
Lecture 6

Further discussion of regular
languages

In this lecture we will discuss some additional operations under which the regu-
lar languages are closed and go over a few example problems concerning regular
languages. This is the last lecture of the course to be devoted to regular languages,
but we will refer back to regular languages frequently and relate them to various
computational models and classes of languages as the course progresses.

6.1 Other operations on languages

We have discussed some basic operations on languages, including the regular op-
erations (union, concatenation, and star) and a few others (such as complementa-
tion and intersection). There are many other operations that one can consider—you
could probably sit around all day thinking of increasingly obscure examples if you
wanted to—but for now we will take a look at just a few more.

Reverse

Suppose Σ is an alphabet and w ∈ Σ∗ is a string. The reverse of the string w, which
we denote by wR, is the string obtained by rearranging the symbols of w so that
they appear in the opposite order. As we observed in the previous lecture, the
reverse of a string may be defined inductively as follows:

1. If w = ε, then wR = ε.

2. If w = ax for a ∈ Σ and x ∈ Σ∗, then wR = xRa.

Now suppose that A ⊆ Σ∗ is a language. We define the reverse of A, which we
denote by AR, to be the language obtained by taking the reverse of each element

55



CS 360 Introduction to the Theory of Computing

of A. That is, we define
AR =

{
wR : w ∈ A

}
. (6.1)

You can check that the following identities hold that relate the reverse operation to
the regular operations:

(A ∪ B)R = AR ∪ BR, (AB)R = BRAR, and (A∗)R =
(

AR)∗. (6.2)

A natural question concerning the reverse of a languages is this one:

If a language A is regular, must its reverse AR also be regular?

The answer to this question is yes. Let us state this fact as a proposition and then
consider two ways to prove it.

Proposition 6.1. Let Σ be an alphabet and let A ⊆ Σ∗ be a regular language. The lan-
guage AR is regular.

First proof. There is a natural way of defining the reverse of a regular expression
that mirrors the identities (6.2) above. In particular, if S is a regular expression,
then its reverse regular expression can be defined inductively as follows:

1. If S = ∅ then SR = ∅.

2. If S = ε then SR = ε.

3. If S = a for some choice of a ∈ Σ, then SR = a.

4. If S = (S1 ∪ S2) for regular expressions S1 and S2, then SR = (SR
1 ∪ SR

2 ).

5. If S = (S1S2) for regular expressions S1 and S2, then SR = (SR
2 SR

1 ).

6. If S = (S∗1) for a regular expression S1, then SR =
(
(SR

1 )
∗).

It is evident that L(SR) = L(S)R; for any regular expression S, the reverse regular
expression SR matches the reverse of the language matched by S.

Now, under the assumption that A is regular, there must exist a regular expres-
sion S such that L(S) = A, because every regular language is matched by some
regular expression. The reverse of the regular expression S is SR, which is also a
valid regular expression. The language matched by any regular expression is reg-
ular, and therefore L(SR) is regular. Because L(SR) = L(S)R = AR, we have that AR

is regular, as required.

Second proof (sketch). We will consider this as a proof “sketch” because it just sum-
marizes the main idea without covering the details of why it works.

Under the assumption that A is regular, there must exist a DFA

M = (Q, Σ, δ, q0, F) (6.3)

56



Lecture 6

such that L(M) = A. We can design an NFA N such that L(N) = AR, thereby
implying that AR is regular, by effectively running M backwards in time (using
the power of nondeterminism to do this because deterministic computations are
generally not reversible).

Here is the natural way to define an NFA N that does what we want:

N = (Q ∪ {r0}, Σ, µ, r0, {q0}), (6.4)

where it is assumed that r0 is not contained in Q (i.e., we are letting N have the
same states as M along with a new start state r0), and we take the transition func-
tion µ to be defined as follows:

µ(r0, ε) = F,

µ(r0, a) = ∅,

µ(q, ε) = ∅,

µ(q, a) = {p ∈ Q : δ(p, a) = q},

(6.5)

for all q ∈ Q and a ∈ Σ.
The way N works is to first nondeterministically guess an accepting state of M,

then it reads symbols from the input and nondeterministically chooses to move
to a state for which M would allow a move in the opposite direction on the same
input symbol, and finally it accepts if it ends on the start state of M.

The most natural way to formally prove that L(N) = L(M)R is to refer to the
definitions of acceptance for N and M, and to check that a sequence of states sat-
isfies the definition for M accepting a string w if and only if the reverse of that
sequence of states satisfies the definition of acceptance for N accepting wR.

Symmetric difference

Given two sets A and B, we define the symmetric difference of A and B as

AMB = (A\B) ∪ (B\A). (6.6)

In words, the elements of the symmetric difference A M B are those objects that
are contained in either A or B, but not both. Figure 6.1 illustrates the symmetric
difference in the form of a Venn diagram.

It is not hard to conclude that if Σ is an alphabet and A, B ⊆ Σ∗ are regular lan-
guages, then the symmetric difference AMB of these two languages is also regular.
This is because the regular languages are closed under the operations union, inter-
section, and complementation, and the symmetric difference can be described in
terms of these operations. More specifically, if we assume that A and B are regular,

57



CS 360 Introduction to the Theory of Computing

A B

Figure 6.1: The shaded region denotes the symmetric difference AM B of two sets
A and B.

then their complements A and B are also regular; which implies that the intersec-
tions A ∩ B and A ∩ B are also regular; and therefore the union

(
A ∩ B

)
∪
(

A ∩ B
)

of these two intersections is regular as well. Observing that we have

AMB =
(

A ∩ B
)
∪
(

A ∩ B
)
, (6.7)

we see that the symmetric difference of A and B is regular.

Prefix, suffix, and substring

Let Σ be an alphabet and let w ∈ Σ∗ be a string. A prefix of w is any string that
can be obtained from w by removing zero or more symbols from the right-hand
side of w; a suffix of w is any string that can be obtained by removing zero or more
symbols from the left-hand side of w; and a substring of w is any string that can be
obtained by removing zero or more symbols from either or both the left-hand side
and right-hand side of w. We can state these definitions more formally as follows:
(i) a string x ∈ Σ∗ is a prefix of w ∈ Σ∗ if there exists v ∈ Σ∗ such that w = xv, (ii) a
string x ∈ Σ∗ is a suffix of w ∈ Σ∗ if there exists u ∈ Σ∗ such that w = ux, and (iii) a
string x ∈ Σ∗ is a substring of w ∈ Σ∗ if there exist u, v ∈ Σ∗ such that w = uxv.

For any language A ⊆ Σ∗, we will write Prefix(A), Suffix(A), and Substring(A)
to denote the languages containing all prefixes, suffixes, and substrings (respec-
tively) that can be obtained from any choice of a string w ∈ A. That is, we define

Prefix(A) =
{

x ∈ Σ∗ : there exists v ∈ Σ∗ such that xv ∈ A
}

, (6.8)

Suffix(A) =
{

x ∈ Σ∗ : there exists u ∈ Σ∗ such that ux ∈ A
}

, (6.9)

Substring(A) =
{

x ∈ Σ∗ : there exist u, v ∈ Σ∗ such that uxv ∈ A
}

. (6.10)

58



Lecture 6

Again we have a natural question concerning these concepts:

If a language A is regular, must the languages Prefix(A), Suffix(A), and
Substring(A) also be regular?

The answer is yes, as the following proposition establishes.

Proposition 6.2. Let Σ be an alphabet and let A ⊆ Σ∗ be a regular language over the
alphabet Σ. The languages Prefix(A), Suffix(A), and Substring(A) are regular.

Proof. Because A is regular, there must exist a DFA M = (Q, Σ, δ, q0, F) such that
L(M) = A. Some of the states in Q are reachable from the start state q0, by following
zero or more transitions specified by the transition function δ.1 We may call this
set R, so that

R =
{

q ∈ Q : there exists w ∈ Σ∗ such that δ∗(q0, w) = q
}

. (6.11)

Also, from some of the states in Q, it is possible to reach an accept state of M, by
following zero or more transitions specified by the transition function δ. We may
call this set P, so that

P =
{

q ∈ Q : there exist w ∈ Σ∗ such that δ∗(q, w) ∈ F
}

. (6.12)

(See Figure 6.2 for a simple example illustrating the definitions of these sets.)
First, define a DFA K = (Q, Σ, δ, q0, P). In words, K is the same as M except that

its accept states are all of the states in M from which it is possible to reach an accept
state of M. We see that L(K) = Prefix(A), and therefore Prefix(A) is regular.

Next, define an NFA N = (Q∪ {r0}, Σ, η, r0, F), where the transition function η

is defined as

η(r0, ε) = R,

η(q, a) = {δ(q, a)} (for each q ∈ Q and a ∈ Σ),

and η takes the value ∅ in all other cases. In words, we define N from M by adding
a new start state r0, along with ε-transitions from r0 to every reachable state in M.
It is the case that L(N) = Suffix(A), and therefore Suffix(A) is regular.

Finally, the fact that Substring(A) is regular follows from the observation that
Substring(A) = Suffix(Prefix(A)) (or that Substring(A) = Prefix(Suffix(A))).

1 If you were defining a DFA for some purpose, there would be no point in having states that
are not reachable from the start state—but there is nothing in the definition of DFAs that forces all
states to be reachable.

59



CS 360 Introduction to the Theory of Computing

q0 q1 q2

q3 q4 q5

0

1

0

1
0

1

0, 1 0

1

0

1

Figure 6.2: An example of a DFA M. In this case, the set R of reachable states is
R = {q0, q1, q2, q3} while the set P of states from which it is possible to reach an
accepting state of M is P = {q0, q1, q2, q4, q5}.

6.2 Example problems concerning regular languages

We will conclude with a few other examples of problems concerning regular lan-
guages along with their solutions.

Problem 6.1. Let Σ = {0, 1} and let A ⊆ Σ∗ be a regular language. Prove that the
language

B = {uv : u, v ∈ Σ∗ and uav ∈ A for some choice of a ∈ Σ} (6.13)

is regular.
The language B can be described in intuitive terms as follows: it is the language

of all strings that can be obtained by choosing a nonempty string w from A and
deleting exactly one symbol of w.

Solution. A natural way to solve this problem is to describe an NFA for B, based
on a DFA for A, which must exist by the assumption that A is regular. This will
imply that B is regular, as every language recognized by an NFA is necessarily
regular.

Along these lines, let us suppose that

M = (Q, Σ, δ, q0, F) (6.14)

60



Lecture 6

is a DFA for which A = L(M). Define an NFA

N = (P, Σ, η, p0, G) (6.15)

as follows. First, we will define

P = {0, 1} ×Q, (6.16)

and we will take the start state of N to be

p0 = (0, q0). (6.17)

The accept states of N will be

G = {(1, q) : q ∈ F}. (6.18)

It remains to describe the transition function η of N, which will be as follows:

1. η((0, q), a) = {(0, δ(q, a))} for every q ∈ Q and a ∈ Σ.

2. η((0, q), ε) = {(1, δ(q, 0)), (1, δ(q, 1))} for every q ∈ Q.

3. η((1, q), a) = {(1, δ(q, a))} for every q ∈ Q and a ∈ Σ.

4. η((1, q), ε) = ∅ for every q ∈ Q.

The idea behind the way that N operates is as follows. The NFA N starts in
the state (0, q0) and simulates M for some number of steps. This is the effect of the
transitions listed as 1 above. At some point, which is nondeterministically chosen,
N follows an ε-transition from a state of the form (0, q) to either the state (1, δ(q, 0))
or the state (1, δ(q, 1)). Intuitively speaking, N is reading nothing from its input
while “hypothesizing” that M has read some symbol a (which is either 0 or 1).
This is the effect of the transitions listed as 2. Then N simply continues simulating
M on the remainder of the input string, which is the effect of the transitions listed
as 3. There are no ε-transitions leading out of the states of the form (1, q), which is
why we have the values for η listed as 4.

If you think about the NFA N for a moment or two, it should become evident
that it recognizes B.

Alternative Solution. Here is a somewhat different solution to the same problem.
Part of its appeal is that it illustrates a method that may be useful in other cases.
In this case we will also discuss a somewhat more detailed proof of correctness
(partly because it happens to be a bit easier for this solution).

Again, let
M = (Q, Σ, δ, q0, F) (6.19)

61



CS 360 Introduction to the Theory of Computing

be a DFA for which L(M) = A. For each choice of p, q ∈ Q, define a new DFA

Mp,q = (Q, Σ, δ, p, {q}), (6.20)

and let Ap,q = L(Mp,q). In words, Ap,q is the regular language consisting of all
strings that cause M to transition to the state q when started in the state p. For any
choice of p, q, and r, we must surely have Ap,r Ar,q ⊆ Ap,q. Indeed, Ap,r Ar,q repre-
sents all of the strings that cause M to transition from p to q, touching r somewhere
along the way.

Now consider the language ⋃
(p,a,r)∈Q×Σ×F

Aq0,p Aδ(p,a),r. (6.21)

This is a regular language because each Ap,q is regular and the regular languages
are closed under finite unions and concatenations. To complete the solution, let us
observe that the language above is none other than B:

B =
⋃

(p,a,r)∈Q×Σ×F

Aq0,p Aδ(p,a),r. (6.22)

To prove this equality, we do the natural thing, which is to separate it into two
separate set inclusions. First let us prove that

B ⊆
⋃

(p,a,r)∈Q×Σ×F

Aq0,p Aδ(p,a),r. (6.23)

Every string in B takes the form uv, for some choice of u, v ∈ Σ∗ and a ∈ Σ for
which uav ∈ A. Let p ∈ Q be the unique state for which u ∈ Aq0,p, which we could
alternatively describe as the state of M reached from the start state on input u, and
let r ∈ F be the unique state (which is necessarily an accepting state) for which
uav ∈ Aq0,r. As a causes M to transition from p to δ(p, a), it follows that v must
cause M to transition from δ(p, a) to r, i.e., v ∈ Aδ(p,a),r. It therefore the case that
uv ∈ Aq0,p Aδ(p,a),r, which implies the required inclusion.

Next we will prove that ⋃
(p,a,r)∈Q×Σ×F

Aq0,p Aδ(p,a),r ⊆ B. (6.24)

The argument is quite similar to the other inclusion just considered. Pick any
choice of p ∈ Q, a ∈ Σ, and r ∈ F. An element of Aq0,p Aδ(p,a),r must take the
form uv for u ∈ Aq0,p and v ∈ Aδ(p,a),r. One finds that uav ∈ Ap0,r ⊆ A, and
therefore uv ∈ B, as required.

62



Lecture 6

Problem 6.2. Let Σ = {0, 1} and let A ⊆ Σ∗ be an arbitrary regular language.
Prove that the language

C = {vu : u, v ∈ Σ∗ and uv ∈ A} (6.25)

is regular.

Solution. Again, a natural way to solve this problem is to give an NFA for C. Let
us assume

M = (Q, Σ, δ, q0, F) (6.26)

is a DFA for which L(M) = A, like we did above. This time our NFA will be
slightly more complicated. In particular, let us define

N = (P, Σ, η, p0, G) (6.27)

as follows. First, we will define

P =
(
{0, 1} ×Q×Q

)
∪ {p0}, (6.28)

for p0 being a special start state of N that is not contained in {0, 1} × Q× Q. The
accept states of N will be

G = {(1, q, q) : q ∈ Q}. (6.29)

It remains to describe the transition function η of N, which will be as follows:

1. η(p0, ε) = {(0, q, q) : q ∈ Q}.
2. η((0, r, q), a) = {(0, δ(r, a), q)} for all q, r ∈ Q and a ∈ Σ.

3. η((0, r, q), ε) = {(1, q0, q)} for every r ∈ F and q ∈ Q.

4. η((1, r, q), a) = {(1, δ(r, a), q)} for all q, r ∈ Q and a ∈ Σ.

All other values of η that have not been listed are to be understood as ∅.
Let us consider this definition in greater detail to understand how it works. N

starts out in the start state p0, and the only thing it can do is to make a guess for
some state of the form (0, q, q) to jump to. The idea is that the 0 indicates that N
is entering the first phase of its computation, in which it will read a portion of its
input string corresponding to v in the definition of C. It jumps to any state q of M,
but it also remembers which state it jumped to. Every state N ever moves to from
this point on will have the form (a, r, q) for some a ∈ {0, 1} and r ∈ Q, but for
the same q that it first jumped to; the third coordinate q represents the memory
of where it first jumped, and it will never forget or change this part of its state.

63



CS 360 Introduction to the Theory of Computing

Intuitively speaking, the state q is a guess made by N for the state that M would
be on after reading u (which N has not seen yet, so it is just a guess).

Then, N starts reading symbols and essentially mimicking M on those input
symbols—this is the point of the transitions listed in item 2. At some point, nonde-
terministically chosen, N decides that it is time to move to the second phase of its
computation, reading the second part of its input, which corresponds to the string
u in the definition of C. It can only make this nondeterministic move, from a state
of the form (0, r, q) to (1, q0, q), when r is an accepting state of M. The reason is
that N only wants to accept vu when M accepts uv, so M should be in the initial
state at the start of u and in an accepting state at the end of v. This is the point of
the transitions listed in item 3. Finally, in the second phase of its computation, N
simulates M on the second part of its input, which corresponds to the string u. It
accepts only for states of the form (1, q, q), because those are the states that indicate
that N made the correct guess on its first step for the state that M would be in after
reading u.

This is just an intuitive description, not a formal proof. It is the case, however,
that L(N) = C, as a low-level, formal proof would reveal, which implies that C is
regular.

Alternative Solution. Again, there is another solution along the same lines as the
alternative solution to the previous problem. This time it is actually a much easier
solution. Let M be a DFA for A, precisely as above, and define Ap,q for each p, q ∈ Q
as in the alternative solution to the previous problem. The language⋃

(p,r)∈Q×F

Ap,r Aq0,p (6.30)

is regular, again by the closure of the regular languages under finite unions and
concatenations. It therefore suffices to prove

C =
⋃

(p,r)∈Q×F

Ap,r Aq0,p. (6.31)

By definition, every element of C may be expressed as vu for u, v ∈ Σ∗ satisfying
uv ∈ A. Let p ∈ Q and r ∈ F be the unique states for which u ∈ Aq0,p and
uv ∈ Aq0,r. It follows that v ∈ Ap,r, and therefore vu ∈ Ap,r Aq0,p, implying

C ⊆
⋃

(p,r)∈Q×F

Ap,r Aq0,p. (6.32)

Along similar lines, for any choice of p ∈ Q, r ∈ F, u ∈ Aq0,p, and v ∈ Ap,r we have
uv ∈ Aq0,p Ap,r ⊆ A, and therefore vu ∈ C, from which the inclusion⋃

(p,r)∈Q×F

Ap,r Aq0,p ⊆ C (6.33)

64



Lecture 6

follows.

The final problem demonstrates that closure properties holding for all regular
languages may fail for nonregular languages. In particular, the nonregular lan-
guages are not closed under the regular operations.

Problem 6.3. For each of the following statements, give specific examples of lan-
guages over some alphabet Σ for which the statements are satisfied.

(a) There exist nonregular languages A, B ⊆ Σ∗ such that A ∪ B is regular.

(b) There exist nonregular languages A, B ⊆ Σ∗ such that AB is regular.

(c) There exists a nonregular language A ⊆ Σ∗ such that A∗ is regular.

Solution. For statement (a), let us let Σ = {0}, let A ⊆ Σ∗ be any nonregular
language whatsoever, such as A = {0n : n is a perfect square}, and let B = A.
We know that B is also nonregular (because if it were regular, then its complement
would also be regular, but its complement is A which we know is nonregular). On
the other hand, A ∪ B = Σ∗, which is regular.

For statement (b), let us let Σ = {0}, and let us start by taking C ⊆ Σ∗ to be any
nonregular language (such as C = {0n : n is a perfect square}). Then let us take

A = C ∪ {ε} and B = C ∪ {ε}. (6.34)

The languages A and B are nonregular, by virtue of the fact that C is nonregular
(and therefore C is nonregular as well). On the other hand, AB = Σ∗, which is
regular.

Finally, for statement (c), let us again take Σ = {0}, and let A ⊆ Σ∗ be any
nonregular language that contains the single-symbol string 0. (Again, the language
A = {0n : n is a perfect square} will work.) We have that A is nonregular, but
A∗ = Σ∗, which is regular.

65




