
Lecture 12

Turing machines

In this lecture we will discuss the Turing machine model of computation. This model
is named after Alan Turing (1912–1954), who proposed it in 1936. It is difficult to
overstate Alan Turing’s influence on the subject of this course—theoretical com-
puter science effectively started with Turing’s work, and for this reason he is some-
times referred to as the father of theoretical computer science.

The Church–Turing thesis

The intention of the Turing machine model is to provide a simple mathematical
abstraction of general computations. The idea that Turing machine computations
are representative of a fully general computational model is called the Church–
Turing thesis. Here is one statement of this thesis, but understand that it is the idea
rather than the exact choice of words that is important.

Church–Turing thesis: Any function that can be computed by a mechanical pro-
cess can be computed by a Turing machine.

Note that this is not a mathematical statement that can be proved or disproved.
If you wanted to try to prove a statement along these lines, the first thing you
would most likely do is to look for a mathematical definition of what it means for
a function to be “computed by a mechanical process,” and this is precisely what
the Turing machine model was intended to provide.

There are alternative models of computation that offer abstractions of general
computations. One example is λ-calculus, which was proposed by Alonzo Church
a short time prior to Turing’s introduction of what we now call Turing machines.
These two models, Turing machines and λ-calculus, are equivalent in the sense
that any computation that can be performed by one of them can be performed by
the other. Turing sketched a proof of this fact in his 1936 paper. We will see another
example in Lecture 14 when we show that a model called the stack machine model

119

CS 360 Introduction to the Theory of Computing

is equivalent to the Turing machine model. Based on the stack machine model, or
directly on the Turing machine model, it is not conceptually difficult to envision
the simulation of a model of computation abstracting the notion of a random access
machine.

While machines behaving like Turing machines have been built, this is mainly
a recreational activity. The Turing machine model was never intended to serve
as a practical approach to performing computations, but rather was intended to
provide a rigorous mathematical foundation for reasoning about computation—
and it has served this purpose very well since its introduction.

12.1 Definition of the Turing machine model

We will begin with an informal description of the Turing machine model before
stating the formal definition. There are three components of a Turing machine:

1. The finite state control. This component is in one of a finite number of states at
each instant.

2. The tape. This component consists of an infinite number of tape squares, each of
which can store one of a finite number of tape symbols at each instant. The tape
is infinite both to the left and to the right.

3. The tape head. The tape head can move left and right on the tape, and is under-
stood to be scanning exactly one of the tape squares at the start of each com-
putational step. The tape head can read which symbol is stored in the square it
scans, and it can write a new symbol into that square.

Figure 12.1 illustrates these three components. It is natural to imagine that the tape
head is connected in some way to the finite state control.

The idea is that the action of a Turing machine at each instant is determined
by the state of the finite state control together with the single symbol stored in the
tape square that the tape head is currently reading. Thus, the action is determined
by a finite number of possible alternatives: one action for each state/symbol pair.
Depending on the state and the symbol being scanned, the action that the machine
is to perform may involve changing the state of the finite state control, changing
the symbol in the tape square being scanned, and moving the tape head to the left
or right. Once this action is performed, the machine will again have some state for
its finite state control and will be reading some symbol on its tape, and the process
continues. One may consider both deterministic and nondeterministic variants of
the Turing machine model, but our main focus will be on the deterministic variant
of the model.

120

Lecture 12

0 $ 1 0 0 #

q4
finite
state

control tape
headtape

Figure 12.1: An illustration of the three components of a Turing machine: the finite
state control, the tape head, and the tape. The tape is infinite in both directions
(although it appears that this Turing machine’s tape was torn at both ends to fit it
into the figure).

When a Turing machine begins a computation, an input string is written on its
tape, and every other tape square is initialized to a special blank symbol, which may
not be included in the input alphabet. We need an actual symbol to represent the
blank symbol in these notes, and we will use the symbol for this purpose. More
generally, we will allow the possible symbols written on the tape to include other
non-input symbols in addition to the blank symbol, as it is sometimes convenient
to allow this possibility.

We also give Turing machines an opportunity to stop the computational process
and produce an output by requiring them to have two special states: an accept state
qacc and a reject state qrej. These two states are deemed halting states, and all other
states are non-halting states. If the machine enters a halting state, the computation
immediately stops and accepts or rejects accordingly. When we discuss language
recognition, our focus is naturally on whether or not a given Turing machine even-
tually reaches one of the states qacc or qrej, but we can also use the Turing machine
model to describe the computation of functions by taking into account the contents
of the tape if and when a halting state is reached.

Formal definition of DTMs

With the informal description of Turing machines from above in mind, we will
now proceed to the formal definition.

Definition 12.1. A deterministic Turing machine (or DTM, for short) is a 7-tuple

M = (Q, Σ, Γ, δ, q0, qacc, qrej), (12.1)

where Q is a finite and nonempty set of states, Σ is an alphabet called the input
alphabet, which may not include the blank symbol , Γ is an alphabet called the

121

CS 360 Introduction to the Theory of Computing

a1 a2 · · · an

q0

Figure 12.2: The initial configuration of a DTM when run on input w = a1a2 · · · an.

tape alphabet, which must satisfy Σ ∪ { } ⊆ Γ, δ is a transition function having the
form

δ : Q\{qacc, qrej} × Γ→ Q× Γ× {←,→}, (12.2)

q0 ∈ Q is the initial state, and qacc, qrej ∈ Q are the accept and reject states, which
must satisfy qacc 6= qrej.

The interpretation of the transition function is as follows. Suppose the DTM is
currently in a state p ∈ Q, the symbol stored in the tape square being scanned by
the tape head is a ∈ Γ, and it is the case that

δ(p, a) = (q, b, D) (12.3)

for D ∈ {←,→}. The action performed by the DTM is then to

1. change state to q,

2. overwrite the contents of the tape square being scanned by the tape head
with b, and

3. move the tape head in direction D (either left or right).

In the case that the state is qacc or qrej, the transition function does not specify an
action, because we assume that the DTM halts once it reaches one of these two
states.

Turing machine computations

If we have a DTM M = (Q, Σ, Γ, δ, q0, qacc, qrej), and we wish to consider its opera-
tion on some input string w ∈ Σ∗, we assume that it is started with its components
initialized as illustrated in Figure 12.2. That is, the input string is written on the
tape, one symbol per square, with every other tape square containing the blank
symbol, and with the tape head scanning the tape square immediately to the left of
the first input symbol. In the case that the input string is ε, all of the tape squares
start out storing blanks.

122

Lecture 12

Once the initial arrangement of the DTM is set up, the DTM begins taking steps,
as determined by the transition function δ in the manner suggested above. So long
as the DTM does not enter one of the two states qacc or qrej, the computation con-
tinues. If the DTM eventually enters the state qacc, it accepts the input string, and
if it eventually enters the state qrej, it rejects the input string. Thus, there are three
possible alternatives for a DTM M on a given input string w:

1. M accepts w.

2. M rejects w.

3. M runs forever on input w.

In some cases one can design a particular DTM so that the third alternative does
not occur, but in general it might.

Representing configurations of DTMs

In order to speak more precisely about Turing machines and state a formal defini-
tion concerning their behavior, we will require a bit more terminology. When we
speak of a configuration of a DTM, we are speaking of a description of all of the
Turing machine’s components at some instant. This includes

1. the state of the finite state control,

2. the contents of the entire tape, and

3. the tape head position on the tape.

Rather than drawing pictures depicting the different parts of Turing machines,
like in Figure 12.2, we use the following compact notation to represent configu-
rations. If we have a DTM M = (Q, Σ, Γ, δ, q0, qacc, qrej), and we wish to refer to a
configuration of this DTM, we express it in the form

u(q, a)v (12.4)

for some state q ∈ Q, a tape symbol a ∈ Γ, and (possibly empty) strings of tape
symbols u and v such that

u ∈ Γ∗\{ }Γ∗ and v ∈ Γ∗\Γ∗{ }. (12.5)

In words, u and v are strings of tape symbols, u does not start with a blank, and v
does not end with a blank. The interpretation of the expression (12.4) is that it refers
to the configuration in which the string uav is written on the tape in consecutive
squares, with all other tape squares containing the blank symbol, the state of M

123

CS 360 Introduction to the Theory of Computing

is q, and the tape head of M is positioned over the symbol a that occurs between u
and v. For example, the configuration of the DTM in Figure 12.1 is expressed as

0$1(q4, 0)0# (12.6)

while the configuration of the DTM in Figure 12.2 is

(q0,)w (12.7)

for w = a1 · · · an.
When working with descriptions of configurations, it is convenient to define a

few functions as follows. We define α : Γ∗ → Γ∗\{ }Γ∗ and β : Γ∗ → Γ∗\Γ∗{ }
recursively as

α(w) = w (for w ∈ Γ∗\{ }Γ∗)
α(w) = α(w) (for w ∈ Γ∗)

(12.8)

and
β(w) = w (for w ∈ Γ∗\Γ∗{ })
β(w) = β(w) (for w ∈ Γ∗),

(12.9)

and we define

γ : Γ∗(Q× Γ)Γ∗ →
(
Γ∗\{ }Γ∗

)
(Q× Γ)

(
Γ∗\Γ∗{ }

)
(12.10)

as
γ(u(q, a)v) = α(u)(q, a)β(v) (12.11)

for all u, v ∈ Γ∗, q ∈ Q, and a ∈ Γ. This is not as complicated as it might appear:
the function γ just throws away all blank symbols on the left-most end of u and
the right-most end of v, so that a proper expression of a configuration remains.

A yields relation for DTMs

In order to formally define what it means for a DTM to accept, reject, compute
a function, and so on, we will define a yields relation, similar to what we did for
context-free grammars.

Definition 12.2. Let M = (Q, Σ, Γ, δ, q0, qacc, qrej) be a DTM. The yields relation `M,
defined on pairs of configurations of M, includes exactly these pairs:

1. Moving right. For every choice of p ∈ Q\{qacc, qrej}, q ∈ Q, and a, b ∈ Γ satisfy-
ing

δ(p, a) = (q, b,→), (12.12)

124

Lecture 12

the yields relation includes these pairs for all u ∈ Γ∗\{ }Γ∗, v ∈ Γ∗\Γ∗{ },
and c ∈ Γ:

u(p, a)cv `M γ
(
ub(q, c)v)

u(p, a) `M γ
(
ub(q,)

)
.

(12.13)

2. Moving left. For every choice of p ∈ Q\{qacc, qrej}, q ∈ Q, and a, b ∈ Γ satisfying

δ(p, a) = (q, b,←), (12.14)

the yields relation includes these pairs for all u ∈ Γ∗\{ }Γ∗, v ∈ Γ∗\Γ∗{ },
and c ∈ Γ:

uc(p, a)v `M γ
(
u(q, c)bv

)
(p, a)v `M γ

(
(q,)bv

)
.

(12.15)

We also let `∗M denote the reflexive, transitive closure of `M. That is, we have

u(p, a)v `∗M y(q, b)z (12.16)

if and only if there exists an integer m ≥ 1, strings w1, . . . , wm, x1, . . . , xm ∈ Γ∗,
symbols c1, . . . , cm ∈ Γ, and states r1, . . . , rm ∈ Q such that u(p, a)v = w1(r1, c1)x1,
y(q, b)v = wm(rm, cm)xm, and

wk(rk, ck)xk `M wk+1(rk+1, ck+1)xk+1 (12.17)

for all k ∈ {1, . . . , m− 1}.

A more intuitive description of these relations is that the expression

u(p, a)v `M y(q, b)z (12.18)

means that by running M for one step we move from the configuration u(p, a)v to
the configuration y(q, b)z; and

u(p, a)v `∗M y(q, b)z (12.19)

means that by running M for some number of steps, possibly zero steps, we will
move from the configuration u(p, a)v to the configuration y(q, b)z.

12.2 Semidecidable and decidable languages;
computable functions

Now we will define the classes of semidecidable and decidable languages as well as
the notion of a computable function.

To define the classes of decidable and semidecidable languages, we must first
express formally, in terms of the yields relation defined in the previous section,
what it means for a DTM to accept or reject.

125

CS 360 Introduction to the Theory of Computing

Definition 12.3. Let M = (Q, Σ, Γ, δ, q0, qacc, qrej) be a DTM and let w ∈ Σ∗ be a
string. If there exist strings u, v ∈ Γ∗ and a symbol a ∈ Γ such that

(q0,)w `∗M u(qacc, a)v, (12.20)

then M accepts w. If there exist strings u, v ∈ Γ∗ and a symbol a ∈ Γ such that

(q0,)w `∗M u(qrej, a)v, (12.21)

then M rejects w. If neither of these conditions hold, then M runs forever on input w.

In words, if a DTM is set in its initial configuration, for some input string w, and
starts running, it accepts w if it eventually enters its accept state, it rejects w if it even-
tually enters its reject state, and it run forever if neither of these possibilities holds.
It is perhaps obvious, but nevertheless worth noting, that accepting and rejecting
are mutually exclusive—because DTMs are deterministic, each configuration has
a unique next configuration, and it follows that a DTM M cannot simultaneously
accept a string w and reject w.

Similar to what we have done for other computational models, we write L(M)
to denote the language of all strings that are accepted by a DTM M. In the case of
DTMs, the language L(M) does not really tell the whole story—a string w 6∈ L(M)
might either be rejected or it may cause M to run forever—but the notation is useful
nevertheless.

We now define the class of semidecidable languages to be those languages rec-
ognized by some DTM.

Definition 12.4. Let Σ be an alphabet and let A ⊆ Σ∗ be a language. The language
A is semidecidable if there exists a DTM M such that A = L(M).

The name semidecidable reflects the fact that if A = L(M) for some DTM M, and
w ∈ A, then running M on w will necessarily lead to acceptance; but if w 6∈ A, then
M might either reject or run forever on input w. That is, M does not really decide
whether a string w is in A or not, it only “semidecides”; for if w 6∈ A, you might
never learn this with certainty as a result of running M on w. There are several
alternative names that people often use in place of semidecidable, including Turing
recognizable, partially decidable, and recursively enumerable (or r.e. for short).

Next, as the following definition makes clear, we define the class of decidable
languages to be those languages for which there exists a DTM that correctly an-
swers whether or not a given string is in the language, never running forever.

Definition 12.5. Let Σ be an alphabet and let A ⊆ Σ∗ be a language. The language
A is decidable if there exists a DTM M with these two properties:

126

Lecture 12

1. M accepts every string w ∈ A.

2. M rejects every string w ∈ A.

The names recursive and computable are sometimes used in place of decidable.
Finally, let us define what it means for a function to be computable. We do this

for functions mapping strings to strings, but not necessarily having the same input
and output alphabets, as this generality will be important in future lectures.

Definition 12.6. Let Σ and Γ be alphabets and let f : Σ∗ → Γ∗ be a function. The
function f is computable if there exists a DTM M = (Q, Σ, ∆, δ, q0, qacc, qrej) such that
the relation

(q0,)w `∗M (qacc,) f (w) (12.22)

holds for every string w ∈ Σ∗. In this case we also say that DTM M computes f .

In this definition, ∆ can be any tape alphabet; by definition it must include all of
the symbols in the input alphabet Σ, and it must also include all symbols from the
alphabet Γ that appear in any output string in order for the relation (12.22) to hold.

In words, a function is computed by a DTM if, when run on any choice of
an input string to that function, it eventually accepts, leaving the correct output
written on the tape surrounded by blanks, with the tape head one square left of
this output string.

12.3 A simple example of a Turing machine

Let us now see an example of a DTM, which we will describe using a state diagram.
In the DTM case, we can represent the property that the transition function satisfies
δ(p, a) = (q, b,→) with a transition of the form

p qa, b→

and similarly we represent the property that δ(p, a) = (q, b,←) with a transition
of the form

p qa, b←

The state diagram for the example is given in Figure 12.3. The DTM M de-
scribed by this diagram recognizes the language

SAME =
{

0n1n : n ∈N
}

. (12.23)

127

CS 360 Introduction to the Theory of Computing

qrej

q0

q1 q2

q3

qacc ,
→

0, →

0, 0→
1, 1→

,
←

1, ←

0, 0←
1, 1←

,
← 1, 1→

0, 0←,
←

Figure 12.3: A DTM M for the language SAME = {0n1n : n ∈N}.

To be more precise, M accepts every string in SAME and rejects every string in
SAME, so never does the DTM run forever. Thus, SAME is decidable.

The specific way that the DTM M works can be summarized as follows. The
DTM M starts out with its tape head scanning the blank symbol immediately to
the left of its input. It moves the tape head right, and if it sees a 1 it rejects: the
input string must not be of the form 0n1n if this happens. On the other hand, if it
sees another blank symbol, it accepts: the input must be the empty string, which
corresponds to the n = 0 case in the description of SAME. Otherwise, it must have
seen the symbol 0, and in this case the 0 is erased (meaning that it replaces it with
the blank symbol), the tape head repeatedly moves right until a blank is found,
and then it moves one square back to the left. If a 1 is not found at this location the
DTM rejects: there were not enough 1s at the right end of the string. Otherwise, if a
1 is found, it is erased, and the tape head moves all the way back to the left, where
we essentially recurse on a slightly shorter string.

Of course, the summary just suggested does not tell you precisely how the DTM
works—but if you did not already have the state diagram from Figure 12.3, the

128

Lecture 12

summary would probably be enough to give you a good idea for how to come up
with the state diagram (or perhaps a slightly different one operating in a similar
way).

In fact, an even higher-level summary is enough to convey the basic idea of
how this DTM operates. We could, for instance, describe the functioning of the
DTM M as follows:

1. Accept if the input is the empty string.

2. Check that the left-most non-blank symbol on the tape is a 0 and that the right-
most non-blank symbol is a 1. Reject if this is not the case, and otherwise erase
these symbols and goto step 1.

There will, of course, be several specific ways to implement this algorithm with a
DTM, with the DTM M from Figure 12.3 being one of them.

The DTM M being discussed is very simple, which makes it atypical. The DTMs
we will be most interested in will almost always be much more complicated—so
complicated, in fact, that the idea of representing them by state diagrams would
be absurd. The reality is that state diagrams turn out to be almost totally useless
for describing DTMs, and so we will rarely employ them. Doing so would be anal-
ogous to describing a complex program using machine language instructions.

The more usual way to describe DTMs is in terms of algorithms, often expressed
in the form of pseudo-code or high-level descriptions like the last description of M
above. It may not be immediately apparent precisely which high-level algorithm
descriptions can be run on Turing machines, but as an intuitive guide one may
have confidence that if an algorithm can be implemented using your favorite pro-
gramming language, then it can also be run on a deterministic Turing machine. The
discussions in the two lectures to follow this one are primarily intended to help to
build this intuition.

129

