N
runs on input w, over all possible nondeterministic computation paths. The run-
ning time of N is the function ¢ : IN — IN U {oo} defined as

t(n) =max{T(w) : we X", |w| =n} (20.1)

for every n € IN. In words, ¢(n) is the maximum number of steps required for N to
halt, over all input strings of length n and over all nondeterministic choices of N.

As in the previous lecture, we shall restrict our attention to NTMs having finite
running times for all input lengths.

Let us recall explicitly from Lecture 18 how decidability is is characterized by
nondeterministic Turing machines: an NTM N decides a language A if A = L(N)
and N has a finite computation tree for every input string. Thus, if N is an NTM
having running time ¢ and w is an input string to N, the computation tree of N
on input w always has depth bounded by t(|w|). It is an accepting computation
if there exists at least one accepting configuration in the computation tree, and
otherwise, if there are no accepting configurations at all in the tree, it is a rejecting
computation.

We may now define NTIME(f), for every function f : N — N, to be the com-
plexity class of all languages that are decided by a nondeterministic Turing ma-
chine running in time O(f(n)). Having defined NTIME( f) in this way, we define
NP as we did for P:

NP = | J NTIME(r"). (20.2)
k>1

NP as certificate verification

The second way to view NP is as the class of languages that are verifiable in poly-
nomial time, given polynomial-length certificates for membership. We shall state
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a theorem that equates this notion to membership in the complexity class NP, as
defined by (20.2).

Before we state the theorem, however, let us introduce some simplifying ter-
minology. Hereafter, a function of the form p : IN — IN is a polynomially bounded
function if it is time constructible and satisfies p(n) = O(n*) for some positive in-
teger k.

Theorem 20.3. Let ¥ be an alphabet and let A C X* be a language. The language A
is contained in NP if and only if there exists a polynomially bounded function p and a
language B € P such that

A= {x e X" : Jy € {0,1}" such that |y| < p(|x|) and (x,y) € B}. (20.3)

An interpretation of this theorem is that the string y plays the role of a certificate
or proof that a string x is contained A, while the language B represents an efficient
verification procedure that checks the validity of this proof of membership for x. The
terms witness is another alternative name to certificate.

The basic idea behind the proof of two implications needed to imply the theo-
rem, which we shall not cover in detail, are as follows.

1. Given a language A characterized by the equation (20.3) in the theorem state-
ment, one may conclude that A € NP by defining a polynomial-time NTM N
so that it first nondeterministically guesses a binary string y having length at
most p(|x|) and then decides membership of the string (x,y) in B.

2. If A € NP, so that we have a polynomial-time NTM N that decides A, we may
encode each nondeterministic computation path of N on any input x by some
binary string y having length at most p(|x|), for some polynomially bounded
function p. We then define B to be the language of strings (x,y) for which y
encodes an accepting computation path of N on input x, which can be decided
in polynomial time.

Relationships among P, NP, and EXP

Let us now observe the following inclusions:
P C NP C EXP. (20.4)

The first of these inclusions, P C NP, is straightforward. Every DTM is equiva-
lent to an NTM that never has multiple nondeterministic options, so

DTIME(f) € NTIME(f) (20.5)
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The DTM M operates as follows on input x € 2*:

1. Sety < e.
2. If (x,y) € B, then accept.

3. Increment y with respect to the lexicographic ordering of the binary
alphabet.

4. If ly| > p(]x|) then reject, else goto step 2.

Figure 20.1: A DTM M that decides a given NP-language in exponential time.

for all functions f : N — IN. This implies that
DTIME (1n¥) C NTIME(#¥) (20.6)

for all k > 1, and therefore P C NP.

Alternatively, with respect to the characterization of NP given by Theorem 20.3,
suppose A C X* is a language over an alphabet ¥, and assume A € P. We may
then define a language B as follows:

B={(xe) : x€ A}. (20.7)

Itis evident that B € P; as A in polynomial time, we can easily decide B in polyno-
mial time as well. For any choice whatsoever of a polynomially bounded function
p it is the case that (20.3) holds, and therefore A € NP.

Now let us observe that NP C EXP. Suppose A C X* is language over an
alphabet ¥, and assume A € NP. By Theorem 20.3, there exists a polynomially
bounded function p and a language B € P such that (20.3) holds. Define a DTM
M as described in Figure 20.1. It is evident that M decides A, as it simply searches
over the set of all binary strings y with |y| < p(]x|) to find if there exists one such
that (x,y) € B.

It remains to consider the running time of M. Let us first consider step 2, in
which M tests whether (x,y) € B for an input string x € ~* and a binary string
y satisfying |y| < p(|x|). This test takes a number of steps that is polynomial in
|x|, and the reason why is as follows. First, we have |y| < p(|x|), and therefore
the length of the string (x,y) is polynomially bounded (in the length of x). Now,
because B € P, we have that membership in B can be tested in polynomial time.
Because the input in this case is (x,y), this means that the time required to test
membership in B is polynomial in |(x,y)|. However, because the composition of
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two polynomially bounded functions is another polynomially bounded function,
we find that the time required to test whether (x,y) € B is polynomial in the length
of x. Step 3 can also be performed in time polynomial in the length of x, as can the
test |y| > p(|x|) in step 4.

Finally, again using the assumption that f is polynomially bounded, so that
f(n) = O(n¥) for some positive integer k, we find that the total number of times
the steps just considered are executed is at most

op(m+1 _q — o(z”k“>. (20.8)

Using the rather coarse upper-bound that every polynomially bounded function g
satisfies ¢(n) = O(2"), we find that the entire computation of M runs in time

0 (2”"“) . (20.9)

We have established that M runs in exponential time, so A € EXP.
Now we know that
P C NP C EXP, (20.10)

and we also know that
P C EXP (20.11)

by the time-hierarchy theorem. Of course this means that one (or both) of the fol-
lowing proper containments must hold: (i) P C NP, or (ii) NP C EXP. Neither one
has yet been proved, and a correct proof of either one would be a major break-
through in complexity theory. Indeed, determining whether or not P = NP is
viewed by many as being among the greatest unsolved mathematical challenges
of our time.

20.2 Polynomial-time reductions and
NP-completeness
We discussed reductions in Lecture 17 and used them to prove that certain lan-
guages are undecidable or non-semidecidable. Polynomial-time reductions are de-

fined similarly, except that we add the condition that the reductions themselves
must be given by polynomial-time computable functions.

Definition 20.4. Let 2~ and I" be alphabets and let A C >* and B C I'* be languages.
It is said that A polynomial-time reduces to B if there exists a polynomial-time com-
putable function f : ¥* — I'* such that

weAs f(w)eB (20.12)
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for all w € I'*. One writes
A<l'B (20.13)

to indicate that A polynomial-time reduces to B, and any function f that establishes
that this is so may be called a polynomial-time reduction from A to B.

Polynomial-time reductions of this form are sometimes called polynomial-time
mapping reductions (and also polynomial-time many-to-one reductions) to differentiate
them from other types of reductions that we will not consider—but we will stick
with the term polynomial-time reductions for simplicity. They are also sometimes
called Karp reductions, named after Richard Karp, one of the pioneers of the theory
of NP-completeness.

With the definition of polynomial-time reductions in hand, we can now define
NP-completeness.

Definition 20.5. Let = be an alphabet and let B C ~* be a language.

1. Ttis said that B is NP-hard if A <}, B for every language A € NP.
2. Itis said that B is NP-complete if B is NP-hard and B € NP.

The idea behind this definition is that the NP-complete languages represent the
hardest languages to decide in NP; every language in NP can be polynomial-time
reduced to an NP-complete language, so if we view the difficulty of performing a
polynomial-time reduction as being negligible, the ability to decide any one NP-
complete language would give us a key to unlocking the computational difficulty
of the class NP in its entirety. Figure 20.2 illustrates the relationship among the
classes P and NP, and the NP-hard and NP-complete languages, under the assump-
tion that P # NP.

Here are some basic facts concerning polynomial-time reductions and NP. For
all of these facts, it is to be assumed that A, B, and C are languages over arbitrary
alphabets.

1. If A <}, Band B <}, C, then A <}, C.

2. f A<}, Band B € P, then A € P.

3. If A <}, Band B € NP, then A € NP.

4. If A is NP-hard and A </, B, then B is NP-hard.

5. If A is NP-complete, B € NP, and A <P B, then B is NP-complete.
6. If A is NP-hard and A € P, then P = NP.
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NP-hard

NP-complete

Figure 20.2: The relationship among the classes P and NP, and the NP-hard and
NP-complete languages. The figure assumes P # NP.

We typically use statement 5 when we wish to prove that a certain language B is
NP-complete: we first prove that B € NP (which is often easy) and then look for a
known NP-complete language A for which we can prove A <}, B.

The proofs of the statements listed above are all fairly straightforward, and you
might try proving them for yourself if you are interested. Let us pick just one of
the statements and prove it.

Proposition 20.6. Let A C X* and B C I'* be languages, for alphabets ¥ and T', and
assume A <P Band B € NP. It is the case that A € NP.

Proof. Let us begin by gathering some details concerning the assumptions of the
proposition.

First, because A §51 B, we know that there exists a polynomial-time com-
putable function f : £* — I'* such that

xeA & f(x)€B (20.14)

for all x € X*. Because f is polynomial-time computable, there must exist a poly-
nomially bounded function p such that | f(x)| < p(|x]|) for all x € £*.

Second, by the assumption that B € NP, there exists a polynomially bounded
function g and a language C € P for which

B = {x eI : Jy € {0,1}" such that |y| < g(|x|) and (x,y) € C}. (20.15)
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The DTM M operates as follows on input w € 2*:

1. If w does not take the form w = xx for some string x € >*, then reject.

2. Acceptif x € A, otherwise reject.
Figure 20.3: The DTM M from the proof of Corollary 20.7.

Now, define a new language

D= {{xy) : {f(x)y) € C}. (20.16)

It is evident that D € P because one may simply compute (f(x),y) from (x,y)
in polynomial time (given that f is polynomial-time computable), and then test if
(f(x),y) € C, which requires polynomial time because C € P.

Finally, observe that

A= {x e X : Jdy € {0,1}" such that |[y| < g(p(|x|)) and (x,y) € D}. (20.17)

As the composition g o p is a polynomially bounded function and D € P, it follows
that A € NP. O

Let us conclude the lecture with the following corollary, which is meant to be a
fun application of the previous proposition along with the time-hierarchy theorem.

Corollary 20.7. NP # DTIME(2").

Proof. Assume toward contradiction that NP = DTIME(2"). Let X be any alphabet,
let A C ¥* be an arbitrarily chosen language in DTIME(4"), and define

B={xx:xe€ A}

First we observe that B € DTIME(2"). In particular, the DTM M described
in Figure 20.3 decides B in time O(2"). The reason why M runs in time O(2")
is as follows: the first step can easily be performed in polynomial time, and the
second step requires O(4"/2) = O(2") steps, as A can be decided in time O(4™)
on inputs of length m, and here we are deciding membership in A on a string of
length m = n/2. The running time of M is therefore O(2"). As we have assumed
that NP = DTIME(2"), it follows that B € NP.

Now define a function f : ¥* — X* as

f(x) =xx
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for all x € £*. The function f can easily be computed in polynomial time, and it is
immediate from the definition of B that

xe As f(x) €B.

We therefore have that A <!, B. By Proposition 20.6, it follows that A € NP, and
given the assumption NP = DTIME(2"), it follows that A € DTIME(2").
However, as A was an arbitrarily chosen language in DTIME(4"), we conclude
that DTIME(4") C DTIME(2"). This contradicts the time hierarchy theorem, so
our assumption NP = DTIME(2") was incorrect. O
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