Lecture 7

Context-free grammars and languages

The next class of languages we will study in this course is the class of context-free
languages, which are defined by the notion of a context-free grammar, or a CFG for
short.

7.1 Definitions of context-free grammars and
languages

We will start with the following definition for context-free grammars.
Definition 7.1. A context-free grammar (or CFG for short) is a 4-tuple
G=(V,%RS), (7.1)

where V is a finite and non-empty set (whose elements we will call variables), X is
an alphabet (disjoint from V), R is a finite and nonempty set of rules, each of which
takes the form

A—w (7.2)

for some choiceof A € Vandw € (VUZX)*,and S € V is a variable called the start
variable.

Example 7.2. For our first example of a CFG, we may consider G = (V,%,R,S),
where V = {S} (so that there is just one variable in this grammar), ~ = {0,1}, S is
the start variable, and R contains these two rules:

S —0S1

S e 7:3)

It is often convenient to describe a CFG just by listing the rules, like in (7.3).
When we do this, it is to be understood that the set of variables V and the alphabet

67



CS 360 Introduction to the Theory of Computing

2 are determined implicitly: the variables are the capital letters appearing on the
left-hand side of the rules and the alphabet contains the symbols on the right-hand
side of the rules that are left over. Moreover, the start variable is understood to
be the variable appearing on the left-hand side of the first rule that is listed. Note
that these are just conventions that allow us to save time, and you could simply
list each of the elements V, %, R, and S if it was likely that the conventions would
cause confusion.

Every context-free grammar G = (V, %, R, S) generates a language L(G) C X*.
Informally speaking, this is the language consisting of all strings that can be ob-
tained by the following process:

1. Write down the start variable S.
2. Repeat the following steps any number of times:

2.1 Choose any rule A — w from R.

2.2 Within the string of variables and alphabet symbols you currently have
written down, replace any instance of the variable A with the string w.

3. If you are eventually left with a string of the form x € X%, so that no vari-
ables remain, then stop. The string x has been obtained by the process, and is
therefore among the strings generated by G.

Example 7.3. The CFG G described in Example 7.2 generates the language
SAME = {0"1" : n € N}. (7.4)

This is because we begin by writing down the start variable S, then we choose one
of the two rules and perform the replacement in the only way possible: there will
always be a single variable S in the middle of the string, and we replace it either
by 0S1 or by e. The process ends precisely when we choose the rule S — ¢, and
depending on how many times we chose the rule S — 0S1 we obtain one of the
strings

e, 01, 0011, 000111, ... (7.5)
and so on. The set of all strings that can possibly be obtained is therefore given
by (7.4).

The description of the process through which the language generated by a CFG
is determined provides an intuitive, human-readable way to explain this concept,
but it is not very satisfying from a mathematical viewpoint. We would prefer a
definition based on sets, functions, and so on (rather than one that refers to “writ-
ing down” variables, for instance). One way to define this notion mathematically
begins with the specification of the yields relation of a grammar that captures the
notion of performing a substitution.

68



Lecture 7

Definition 7.4. Let G = (V,X%, R, S) be a context-free grammar. The yields relation
defined by G is a relation defined for pairs of strings over the alphabet V U X as
follows:

uAv =g uwv (7.6)

for every choice of strings u,v,w € (VUZX)* and a variable A € V, provided that
the rule A — w is included in R.!

The interpretation of this relation is that x =¢ y, for x,y € (V UX)*, when it is
possible to replace one of the variables appearing in x according to one of the rules
of G in order to obtain y.

It will also be convenient to consider the reflexive transitive closure of this re-
lation, which is defined as follows.

Definition 7.5. Let G = (V, X%, R, S) be a context-free grammar. For any two strings
x,y € (VUZX)* one has that

XScy (7.7)

if there exists a positive integer m and strings z1, ...,z € (V UX)* such that

1. x =2z,
2. y = zy, and

3. zx =G zpyq forevery k € {1,...,m —1}.

In this case, the interpretation of this relation is that x :*>G y holds when it is
possible to transform x into y by performing zero or more substitutions according
to the rules of G.

When a CFG G is fixed or can be safely taken as implicit, we will sometimes
write = rather than =, and likewise for the starred version.

We can now use the relation just defined to formally define the language gen-
erated by a given context-free grammar.

Definition 7.6. Let G = (V, %, R, S) be a context-free grammar. The language gener-
ated by G is

L(G)={xeX": S=gx}. (7.8)

If x € L(G) foraCFG G = (V,%,R,S),and z1, ...,z € (VUZX)" is a sequence
of strings for which z; = S, z;, = x, and zx =g zg4q forallk € {1,...,m — 1}, then

! Recall that a relation is a subset of a Cartesian product of two sets. In this case, the relation
is the subset {(#Av, uwv) : u,v,w € (VUXL)*, A € V, and A — wis arule in R}. The notation
uAv =g uwv is a more readable way of indicating that the pair (1Av, uwv) is an element of the
relation.

69



CS 360 Introduction to the Theory of Computing

the sequence zy, ...,z is said to be a derivation of x. If you unravel the definitions
above, it becomes clear that there must (of course) exist at least one derivation for
every string x € L(G), but in general there might be more than one derivation of a
given string x € L(G).

Finally, we define the class of context-free languages to be those languages that
are generated by context-free grammars.

Definition 7.7. Let X be an alphabet and let A C ¥* be a language. The language
A is context free if there exists a context-free grammar G such that L(G) = A.

Example 7.8. The language SAME is a context-free language, as has been estab-
lished in Example 7.3.

7.2 Examples of context-free grammars and languages

We have seen one example of a context-free language so far: SAME. Let us now
consider a few more examples.

Basic examples

Example 7.9. The language
PAL={we ¥ : w=uw"} (7.9)

over the alphabet X~ = {0,1}, which we first encountered in Lecture 5, is context
free. (In fact this is true for any choice of an alphabet %, but let us stick with the bi-
nary alphabet for now for simplicity). To verify that this language is context free, it
suffices to exhibit a context-free grammar that generates it. Here is one that works:

S —0S0

S — 1851

S—0 (7.10)
S—1

S—e

We often use a short-hand notation for describing grammars in which the same
variable appears on the left-hand side of multiple rules, as is the case for the gram-
mar described in the previous example. The short-hand notation is to write the
variable on the left-hand side and the arrow just once, and to draw a vertical bar

70



Lecture 7

(which can be read as “or”) among the possible alternatives for the right-hand side
like this:

S—0S0|1S1|0|1]e (7.11)

When you use this short-hand notation when you are writing by hand, such as on
an exam, be sure to make your bars tall enough so that they are easily distinguished
from 1s.

Sometimes it is easy to see that a particular CFG generates a given language—
for instance, I would consider this to be obvious in the case of the previous exam-
ple. In other cases it can be more challenging, or even impossibly difficult, to verify
that a particular grammar generates a particular language. The next example illus-
trates a case in which such a verification is nontrivial.

Example 7.10. Let £ = {0, 1} be the binary alphabet, and define a language A C X*
as follows:

A={weX : |wlp=|w)}. (7.12)

Here we are using a convenient notation: |w|y denotes the number of times the
symbol 0 appears in w, and similarly |w|; denotes the number of times the symbol 1
appears in w. The language A therefore contains all binary strings having the same
number of Os and 1s. This is a context-free language, as it is generated by this
context-free grammar:

S — 0515]150S | (7.13)

Now, it is clear that every string generated by this grammar, which we will
call G, is contained in A: we begin any derivation with the variable S alone, so
there are an equal number of Os and 1s at the start (zero of each, to be precise), and
every rule maintains this property as an invariant.

On the other hand, it is not immediately obvious that every element of A can
be generated by G. Let us prove that this is indeed the case.

Claim 7.11. A C L(G).

Proof. Let w € A be a string contained in A and let n = |w|. We will prove that
w € L(G) by (strong) induction on 7.

The base case is n = 0, which means that w = e. We have that S = e represents
a derivation of ¢, and therefore w € L(G).

For the induction step, we assume that n > 1, and the hypothesis of induction
is that x € L(G) for every string x € A with |x| < n. Our goal is to prove that G
generates w. Let us write

w=aj---a (7.14)

71



CS 360 Introduction to the Theory of Computing

foray,...,a, € £. We have assumed that w € A, and therefore
ay - - anlo = |ay -+ - aqlr. (7.15)
Next, let m € {1,...,n} be the minimum value for which
|ay - amlo = |ar - - - amli; (7.16)

we know that this equation is satisfied when m = n, and there might be a smaller
value of m that works. We will now prove that a; # a,.

The fact that a; # a,, follows from a proof by contradiction. Toward this goal,
assume a; = da,,, and define

Ni=lar---agly — a1 arlo (7.17)

forevery k € {1,...,m}. We know that N,, = 0 because equation (7.16) is satisfied.
Moreover, using the assumption a4; = a,,, we observe the equations

|a1 .. 'am|1 = |a1 .. -am_1|1 + |am|1 - |a1 oo 'am—1|1 + |a1|1

(7.18)
|a1 .o 'am|0 = |{11 .- '(Zm71|() + |am|0 = |a1 e 'am71|0 + |611|0,

and conclude that
Ny = Ny-1+ Ny (7.19)

by subtracting the second equation from the first. Therefore, because N;;, = 0 and
Nj is nonzero, it must be that N,,,_; is also nonzero, and more importantly N; and
N,,—1 must have opposite sign. However, because consecutive values of Ny must
always differ by 1 and can only take integer values, we conclude that there must
exist a choice of k in the range {2,...,m — 2} for which Ny = 0, for otherwise it
would not be possible for N; and N,,_; to have opposite sign. This, however, is
in contradiction with m being the minimum value for which (7.16) holds. We have
therefore proved that a; # a,.

At this point it is possible to describe a derivation for w. We have w = a; - - - ay,
and we have that

a1« amlo=l|ar---am|r and ay # ay (7.20)
for some choice of m € {1,...,n}. We conclude that
lag - am_1lo=laz- - ay_1)1 and |ayi1---anlo = |ame1 - anl1- (7.21)
By the hypothesis of induction it follows that
SScay- -y and S =g ayiq - an. (7.22)

72



Lecture 7

Therefore the string w satisfies

S=¢c051S =5 0ay- a1 lampr---an = w (7.23)
(incasea; =0and a, = 1) or

S=¢c150S =¢ 1ar- -y 10ays1 -y = W (7.24)
(in case a1 = 1 and a,, = 0). We have proved that w € L(G) as required. O

Here is another example that is related to the previous one. It is an important
example and we will refer to it from time to time throughout the course.

Example 7.12. Consider the alphabet £ = {(, ) }. That is, we have two symbols in
this alphabet: left-parenthesis and right-parenthesis.

To say that a string w over the alphabet X is properly balanced means that by
repeatedly removing the substring (), you can eventually reach . More intuitively
speaking, a string over X is properly balanced if it would make sense to use this
pattern of parentheses in an ordinary arithmetic expression (ignoring everything
besides the parentheses). These are examples of properly balanced strings:

(OO0, ((O0)), (), and e (7.25)

These are examples of strings that are not properly balanced:
((0)(), and () (. (7.26)
Now define a language
BAL = {w € ¥ : wis properly balanced }. (7.27)
The language BAL is context free; here is a simple CFG that generates it:
S—(S)S]e. (7.28)

See if you can convince yourself that this CFG indeed generates BAL!

A more advanced example

Sometimes it is more challenging to come up with a context-free grammar for a
given language. The following example concerns one such language.

73



CS 360 Introduction to the Theory of Computing

Example 7.13. Let £ = {0,1} and T = {0, 1, #}, and define
A={u#v : u,ve X and u # v}. (7.29)
Here is a context-free grammar for A:

S — WolY |W10Y | Z
Wo — XWX | 0Y#
Wi — XWX | 1Y#

Z — XZX | XY#|#XY
X—0]1

Y = XY |e.

(7.30)

The idea behind this CFG is as follows. First, the variable Z generates strings of the
form u#v where u and v have different lengths. The variable Wy generates strings
that look like this:

ogo---gopg---g#00d---0d (7.31)

n bits m bits n bits

(where Ll means either 0 or 1), so that Wy1Y generates strings that look like this:

oo---gopo---g#00---0100---0 (7.32)
n Brits mEts n ?)rits k bits

(for any choice of n, m, k € IN). Similarly, W; 0Y generates strings that look like this:

0oo---0100---04#00---0000---0 (7.33)

~~ ~

N
n bits m bits n bits k bits

Taken together, these two possibilities generate u#v for all binary strings u and v
that differ in at least one position (and that may or may not have the same length).
The three options together cover all possible u#v for which u and v are non-equal
binary strings.

74



