Lecture 13

Variants of Turing machines

In this lecture we will continue to discuss the Turing machine model, focusing on
ways in which the model can be changed without affecting its power.

13.1 Simple variants of Turing machines

There is nothing sacred about the specific definition of DTMs that we covered in
the previous lecture. In fact, if you look at two different books on the theory of
computation, you are pretty likely to see two definitions of Turing machines that
differ in one or more respects.

For example, the definition we discussed specifies that a Turing machine’s tape
is infinite in both directions, but sometimes people choose to define the model
so that the tape is only infinite to the right. Naturally, if there is a left-most tape
square on the tape, the definition must clearly specify how the Turing machine is
to behave if it tries to move its tape head left from this point. Perhaps the Turing
machine immediately rejects if its tape head tries to move off the left edge of the
tape, or the tape head might simply remain on the left-most tape square in this
situation.

Another example concerns tape head movements. Our definition states that
the tape head must move left or right at every step, while some alternative Turing
machine definitions allow the possibility for the tape head to remain stationary. It
is also common that Turing machines with multiple tapes are considered, and we
will indeed consider this Turing machine variant shortly.

DTMs allowing stationary tape heads

Let us begin with a very simple Turing machine variant already mentioned above,
where the tape head is permitted to remain stationary on a given step if the DTM

131

CS 360 Introduction to the Theory of Computing

designer wishes. This is an extremely minor change to the Turing machine defi-
nition, but because it is our first example of a Turing machine variant we will go
through it in detail (perhaps more than it actually deserves).

If the tape head of a DTM is allowed to remain stationary, we would naturally
expect that instead of the transition function taking the form

6 Q\{ace, rej} X T = Q x T x {4—, =}, (13.1)

it would instead take the form

6 Q\{ace, Grej} X T = Q x T x {4—, 1, =}, (13.2)

where the arrow pointing down indicates that the tape head does not move. Specif-
ically, if it is the case that 6(p,a) = (g,b,]), then whenever the machine is in the
state p and its tape head is positioned over a square that contains the symbol a,
it overwrites a with b, changes state to q, and leaves the position of the tape head un-
changed.

For the sake of clarity let us give this new model a different name, to distinguish
it from the ordinary DTM model we already defined in the previous lecture. In
particular, we will define a stationary-head-DTM to be a 7-tuple

M = (Q/ 2, T,9, 40, Jaccs Qrej)/ (13.3)

where each part of this tuple is just like an ordinary DTM except that the transition
function ¢ takes the form (13.2).

Now, if we wanted to give a formal definition of what it means for a stationary-
head-DTM to accept or reject, we could of course do that. This would require that
we extend the yields relation defined in the previous lecture to account for the
possibility that é(p,a) = (q,b,]) for some choices of p € Q and a € T. This is
actually quite easy—we simply include the following third rule to the rules that
define the yields relation for ordinary DTMs:

3. Remaining stationary. For every choice of p € Q\{qacc, qrej}, 9 € Q,and a,b € T
satisfying

(p,a) = (q.b,1), (13.4)

the yields relation includes these pairs forall u € I'"\{_ }I"™ and v € I*\T""{_ }:

u(p,a)vtpu(gb)o. (13.5)

As suggested before, allowing the tape head to remain stationary does not actu-
ally change the computational power of the Turing machine model. The standard

132

Lecture 13

way to argue that this is so is through the technique of simulation. A standard DTM
cannot leave its tape head stationary, so it cannot behave precisely like a stationary-
head-DTM, but it is straightforward to simulate a stationary-head-DTM with an
ordinary one—by simply moving the tape head to the left and back to the right
(for instance), we can obtain the same outcome as we would have if the tape head
had remained stationary. Naturally, this requires that we remember what state we
are supposed to be in after moving left and back to the right, but it can be done
without difficulty.
To be more precise, if

M = (Q/ Z"/ I_‘/ 5/ UERY, I]rej> (136)

is a stationary-head-DTM, then we can simulate this machine with an ordinary
DTM

K - (RI Z‘/ r/ 77/ qOI Qacc/ Qrej) (137)

as follows:

1. For each state g € Q of M, the state set R of K will include g, as well as a distinct
copy of this state that we will denote g’. The intuitive meaning of the state g’ is
that it indicates that K needs to move its tape head one square to the right and
enter the state .

2. The transition function # of K is defined as

(9,6, =) ifé(p,a) = (q,b,¢)
n(p,a) =< (q,b,—) ifé(p,a)=(q,b,—) (13.8)
(q,b,«) ifd(pa)=(q,b1)

for each p € Q\{qacc, Grej} and a € T, as well as
n(q,c) = (q,c,—) (13.9)
foreachg € Qandc € T.

Written in terms of state diagrams, one can describe this simulation as follows.
Suppose that the state diagram of a stationary-head-DTM M contains a transition

that looks like this:
()

The state diagram for K replaces this transition as follows:

133

CS 360 Introduction to the Theory of Computing

OO0

Here, the transition from ¢’ to g is to be included for every tape symbol ¢ € T. The
same state ¢’ can safely be used for every stationary tape head transition into 4.

It is not hard to see that the computation of K will directly mimic the compu-
tation of M. The DTM K might take longer to run, because it sometimes requires
two steps to simulate one step of M, but this does not concern us. The bottom line
is that every language that is either decided or semidecided by a stationary-head-
DTM is also decided or semidecided by an ordinary DTM.

The other direction is trivial: a stationary-head-DTM can easily simulate an or-
dinary DTM by simply not making use of its ability to leave the tape head station-
ary. Consequently, the two models are equivalent.

Thus, if you were to decide at some point that it would be more convenient
to work with the stationary-head-DTM model, you could switch to this model—
and by observing the equivalence we just proved, you would be able to conclude
interesting facts concerning the original DTM model.

In reality, however, the stationary-head-DTM model just discussed is not a sig-
nificant enough departure from the ordinary DTM model for us to be concerned
with it—we went through this equivalence in detail only because it is a first exam-
ple, and there will not likely be a need for us to refer specifically to the stationary-
head-DTM model again.

DTMs with multi-track tapes

Another useful variant of the DTM model is one in which the tape has multiple
tracks, as suggested by Figure 13.1. More specifically, we may suppose that the tape
has k tracks for some positive integer k, and for each tape head position the tape
has k separate tape squares that can each store a symbol. It is useful to allow the k
different tracks to have possibly different tape alphabets I'y, ..., I'x. When the tape
head scans a particular location on the tape, it can effectively see and modify all of
the symbols stored on the tape tracks for this tape head location simultaneously.

For example, based on the picture in Figure 13.1 it appears as though the first
tape track of this DTM stores symbols from the tape alphabet I'1 = {0,1, .}, the
second track stores symbols from the tape alphabet I', = {#, .}, and the third
track stores symbols from the tape alphabet I's; = {&, O, {, &, . }.

It turns out that this is not really even a variant of the DTM definition at all—it
is just an ordinary DTM whose tape alphabet I is equal to the Cartesian product

I= F1 X oo X Fk. (1310)

134

Lecture 13

q2

J=]=]o 1 To 0 |||
[lela]=]#]=e]e]e]=]=]]
el=]=Tolalo]o]a]-]-]l

Figure 13.1: A DTM with a three-track tape.

qs

Figure 13.2: A DTM with a one-way infinite tape.

The tape alphabet of any DTM must include the input alphabet and a blank sym-
bol, and so it should be understood that we identify each input alphabet symbol
o € X with the tape symbol (o, ,...,), and also that we consider the symbol
(..., w) to be the blank symbol of the multi-track DTM.

DTMs with one-way infinite tapes

DTMs with one-way infinite tapes were mentioned before as a common alternative
to DTMs with two-way infinite tapes. Figure 13.2 illustrates such a DTM. Let us say
that if the DTM ever tries to move its tape head left when it is on the leftmost tape
square, its head simply remains on this square and the computation continues—
maybe it makes an unpleasant crunching sound in this situation.

It is easy to simulate a DTM with a one-way infinite tape using an ordinary
DTM (with a two-way infinite tape). For instance, we could drop a special symbol,
such as &<, on the two-way infinite tape at the beginning of the computation, to the
left of the input. The DTM with the two-way infinite tape will exactly mimic the
behavior of the one-way infinite tape, but if the tape head ever scans the special &<
symbol during the computation, it moves one square right without changing state.

135

CS 360 Introduction to the Theory of Computing

qs

Figure 13.3: A DTM with a two-way infinite tape can easily simulate a DTM with
a one-way infinite tape, like the one pictured in Figure 13.2, by writing a special
symbol on the tape (in this case the symbol is <) that indicates where we should
imagine the tape has been cut. When the tape head scans this symbol, the DTM
adjusts its behavior accordingly.

(q5/ T)

Figure 13.4: A DTM with a one-way infinite tape that simulates an ordinary DTM
having a two-way infinite tape. The top track represents the portion of the two-way
infinite tape that extends to the right and the bottom track represents the portion
extending to the left.

This exactly mimics the behavior of the DTM with a one-way infinite tape that was
suggested above.

Simulating an ordinary DTM having a two-way infinite tape with one having
just a one-way infinite tape is slightly more challenging, but not difficult. Two nat-
ural ways to do it come to mind. The first way is suggested by Figure 13.4. In
essence, the one-way infinite, two-track tape of the DTM suggested by the figure
represents the tape of the original DTM being simulated, folded in half. The finite
state control keeps track of the state of the DTM being simulated and which track
of the tape stores the symbol being scanned. A special tape symbol, such as =,
could be placed on the first square of the bottom track to assist in the simulation.

The second way to perform the simulation of a two-way infinite tape with a
one-way infinite tape does not require two tracks, but will result in a simulation
that is somewhat less efficient with respect to the number of steps required. A

136

Lecture 13

qz

Jel=]=]o]a]o]o]a]~]=]

Figure 13.5: A DTM with three tapes.

special symbol could be placed in the left-most square of the one-way infinite tape,
and anytime this symbol is scanned the DTM can transition into a subroutine in
which every other symbol on the tape is shifted one square to the right in order to
“make room” for a new square to the left. This would presumably require that we
also use a special symbol marking the right-most non-blank symbol on the tape, so
that the shifting subroutine can be completed—for otherwise we might not know
when every (non-blank) symbol on the tape had been shifted one square to the
right.

13.2 Multi-tape Turing machines

The last variant of the Turing machine model that we will consider is perhaps
the most useful variant. A multi-tape DTM works in a similar way to an ordinary
(single-tape) DTM, except that it has k tape heads that operate independently on
k tapes, for some fixed positive integer k. For example, Figure 13.5 illustrates a
multi-tape DTM with three tapes.

In general, a k-tape DTM is defined in a similar way to an ordinary DTM, except
that the transition function has a slightly more complicated form. In particular,
if the tape alphabets of a k-tape DTM are I'y, ..., I, then the transition function
might take this form:

01 Q\{Gace Grej} X T1 X -« X T = Q x Ty x - - x T x {«, 1, =} (@311)

137

CS 360 Introduction to the Theory of Computing

If we make the simplifying assumption that the same alphabet is used for each
tape (which does not restrict the model, as we could always take this single tape
alphabet to be the union I' = T’y U - - - U Tx of multiple alphabets), the transition
function takes the form

6 : Q\{face Grej} X TF = Q x TF x {«,], —=1}". (13.12)

(In both of these cases it is evident that the tape heads are allowed to remain sta-
tionary. Naturally you could also consider a variant in which every one of the tape
heads must move at each step, but we may as well allow for stationary tape heads
when considering the multi-tape DTM model—it is meant to be flexible and gen-
eral, so as to make it easier to perform complex computations.) The interpretation
of the transition function taking the form (13.12) is as follows. If it holds that

5(p,a1,. . .,ak) = (q,bl,. . .,bk,Dl,. . .,Dk), (1313)

then if the DTM is in the state p and is reading the symbols a4, ..., ax on its k tapes,
then

1. the new state becomes g,

2. the symbols by, ..., by are written onto the k tapes (overwriting the symbols
ai,...,a), and

3. the j-th tape head either moves or remains stationary depending on the value
D; € {«-,],—} foreachj=1,... k.

One way to simulate a multi-tape DTM with a single-tape DTM is to store the
contents of the k tapes, as well as the positions of the k tape heads, on separate
tracks of a single-tape DTM whose tape has multiple tracks. For example, the con-
tiguration of the multi-tape DTM pictured in Figure 13.5 could be represented by
a single-tape DTM as suggested by Figure 13.6.

Naturally, a simulation of this sort will require many steps of the single-tape
DTM to simulate a single step of the multi-tape DTM. Let us refer to the multi-tape
DTM as K and the single-tape DTM as M. To simulate one step of K, the DTM M
needs many steps: it must first scan through the tape in order to determine which
symbols are being scanned by the k tape heads of K, and store these symbols within
its finite state control. Once it knows these symbols, it can decide what action K is
supposed to take, and then implement this action—which means again scanning
through the tape in order to update the symbols stored on the tracks that represent
the tape contents of K and the positions of the tape heads, which may have to
move. It would be complicated to write this all down carefully, and there are many
specific ways in which this general idea could be carried out—but with enough
time and motivation it would certainly be possible to give a formal definition for a
single-tape DTM M that simulates a given multi-tape DTM K in this way.

138

Lecture 13

(q2,7)

3+
H*
L
L
— L —1 I~

e
C
C

—
C
C
C
C
C
C
C

Figure 13.6: A single-tape DTM with a multi-track tape can simulate a multi-tape
DTM. Here, the odd numbered tracks represent the contents of the tapes of the
DTM illustrated in Figure 13.5, while the even numbered tracks store the locations
of the tape heads of the multi-tape DTM. The finite state control of this single-tape
DTM stores the state of the multi-tape DTM it simulates, but it would also need to
store other information (represented by the component r in the picture) in order to
carry out the simulation.

139

