
Lecture 16

Universal Turing machines and
undecidable languages

In this lecture we will describe a universal Turing machine. This is a deterministic
Turing machine that, when given the encoding of an arbitrary DTM, can simulate
that machine on a given input.

To describe such a universal machine, we must naturally consider encodings
of DTMs, and this will be the first order of business for the lecture. The very no-
tion of an encoding scheme for DTMs allows us to obtain our first example of a
language that is not semidecidable (and is therefore not decidable). Through the
non-semidecidability of this language, many other languages can be shown to be
either undecidable or non-semidecidable. We will see two simple examples in this
lecture and more in the lecture following this one.

16.1 An encoding scheme for DTMs

In the previous lecture we discussed in detail an encoding scheme for DFAs, and
we observed that this scheme is easily adapted to obtain an encoding scheme for
NFAs. While we did not discuss specific encoding schemes for regular expressions
and context-free grammars, we made use of the fact that one can devise encoding
schemes for these models without difficulty.

We could follow a similar route for DTMs, as there are no new conceptual diffi-
culties that arise for this model in comparison to the other models just mentioned.
However, given the high degree of importance that languages involving encod-
ings of DTMs will have in the remainder of the course, it is fitting to take a few
moments to be careful and precise about this encoding. As is the case for just about
every encoding scheme we consider, there are many alternatives to the encoding of
DTMs we will define—our focus on the specifics of this encoding scheme is done

169



CS 360 Introduction to the Theory of Computing

in the interest of clarity and precision, and not because the specifics themselves are
essential to the study of computability.

Throughout the discussion that follows, we will assume that

M = (Q, Σ, Γ, δ, q0, qacc, qrej) (16.1)

is a given DTM whose encoding is to be described. We make the assumption that
the state set Q of M takes the form

Q = {q0, . . . , qm−1} (16.2)

for some positive integer m, and that the input and tape alphabets of M take the
form

Σ = {0, . . . , k− 1} and Γ = {0, . . . , n− 1} (16.3)

for positive integers k and n. Given that Σ is properly contained in Γ, it follows
that k < n; it is to be assume that the blank symbol ∈ Γ corresponds to the last
symbol n− 1 of Γ.

First, the encoding of a state q ∈ Q should be understood as referring to the
string 〈q〉 ∈ {0, 1}∗ obtained by expressing the index of that state written in binary
notation, so that

〈q0〉 = 0, 〈q1〉 = 1, 〈q2〉 = 10, etc. (16.4)

Tape symbolds are encoded in a similar way, so that

〈0〉 = 0, 〈1〉 = 1, 〈2〉 = 10, etc. (16.5)

We shall encode the directions left and right as

〈←〉 = 0 and 〈→〉 = 1. (16.6)

Next we need a way to encode the transition function δ, and this will be done in
a similar way to the encoding of DFAs from the previous lecture. For each choice
of states q ∈ Q\{qacc, qrej} and r ∈ Q, tape symbols a, b ∈ Γ, and a direction
D ∈ {←,→}, the encoding〈

〈q〉, 〈a〉, 〈r〉, 〈b〉, 〈D〉
〉
∈ {0, 1}∗ (16.7)

indicates that
δ(q, a) = (r, b, D). (16.8)

The encoding of the transition function δ is then obtained by encoding the list
of binary strings of the form above, for each pair (q, a) ∈ Q\{qacc, qrej} × Γ in
lexicographic order.

Finally, by means of these encodings, we obtain from every DTM M the binary
string encoding 〈M〉 ∈ {0, 1}∗ as follows:

〈M〉 =
〈
〈m〉, 〈k〉, 〈n〉, 〈δ〉, 〈qacc〉, 〈qrej〉

〉
. (16.9)

170



Lecture 16

Example 16.1. Consider the DTM M for the language SAME whose state diagram
is shown in Figure 12.3. We have

δ(q0, 0) = (q0, 0,←),

δ(q0, 1) = (q0, 1,←),

δ(q0, ) = (q1, ,→),
...

δ(q3, 0) = (qrej, 0,←),

δ(q3, 1) = (q0, ,←),

δ(q3, ) = (qrej, ,←).

(16.10)

We will make the identification qacc = q4 and qrej = q5, and we note explicitly that
there are m = 6 states, k = 2 input symbols, and n = 3 tape symbols, with the
blank symbol being identified with the last tape symbol 2.

The transition δ(q0, 0) = (q0, 0,←) is encoded as〈
〈q0〉, 〈0〉, 〈q0〉, 〈0〉, 〈←〉

〉
= 〈0, 0, 0, 0, 0〉, (16.11)

the transition δ(q0, 1) = (q0, 1,←) is encoded as〈
〈q0〉, 〈1〉, 〈q0〉, 〈1〉, 〈←〉

〉
= 〈0, 1, 0, 1, 0〉, (16.12)

and, skipping to the last one, the transition δ(q3, 2) = (q5, 2,←) is encoded as〈
〈q3〉, 〈 〉, 〈qrej〉, 〈 〉, 〈←〉

〉
=
〈
〈q3〉, 〈2〉, 〈q5〉, 〈2〉, 〈←〉

〉
= 〈11, 10, 101, 10, 0〉.

(16.13)

The entire transition function δ is encoded as

〈δ〉 =
〈〈
〈q0〉, 〈0〉, 〈q0〉, 〈0〉, 〈←〉

〉
,
〈
〈q0〉, 〈1〉, 〈q0〉, 〈1〉, 〈←〉

〉
,

. . . ,
〈
〈q3〉, 〈 〉, 〈qrej〉, 〈 〉, 〈←〉

〉〉
=
〈
〈0, 0, 0, 0, 0〉, 〈0, 1, 0, 1, 0〉, . . . , 〈11, 10, 101, 10, 0〉

〉
.

(16.14)

And, finally, and M is encoded as

〈M〉 =
〈
〈6〉, 〈2〉, 〈3〉, 〈δ〉, 〈0〉, 〈4〉, 〈5〉

〉
. (16.15)

171



CS 360 Introduction to the Theory of Computing

16.2 A universal Turing machine

Now that we have defined an encoding scheme for DTMs, we can consider the
computational task of simulating a given DTM on a given input. A universal Turing
machine is a DTM that can perform such a simulation—it is universal in the sense
that it is one single DTM that is capable of simulating all other DTMs.

Recall from Lecture 12 that a configuration of a DTM

M = (Q, Σ, Γ, δ, q0, qacc, qrej) (16.16)

may be expressed in the form
u(q, a)v (16.17)

for a state q ∈ Q, a tape symbol a ∈ Γ, and strings of tape symbols u, v ∈ Γ∗,
where u does not start with a blank and v does not end with a blank. Such a con-
figuration may be encoded as〈

u(q, a)v
〉
=
〈
〈u〉, 〈〈q〉, 〈a〉〉, 〈v〉

〉
(16.18)

where 〈u〉, 〈q〉, 〈a〉, and 〈v〉 refer to fitting encoding schemes we have already dis-
cussed in this lecture.

Now, if we wish to simulate the computation of a given DTM M on a given
input string w, a natural approach is to keep track of the configurations of M and
update them appropriately, as the computations themselves dictate. Specifically,
we will begin with the initial configuration of M on input w, which is

(q0, )w. (16.19)

We then repeatedly compute the next configuration of M, over and over, until per-
haps we eventually reach a configuration whose state is qacc or qrej, at which point
we can stop. We might never reach such a configuration; if M runs forever on in-
put w, our simulation will also run forever. There is no way to avoid this, as we
shall see.

With this approach in mind, let us focus on the task of simply determining
the next configuration, meaning the one that results from one computational step,
for a given DTM M and a given configuration of M. That is, we will consider the
function

next : {0, 1}∗ → {0, 1}∗ (16.20)

defined as follows. For every DTM M = (Q, Σ, Γ, δ, q0, qacc, qrej) and every non-
halting configuration u(q, a)v of M, we define

next(〈〈M〉, 〈u(q, a)v〉〉) = 〈x(p, b)y〉, (16.21)

172



Lecture 16

for x(p, b)y being the configuration obtained by running M for one step starting
from the configuration u(q, a)v, i.e., the unique configuration for which

u(q, a)v `M x(p, b)y. (16.22)

We recall that Definition 12.2 describes this relation in precise terms. For every
halting configuration u(q, a)v of M, let us define (as a matter of convenience)

next(〈〈M〉, 〈u(q, a)v〉〉) = 〈u(q, a)v〉. (16.23)

On inputs x ∈ {0, 1}∗ not having the form 〈〈M〉, 〈u(q, a)v〉〉, for M a DTM and
u(q, a)v a configuration of M, we shall take next(x) = ε.

Let us consider how this function might be computed using a stack machine. A
natural first step is to process the input so that, upon conclusion of this processing,
we have a stack M that stores 〈M〉, as well as four stacks, S, T, L, and R, that initially
store the encodings 〈q〉, 〈a〉, 〈u〉, and 〈v〉, respectively. During this processing, we
naturally stop and output ε if the input is not an encoding as we expect.

Next, the encoding 〈M〉, which includes within it the encoding 〈δ〉 of the tran-
sition function δ, must be examined to determine δ(q, a) = (p, b, D). This requires
a scan through 〈δ〉 to obtain, after finding a match involving the strings 〈q〉 and 〈a〉
stored by S and T, the encodings 〈p〉, 〈b〉, and 〈D〉. These encodings may each be
stored in their own stacks, which we need not name. A processing of S, T, L, and
R that updates their contents to 〈p〉, 〈b〉, 〈x〉, and 〈y〉, for p, b, x, and y satisfying
(16.22), is then performed.

Finally, these strings are recombined to form the output string

〈〈x〉, 〈〈p〉, 〈b〉〉, 〈y〉〉. (16.24)

It would be a time-consuming process to explicitly describe a DSM that operates in
this way, but at a conceptual level this computation could reasonably be described
as fairly straightforward. String matching subroutines would surely be helpful.

With the function next in hand, one can simulate the computation of a given
DTM M on a given input w in the manner suggested above, by starting with the
initial configuration (q0, )w of M on w and repeatedly applying the function next.

Now consider the following language, which is the natural DTM analogue of
the languages ADFA, ANFA, AREG, and ACFG discussed in the previous lecture:

ADTM =
{
〈〈M〉, 〈w〉〉 : M is a DTM and w ∈ L(M)

}
. (16.25)

We conclude that ADTM is semidecidable: the DSM U described in Figure 16.1 is
such that L(U) = ADTM. This DSM has been named U to reflect the fact that it is a
universal DSM. As described in Lecture 14, the DSM U can be simulated by a DTM.

173



CS 360 Introduction to the Theory of Computing

The DSM U operates as follows on input x ∈ {0, 1}∗:

1. If x takes the form x = 〈〈M〉, 〈w〉〉, for M being a DTM and w being
a string over the alphabet of M, then initialize the stack M so that it
stores 〈M〉 and initialize C so that it stores 〈(q0, )w〉. Reject if not.

2. Repeat the following steps:

2.1 If C stores a halting configuration of M, then halt and accept or
reject accordingly. If C stores a non-halting configuration of M, the
computation continues.

2.2 Compute the configuration next(〈M〉, 〈u(q, a)v〉), for the encod-
ings 〈M〉 and 〈u(q, a)v〉 stored in M and C, and update C so that it
stores this new configuration.

Figure 16.1: A high-level description of a DSM U that recognizes the language
ADTM.

Proposition 16.2. The language ADTM is semidecidable.

Before moving on to the next section, let us note that the following language is
decidable:

SDTM =

{
〈〈M〉, 〈w〉, 〈t〉〉 :

M is a DTM, w is an input string to M,
t ∈N, and M accepts w within t steps

}
. (16.26)

This language could be decided by a DTM following essentially the same simula-
tion described previously, but where the simulation cuts off and rejects after t steps
if M has not yet halted on input w.

16.3 A few undecidable languages

It is natural at this point to ask whether or not ADTM is decidable, given that it
is semidecidable. It is undecidable, as we will soon prove. Before doing this, how-
ever, we will consider a different language and prove that this language is not even
semidecidable. Here is the language:

DIAG =
{
〈M〉 : M is a DTM and 〈M〉 6∈ L(M)

}
. (16.27)

That is, the language DIAG contains all binary strings 〈M〉 that, with respect to the
encoding scheme we discussed at the start of the lecture, encode a DTM M that

174



Lecture 16

The DTM K operates as follows on input x ∈ {0, 1}∗:

1. If it is not the case that x = 〈M〉 for M being a DTM, then reject.

2. Run T on input 〈〈M〉, 〈M〉〉. If T accepts, then reject, otherwise accept.

Figure 16.2: A DTM that decides DIAG, assuming that there exists a DTM T for
ADTM.

does not accept this encoding of itself. Note that if it so happens that the string
〈M〉 encodes a DTM whose input alphabet has just one symbol, so that it does not
include 0 and 1, then it will indeed be the case that 〈M〉 6∈ L(M).

Theorem 16.3. The language DIAG is not semidecidable.

Proof. Assume toward contradiction that the language DIAG is semidecidable.
There must therefore exist a DTM M such that L(M) = DIAG.

Now, consider the encoding 〈M〉 of M. By the definition of the language DIAG
one has

〈M〉 ∈ DIAG ⇔ 〈M〉 6∈ L(M). (16.28)

On the other hand, because M recognizes DIAG, it is the case that

〈M〉 ∈ DIAG ⇔ 〈M〉 ∈ L(M). (16.29)

Consequently,
〈M〉 6∈ L(M) ⇔ 〈M〉 ∈ L(M), (16.30)

which is a contradiction. We conclude that DIAG is not semidecidable.

Remark 16.4. Note that this proof is very similar to the proof that P(N) is not
countable from the very first lecture of the course. It is remarkable how simple this
proof of the non-semidecidability of DIAG is; it has used essentially none of the
specifics of the DTM model or the encoding scheme we defined.

Now that we know DIAG is not semidecidable, we may prove that ADTM is not
decidable.

Theorem 16.5. The language ADTM is undecidable.

Proof. Assume toward contradiction that ADTM is decidable. There must therefore
exist a DTM T that decides ADTM. Define a new DTM K as described in Figure 16.2.

175



CS 360 Introduction to the Theory of Computing

The DTM K operates as follows on input x ∈ {0, 1}∗:

1. If it is not the case that x = 〈〈M〉, 〈w〉〉 for M being a DTM and w an
input string to M, then reject.

2. Run T on input 〈〈M〉, 〈w〉〉 and reject if T rejects. Otherwise, continue
to the next step.

3. Simulate M on input w; accept if M accepts and reject if M rejects.

Figure 16.3: A DTM that decides ADTM, assuming that there exists a DTM T that
decides HALT.

For a given DTM M, we may now ask ourselves what K does on the input 〈M〉.
If it is the case that 〈M〉 ∈ DIAG, then by the definition of DIAG it is the case that
〈M〉 6∈ L(M), and therefore 〈〈M〉, 〈M〉〉 6∈ ADTM (because M does not accept 〈M〉).
This implies that T rejects the input 〈〈M〉, 〈M〉〉, and so K must accept the input
〈M〉. If, on the other hand, it is the case that 〈M〉 6∈ DIAG, then 〈M〉 ∈ L(M), and
therefore 〈〈M〉, 〈M〉〉 ∈ ADTM. This implies that T accepts the input 〈〈M〉, 〈M〉〉,
and so K must reject the input 〈M〉. One final possibility is that K is run on an input
string that does not encode a DTM at all, and in this case it rejects.

Considering these possibilities, we find that K decides DIAG. This, however,
is in contradiction with the fact that DIAG is non-semidecidable (and is therefore
undecidable). Having obtained a contradiction, we conclude that ADTM is unde-
cidable, as required.

Here is another example, which is a famous relative of ADTM.

HALT =
{
〈〈M〉, 〈w〉〉 : M is a DTM that halts on input w

}
. (16.31)

To say that M halts on input w means that it stops, either by accepting or rejecting.
Let us agree that the statement “M halts on input w” is false in case w contains
symbols not in the input alphabet of M—purely as a matter of terminology.

It is easy to prove that HALT is semidecidable, we just run a modified version
of our universal Turing machine U on input 〈〈M〉, 〈w〉〉, except that we accept in
case the simulation results in either accept or reject—and when it is the case that
M does not halt on input w this modified version of U will run forever on input
〈〈M〉, 〈w〉〉.

Theorem 16.6. The language HALT is undecidable.

176



Lecture 16

Proof. Assume toward contradiction that HALT is decidable, so that there exists a
DTM T that decides it. Define a new DTM K as in Figure 16.3. The DTM K decides
ADTM, as a case analysis reveals:

1. If it is the case that M accepts w, then T will accept 〈〈M〉, 〈w〉〉 (because M
halts on w), and the simulation of M on input w will result in acceptance.

2. If it is the case that M rejects w, then T will accept 〈〈M〉, 〈w〉〉 (because M halts
on w), and the simulation of M on input w will result in rejection.

3. If it is the case that M runs forever on w, then T will reject 〈〈M〉, 〈w〉〉, and
therefore K rejects without running the simulation of M on input w.

This, however, is in contradiction with the fact that ADTM is undecidable. Having
obtained a contradiction, we conclude that HALT is undecidable.

177




