
Lecture 9

Properties of context-free languages

In this lecture we will examine various properties of the class of context-free lan-
guages, including the fact that it is closed under the regular operations, that every
regular language is context free, and that the intersection of a context-free language
and a regular language is always context free.

9.1 Closure under the regular operations

Let us begin by proving that the context-free languages are closed under the regu-
lar operations.

Theorem 9.1. Let Σ be an alphabet and let A, B ⊆ Σ∗ be context-free languages. The
languages A ∪ B, AB, and A∗ are context free.

Proof. Because A and B are context-free languages, there must exist context-free
grammars

GA =
(
VA, Σ, RA, SA

)
and GB =

(
VB, Σ, RB, SB

)
(9.1)

such that L(GA) = A and L(GB) = B. Because the specific names we choose for
the variables in a context-free grammar have no effect on the language it generates,
there is no loss of generality in assuming VA and VB are disjoint sets.

First let us construct a CFG G for the language A ∪ B. This CFG will include
all of the variables and rules of GA and GB together, along with a new variable S
(which we assume is not already contained in VA or VB, and which we will take to
be the start variable of G) and two new rules:

S→ SA
∣∣ SB. (9.2)

Formally speaking we may write

G = (V, Σ, R, S) (9.3)

87

CS 360 Introduction to the Theory of Computing

where V = VA ∪ VB ∪ {S} and R = RA ∪ RB ∪ {S → SA, S → SB}. In the typical
style in which we write CFGs, the grammar G looks like this:

S→ SA
∣∣ SB

all rules of GA

all rules of GB

It is evident that L(G) = A∪ B; each derivation may begin with S⇒ SA or S⇒ SB,
after which either SA generates any string in A or SB generates any string in B. As
the language A ∪ B is generated by the CFG G, we have that it is context free.

Next we will construct a CFG H for the language AB. The construction of H
is very similar to the construction of G above. The CFG H will include all of the
variables and rules of GA and GB, along with a new start variable S and one new
rule:

S→ SASB. (9.4)

Formally speaking we may write

H = (V, Σ, R, S) (9.5)

where V = VA ∪VB ∪ {S} and R = RA ∪ RB ∪ {S → SASB}. In the typical style in
which we write CFGs, the grammar G looks like this:

S→ SASB

all rules of GA

all rules of GB

It is evident that L(G) = AB; each derivation must begin with S⇒ SASB, and then
SA generates any string in A and SB generates any string in B. As the language AB
is generated by the CFG H, we have that it is context free.

88

Lecture 9

Finally we will construct a CFG K for A∗. This time the CFG K will include just
the rules and variables of GA, along with a new start variable S and two new rules:

S→ S SA
∣∣ ε. (9.6)

Formally speaking we may write

K = (V, Σ, R, S) (9.7)

where V = VA ∪ {S} and R = RA ∪ {S → S SA, S → ε}. In the typical style in
which we write CFGs, the grammar K looks like this:

S→ S SA
∣∣ ε

all rules of GA

Every possible left-most derivation of a string by K must begin with zero or more
applications of the rule S→ S SA followed by the rule S→ ε. This means that every
left-most derivation begins with a sequence of rule applications that is consistent
with one of the following relationships:

S ∗⇒ ε

S ∗⇒ SA

S ∗⇒ SA SA

S ∗⇒ SA SA SA
...

(9.8)

and so on. After this, each occurrence of SA generates any string in A. It is therefore
the case that L(K) = A∗, so that A∗ is context free.

9.2 Relationships to regular languages

This section discusses relationships between context-free languages and regular
languages. In particular, we will prove that every regular language is context free,
and (more generally) that the intersection between a context-free language and a
regular language is always context free.

89

CS 360 Introduction to the Theory of Computing

Every regular language is context free

Let us begin with the first fact suggested above, which is that every regular lan-
guage is also context free. We will discuss two different ways to prove this fact.

Theorem 9.2. Let Σ be an alphabet and let A ⊆ Σ∗ be a regular language. The language
A is context free.

First proof. With every regular expression R over the alphabet Σ, one may associate
a CFG G by recursively applying these simple constructions:

1. If R = ∅, then G is the CFG
S→ S, (9.9)

which generates the empty language ∅.

2. If R = ε, then G is the CFG
S→ ε, (9.10)

which generates the language {ε}.

3. If R = a for a ∈ Σ, then G is the CFG

S→ a, (9.11)

which generates the language {a}.

4. If R = (R1 ∪ R2), then G is the CFG generating the language L(G1) ∪ L(G2), as
described in the proof of Theorem 9.1, where G1 and G2 are CFGs associated
with the regular expressions R1 and R2, respectively.

5. If R = (R1R2), then G is the CFG generating the language L(G1)L(G2), as
described in the proof of Theorem 9.1, where G1 and G2 are CFGs associated
with the regular expressions R1 and R2, respectively.

6. If R = (R∗1), then G is the CFG generating the language L(G1)
∗, as described

in the proof of Theorem 9.1, where G1 is the CFG associated with the regular
expression R1.

In each case, we observe that L(G) = L(R).
Now, by the assumption that A is regular, there must exist a regular expression

R such that L(R) = A. For the CFG G obtained from R as described above, we find
that L(G) = A, and therefore A is context free.

90

Lecture 9

Second proof. Because A is regular, there must exist a DFA

M = (Q, Σ, δ, q0, F) (9.12)

such that L(M) = A.
We will define a CFG G that effectively simulates M, generating exactly those

strings that are accepted by M. In particular, we will define

G =
(
V, Σ, R, Xq0

)
(9.13)

where the variables are V = {Xq : q ∈ Q} (one variable for each state of M) and
the following rules are to be included in R:

1. For each choice of p, q ∈ Q and a ∈ Σ satisfying δ(p, a) = q, the rule

Xp → aXq (9.14)

is included in R.

2. For each state q ∈ F, the rule
Xq → ε (9.15)

is included in R.

Now, by examining the rules suggested above, we see that every derivation
of a string by G begins with the start variable (of course), involves zero or more
applications of rules of the first type listed above, and then ends when a rule of the
second type is applied. There will always be a single variable appearing after each
step of the derivation, until the very last step in which this variable is eliminated. It
is important that this final step is only possible when the variable Xq corresponds
to an accept state q ∈ F. By considering the rules of the first type, it is evident that[

Xq0
∗⇒ wXq

]
⇔

[
δ∗(q0, w) = q

]
. (9.16)

We therefore have Xq0
∗⇒ w if and only if there exists a choice of q ∈ F for which

δ∗(q0, w) = q. This is equivalent to the statement that L(G) = L(M), which com-
pletes the proof.

Intersections of regular and context-free languages

The context-free languages are not closed under some operations for which the reg-
ular languages are closed. For example, the complement of a context-free language
may fail to be context free, and the intersection of two context-free languages may
fail to be context free. We will observe both of these facts in the next lecture.

91

CS 360 Introduction to the Theory of Computing

It is the case, however, that the intersection of a context-free language and a
regular language is always context free, as we will now prove. The proof is more
complicated than most of the other proofs we have seen thus far in the course—if
it is not immediately clear, just do your best to try to understand the idea behind it.

Theorem 9.3. Let Σ be an alphabet, let A, B ⊆ Σ∗ be languages, and assume A is context
free and B is regular. The language A ∩ B is context free.

Proof. The language A is context free, so there exists a CFG that generates it. As
discussed in the previous lecture, we may in fact assume that there exists a CFG in
Chomsky normal form that generates A. Having this CFG be in Chomsky normal
form will greatly simplify the proof. Hereafter we will assume

G = (V, Σ, R, S) (9.17)

is a CFG in Chomsky normal form such that L(G) = A. Because the language B is
regular, there must also exist a DFA

M = (Q, Σ, δ, q0, F) (9.18)

such that L(M) = B.
The main idea of the proof is to define a new CFG H such that L(H) = A ∩ B.

The CFG H will have |Q|2 variables for each variable of G, which may be a lot but
that is not a problem—it is a finite number, and that is all we require of a set of
variables of a context-free grammar. In particular, for each variable X ∈ V, we will
include a variable Xp,q in H for every choice of p, q ∈ Q. In addition, we will add a
new start variable S0 to H.

The intended meaning of each variable Xp,q is that it should generate all strings
that (i) are generated by X with respect to the grammar G, and (ii) cause M to move
from state p to state q. We will accomplish this by adding a collection of rules to H
for each rule of G. Because the grammar G is assumed to be in Chomsky normal
form, there are just three possible forms for its rules, and they can be handled one
at a time as follows:

1. For each rule of the form X → a in G, include the rule

Xp,q → a (9.19)

in H for every pair of states p, q ∈ Q for which δ(p, a) = q.

2. For each rule of the form X → YZ in G, include the rule

Xp,q → Yp,r Zr,q (9.20)

in H for every choice of states p, q, r ∈ Q.

92

Lecture 9

3. If the rule S → ε is included in G and q0 ∈ F (i.e., ε ∈ A ∩ B), then include the
rule

S0 → ε (9.21)

in H, where S0 is the new start variable for H mentioned above.

Once we have added all of these rules in H, we also include the rule

S0 → Sq0,p (9.22)

in H for every accept state p ∈ F.
The intended meaning of each variable Xp,q in H has been suggested above.

More formally speaking, we wish to prove that the following equivalence holds
for every nonempty string w ∈ Σ∗, every variable X ∈ V, and every choice of
states p, q ∈ Q: [

Xp,q
∗⇒H w

]
⇔
[(

X ∗⇒G w
)
∧
(
δ∗(p, w) = q

)]
. (9.23)

The two implications can naturally be handled separately, and one of the two im-
plications naturally splits into two parts.

First, it is almost immediate that the implication[
Xp,q

∗⇒H w
]
⇒
[
X ∗⇒G w

]
(9.24)

holds, as a derivation of w starting from Xp,q in H gives a derivation of w starting
from X in G if we simply remove all of the subscripts on all of the variables.

Next, we can prove the implication[
Xp,q

∗⇒H w
]
⇒
[
δ∗(p, w) = q

]
(9.25)

by induction on the length of w. The base case is |w| = 1 (because we are assuming
w 6= ε), and in this case we must have Xp,q ⇒H a for some a ∈ Σ. The only rules
that allow such a derivation are of the first type above, which require δ(p, a) = q.
In the general case in which |w| ≥ 2, it must be that

Xp,q ⇒ Yp,r Zr,q (9.26)

for variables Yp,r and Zr,q satisfying

Yp,r
∗⇒H y and Zr,q

∗⇒H z (9.27)

for strings y, z ∈ Σ∗ for which w = yz. By the hypothesis of induction we conclude
that δ∗(p, y) = r and δ∗(r, z) = q, so that δ∗(p, w) = q.

93

CS 360 Introduction to the Theory of Computing

Finally, we can prove[(
X ∗⇒G w

)
∧
(
δ∗(p, w) = q

)]
⇒
[
Xp,q

∗⇒H w
]
, (9.28)

again by induction on the length of w. The base case is |w| = 1, which is straight-
forward: if X ⇒G a and δ(p, a) = q, then Xp,q ⇒H a because the rule that al-
lows for this derivation has been included among the rules of H. In the general
case in which |w| ≥ 2, the relation X ∗⇒G w implies that X ⇒G YZ for vari-
ables Y, Z ∈ V such that Y ∗⇒G y and Z ∗⇒G z, for strings y, z ∈ Σ∗ satisfying
w = yz. Choosing r ∈ Q so that δ∗(p, y) = r (and therefore δ∗(r, z) = q), we
have that Yp,r

∗⇒ y and Zr,q
∗⇒ z by the hypothesis of induction, and therefore

Xp,q ⇒H Yp,rZr,q
∗⇒H yz = w.

Because every derivation of a nonempty string by H must begin with

S0 ⇒H Sq0,p (9.29)

for some p ∈ F, we find that the nonempty strings w generated by H are precisely
those strings that are generated by G and satisfy δ∗(q0, w) = p for some p ∈ F.
Equivalently, for w 6= ε it is the case that w ∈ L(H) ⇔ w ∈ A ∩ B. The empty
string has been handled as a special case, so it follows that L(H) = A ∩ B. The
language A ∩ B is therefore context free.

Remark 9.4. Notice that Theorem 9.3 implies Theorem 9.2; one is free to choose
A = Σ∗ (which is context free) and B to be any regular language, and the implica-
tion is that Σ∗ ∩ B = B is context free. Because the two proofs of Theorem 9.2 that
we already discussed are much simpler than the one above, however, it makes
sense that we considered them first.

9.3 Prefixes, suffixes, and substrings

Let us finish off the lecture with just a few quick examples. Recall from Lecture 6
that for any language A ⊆ Σ∗ we define

Prefix(A) =
{

x ∈ Σ∗ : there exists v ∈ Σ∗ such that xv ∈ A
}

, (9.30)

Suffix(A) =
{

x ∈ Σ∗ : there exists u ∈ Σ∗ such that ux ∈ A
}

, (9.31)

Substring(A) =
{

x ∈ Σ∗ : there exist u, v ∈ Σ∗ such that uxv ∈ A
}

. (9.32)

Let us prove that if A is context free, then each of these languages is also context
free. In the interest of time, we will just explain how to come up with context-free
grammars for these languages and not go into details regarding the proofs that

94

Lecture 9

these CFGs are correct. In all three cases, we will assume that G = (V, Σ, R, S) is a
CFG in Chomsky normal form such that L(G) = A.

We will need to make one additional assumption on the grammar G, which is
that none of the variables in G generates the empty language. A variable that gen-
erates the empty language is called a useless variable, and it should not be hard
to convince yourself that useless variables are indeed useless (with one excep-
tion). That is, if you have any CFG G in Chomsky normal form that generates a
nonempty language, you can easily come up with a new CFG in Chomsky normal
form for the same language that does not contain any useless variables simply by
removing the useless variables and every rule in which a useless variable appears.

The one exception is the empty language itself, which by definition requires
that the start variable is useless (and you will need at least one additional useless
variable to ensure that the grammar has a nonempty set of rules and obeys the
conditions of a CFG in Chomsky normal form). However, we do not need to worry
about this case because Prefix(∅), Suffix(∅), and Substring(∅) are all equal to the
empty language, and are therefore context free.

For the language Prefix(A), we will design a CFG H as follows. First, for every
variable X ∈ V used by G we will include this variable in H, and in addition we
will also include a variable X0. The idea is that X will generate exactly the same
strings in H that it does in G, while X0 will generate all the prefixes of the strings
generated by X in G. We include rules in H as follows:

1. For every rule of the form X → YZ in G, include these rules in H:

X → YZ
X0 → YZ0

∣∣ Y0
(9.33)

2. For every rule of the form X → a in G, include these rules in H:

X → a
X0 → a

∣∣ ε
(9.34)

Finally, we take S0 to be the start variable of H.
The idea is similar for the language Suffix(A), for which we will construct a

CFG K. This time, for every variable X ∈ V used by G we will include this variable
in K, and in addition we will also include a variable X1. The idea is that X will
generate exactly the same strings in K that it does in G, while X1 will generate all
the suffixes of the strings generated by X in G. We include rules in K as follows:

1. For every rule of the form X → YZ in G, include these rules in K:

X → YZ
X1 → Y1 Z

∣∣ Z1
(9.35)

95

CS 360 Introduction to the Theory of Computing

2. For every rule of the form X → a in G, include these rules in K:

X → a
X1 → a

∣∣ ε
(9.36)

Finally, we take S1 to be the start variable of K.
To obtain a CFG J for Substring(A), we can simply combine the two construc-

tions above (i.e., apply either one to G, then apply the other to the resulting CFG).
Equivalently, we can include variables X, X0, X1, and X2 in J for every X ∈ V and
include rules as follows:

1. For every rule of the form X → Y Z in G, include these rules in J:

X → YZ
X0 → YZ0

∣∣ Y0

X1 → Y1 Z
∣∣ Z1

X2 → Y1 Z0
∣∣ Y2

∣∣ Z2

(9.37)

2. For every rule of the form X → a in G, include these rules in J:

X → a
X0 → a

∣∣ ε

X1 → a
∣∣ ε

X2 → a
∣∣ ε.

(9.38)

Finally, we take S2 to be the start variable of J. The meaning of the variables X, X0,
X1, and X2 in J is that they generate precisely the strings generated by X in G, the
prefixes, the suffixes, and the substrings of these strings, respectively.

96

