
Lecture 17

More undecidable languages;
reductions

In the previous lecture we saw a few examples of undecidable languages: DIAG is
not semidecidable, and therefore not decidable, while ADTM and HALT are semide-
cidable but not decidable. In this lecture we will see a few more examples. We will
also introduce the notion of a reduction from one language to another, which can
be utilized when proving languages are undecidable.

Before doing this, however, we will take a few moments to observe a couple of
basic but useful tricks involving Turing machines.

17.1 A couple of basic Turing machine tricks

This section describes two ideas that can be helpful when proving certain lan-
guages are undecidable (or non-semidecidable), and in other situations as well.
The first involves a simple way to manage a search over an infinite domain and
the second is concerned with the surprisingly powerful technique of hard coding
inputs of Turing machines.

Limiting infinite search spaces

Sometimes we would like a Turing machine to effectively search over an infinitely
large search space, but it may not always be immediately clear how this can be
done. One way to address this issue is to set up a loop in which a single positive
integer serves simultaneously as a bound on multiple parameters in the search
space.

The proof of the following theorem, which is very important in its own right,
illustrates this idea.

179

CS 360 Introduction to the Theory of Computing

The DTM M operates as follows on input x ∈ {0, 1}∗:

1. Set t← 1.

2. Run M0 on input w for t steps. If M0 has accepted, then accept.

3. Run M1 on input w for t steps. If M1 has accepted, then reject.

4. Set t← t + 1 and goto step 2.

Figure 17.1: A high-level description of a DTM M that decides A, assuming that
M0 and M1 are DTMs satisfying L(M0) = A and L(M1) = A.

Theorem 17.1. Let Σ be an alphabet and let A ⊆ Σ∗ be a language such that both A and
A are semidecidable. The language A is decidable.

Proof. Because A and A are semidecidable languages, there must exist DTMs M0
and M1 such that A = L(M0) and A = L(M1). Define a new DTM M as described
in Figure 17.1.

Now let us consider the behavior of the DTM M on a given input string w. If it
is the case that w ∈ A, then M0 eventually accepts w, while M1 does not. (It could
be that M1 either rejects or runs forever, but it cannot accept w.) It is therefore the
case that M accepts w. On the other hand, if w 6∈ A, then M1 eventually accepts w
while M0 does not, and therefore M rejects w. Consequently, M decides A, so A is
decidable.

To be clear, the technique being suggested involves the use of the variable t in
the description of the DTM M in Figure 17.1; it is a single variable, but it is used
to limit the simulations of both M0 and M1 (in steps 2 and 3) so that neither runs
forever. We will see further examples of this technique later in this lecture and in
the next lecture.

Hard-coding input strings

Suppose that we have a DTM M along with a string x over the input alphabet of M.
Consider the new DTM Mx described in Figure 17.2.

This may seem like a rather useless Turing machine: Mx always leads to the
same outcome regardless of what input string it is given. In essence, the input
string x has been “hard-coded” directly into the description of Mx. We will see,
however, that it is sometimes useful to consider a DTM defined in this way, partic-
ularly when proving that certain languages are undecidable or non-semidecidable.

180

Lecture 17

The DTM M operates as follows on input w ∈ {0, 1}∗:

1. Discard w and run M on input x.

Figure 17.2: The DTM Mx erases its input and runs M on the string x.

r0 r1 r2 r3 r4

q0

, → , 1← , 1← , 0←

, 0
←

0, →
1, →

M

Figure 17.3: A state diagram for the DTM M0011. The contents of the gray box is in-
tended to represent the state diagram of an arbitrary DTM M having start state q0.

Let us also note that if we have an encoding 〈〈M〉, 〈x〉〉 of both a DTM M and
a string x over the input alphabet of M, it is not difficult to compute an encoding
〈Mx〉 of the DTM Mx. The DTM Mx can be described as having three phases:

1. Move the tape head to the right across whatever input string w has been given,
replacing the symbols of w with blanks, until all of w has been erased.

2. Starting at the end of the string x, write each symbol of x on the tape and move
the tape head left.

3. Once the string x has been written to the tape, pass control to M.

The first phase can easily be done with a couple of states, and the second phase
can be done using one state of Mx for each symbol of x. The third phase operates
exactly like M. Figure 17.1 illustrates what the state diagram of the DTM M0011
looks like.

181

CS 360 Introduction to the Theory of Computing

The DTM K operates as follows on input w ∈ {0, 1}∗:

1. Reject unless w = 〈〈M〉, 〈x〉〉 for M being a DTM and x being an input
string to M.

2. Compute an encoding 〈Mx〉 of the DTM Mx defined from M as de-
scribed in Figure 17.1.

3. Run T on input 〈Mx〉: if T accepts 〈Mx〉, then reject, otherwise accept.

Figure 17.4: The DTM K used in the proof of Proposition 17.2.

Here is an example that illustrates the usefulness of this construction. Define a
language

EDTM =
{
〈M〉 : M is a DTM with L(M) = ∅

}
. (17.1)

Proposition 17.2. The language EDTM is undecidable.

Proof. Assume toward contradiction that EDTM is decidable, so that there exists a
DTM T that decides this language. Define a new DTM K as in Figure 17.4.

Now, suppose that M is a DTM and x ∈ L(M), and consider the behavior of K
on input 〈〈M〉, 〈x〉〉. Because M accepts x, it is the case that Mx accepts every string
over its alphabet—because whatever string you give it as input, it erases this string
and runs M on x, leading to acceptance. It is therefore certainly not the case that
L(Mx) = ∅, so T must reject 〈Mx〉, and therefore K accepts 〈〈M〉, 〈w〉〉.

On the other hand, if M is a DTM and x 6∈ L(M) then K will reject the input
〈〈M〉, 〈w〉〉. Either x is not a string over the alphabet of M, which immediately
leads to rejection, or M either rejects or runs forever on input x. In this second
case, Mx either rejects or runs forever on every string, and therefore L(Mw) = ∅.
The DTM T therefore accepts 〈Mx〉, causing K to reject the input 〈〈M〉, 〈w〉〉.

Thus, K decides ADTM, which contradicts the fact that this language is undecid-
able. We conclude that EDTM is undecidable, as required.

17.2 Proving undecidability through reductions

The proofs that we have seen so far that establish certain languages to be undecid-
able or non-semidecidable have followed a general pattern that can often be used
to prove that a chosen language A is undecidable:

1. Assume toward contradiction that A is decidable.

182

Lecture 17

2. Use that assumption to construct a DTM that decides a language B that we
already know to be undecidable.

3. Having obtained a contradiction from the assumption that A is decidable, we
conclude that A is undecidable.

A similar approach can sometimes be used to prove that a language A is non-
semidecidable, and in both cases we might potentially obtain a contradiction by
using our assumption toward contradiction about A to semidecide a language B
that we already know to be non-semidecidable.

A different method through which languages may be proved to be undecidable
or non-semidecidable makes use of the notion of a reduction.

Reductions

The notion of a reduction is, in fact, very general, and many different types of
reductions are considered in theoretical computer science—but for now we will
consider just one type of reduction (sometimes called a mapping reduction or many-
to-one reduction), which is defined as follows.

Definition 17.3. Let Σ and Γ be alphabets and let A ⊆ Σ∗ and B ⊆ Γ∗ be languages.
It is said that A reduces to B if there exists a computable function f : Σ∗ → Γ∗ such
that

w ∈ A⇔ f (w) ∈ B (17.2)

for all w ∈ Σ∗. One writes A ≤m B to indicate that A reduces to B, and any function
f that establishes that this is so may be called a reduction from A to B.

Figure 17.5 illustrates the action of a reduction. Intuitively speaking, a reduction
is a way of transforming one computational decision problem into another. Imag-
ine that you receive an input string w ∈ Σ∗, and you wish to determine whether
or not w is contained in some language A. Perhaps you do not know how to make
this determination, but you happen to have a friend who is able to tell you whether
or not a particular string y ∈ Γ∗ is contained in a different language B. If you have
a reduction f from A to B, then you can determine whether or not w ∈ A using
your friend’s help: you compute y = f (w), ask your friend whether or not y ∈ B,
and take their answer as your answer to whether or not w ∈ A.

The following theorem has a simple and direct proof, but it will nevertheless
have central importance with respect to the way that we use reductions to reason
about decidability and semidecidability.

Theorem 17.4. Let Σ and Γ be alphabets, let A ⊆ Σ∗ and B ⊆ Γ∗ be languages, and
assume A ≤m B. The following two implications hold:

183

CS 360 Introduction to the Theory of Computing

f
−→

A

A

B

B

Figure 17.5: An illustration of a reduction f from A to B.

The DTM MA operates as follows on input w ∈ Σ∗:

1. Compute y = f (w).

2. Run MB on input y.

Figure 17.6: Given a reduction f from A to B, and assuming the existence of a DTM
MB that either decides or semidecides B, the DTM MA described either decides or
semidecides A.

1. If B is decidable, then A is decidable.

2. If B is semidecidable, then A is semidecidable.

Proof. Let f : Σ∗ → Γ∗ be a reduction from A to B. We know that such a function
exists by the assumption A ≤m B.

We will first prove the second implication. Because B is semidecidable, there
must exist a DTM MB such that B = L(MB). Define a new DTM MA as described
in Figure 17.6. It is possible to define a DTM in this way because f is a computable
function.

For a given input string w ∈ A, we have that y = f (w) ∈ B, because this
property is guaranteed by the reduction f . When MA is run on input w, it will
therefore accept because MB accepts y. Along similar lines, if it is the case that
w 6∈ A, then y = f (w) 6∈ B. When MA is run on input w, it will therefore not accept
because MB does not accepts y. (It may be that these machines reject or run forever,
but we do not care which.) It has been established that A = L(MA), and therefore
A is semidecidable.

184

Lecture 17

The proof for the first implication is almost identical, except that we take MB to
be a DTM that decides B. The DTM MA defined in Figure 17.6 then decides A, and
therefore A is decidable.

We will soon use this theorem to prove that certain languages are undecidable
(or non-semidecidable), but let us first take a moment to observe two useful facts
about reductions.

Proposition 17.5. Let Σ, Γ, and ∆ be alphabets and let A ⊆ Σ∗, B ⊆ Γ∗, and C ⊆ ∆∗ be
languages. If A ≤m B and B ≤m C, then A ≤m C. (In words, ≤m is a transitive relation
among languages.)

Proof. As A ≤m B and B ≤m C, there must exist computable functions f : Σ∗ → Γ∗

and g : Γ∗ → ∆∗ such that

w ∈ A⇔ f (w) ∈ B and y ∈ B⇔ g(y) ∈ C (17.3)

for all w ∈ Σ∗ and y ∈ Γ∗.
Define a function h : Σ∗ → ∆∗ as h(w) = g(f (w)) for all w ∈ Σ∗. It is evident

that h is a computable function: if we have DTMs M f and Mg that compute f and
g, respectively, then we can obtain a DTM Mh that computes h by first running M f
and then running Mg.

It remains to observe that h is a reduction from A to C. If w ∈ A, then f (w) ∈ B,
and therefore h(w) = g(f (w)) ∈ C; and if w 6∈ A, then f (w) 6∈ B, and therefore
h(w) = g(f (w)) 6∈ C.

Proposition 17.6. Let Σ and Γ be alphabets and let A ⊆ Σ∗ and B ⊆ Γ∗ be languages. It
is the case that A ≤m B if and only if A ≤m B.

Proof. For a given function f : Σ∗ → Γ∗ and a string w ∈ Σ∗, the statements
w ∈ A ⇔ f (w) ∈ B and w ∈ A ⇔ f (w) ∈ B are logically equivalent. If we have a
reduction f from A to B, then the same function also serves as a reduction from A
to B, and vice versa.

Undecidability through reductions

It is possible to use Theorem 17.4 to prove that certain languages are either decid-
able or semidecidable, but we will focus mainly on using it to prove that languages
are either undecidable or non-semidecidable. When using the theorem in this way,
we consider the two implications in the contrapositive form. That is, if two lan-
guages A ⊆ Σ∗ and B ⊆ Γ∗ satisfy A ≤m B, then the following two implications
hold:

185

CS 360 Introduction to the Theory of Computing

The DTM KM operates as follows on input w ∈ Σ∗:

1. Run M on input w.

1.1 If M accepts w then accept.

1.2 If M rejects w, then run forever.

Figure 17.7: Given a DTM M, we can easily obtain a DTM KM that behaves as
described by replacing any transitions to the accept state of M with transitions to
a state that intentionally causes an infinite loop.

1. If A is undecidable, then B is undecidable.

2. If A is non-semidecidable, then B is non-semidecidable.

So, if we want to prove that a particular language B is undecidable, then it suffices
to pick any language A that we already know to be undecidable, and then prove
A ≤m B. The situation is similar for proving languages to be non-semidecidable.
The examples that follow illustrate how this may be done.

Example 17.7. For our first example of a reduction, we shall prove

ADTM ≤m HALT. (17.4)

The first thing we will need to consider is a simple way of modifying an arbi-
trary DTM M to obtain a slightly different one. In particular, for an arbitrary DTM
M, let us define a new DTM KM as described in Figure 17.7. The idea behind the
DTM KM is very simple: if M accepts a string w, then so does KM, if M rejects w
then KM runs forever on w, and of course if M runs forever on input w then so
does KM. Thus, KM halts on input w if and only if M accepts w. Note that if you are
given a description of a DTM M, it is very easy to come up with a description of a
DTM KM that operates as suggested: just replace the reject state of M with a new
state that purposely causes an infinite loop (by repeatedly moving the tape head
right, say).

Now let us define a function f : {0, 1}∗ → {0, 1}∗ as follows:

f (x) =


〈〈KM〉, 〈w〉〉 if x = 〈〈M〉, 〈w〉〉 for a DTM M and a string w

over the alphabet of M

x0 otherwise,
(17.5)

186

Lecture 17

where x0 ∈ {0, 1}∗ is any fixed string that is not contained in HALT. (For example,
we could take x0 = ε, because ε does not encode a DTM together with an input
string—but it is not important which string we choose as x0, so long as it is not in
HALT.) The function f is computable: all it does is that it essentially looks at an
input string, determines whether or not this string is an encoding 〈〈M〉, 〈w〉〉 of a
DTM M and a string w over the alphabet of M, and if so it replaces the encoding
of M with the encoding of the DTM KM suggested above.

Now let us check to see that f is a reduction from ADTM to HALT. Suppose first
that we have an input 〈〈M〉, 〈w〉〉 ∈ ADTM. These implications hold:

〈〈M〉, 〈w〉〉 ∈ ADTM ⇒ M accepts w ⇒ KM halts on w
⇒ 〈〈KM〉, 〈w〉〉 ∈ HALT ⇒ f (〈〈M〉, 〈w〉〉) ∈ HALT.

(17.6)

We therefore have

〈〈M〉, 〈w〉〉 ∈ ADTM ⇒ f (〈〈M〉, 〈w〉〉) ∈ HALT, (17.7)

which is half of what we need to verify that f is indeed a reduction from ADTM to
HALT.

It remains to consider the output of the function f on inputs that are not con-
tained in ADTM, and here there are two cases: one is that the input takes the form
〈〈M〉, 〈w〉〉 for a DTM M and a string w over the alphabet of M, and the other is
that it does not. For the first case, we have these implications:

〈〈M〉, 〈w〉〉 6∈ ADTM ⇒ M does not accept w
⇒ KM runs forever on w ⇒ 〈〈KM〉, 〈w〉〉 6∈ HALT

⇒ f (〈〈M〉, 〈w〉〉) 6∈ HALT.

(17.8)

The key here is that KM is defined so that it will definitely run forever in case M
does not accept (regardless of whether that happens by M rejecting or running
forever). The remaining case is that we have a string x ∈ Σ∗ that does not take the
form 〈〈M〉, 〈w〉〉 for a DTM M and a string w over the alphabet of M, and in this
case it trivially holds that f (x) = x0 6∈ HALT. (This is why we defined f as we did
in this case, and we will generally do something similar for other examples).

We have therefore proved that

x ∈ ADTM ⇔ f (x) ∈ HALT, (17.9)

and therefore ADTM ≤m HALT.
We already proved that HALT is undecidable, but the fact that ADTM ≤m HALT

provides an alternative proof: because we already know that ADTM is undecidable,
it follows that HALT is also undecidable.

187

CS 360 Introduction to the Theory of Computing

It might not seem that there is any advantage to this proof over the proof we
saw in the previous lecture that HALT is undecidable (which was not particularly
difficult). We have, however, established a closer relationship between ADTM and
HALT than we did previously. In general, using a reduction is sometimes an easy
shortcut to proving that a language is undecidable (or non-semidecidable).

Example 17.8. For our next example of a reduction, we will prove

DIAG ≤m EDTM, (17.10)

where we recall that EDTM is defined as follows:

EDTM =
{
〈M〉 : M is a DTM and L(M) = ∅

}
. (17.11)

We will now prove that DIAG ≤m EDTM. Because we already know that DIAG is
non-semidecidable, we conclude from this reduction that EDTM is not just unde-
cidable, but in fact it is also non-semidecidable.

For this one we will again use the hardcoding trick from the beginning of the
lecture: for a given DTM M, let us define a new DTM M〈M〉 just like in Figure 17.2,
for the specific choice of the hardcoded string x = 〈M〉. This actually only makes
sense if the input alphabet of M includes the symbols {0, 1} used in the encoding
〈M〉, so let us agree that M〈M〉 immediately rejects if this is not the case.

Now let us define a function f : {0, 1}∗ → {0, 1}∗ as follows:

f (x) =

{〈
M〈M〉

〉
if x = 〈M〉 for a DTM M

x0 otherwise,
(17.12)

for any fixed binary string x0 not contained in EDTM. If you think about it for a
moment, it should not be hard to convince yourself that f is computable. It remains
to verify that f is a reduction from DIAG to EDTM.

For any string x ∈ DIAG we have that x = 〈M〉 for some DTM M that satisfies
〈M〉 6∈ L(M). In this case we have that f (x) =

〈
M〈M〉

〉
, and because 〈M〉 6∈ L(M)

it must therefore be that M〈M〉 never accepts, and so f (x) =
〈

M〈M〉
〉
∈ EDTM.

Now suppose that x 6∈ DIAG. There are two cases: either x = 〈M〉 for a DTM
M such that 〈M〉 ∈ L(M), or x does not encode a DTM at all. If it is the case that
x = 〈M〉 for a DTM M such that 〈M〉 ∈ L(M), we have that M〈M〉 accepts every
string over its alphabet, and therefore f (x) = 〈M〈M〉〉 6∈ EDTM. If it is the case that
x does not encode a DTM, then it trivially holds that f (x) = x0 6∈ EDTM.

We have proved that

x ∈ DIAG⇔ f (x) ∈ EDTM, (17.13)

so the proof that DIAG ≤m EDTM is complete.

188

Lecture 17

Example 17.9. Our third example of a reduction is

ADTM ≤m AE, (17.14)

where the language AE is defined like this:

AE =
{
〈M〉 : M is a DTM that accepts ε

}
. (17.15)

The name AE stands for “accepts the empty string.”
To prove this reduction, we can use the same hardcoding trick that we have

now used twice already. For every DTM M and every string x over the alphabet
of M, define a new DTM Mx as in Figure 17.2, and define a function f : {0, 1}∗ →
{0, 1}∗ as follows:

f (w) =


〈Mx〉 if w = 〈〈M〉, 〈x〉〉 for a DTM M and a string x

over the alphabet of M

w0 otherwise,

(17.16)

where, as you likely now expect, w0 is any fixed binary string not contained in AE.
Now let us check that f is a valid reduction from ADTM to AE.

First, for any string w ∈ ADTM we have w = 〈〈M〉, 〈x〉〉 for a DTM M that
accepts the string x. In this case, f (w) = 〈Mx〉. We have that Mx accepts every
string, including the empty string, because M accepts x. Therefore f (w) = 〈Mx〉 ∈
AE.

Now consider any string w 6∈ ADTM, for which there are two cases. If it is the
case that w = 〈〈M〉, 〈x〉〉 for a DTM M and x a string over the alphabet of M,
then w 6∈ ADTM implies that M does not accept x. In this case we have f (w) =
〈Mx〉 6∈ AE, because Mx does not accept any strings at all (including the empty
string). If w 6= 〈〈M〉, 〈x〉〉 for a DTM M and string x over the alphabet of M, then
f (w) = w0 6∈ AE.

We have shown that w ∈ ADTM ⇔ f (w) ∈ AE for every string w ∈ {0, 1}∗, and
therefore ADTM ≤m AE, as required.

Example 17.10. The last example of a reduction for the lecture will be a bit more
difficult than the others. We will prove that

EDTM ≤m DEC (17.17)

where

DEC =
{
〈M〉 : M is a DTM such that L(M) is decidable

}
. (17.18)

189

CS 360 Introduction to the Theory of Computing

The DTM KM operates as follows on input x ∈ {0, 1}∗:

1. Set t← 1.

2. For every string w over the input alphabet of M satisfying |w| ≤ t:

2.1 Run M for t steps on input w, and if M accepts then goto step 4.

3. Set t← t + 1 and goto step 2.

4. Run H on x.

Figure 17.8: The DTM KM in Example 17.10. We assume that H is any fixed DTM
with L(H) = HALT.

Notice that the inclusion 〈M〉 ∈ DEC does not imply that M always halts—but
rather that there exists some DTM K, not necessarily M, that decides the language
recognized by M.

Given an arbitrary DTM M, let us define a new DTM KM as in Figure 17.8. In
this description, assume H is any fixed DTM satisfying L(H) = HALT. We know
there is such an H; we can easily adapt a universal DTM U so that it semidecides
HALT. If one asks why we define KM in this way, the answer is nothing more than
that it makes the reduction work—but notice that within the definition of KM we
are making use of the infinite search technique from the start of the lecture.

Now let us define a function f : {0, 1}∗ → {0, 1}∗ as

f (x) =

{
〈KM〉 if x = 〈M〉 for a DTM M
x0 otherwise,

(17.19)

where x0 is any fixed binary string not contained in DEC. This is a computable
function, and it remains to verify that it is a reduction from EDTM to DEC.

Suppose 〈M〉 ∈ EDTM. We therefore have that L(M) = ∅; and by considering
the way that KM behaves we see that L(KM) = ∅ as well; the computation alter-
nates between steps 2 and 3 forever if M never accepts. The empty language is
decidable, and therefore f (〈M〉) = 〈KM〉 ∈ DEC.

On the other hand, if M is a DTM and 〈M〉 6∈ EDTM, then M must accept at
least one string. This means that L(KM) = HALT, because KM will eventually find
a string accepted by M, reach step 4, and then accept if and only if x ∈ HALT.
Therefore f (〈M〉) = 〈KM〉 6∈ DEC. The remaining case in which x does not encode
a DTM is, as always, straightforward: in this case we have f (x) = x0 6∈ DEC.

190

Lecture 17

We have shown that x ∈ EDTM ⇔ f (x) ∈ DEC for every string x ∈ {0, 1}∗, and
therefore EDTM ≤m DEC, as required.

We conclude that the language DEC is non-semidecidable, as we already know
that EDTM is non-semidecidable.

191

