
Lecture 8

Parse trees, ambiguity, and Chomsky
normal form

In this lecture we will discuss a few important notions connected with context-
free grammars, including parse trees, ambiguity, and a special form for context-free
grammars known as Chomsky normal form.

8.1 Left-most derivations and parse trees

In the previous lecture we covered the definition of context-free grammars as well
as derivations of strings by context-free grammars. Let us consider one of the
context-free grammars from the previous lecture:

S→ 0S1S
∣∣ 1S0S

∣∣ ε. (8.1)

Again we will call this CFG G, and as we proved last time we have

L(G) =
{

w ∈ Σ∗ : |w|0 = |w|1
}

, (8.2)

where Σ = {0, 1} is the binary alphabet and |w|0 and |w|1 denote the number of
times the symbols 0 and 1 appear in w, respectively.

Left-most derivations

Here is an example of a derivation of the string 0101:

S⇒ 0S1S⇒ 01S0S1S⇒ 010S1S⇒ 0101S⇒ 0101. (8.3)

This is an example of a left-most derivation, which means that it is always the left-
most variable that gets replaced at each step. For the first step there is only one

75

CS 360 Introduction to the Theory of Computing

variable that can possibly be replaced; this is true both in this example and in gen-
eral. For the second step, however, one could choose to replace either of the occur-
rences of the variable S, and in the derivation above it is the left-most occurrence
that gets replaced. That is, if we underline the variable that gets replaced and the
symbols and variables that replace it, we see that this step replaces the left-most
occurrence of the variable S:

0S1S⇒ 01S0S1S. (8.4)

The same is true for every other step: always we choose the left-most variable
occurrence to replace, and that is why we call this a left-most derivation. The same
terminology is used in general, for any context-free grammar.

If you think about it for a moment, you will quickly realize that every string
that can be generated by a particular context-free grammar can also be generated
by that same grammar using a left-most derivation. This is because there is no “in-
teraction” among multiple variables and/or symbols in any context-free grammar
derivation; if we know which rule is used to substitute each variable, then it does
not matter what order the variable occurrences are substituted, so you might as
well always take care of the left-most variable during each step.

We could also define the notion of a right-most derivation, in which the right-
most variable occurrence is always evaluated first, but there is not really anything
important about right-most derivations that is not already represented by the no-
tion of a left-most derivation, at least from the viewpoint of this course. For this
reason, we will not have any reason to discuss right-most derivations further.

Parse trees

With any derivation of a string by a context-free grammar we may associate a tree,
called a parse tree, according to the following rules:

1. We have one node of the tree for each new occurrence of either a variable, a
symbol, or an ε in the derivation, with the root node of the tree corresponding
to the start variable. We only have nodes labeled ε when rules of the form
V → ε are applied.

2. Each node corresponding to a symbol or an ε is a leaf node (having no chil-
dren), while each node corresponding to a variable has one child for each sym-
bol, variable, or ε with which it is replaced. The children of each variable node
are ordered in the same way as the symbols and variables in the rule used to
replace that variable.

For example, the derivation (8.3) yields the parse tree illustrated in Figure 8.1.

76

Lecture 8

S

0 S

1 S

ε

0 S

ε

1 S

ε

Figure 8.1: The parse tree corresponding to the derivation (8.3) of the string 0101.

There is a one-to-one and onto correspondence between parse trees and left-
most derivations, meaning that every parse tree uniquely determines a left-most
derivation and each left-most derivation uniquely determines a parse tree.

8.2 Ambiguity

Sometimes a context-free grammar will allow multiple parse trees (or, equivalently,
multiple left-most derivations) for some strings in the language that it generates.
For example, a left-most derivation of the string 0101 by the CFG (8.1) that is dif-
ferent from (8.3) is

S⇒ 0S1S⇒ 01S⇒ 010S1S⇒ 0101S⇒ 0101. (8.5)

The parse tree corresponding to this derivation is illustrated in Figure 8.2.
When it is the case, for a given context-free grammar G, that there exists at least

one string w ∈ L(G) having at least two different parse trees, the CFG G is said to
be ambiguous. Note that this is so even if there is just a single string having multiple
parse trees; in order to be unambiguous, a CFG must have just a single, unique parse
tree for every string it generates.

Being unambiguous is generally considered to be a positive attribute of a CFG,
and indeed it is a requirement for some applications of context-free grammars.

Designing unambiguous CFGs

In some cases it is possible to come up with an unambiguous context-free gram-
mar that generates the same language as an ambiguous context-free grammar. For
example, we can come up with a different context-free grammar for the language

77

CS 360 Introduction to the Theory of Computing

S

0 S

ε

1 S

0 S

ε

1 S

ε

Figure 8.2: The parse tree corresponding to the derivation (8.5) of the string 0101.

L(G) described in (8.2) that, unlike the CFG (8.1), is unambiguous. Here is such a
CFG:

S→ 0X1S
∣∣ 1Y0S

∣∣ ε

X → 0X1X
∣∣ ε

Y → 1Y0Y
∣∣ ε

(8.6)

We will not take the time to go through a proof that this CFG is unambiguous, but
if you think about it for a few moments you should be able to convince yourself
that it is unambiguous. The variable X generates strings having the same number
of 0s and 1s, where the number of 1s never exceeds the number of 0s when you
read from left to right, and the variable Y is similar except the role of the 0s and 1s
is reversed. If you try to generate a particular string by a left-most derivation with
this CFG, you will never have more than one option as to which rule to apply.

Here is another example of how an ambiguous CFG can be modified to make it
unambiguous. Let us define an alphabet

Σ =
{

a, b,+, ∗ , (,) } (8.7)

along with a CFG
S→ S + S

∣∣ S ∗ S
∣∣ (S)

∣∣ a
∣∣ b (8.8)

This grammar generates strings that look like arithmetic expressions in variables a
and b, where we allow the operations ∗ and +, along with parentheses.

For example, the string (a + b) ∗ a + b corresponds to such an expression, and
one derivation for this string is as follows:

S⇒ S ∗ S⇒ (S) ∗ S⇒ (S + S) ∗ S⇒ (a + S) ∗ S⇒ (a + b) ∗ S
⇒ (a + b) ∗ S + S⇒ (a + b) ∗ a + S⇒ (a + b) ∗ a + b.

(8.9)

This happens to be a left-most derivation, as it is always the left-most variable
that is substituted. The parse tree corresponding to this derivation is shown in

78

Lecture 8

S

S

(S

S

a

+ S

b

)

∗ S

S

a

+ S

b

Figure 8.3: Parse tree for (a + b) ∗ a + b corresponding to the derivation (8.9).

Figure 8.3. You can of course imagine a more complex version of this grammar
allowing for other arithmetic operations, variables, and so on, but we will stick to
the grammar in (8.8) for the sake of simplicity.

The CFG (8.8) is ambiguous. For instance, a different (left-most) derivation for
the same string (a + b) ∗ a + b as before is

S⇒ S + S⇒ S ∗ S + S⇒ (S) ∗ S + S
⇒ (S + S) ∗ S + S⇒ (a + S) ∗ S + S⇒ (a + b) ∗ S + S

⇒ (a + b) ∗ a + S⇒ (a + b) ∗ a + b,
(8.10)

and the parse tree for this derivation is shown in Figure 8.4.
Notice that the parse tree illustrated in Figure 8.4 is appealing because it actu-

ally carries the meaning of the expression (a + b) ∗ a + b, in the sense that the tree
structure properly captures the order in which the operations should be applied
according to the standard order of precedence for arithmetic operations. In con-
trast, the parse tree shown in Figure 8.3 seems to represent what the expression
(a + b) ∗ a + b would evaluate to if we lived in a society where addition was given
higher precedence than multiplication.

The ambiguity of the grammar (8.8), along with the fact that parse trees may
not represent the meaning of an arithmetic expression in the sense just described,
is a problem in some settings. For example, if we were designing a compiler and
wanted a part of it to represent arithmetic expressions (presumably allowing much
more complicated ones than our grammar from above allows), a CFG along the
lines of (8.8) would be completely inadequate.

We can, however, come up with a new CFG for the same language that is much
better, in the sense that it is unambiguous and properly captures the meaning of

79

CS 360 Introduction to the Theory of Computing

S

S

S

(S

S

a

+ S

b

)

∗ S

a

+ S

b

Figure 8.4: Parse tree for (a + b) ∗ a + b corresponding to the derivation (8.10).

arithmetic expressions (given that we give multiplication higher precedence than
addition). Here it is:

S→ T
∣∣ S + T

T → F
∣∣ T ∗ F

F → I
∣∣ (S)

I → a
∣∣ b

(8.11)

For example, the unique parse tree corresponding to the string (a + b) ∗ a + b is as
shown in Figure 8.5.

To better understand the CFG (8.11), it may help to associate meanings with
the different variables. In this CFG, the variable T generates terms, the variable F
generates factors, and the variable I generates identifiers. An expression is either a
term or a sum of terms, a term is either a factor or a product of factors, and a factor
is either an identifier or an entire expression inside of parentheses.

Inherently ambiguous languages

While we have seen that it is sometime possible to come up with an unambiguous
CFG that generates the same language as an ambiguous CFG, it is not always pos-
sible. There are some context-free languages that can only be generated by ambigu-
ous CFGs. Such languages are called inherently ambiguous context-free languages.
An example of an inherently ambiguous context-free language is this one:{

0n1m2k : n = m or m = k
}

. (8.12)

80

Lecture 8

S

S

T

T

F

(S

S

T

F

I

a

+ T

F

I

b

)

∗ F

I

a

+ T

F

I

b

Figure 8.5: Unique parse tree for (a + b) ∗ a + b for the CFG (8.11).

We will not prove that this language is inherently ambiguous, but the intuition is
that no matter what CFG you come up with for this language, the string 0n1n2n

will always have multiple parse trees for some sufficiently large natural number n.

8.3 Chomsky normal form

Some context-free grammars are strange. For example, the CFG

S→ SSSS
∣∣ ε (8.13)

simply generates the language {ε}; but it is obviously ambiguous, and even worse
it has infinitely many parse trees (which of course can be arbitrarily large) for the

81

CS 360 Introduction to the Theory of Computing

S

X

X

0

Z

Y

1

X

1

Y

0

Figure 8.6: A hypothetical example of a parse tree for a CFG in Chomsky normal
form.

only string ε it generates. While we know we cannot always eliminate ambiguity
from CFGs, as some context-free languages are inherently ambiguous, we can at
least eliminate the possibility to have infinitely many parse trees for a given string.
Perhaps more importantly, for any given CFG G, we can always come up with a
new CFG H for which L(H) = L(G), and for which we are guaranteed that every
parse tree for a given string w ∈ L(H) has the same size and a very simple, binary-
tree-like structure.

To be more precise about the specific sort of CFGs and parse trees we are talking
about, it is appropriate at this point to define Chomsky normal form for context-free
grammars.

Definition 8.1. A context-free grammar G is in Chomsky normal form if every rule
of G has one of the following three forms:

1. X → YZ, for variables X, Y, and Z, and where neither Y nor Z is the start
variable,

2. X → a, for a variable X and a symbol a, or

3. S→ ε, for S the start variable.

Now, the reason why a CFG in Chomsky normal form is nice is that every parse
tree for such a grammar has a simple form: the variable nodes form a binary tree,
and for each variable node that does not have two variable node children, a single
symbol node hangs off. A hypothetical example meant to illustrate the structure
we are talking about is given in Figure 8.6. Notice that the start variable always
appears exactly once at the root of the tree because it is never allowed on the right-
hand side of any rule.

82

Lecture 8

S

ε

Figure 8.7: The unique parse tree for ε for a CFG in Chomsky normal form, assum-
ing it includes the rule S→ ε.

If the rule S → ε is present in a CFG in Chomsky normal form, then we have
a special case that does not match the structure described above. In this case we
can have the very simple parse tree shown in Figure 8.7 for ε, and this is the only
possible parse tree for this string.

Because of the special form that a parse tree must take for a CFG G in Chomsky
normal form, we have that every parse tree for a given string w ∈ L(G) must have
exactly 2|w| − 1 variable nodes and |w| leaf nodes (except for the special case w = ε,
in which we have one variable node and 1 leaf node). An equivalent statement is
that every derivation of a (nonempty) string w by a CFG in Chomsky normal form
requires exactly 2|w| − 1 substitutions.

The following theorem establishes that every context-free language is gener-
ated by a CFG in Chomsky normal form.

Theorem 8.2. Let Σ be an alphabet and let A ⊆ Σ∗ be a context-free language. There
exists a CFG G in Chomsky normal form such that A = L(G).

The usual way to prove this theorem is through a construction that converts an
arbitrary CFG G into a CFG H in Chomsky normal form for which L(H) = L(G).
The conversion is, in fact, fairly straightforward—a summary of the steps one may
perform to do this conversion for an arbitrary CFG G = (V, Σ, R, S) appear be-
low. To illustrate how these steps work, let us start with the following CFG, which
generates the balanced parentheses language BAL from the previous lecture:

S→ (S)S
∣∣ ε (8.14)

1. Add a new start variable S0 along with the rule S0 → S.

Doing this will ensure that the start variable S0 never appears on the right-hand
side of any rule.

Applying this step to the CFG (8.14) yields

S0 → S
S→ (S)S

∣∣ ε
(8.15)

83

CS 360 Introduction to the Theory of Computing

2. Introduce a new variable Xa for each symbol a ∈ Σ.

First include the new rule Xa → a. Then, for every other rule in which a appears
on the right-hand side, except for the cases when a appears all by itself on the
right-hand side, replace each a with Xa.

Continuing with our example, the CFG (8.15) is transformed into this CFG
(where we will use the names L and R rather than the weird-looking variables
X(and X) in the interest of style):

S0 → S
S→ LSRS

∣∣ ε

L→ (

R→)

(8.16)

3. Split up rules of the form X → Y1 · · ·Ym, whenever m ≥ 3, using auxiliary
variables in a straightforward way.

In particular, X → Y1 · · ·Ym can be broken up as

X → Y1 Z2

Z2 → Y2 Z3

...

Zm−2 → Ym−2 Zm−1

Zm−1 → Ym−1Ym

(8.17)

Note that we must use separate auxiliary variables for each rule so that there
is no “cross talk” between different rules—so do not reuse the same auxiliary
variables to break up multiple rules.

Transforming the CFG (8.16) in this way results in the following CFG:

S0 → S
S→ LZ2

∣∣ ε

Z2 → SZ3

Z3 → RS
L→ (

R→)

(8.18)

4. Eliminate ε-rules of the form X → ε and “repair the damage.”

84

Lecture 8

Aside from the special case S0 → ε, there is never any need for rules of the form
X → ε; you can get the same effect by simply duplicating rules in which X
appears on the right-hand side, and directly replacing or not replacing X with ε

in each possible combination. You might introduce new ε-rules in this way, but
they can be handled recursively—and any time a new ε-rule is generated that
was already eliminated, it is not added back in.

Transforming the CFG (8.18) in this way results in the following CFG:

S0 → S
∣∣ ε

S→ LZ2

Z2 → SZ3
∣∣ Z3

Z3 → RS
∣∣ R

L→ (

R→)

(8.19)

Note that we do end up with the ε-rule S0 → ε, but we do not eliminate this
one because S0 → ε is the special case that we allow as an ε-rule.

5. Eliminate unit rules, which are rules of the form X → Y.

Rules like this are never necessary, and they can be eliminated provided that
we also include the rule X → w in the CFG whenever Y → w appears as a rule.
If you obtain a new unit rule that was already eliminated (or is the unit rule
currently being eliminated), it is not added back in.

Transforming the CFG (8.19) in this way results in the following CFG:

S0 → LZ2
∣∣ ε

S→ LZ2

Z2 → SZ3
∣∣ RS

∣∣)
Z3 → RS

∣∣)
L→ (

R→)

(8.20)

At this point we are finished; this context-free grammar is in Chomsky normal
form.

The description above is only meant to give you the basic idea of how the construc-
tion works and does not constitute a formal proof of Theorem 8.2. It is possible,
however, to be more formal and precise in describing this construction in order to
obtain a proper proof of Theorem 8.2.

85

CS 360 Introduction to the Theory of Computing

We will make use of the theorem from time to time. In particular, when we are
proving things about context-free languages, it is sometimes extremely helpful to
know that we can always assume that a given context-free language is generated
by a CFG in Chomsky normal form.

Finally, it must be stressed that the Chomsky normal form says nothing about
ambiguity in general. A CFG in Chomsky normal form may or may not be am-
biguous, just like we have for arbitrary CFGs.

86

