
Lecture 5

Proving languages to be nonregular

We already know, for any alphabet Σ, that there exist languages A ⊆ Σ∗ that are
nonregular. This is because there are uncountably many languages over Σ but only
countably many regular languages over Σ. However, this observation does not al-
low us to conclude that specific nonregular languages are indeed nonregular. In
this lecture we will discuss a method that can be used to prove that a fairly wide
selection of languages are nonregular.

5.1 The pumping lemma for regular languages

We will begin by proving a simple fact—known as the pumping lemma—which
establishes that a certain property must hold for all regular languages. Later in
the lecture, in the section following this one, we will use this fact to conclude that
certain languages are nonregular.

Lemma 5.1 (Pumping lemma for regular languages). Let Σ be an alphabet and let
A ⊆ Σ∗ be a regular language. There exists a positive integer n (called a pumping length
of A) that possesses the following property. For every string w ∈ A with |w| ≥ n, it is
possible to write w = xyz for some choice of strings x, y, z ∈ Σ∗ such that

1. y 6= ε,

2. |xy| ≤ n, and

3. xyiz ∈ A for all i ∈N.

The pumping lemma is essentially a precise, technical way of expressing one
simple consequence of the following fact:

If a DFA with n or fewer states reads n or more symbols from an input
string, at least one of its states must have been visited more than once.

45

CS 360 Introduction to the Theory of Computing

This means that if a DFA with n states reads a particular string having length at
least n, then there must be a substring of that input string that causes a loop, mean-
ing that the DFA starts and ends on the same state. If the DFA accepts the original
string, then by repeating that substring that caused a loop multiple times, or alter-
natively removing it altogether, we obtain a different string that is also accepted by
the DFA. It may be helpful to try to match this intuition to the proof that follows.

Proof of Lemma 5.1. Let M = (Q, Σ, δ, q0, F) be a DFA that recognizes A and let
n = |Q| be the number of states of M. We will prove that the property stated
in the pumping lemma is satisfied for this choice of n.

Let us note first that if there is no string contained in A that has length n or
larger, then there is nothing more we need to do: the property stated in the lemma
is trivially satisfied in this case. We may therefore move on to the case in which A
does contain at least one string having length at least n. In particular, suppose that
w ∈ A is a string such that |w| ≥ n. We may write

w = a1 · · · am (5.1)

for m = |w| and a1, . . . , am ∈ Σ. Because w ∈ A it must be the case that M accepts w,
and therefore there exist states

r0, r1, . . . , rm ∈ Q (5.2)

such that r0 = q0, rm ∈ F, and

rk+1 = δ(rk, ak+1) (5.3)

for every k ∈ {0, . . . , m− 1}.
Now, the sequence r0, r1, . . . , rn has n+ 1 members, but there are only n different

elements in Q, so at least one of the states of Q must appear more than once in this
sequence.1 Thus, there must exist indices s, t ∈ {0, . . . , n} satisfying s < t such that
rs = rt.

Next, define strings x, y, z ∈ Σ∗ as follows:

x = a1 · · · as, y = as+1 · · · at, z = at+1 · · · am. (5.4)

It is the case that w = xyz for this choice of strings, so to complete the proof, we
just need to demonstrate that these strings fulfill the three conditions that are listed
in the lemma. The first two conditions are immediate: we see that y has length
t− s, which is at least 1 because s < t, and therefore y 6= ε; and we see that xy has

1This is an example of the so-called pigeon hole principle: if n + 1 pigeons fly into n holes, then at
least one of the holes must contain two or more pigeons.

46

Lecture 5

length t, which is at most n because t was chosen from the set {0, . . . , n}. It remains
to verify that xyiz ∈ A, which is equivalent to M accepting xyiz, for every i ∈ N.
That fact that xyiz is accepted by M follows from the verification that the sequence
of states

r0, . . . , rs, rs+1, . . . , rt︸ ︷︷ ︸
repeated i times

, rt+1, . . . , rm (5.5)

satisfies the definition of acceptance of the string xyiz by the DFA M.

The pumping lemma for an example DFA

If the proof of the pumping lemma, or the idea behind it, is not clear, it may be
helpful to see it in action for an actual DFA and a long enough string accepted
by that DFA. For instance, let us take M to be the DFA having the state diagram
illustrated in Figure 5.1.

q0 q1 q2

q3 q4 q5

1

0

0

1

1

0

0

1

0

1

0

1

Figure 5.1: The state diagram of a DFA M, to be used to provide an example to
explain the pumping lemma.

Now consider any string w having length at least 6 (which is the number of states
of M) that is accepted by M. For instance, let us take w = 0110111. This causes M
to move through this sequence of states:

q0
0−→ q1

1−→ q2
1−→ q5

0−→ q4
1−→ q1

1−→ q2
1−→ q5 (5.6)

(The arrows represent the transitions and the symbols above the arrows indicate
which input symbol has caused this transition.) Sure enough, there is at least one

47

CS 360 Introduction to the Theory of Computing

state that appears multiple times in the sequence, and in this particular case there
are actually three such states: q1, q2, and q5, each of which appear twice. Let us
focus on the two appearances of the state q1, just because this state happens to be
the one that gets revisited first. It is the substring 1101 that causes M to move in a
loop starting and ending on the state q1. In the statement of the pumping lemma
this corresponds to taking

x = 0, y = 1101, and z = 11. (5.7)

Because the substring y causes M to move from the state q1 back to q1, it is as if
reading y when M is in the state q1 has no effect. So, given that x causes M to move
from the initial state q0 to the state q1, and z causes M to move from q1 to an accept
state, we see that M must not only accept w = xyz, but it must also accept xz, xyyz,
xyyyz, and so on.

There is nothing special about the example just described; something similar
always happens. Pick any DFA whatsoever, and then pick any string accepted by
that DFA that has length at least the number of states of the DFA, and you will
be able to find a loop like we did above. By repeating input symbols in the most
natural way so that the loop is followed multiple times (or no times) you will ob-
tain different strings accepted by the DFA. This is essentially all that the pumping
lemma is saying.

5.2 Using the pumping lemma to prove nonregularity

It is helpful to keep in mind that the pumping lemma is a statement about regular
languages: it establishes a property that must always hold for every chosen regular
language.

Although the pumping lemma is a statement about regular languages, we can
use it to prove that certain languages are not regular using the technique of proof
by contradiction. In particular, we take the following steps:

1. For A being the language we hope to prove is nonregular, we make the assump-
tion that A is regular. Operating under the assumption that the language A is
regular, we apply the pumping lemma to it.

2. Using the property that the pumping lemma establishes for A, we derive a
contradiction. The contradiction will almost always be that we conclude that
some particular string is contained in A that we know is actually not contained
in A.

3. Having derived a contradiction, we conclude that it was our assumption that A
is regular that led to the contradiction, and so we deduce that A is nonregular.

48

Lecture 5

Examples of nonregularity proved through the pumping lemma

Let us illustrate this method for a few example languages. These examples will be
stated as propositions, with the proofs showing you how the argument works.

Proposition 5.2. Let Σ = {0, 1} be the binary alphabet and define a language over Σ as
follows:

SAME =
{

0m1m : m ∈N
}

. (5.8)

The language SAME is not regular.

Remark 5.3. Whenever we give a language a special name like this, it is to be un-
derstood that this language is so defined for the remainder of the course (although
reminders will often appear). It is a good idea to remember the languages that
are given special names—they will serve well as examples. Two additional named
languages will appear in this lecture.

Proof. Assume toward contradiction that SAME is regular. By the pumping lemma
for regular languages, there must exist a pumping length n ≥ 1 for SAME for
which the property stated by that lemma holds. We will fix such a pumping length
n for the remainder of the proof.

Define w = 0n1n (where n is the pumping length we just fixed). It is the case
that w ∈ SAME and |w| = 2n ≥ n, so the pumping lemma tells us that there exist
strings x, y, z ∈ Σ∗ so that w = xyz and the following conditions hold:

1. y 6= ε,

2. |xy| ≤ n, and

3. xyiz ∈ SAME for all i ∈N.

Now, because xyz = 0n1n and |xy| ≤ n, the substring y cannot have any 1s in
it, as the substring xy is not long enough to reach the 1s in xyz. This means that
y = 0k for some choice of k ∈ N, and because y 6= ε, we conclude moreover that
k ≥ 1. We may also conclude that

xy2z = xyyz = 0n+k1n. (5.9)

This is because xyyz is the string obtained by inserting y = 0k somewhere in the
initial portion of the string xyz = 0n1n, before any 1s have appeared. More gener-
ally it holds that

xyiz = 0n+(i−1)k1n (5.10)

for each i ∈ N. (We do not actually need this more general formula for the sake of
the current proof, but in other similar cases a formula like this can be helpful.)

49

CS 360 Introduction to the Theory of Computing

However, because k ≥ 1, we see that the string xy2z = 0n+k1n is not contained in
SAME. This contradicts the third condition stated by the pumping lemma, which
guarantees us that xyiz ∈ SAME for all i ∈N.

Having obtained a contradiction, we conclude that our assumption that SAME
is regular was wrong. The language SAME is therefore nonregular, as required.

Proposition 5.4. Let Σ = {0, 1} be the binary alphabet and define a language over Σ as
follows:

A =
{

0m1r : m, r ∈N, m > r
}

. (5.11)

The language A is not regular.

Proof. Assume toward contradiction that A is regular. By the pumping lemma for
regular languages, there must exist a pumping length n ≥ 1 for A for which the
property stated by that lemma holds. We will fix such a pumping length n for the
remainder of the proof.

Define w = 0n+11n. We see that w ∈ A and |w| = 2n + 1 ≥ n, so the pumping
lemma tells us that there exist strings x, y, z ∈ Σ∗ so that w = xyz and the following
conditions are satisfied:

1. y 6= ε,

2. |xy| ≤ n, and

3. xyiz ∈ A for all i ∈N.

Now, because xyz = 0n+11n and |xy| ≤ n, it must be that y = 0k for some choice
of k ≥ 1. (The reasoning here is just like in the previous proposition.) This time we
have

xyiz = 0n+1+(i−1)k1n (5.12)

for each i ∈N. In particular, if we choose i = 0, then we have

xy0z = xz = 0n+1−k1n. (5.13)

However, because k ≥ 1, and therefore n+ 1− k ≤ n, we see that the string xy0z
is not contained in A. This contradicts the third condition stated by the pumping
lemma, which guarantees us that xyiz ∈ A for all i ∈N.

Having obtained a contradiction, we conclude that our assumption that A is
regular was wrong. The language A is therefore nonregular, as required.

Remark 5.5. In the previous proof, it was important that we could choose i = 0 to
get a contradiction—no other choice of i would have worked.

50

Lecture 5

Proposition 5.6. Let Σ = {0} and define a language over Σ as follows:

SQUARE =
{

0m2
: m ∈N

}
. (5.14)

The language SQUARE is not regular.

Proof. Assume toward contradiction that SQUARE is regular. By the pumping
lemma for regular languages, there exists a pumping length n ≥ 1 for SQUARE for
which the property stated by that lemma holds. We will fix such a pumping length
n for the remainder of the proof.

Define w = 0n2
. We observe that w ∈ SQUARE and |w| = n2 ≥ n, so the

pumping lemma tells us that there exist strings x, y, z ∈ Σ∗ so that w = xyz and
the following conditions are satisfied:

1. y 6= ε,

2. |xy| ≤ n, and

3. xyiz ∈ SQUARE for all i ∈N.

There is only one symbol in the alphabet Σ, so this time it is immediate that
y = 0k for some choice of k ∈ N. Because y 6= ε and |y| ≤ |xy| ≤ n, it must be the
case that 1 ≤ k ≤ n, and therefore

xyiz = 0n2+(i−1)k (5.15)

for each i ∈N. In particular, if we choose i = 2, then we have

xy2z = xyyz = 0n2+k. (5.16)

However, because 1 ≤ k ≤ n, it cannot be that n2 + k is a perfect square; the
number n2 + k is larger than n2, but the next perfect square after n2 is

(n + 1)2 = n2 + 2n + 1, (5.17)

which is strictly larger than n2 + k because k ≤ n. The string xy2z is therefore not
contained in SQUARE, which contradicts the third condition stated by the pump-
ing lemma, which guarantees us that xyiz ∈ SQUARE for all i ∈N.

Having obtained a contradiction, we conclude that the assumption of SQUARE
being regular was wrong. The language SQUARE is therefore nonregular.

In advance of the next example, let us introduce some notation that will be
useful from time to time throughout the course. For a given string w, the string
wR denotes the reverse of the string w. Formally speaking, assuming w is a string
over an alphabet Σ, we may define the string reversal operation inductively as
follows:

51

CS 360 Introduction to the Theory of Computing

1. εR = ε, and

2. (aw)R = wRa for every w ∈ Σ∗ and a ∈ Σ.

Let us also define the language

PAL =
{

w ∈ Σ∗ : w = wR} (5.18)

over the binary alphabet Σ = {0, 1}. This language is named PAL because it is
short for palindrome, which (as you may know) is something that reads the same
forward and backward.

Proposition 5.7. The language PAL is not regular.

Proof. Assume toward contradiction that PAL is regular. By the pumping lemma
for regular languages, there must exist a pumping length n ≥ 1 for PAL for which
the property stated by that lemma holds. We will fix such a pumping length n for
the remainder of the proof.

Define w = 0n10n. We observe that w ∈ PAL and |w| = 2n + 1 ≥ n, so the
pumping lemma tells us that there exist strings x, y, z ∈ Σ∗ so that w = xyz and
the following conditions are satisfied:

1. y 6= ε,

2. |xy| ≤ n, and

3. xyiz ∈ PAL for all i ∈N.

Once again, we may conclude that y = 0k for k ≥ 1. This time it is the case that

xyiz = 0n+(i−1)k10n (5.19)

for each i ∈N. In particular, if we choose i = 2, then we have

xy2z = xyyz = 0n+k10n. (5.20)

Because k ≥ 1, this string is not equal to its own reverse, and therefore xy2z is
therefore not contained in PAL. This contradicts the third condition stated by the
pumping lemma, which guarantees us that xyiz ∈ PAL for all i ∈N.

Having obtained a contradiction, we conclude that our assumption that PAL is
regular was wrong. The language PAL is therefore nonregular, as required.

The four propositions above should give you an idea of how the pumping
lemma can be used to prove languages are nonregular. The set-up is always the
same: we assume toward contradiction that a particular language is regular, and
observe that the pumping lemma gives us a pumping length n. At that point it is

52

Lecture 5

time to choose the string w, try to use some reasoning, and derive a contradiction.
It may not always be clear what string w to choose or how exactly to get a contra-
diction; these steps will depend on the language you are working with, there may
be multiple good choices for w, and there may be some creativity and/or insight
involved in getting it all to work.

If you do not know what string w to choose, take a guess and aim for a contra-
diction. If you do not succeed, you may find that you have gained some intuition
on what a better choice might be. Of course, you should thoroughly be convinced
by your own arguments and actively look for ways they might be going wrong; if
you do not truly believe your own proof, it is not likely anyone else will believe it
either.

5.3 Nonregularity from closure properties

Sometimes we can prove that a particular language is nonregular by combining to-
gether closure properties for regular languages our knowledge of other languages
being nonregular. Here are two examples, again stated as propositions.

Proposition 5.8. Let Σ = {0, 1} and define a language over Σ as follows:

B =
{

w ∈ Σ∗ : w 6= wR}. (5.21)

The language B is not regular.

Proof. Assume toward contradiction that B is regular. The regular languages are
closed under complementation, and therefore B is regular. However, B = PAL,
which we already proved is nonregular. This is a contradiction, and therefore our
assumption that B is regular was wrong. We conclude that B is nonregular, as
claimed.

Proposition 5.9. Let Σ = {0, 1} and define a language over Σ as follows:

C =
{

w ∈ Σ∗ : w has more 0s than 1s}. (5.22)

The language C is not regular.

Proof. Assume toward contradiction that C is regular. We know that the language
L(0∗1∗) is regular because it is the language matched by a regular expression. The
regular languages are closed under intersection, so C ∩ L(0∗1∗) is regular. How-
ever, we have that

C ∩ L(0∗1∗) = A, (5.23)

53

CS 360 Introduction to the Theory of Computing

the language defined in Proposition 5.4, which we already proved is nonregular.
This is a contradiction, and therefore our assumption that C is regular was wrong.
We conclude that C is nonregular.

It is important to remember, when using this method, that it is the regular lan-
guages that are closed under operations such as intersection, union, and so on, not
the nonregular languages. For instance, it is not always the case that the intersec-
tion of two nonregular languages is nonregular—so a proof would not be valid if
it were to rely on such a claim.

54

