
Lecture 11

Pushdown automata

This is the last lecture of the course devoted to context-free languages. We will,
however, refer to context-free languages from time to time throughout the remain-
der of the course, just as for regular languages.

The first part of the lecture focuses on the pushdown automata model of com-
putation, which provides an alternative characterization of context-free languages
to the definition based on CFGs. The second part of the lecture is devoted to some
further properties of context-free languages that we have not discussed thus far,
and that happen to be useful for understanding pushdown automata.

11.1 Pushdown automata

The pushdown automaton (or PDA) model of computation is essentially what you
get if you equip an NFA with a stack. As we shall see, the class of languages rec-
ognized by PDAs is precisely the class of context-free languages, which provides a
useful tool for reasoning about this class of languages.

A few simple examples

Let us begin with an example of a PDA, expressed in the form of a state diagram in
Figure 11.1. The state diagram naturally looks a bit different from the state diagram
of an NFA or DFA, because it includes instructions for operating with the stack, but
the basic idea is the same. A transition labeled by an input symbol or ε means that
we read a symbol or take an ε-transition, just like an NFA; a transition labeled
(↓, a) means that we push the symbol a onto the stack; and a transition labeled
(↑, a) means that we pop the symbol a off of the stack.

Thus, the way the PDA P illustrated in Figure 11.1 works is that it first pushes
the stack symbol � onto the stack (which we assume is initially empty) and enters

107

CS 360 Introduction to the Theory of Computing

q0 q1 q2

r0

r1

(↓, �)

((↓, ?)

) (↑, ?)

(↑, �)

Figure 11.1: The state diagram of a PDA recognizing BAL.

q0 q1 q2 q3

r1 r2

(↓, �)

0 (↓, ?) 1 (↑, ?)

(↑, �)ε

Figure 11.2: The state diagram of a PDA recognizing SAME.

state q1 (without reading anything from the input). From state q1 it is possible
to either read the left-parenthesis symbol “(“ and move to r0 or read the right-
parenthesis symbol “)” and move to r1. To get back to q1 we must either push the
symbol ? onto the stack (in the case that we just read a left-parenthesis) or pop the
symbol ? off of the stack (in the case that we just read a right-parenthesis). Finally,
to get to the accept state q2 from q1, we must pop the symbol � off of the stack. Note
that a transition requiring a pop operation can only be followed if that symbol is
on the top of the stack.

It is not too hard to see that the language recognized by this PDA is the lan-
guage BAL of balanced parentheses; these are precisely the input strings for which
it will be possible to perform the required pushes and pops to land on the accept

108

Lecture 11

state q2 after the entire input string is read.
A second example is given in Figure 11.2. In this case the PDA recognizes the

language
SAME =

{
0n1n : n ∈N

}
. (11.1)

In this case the stack is essentially used as a counter: we push a star for every 0,
pop a star for every 1, and by using the “bottom of the stack marker” � we check
that an equal number of the two symbols have been read.

Definition of pushdown automata

The formal definition of the pushdown automata model is similar to that of nonde-
terministic finite automata, except that one must also specify the alphabet of stack
symbols and alter the form of the transition function so that it specifies how the
stack operates.

Before we get to the definition, let us introduce some notation that will be useful
for discussing stack operations. For any alphabet Γ, which we will refer to as the
stack alphabet, the stack operation alphabet l Γ is defined as

l Γ = {↓, ↑} × Γ. (11.2)

The alphabet l Γ represents the possible stack operations for a stack that uses the
alphabet Γ; for each a ∈ Γ we imagine that the symbol (↓, a) represents pushing a
onto the stack, and that the symbol (↑, a) represents popping a off of the stack.

Definition 11.1. A pushdown automaton (or PDA for short) is 6-tuple

P = (Q, Σ, Γ, δ, q0, F) (11.3)

where Q is a finite and nonempty set of states, Σ is an alphabet (called the input
alphabet), Γ is an alphabet (called the stack alphabet), which must satisfy Σ∩ l Γ = ∅,
δ is a function of the form

δ : Q×
(
Σ ∪ l Γ ∪ {ε}

)
→ P(Q), (11.4)

q0 ∈ Q is the start state, and F ⊆ Q is a set of accept states.

The way to interpret a transition function having the above form is that the set
of possible labels on transitions is Σ ∪ l Γ ∪ {ε}; we can either read a symbol a,
push a symbol from Γ onto the stack, pop a symbol from Γ off of the stack, or take
an ε-transition.

109

CS 360 Introduction to the Theory of Computing

Strings of valid stack operations

Before we discuss the formal definition of acceptance for PDAs, it will be helpful
to think about stacks and valid sequences of stack operations. Consider any stack
alphabet Γ, and let the stack operation alphabet l Γ be as defined previously.

We can view a string v ∈ (l Γ)∗ as either representing or failing to represent
a valid sequence of stack operations, assuming we read it from left to right and
imagine starting with an empty stack. If a string does represent a valid sequence
of stack operations, we will say that it is a valid stack string; and if a string fails to
represent a valid sequence of stack operations, we will say that it is an invalid stack
string.

For example, if Γ = {0, 1}, then these strings are valid stack strings:

(↓, 0)(↓, 1)(↑, 1)(↓, 0)(↑, 0)(↑, 0),

(↓, 0)(↓, 1)(↑, 1)(↓, 0)(↑, 0).
(11.5)

In the first case the stack is transformed like this (where the left-most symbol rep-
resents the top of the stack):

ε→ 0→ 10→ 0→ 00→ 0→ ε. (11.6)

The second case is similar, except that we do not leave the stack empty at the end:

ε→ 0→ 10→ 0→ 00→ 0. (11.7)

On the other hand, these strings are invalid stack strings:

(↓, 0)(↓, 1)(↑, 0)(↓, 0)(↑, 1)(↑, 0),

(↓, 0)(↓, 1)(↑, 1)(↓, 0)(↑, 0)(↑, 0)(↑, 1).
(11.8)

For the first case we start by pushing 0 and then 1, which is fine, but then we try
to pop 0 even though 1 is on the top of the stack. In the second case the very last
symbol is the problem: we try to pop 1 even through the stack is empty.

It is the case that the language over the alphabet l Γ consisting of all valid stack
strings is a context-free language. To see that this is so, let us first consider the
language of all valid stack strings that also leave the stack empty after the last op-
eration. For instance, the first sequence in (11.5) has this property while the second
does not. We can obtain a CFG for this language by mimicking the CFG for the bal-
anced parentheses language, but imagining a different parenthesis type for each
symbol.

110

Lecture 11

To be more precise, let us define a CFG G so that it includes the rule

S→ (↓, a) S (↑, a) S (11.9)

for every symbol a ∈ Γ, as well as the rule S→ ε. This CFG generates the language
of valid stack strings for the stack alphabet Γ that leave the stack empty at the end.

If we drop the requirement that the stack be left empty after the last operation,
then we still have a context-free language. This is because this is the language of
all prefixes of the language generated by the CFG in the previous paragraph, and
the context-free languages are closed under taking prefixes.

Definition of acceptance for PDAs

Next let us consider a formal definition of what it means for a PDA P to accept or
reject a string w.

Definition 11.2. Let P = (Q, Σ, Γ, δ, q0, F) be a PDA and let w ∈ Σ∗ be a string. The
PDA P accepts the string w if there exists a natural number m ∈ N, a sequence of
states r0, . . . , rm, and a sequence

a1, . . . , am ∈ Σ ∪ l Γ ∪ {ε} (11.10)

for which these properties hold:

1. r0 = q0 and rm ∈ F.

2. rk+1 ∈ δ(rk, ak+1) for every k ∈ {0, . . . , m− 1}.

3. By removing every symbol from the alphabet l Γ from a1 · · · am, the input string
w is obtained.

4. By removing every symbol from the alphabet Σ from a1 · · · am, a valid stack
string is obtained.

If P does not accept w, then P rejects w.

For the most part the definition is straightforward. In order for P to accept w,
there must exist a sequence of states, along with moves between these states, that
agree with the input string and the transition function. In addition, the usage of
the stack must be consistent with our understanding of how stacks work, and this
is represented by the fourth property.

As you would expect, for a given PDA P, we let L(P) denote the language rec-
ognized by P, which is the language of all strings accepted by P.

111

CS 360 Introduction to the Theory of Computing

p q
a↑b↓ c

p r1 r2 qa (↑, b) (↓, c)

Figure 11.3: The shorthand notation for PDAs appears on the top, and the actual
PDA states and transitions represented by this shorthand notation appears on the
bottom.

Some useful shorthand notation for PDA state diagrams

There is a shorthand notation for PDA state diagrams that is sometimes useful,
which is essentially to represent a sequence of transitions as if it were a single
transition. In particular, if a transition is labeled

a↑b↓ c, (11.11)

the meaning is that the symbol a is read, b is popped off of the stack, and then c
is pushed onto the stack. Figure 11.3 illustrates how this shorthand is to be inter-
preted. It is to be understood that the “implicit” states in a PDA represented by this
shorthand are unique to each edge. For instance, the states r1 and r2 in Figure 11.3
are only used to implement this one transition from p to q, and are not reachable
from any other states or used to implement other transitions.

This sort of shorthand notation can also be used in case multiple symbols are
to be pushed or popped. For instance, an edge labeled

a↑b1b2b3 ↓ c1c2c3c4 (11.12)

means that a is read from the input, b1b2b3 is popped off the top of the stack, and
then c1c2c3c4 is pushed onto the stack. We will always follow the convention that
the top of the stack corresponds to the left-hand side of any string of stack sym-
bols, so such a transition requires b1 on the top of the stack, b2 next on the stack,
and b3 third on the stack—and when the entire operation is done, c1 is on top of
the stack, c2 is next, and so on. One can follow a similar pattern to what is shown
in Figure 11.3 to implement such a transition using the ordinary types of transi-
tions from the definition of PDAs, along with intermediate states to perform the
operations in the right order.

Finally, we can simply omit parts of a transition of the above form if those parts
are not used. For instance, the transition label

a↑b (11.13)

112

Lecture 11

q0 q1 q2 q3
↓�

0↓? 1↑?

ε ↑�

Figure 11.4: The state diagram of a PDA for SAME.

means “read a from the input, pop a off of the stack, and push nothing,” the tran-
sition label

↑b↓ c1c2 (11.14)

means “read nothing from the input, pop b off of the stack, and push c1c2,” and so
on. Figure 11.4 illustrates the same PDA as in Figure 11.2 using this shorthand.

A remark on deterministic pushdown automata

It must be stressed that pushdown automata are, by default, considered to be non-
deterministic.

It is possible to define a deterministic version of the PDA model, but if we do
this we end up with a strictly weaker computational model. That is, every determin-
istic PDA will recognize a context-free language, but some context-free languages
cannot be recognized by a deterministic PDA. One example is the language PAL of
palindromes over the alphabet Σ = {0, 1}; this language is recognized by the PDA
in Figure 11.5, but no deterministic PDA can recognize it.

We will not prove this fact, and indeed we have not even discussed a formal
definition for deterministic PDAs, but the intuition is clear enough. Deterministic
PDAs cannot detect when they have reached the middle of a string, and for this
reason the use of a stack is not enough to recognize palindromes; no matter how
you do it, the machine will never know when to stop pushing and start popping.
A nondeterministic machine, on the other hand, can simply guess when to do this.

11.2 Further examples

Next we will consider a few additional operations under which the context-free
languages are closed. These include string reversals, symmetric differences with
finite languages, and a couple of operations that involve inserting and deleting
certain alphabet symbols from strings.

113

CS 360 Introduction to the Theory of Computing

q0 q1 q2 q3
↓�

0↓0
1↓1

0↑0
1↑1

0, 1, ε ↑�

Figure 11.5: A PDA recognizing the language PAL.

Reverse

We already discussed string reversals in Lecture 6, where we observed that the
reverse of a regular language is always regular. The same thing is true of context-
free languages, as the following proposition establishes.

Proposition 11.3. Let Σ be an alphabet and let A ⊆ Σ∗ be a context-free language. The
language AR is context free.

Proof. Because A is context free, there must exists a CFG G such that A = L(G).
Define a new CFG H as follows: H contains exactly the same variables as G, and
for each rule X → w of G we include the rule X → wR in H. In words, H is the
CFG obtained by reversing the right-hand side of every rule in G. It is evident that
L(H) = L(G)R = AR, and therefore AR is context free.

Symmetric difference with a finite language

Next we will consider symmetric differences, which were also defined in Lecture 6.
It is certainly not the case that the symmetric difference between two context-free
languages is always context free, or even that the symmetric difference between a
context-free language and a regular language is context free.

For example, if A ⊆ Σ∗ is context free but A is not, then the symmetric differ-
ence between A and the regular language Σ∗ is not context free, because

AMΣ∗ = A. (11.15)

On the other hand, the symmetric difference between a context-free language
and a finite language must always be context free, as the following proposition
shows. This is interesting because the symmetric difference between a given lan-
guage and a finite language carries an intuitive meaning: it means we modify that
language on a finite number of strings, by either including or excluding these

114

Lecture 11

strings. The proposition therefore shows that the property of being context free
does not change when a language is modified on a finite number of strings.

Proposition 11.4. Let Σ be an alphabet, let A ⊆ Σ∗ be a context-free language, and let
and B ⊆ Σ∗ be a finite language. The language AMB is context free.

Proof. First, given that B is finite, we have that B is regular, and therefore B is
regular as well, because the regular languages are closed under complementation.
This implies that A ∩ B is context free, because the intersection of a context-free
language and a regular language is context free.

Next, we observe that A ∩ B is contained in B, and is therefore finite. Every
finite language is context free, and therefore A ∩ B is context free.

Finally, given that we have proved that both A ∩ B and A ∩ B are context free,
it follows that AMB =

(
A ∩ B

)
∪
(

A ∩ B
)

is context free because the union of two
context-free languages is necessarily context free.

Closure under string projections

Suppose that Σ and Γ are disjoint alphabets, and we have a string w ∈ (Σ ∪ Γ)∗

that may contain symbols from either or both of these alphabets. We can imagine
deleting all of the symbols in w that are contained in the alphabet Γ, which leaves
us with a string over Σ. We call this operation the projection of a string over the
alphabet Σ ∪ Γ onto the alphabet Σ.

We will prove two simple closure properties of the context-free languages that
concern this notion. The first one says that if you have a context-free language over
the alphabet Σ ∪ Γ, and you project all of the strings in A onto the alphabet Σ, you
are left with a context-free language.

Proposition 11.5. Let Σ and Γ be disjoint alphabets, let A ⊆ (Σ ∪ Γ)∗ be a context-free
language, and define

B =

{
w ∈ Σ∗ :

there exists a string x ∈ A such that w is
obtained from x by deleting all symbols in Γ

}
. (11.16)

The language B is context free.

Proof. Because A is context free, there exists a CFG G in Chomsky normal form
such that L(G) = A. We will create a new CFG H as follows:

1. For every rule of the form X → YZ appearing in G, include the same rule in H.
Also, if the rule S→ ε appears in G, include this rule in H as well.

2. For every rule of the form X → a in G, where a ∈ Σ, include the same rule
X → a in H.

115

CS 360 Introduction to the Theory of Computing

3. For every rule of the form X → b in G, where b ∈ Γ, include the rule X → ε

in H.

It is apparent that L(H) = B, and therefore B is context free.

We can also go the other way, so to speak: if A is a context-free language over
the alphabet Σ, and we consider the language consisting of all strings over the
alphabet Σ ∪ Γ that result in a string in A when they are projected onto the alpha-
bet Σ, then this new language over Σ ∪ Γ will also be context free. In essence, this
is the language you get by picking any string in A, and then inserting any number
of symbols from Γ anywhere into the string.

Proposition 11.6. Let Σ and Γ be disjoint alphabets, let A ⊆ Σ∗ be a context-free lan-
guage, and define

B =

{
x ∈ (Σ ∪ Γ)∗ :

the string w obtained from x by deleting
all symbols in Γ satisfies w ∈ A

}
. (11.17)

The language B is context free.

Proof. Because A is context free, there exists a CFG G in Chomsky normal for such
that L(G) = A. Define a new CFG H as follows:

1. Include the rule
W → bW (11.18)

in H for each b ∈ Γ, as well as the rule W → ε, for a new variable W not already
used in G. The variable W generates any string of symbols from Γ, including
the empty string.

2. For each rule of the form X → YZ in G, include the same rule in H without
modifying it.

3. For each rule of the form X → a in G, include this rule in H:

X →WaW (11.19)

4. If the rule S→ ε is contained in G, then include this rule in H:

S→W (11.20)

Intuitively speaking, H operates in much the same way as G, except that any
time G generates a symbol or the empty string, H is free to generate the same
string with any number of symbols from Γ inserted. We have that L(H) = B, and
therefore B is context free.

116

Lecture 11

q0 q1 q2
↓S� ↑�

↑X ↓w
a↑ a

}
for every rule X → w
and every input symbol a

Figure 11.6: A PDA recognizing the language of an arbitrary CFG.

11.3 Equivalence of PDAs and CFGs

As suggested earlier in the lecture, it is the case that a language is context free if
and only if it is recognized by a PDA. This section gives a high-level description of
one way to prove this equivalence.

Every context-free language is recognized by a PDA

To prove that every context-free language is recognized by some PDA, we can
define a PDA that corresponds directly to a given CFG. That is, if

G = (V, Σ, R, S) (11.21)

is a context-free grammar, then we can obtain a PDA P such that L(P) = L(G)
in the manner suggested by Figure 11.6. The stack symbols of P are taken to be
V ∪ Σ, along with a special bottom of the stack marker � (which we assume is not
contained in V ∪ Σ), and during the computation the stack provides a way to store
the symbols and variables needed to carry out a derivation with respect to G.

If you consider how derivations of strings by a grammar G and the operation
of the corresponding PDA P work, it will be evident that P accepts precisely those
strings that can be generated by G. We start with just the start variable on the stack
(in addition to the bottom of the stack marker). In general, if a variable appears
on the top of the stack, we can pop it off and replace it with any string of symbols
and variables appearing on the right-hand side of a rule for the variable that was
popped; and if a symbol appears on the top of the stack we essentially just match
it up with an input symbol—so long as the input symbol matches the symbol on
the top of the stack we can pop it off, move to the next input symbol, and process
whatever is left on the stack. We can move to the accept state whenever the stack
is empty (meaning that just the bottom of the stack marker is present), and if all of
the input symbols have been read we accept. This situation is representative of the
input string having been derived by the grammar.

117

CS 360 Introduction to the Theory of Computing

Every language recognized by a PDA is context free

We will now argue that every language recognized by a PDA is context free. There
is a method through which a given PDA can actually be converted into an equiva-
lent CFG, but it is messy and the intuition tends to get lost in the details. Here we
will summarize a different way to prove that every language recognized by a PDA
is context free that is pretty simple, given the tools that we have already collected
in our study of context-free languages. If you wanted to, you could turn this proof
into an explicit construction of a CFG for a given PDA, and it would not be all that
different from the method just mentioned, but we will focus just on the proof and
not on turning it into an explicit construction.

Suppose we have a PDA P = (Q, Σ, Γ, δ, q0, F). The transition function δ takes
the form

δ : Q×
(
Σ ∪ l Γ ∪ {ε}

)
→ P(Q), (11.22)

so if we wanted to, we could think of P as being an NFA for some language over
the alphabet Σ ∪ l Γ. Slightly more formally, let N be the NFA defined as

N =
(
Q, Σ ∪ l Γ, δ, q0, F

)
; (11.23)

we do not even need to change the transition function because it already has the
right form of a transition function for an NFA over the alphabet Σ∪l Γ. Also define
B = L(N) ⊆ (Σ ∪ l Γ)∗ to be the language recognized by N. In general, the strings
in B include symbols in both Σ and l Γ. Even though symbols in l Γ may be present
in the strings accepted by N, there is no requirement on these strings to actually
represent a valid use of a stack, because N does not have a stack with which to
check this condition.

Now let us consider a second language C ⊆ (Σ ∪ l Γ)∗. This will be the lan-
guage consisting of all strings over the alphabet Σ ∪ l Γ having the property that
by deleting every symbol in Σ, a valid stack string is obtained. We already dis-
cussed the fact that the language consisting of all valid stack strings is context free,
and so it follows from Proposition 11.6 that the language C is also context free.

Next, we consider the intersection D = B ∩ C. Because D is the intersection
of a regular language and a context-free language, it is context free. The strings
in D actually correspond to valid computations of the PDA P that lead to an accept
state; but in addition to the input symbols in Σ that are read by P, these strings also
include symbols in l Γ that represent transitions of P that involve stack operations.

The language D is therefore not the same as the language A, but it is closely
related; A is the language that is obtained from D by deleting all of the symbols in
l Γ and leaving the symbols in Σ alone. Because we know that D is context free,
it therefore follows that A is context free by Proposition 11.5, which is what we
wanted to prove.

118

