Lecture 4

Regular operations and regular
expressions

This lecture focuses on three fundamentally important operations on languages—
union, concatenation, and Kleene star—which are collectively known as the regular
operations. We will prove that the regular languages are closed under the regular
operations, as well as some other basic operations defined on languages. We will
then formally define regular expressions, and prove that they offer an alternative
characterization of the regular languages.

4.1 Regular operations

Let us begin with a formal definition of the regular operations.

Definition 4.1. The regular operations are the operations union, concatenation, and
Kleene star (or just star, for short), which are defined as follows for any choice of an
alphabet £ and languages A, B C X*:

1. Union. The language A U B C 2* is defined as

AUB={w : we Aorw € B}. (4.1)

In words, this is just the ordinary union of two sets that happen to be languages.

2. Concatenation. The language AB C ¥* is defined as
AB ={wx : w € Aand x € B}. (4.2)

In words, this is the language of all strings obtained by concatenating together
a string from A and a string from B, with the string from A on the left and the
string from B on the right.

31

CS 360 Introduction to the Theory of Computing

Note that there is nothing about a string of the form wx that indicates where w
stops and x starts; it is just the sequence of symbols you get by putting w and x
together.

3. Kleene star. The language A* is defined as
A*={ef UAUAAU AAA U --- (4.3)

In words, A* is the language obtained by selecting any finite number of strings
from A and concatenating them together. (This includes the possibility to select
no strings at all from A, where we follow the convention that concatenating
together no strings at all gives the empty string.)

Note that the name reqular operations is just a name that has been chosen for
these three operations. They are special operations and they do indeed have a close
connection to the regular languages, but naming them the reqular operations is a
choice we have made and not something mandated in a mathematical sense.

4.2 Closure of regular languages under regular
operations

Now we will prove that when regular operations are performed on regular lan-
guages, the result must always be a regular language. That is to say, the regular
languages are closed with respect to the regular operations.

Theorem 4.2. The reqular languages are closed with respect to the reqular operations: if
A, B C X" are regular languages, then the languages A U B, AB, and A* are also regular.

Proof. Let us assume A and B are fixed regular languages for the remainder of the
proof. Because these languages are regular, there must exist DFAs

MA = (P,Z,é, po,F) and MB = (Q,Z, “l/l,q(),G) (4.4:)

such that L(M,4) = A and L(Mp) = B. We will make use of these DFAs as we
prove that the languages AU B, AB, and A* are regular. Because we are free to give
whatever names we like to the states of a DFA without influencing the language
it recognizes, there is no generality lost in assuming that P and Q are disjoint sets
(meaning that PN Q = O).

The first regular operation is union. From the previous lecture, we know that
if there exists an NFA N such that L(N) = A U B, then A U B is regular. With that
fact in mind, our goal will be to define such an NFA. We will define this NFA N
so that its states include all elements of both P and Q, as well as an additional

32

Lecture 4

Peand

@

ek

Mp

Figure 4.1: DFAs M4 and Mp are combined to form an NFA for the language
L(MA) U L(MB).

state r(that is in neither P nor Q. This new state 7y will be the start state of N. The
transition function of N is to be defined so that all of the transitions among the
states P defined by J and all of the transitions among the states Q defined by y are
present, as well as two e-transitions, one from r(to pp and one from r(to go.

Figure 4.1 illustrates what the NFA N looks like in terms of a state diagram.
You should imagine that the shaded rectangles labeled M4 and Mp are the state
diagrams of M4 and Mp. (The illustrations in the figure are only meant to suggest
hypothetical state diagrams for these two DFAs. The actual state diagrams for M4
and Mp can be arbitrary.)

We can specify N more formally as follows:

N = (R,%,1,r0, FUG) (4.5)

where
R=PUQU{ro} (4.6)

(and we assume P, Q, and {r¢} are disjoint sets as suggested above) and the tran-
sition function
n:Rx (ZU{e}) = P(R) (4.7)

33

CS 360 Introduction to the Theory of Computing

is defined as follows:

n(p,a) ={é(p,a)} (forallp € Pand a € ¥),
n(p,e) =2 (forall p € P),

n(gq,a) ={u(q,a)} (forallg € Qand a € %),
n(g,e) =2 (forallg € Q),

n(ro,a) = @ (foralla € X),

1(ro,€) = {po,qo}

The set of accept states of N in F U G.

Every string that is accepted by M4 is also accepted by N. This is because N
may first follow the e-transition from rj to pg and then follow the same transitions
that would be followed by M 4. Because the accept states of N include all of the
accept states of M4, this allows N to accept.

By similar reasoning, every string accepted by M3 is also accepted by N.

Finally, every string that is accepted by N must be accepted by either M, or
Mp (or both), because every accepting computation of N begins with one of the
two e-transitions and then necessarily mimics an accepting computation of either
M4 or Mp depending on which e-transition was taken. It therefore follows that

L(N) = L(M4) UL(Mp) = AUB, (4.8)

and so we conclude that A U B is regular.

The second regular operation is concatenation. The idea is similar to the proof
that A U B is regular: we will use the DFAs M4 and M to define an NFA N for the
language AB. This time we will take the state set of N to be the union P U Q, and
the start state py of M4 will be the start state of N. All of the transitions defined
by M and Mp will be included in N, and in addition we will add an e-transition
from each accept state of M4 to the start state of Mp. Finally, the accept states of N
will be just the accept states G of Mp (and not the accept states of M 4). Figure 4.2
illustrates the construction of N based on M 4 and M.

In formal terms, N is the NFA defined as
N = (PUQ,%,1,po,G) (4.9)
where the transition function
n:(PUQ)x (XZU{e}) - P(PUQ) (4.10)

34

Lecture 4

Ol

Figure 4.2: DFAs M, and Mp are combined to form an NFA for the language
L(Ma) L(Mp).

is given by
n(p,a) ={é(p,a)} (forallp € Pand a € X)),
n(g,a) ={u(q,a)} (forallg € Qanda € %),
1(p,e) = {40} (forall p € F),
n(pe) =2 (for all p € P\F),
n(g,e) =2 (forallg € Q).

Along similar lines to what was done in the proof that A U B is regular, one can
argue that N recognizes the language AB, from which it follows that AB is regular.

The third regular operation is star. We will prove that A* is regular, and once
again the proof proceeds along similar lines. This time we will just consider M4
and not Mp because the language B is not involved. Let us start with the formal
specification of N this time; define

N = (R, %, 1,70, {ro}) (4.11)
where R = P U {rg} and the transition function
n:Rx (ZU{e}) = P(R) (4.12)

is defined as

n(ro,a) = @ (foralla € X),

1(ro,€) = po,

n(p,a) ={é(p,a)} (forevery p € Pand a € ¥),
n(p,e) =A{ro} (for every p € F),

n(pe) =2 (for every p € P\F).

35

CS 360 Introduction to the Theory of Computing

Figure 4.3: The DFA M, is modified to form an NFA for the language L(M4)*.

In words, we take N to be the NFA whose states are the states of M4 along with
an additional state rp, which is both the start state of N and its only accept state.
The transitions of N include all of the transitions of M4, along with an e-transition
from ry to the start state pg of M4, and e-transitions from all of the accept states of
M 4 back to rg. Figure 4.3 provides an illustration of how N relates to M.

It is evident that N recognizes the language A*. This is because the strings it
accepts are precisely those strings that cause N to start at rg and loop back to ¢ zero
or more times, with each loop corresponding to some string that is accepted by M 4.
As L(N) = A%, it follows that A* is regular, and so the proof is complete. O

It is natural to ask why we could not easily conclude, for a regular language A,
that A* is regular using the fact that the regular languages are closed under both
union and concatenation. In more detail, we have that

A*={efUAUAAUAAAU--- (4.13)

It is easy to see that the language {e} is regular—here is the state diagram for an
NFA that recognizes the language {¢} (for any choice of an alphabet):

The language {e} U A is therefore regular because the union of two regular lan-
guages is also regular. We also have that AA is regular because the concatenation

36

Lecture 4

of two regular languages is regular, and therefore {e} U A U AA is regular because
it is the union of the two regular languages {¢} U A and AA. Continuing on like
this we find that the language

{efUAUAAUAAA (4.14)
is regular, the language
{efUAUAAUAAAUAAAA (4.15)

is regular, and so on. Does this imply that A* is regular?

The answer is no. Although it is true that A* is regular whenever A is regu-
lar, as we proved earlier, the argument just suggested based on combining unions
and concatenations alone does not establish it. This is because we can never con-
clude from this argument that the infinite union (4.13) is regular, but only that finite
unions such as (4.15) are regular.

If you are still skeptical or uncertain, consider this statement:

If A is a finite language, then A* is also a finite language.

This statement is false in general. For example, A = {0} is finite, but
A* ={¢,0,00,000,...} (4.16)

is infinite. On the other hand, it is true that the union of two finite languages is
finite, and the concatenation of two finite languages is finite, so something must
go wrong when you try to combine these facts in order to conclude that A* is
finite. The situation is similar when the property of being finite is replaced by the
property of being regular.

4.3 Other closure properties of regular languages

There are many other operations on languages aside from the regular operations
under which the regular languages are closed. For example, the complement of a
regular language is also regular. Just to be sure the terminology is clear, here is the
definition of the complement of a language.

Definition 4.3. Let A C X* be a language over the alphabet X. The complement of
A, which is denoted A4, is the language consisting of all strings over X. that are not
contained in A:

A=3*\A. (4.17)

37

CS 360 Introduction to the Theory of Computing

(For the sake of clarity, we will use a backslash to denote set differences: S\T is the
set of all elements in S that are notin T.)

Proposition 4.4. Let X be an alphabet and let A C X* be a reqular language over the
alphabet ¥.. The language A is also reqular.

This proposition is very easy to prove: because A is regular, there must exist a
DFA M = (Q,%, 9,40, F) such that L(M) = A. We obtain a DFA for the language
A simply by swapping the accept and reject states of M. That is, the DFA K =
(Q,%,0,90, Q\F) recognizes A.

While it is easy to obtain a DFA for the complement of a language if you have a
DFA for the original language simply by swapping the accept and reject states, this
does not work for NFAs. You might, for instance, swap the accept and reject states
of an NFA and end up with an NFA that recognizes something very different from
the complement of the language you started with. This is due to the asymmetric
nature of accepting and rejecting for nondeterministic models.

Within the next few lectures we will see more examples of operations under
which the regular languages are closed. Here is one more for this lecture.

Proposition 4.5. Let ¥ be an alphabet and let A and B be reqular languages over the
alphabet 2. The intersection A N B is also regular.

This time we can just combine closure properties we already know to obtain
this one. This is because De Morgan’s laws imply that

ANB=AUB. (4.18)

If A and B are regular, then it follows that A and B are regular, and therefore A U B
is regular, and because the complement of this regular language is A N B we have
that A N B is regular.

There is another way to conclude that A N B is regular, which is arguably more
direct. Because the languages A and B are regular, there must exist DFAs

Ma = (P,%,0,po,F) and Mp = (Q,%, 1 90,G) (4.19)

such that L(M,4) = A and L(Mp) = B. We can obtain a DFA M recognizing A N B
using a Cartesian product construction:

M= (P xQ,%1,(poq0), F x G) (4.20)

where

n((p,q),a) = (6(p,a),u(q,a)) (4.21)

38

Lecture 4

for every p € P,q € Q,and a € X. In essence, the DFA M is what you get if
you build a DFA that runs M4 and Mp in parallel, and accepts if and only if both
My and Mp accept. You could also get a DFA for A U B using a similar idea (but
accepting if and only if M 4 accepts or Mp accepts).

4.4 Regular expressions

Regular expressions are commonly used in programming languages and other ap-
plications to specify patterns for searching and string matching. When regular ex-
pressions are used in practice, they are typically endowed with a rich set of con-
venient operations, but in this course we shall take a minimal definition of regular
expressions allowing only the three regular operations (and no other operations
like negation or special symbols marking the first or last characters of an input).

Here is the formal definition of regular expressions. The definition is an ex-
ample of an inductive definition, and some comments on inductive definitions will
follow.

Definition 4.6. Let X be an alphabet. It is said that R is a reqular expression over the
alphabet X if any of these properties holds:

for some choice of a € X.

= (Ry URy) for regular expressions Rj and Rj.

AN S

R=a
R=(
R = (RyR;) for regular expressions R; and R;.
R=(

R7Y) for a regular expression R;.

When you see an inductive definition such as this one, you should interpret
it in the most sensible way, as opposed to thinking of it as something circular or
paradoxical. For instance, when it is said that R = (R}) for a regular expression
Ry, itis to be understood that R; is already well-defined as a regular expression. We
cannot, for instance, take R; to be the regular expression R that we are defining—
for then we would have R = (R)*, which might be interpreted as a strange, fractal-
like expression that looks like this:

R=(((-(---)* -)" (4.22)

Such a thing makes no sense as a regular expression, and is not valid according to
a sensible interpretation of the definition.

39

CS 360 Introduction to the Theory of Computing

Here are some valid examples of regular expressions over the binary alphabet
r={01}:

o o R

1
(0U1)
((ou1))
(((0Ue)*)1)

When we are talking about regular expressions over an alphabet X, you should
think of them as being strings over the alphabet

YU{(,),*,U¢e o} (4.23)

(assuming of course that L and { (,), *, U, ¢, @} are disjoint). Some authors will
use a different font for regular expressions so that this is more obvious, but this
will not be done in these notes.

Next we will define the language recognized (or matched) by a given regular ex-
pression. Again it is an inductive definition, and it directly parallels the regular
expression definition itself. If it looks to you like it is stating something obvious,
then your impression is correct—we require a formal definition, but it essentially
says that we should define the language matched by a regular expression in the
most straightforward and natural way.

Definition 4.7. Let R be a regular expression over the alphabet X. The language
recognized by R, which is denoted L(R), is defined as follows:

1. If R =g, then L(R) = @.

2. If R =¢,then L(R) = {e}.

3. f R=afora € X, then L(R) = {a}.

4. If R = (Rq URy) for regular expressions Ry and Ry, then L(R) = L(R;) UL(Ry).
5. If R = (R1Ry) for regular expressions Ry and Ry, then L(R) = L(R7) L(R»).

6. If R = (R]) for a regular expression Ry, then L(R) = L(Ry)*.

40

Lecture 4

Order of precedence for regular operations

It might appear that regular expressions arising from Definition 4.6 have a lot of
parentheses. For instance, the regular expression (((0U¢)*)1) has more parenthe-
ses than it has non-parenthesis symbols. The parentheses ensure that every regular
expression has an unambiguous meaning.

We can, however, reduce the need for so many parentheses by introducing an
order of precedence for the regular operations. The order is as follows:

1. star (highest precedence)
2. concatenation

3. union (lowest precedence).

To be more precise, we are not changing the formal definition of regular expres-
sions, we are just introducing a convention that allows some parentheses to be
implicit, which makes for simpler-looking regular expressions. For example, we
write

10" U1 (4.24)

rather than
((1(0%))u1). (4.25)

Having agreed upon the order of precedence above, the simpler-looking expres-
sion is understood to mean the second expression.

A simple way to remember the order of precedence is to view the regular opera-
tions as being analogous to algebraic operations that you are already familiar with:
star looks like exponentiation, concatenation looks like multiplication, and unions
are similar to additions. So, just as the expression xy? + z has the same meaning as
((x(y?)) + z), the expression 10* U 1 has the same meaning as ((1(0*)) U 1).

Regular expressions characterize the regular languages

At this point it is natural to ask which languages have regular expressions. The
answer is that the class of languages having regular expressions is precisely the
class of regular languages. If it were otherwise, you would have to wonder why
the names were chosen as they were.

There are two implications needed to establish that the regular languages coin-
cide with the class of languages having regular expressions. Let us start with the
tirst implication, which is the content of the following proposition.

Proposition 4.8. Let X be an alphabet and let R be a reqular expression over the alpha-
bet X.. The language L(R) is regular.

41

CS 360 Introduction to the Theory of Computing

The idea behind the proof of this proposition is simple enough: we can easily build
DFAs for the languages &, {¢}, and {a} (for each symbol a € ¥), and by repeatedly
using the constructions described in the proof of Theorem 4.2, one can combine
together such DFAs to build an NFA recognizing the same language as any given
regular expression.

The other implication is the content of the following theorem, which is more
difficult to prove than the proposition above.

Theorem 4.9. Let X be an alphabet and let A C 3* be a regular language. There exists a
reqular expression over the alphabet ¥ such that L(R) = A.

Proof. Because A is regular, there must exist a DFA M = (Q, %, 4, 4o, F) such that
L(M) = A. We are free to use whatever names we like for the states of a DFA, so
no generality is lost in assuming Q = {1,...,n} for some positive integer n.

We are now going to define the language

k
Bk, C ¥, (4.26)

for every choice of states p,q € {1,...,n} and an integer k € {0,...,n}, to be the
set of all strings w that cause M to operate in the following way:

If we start M in the state p, then by reading w the DFA M moves to
the state g. Moreover, aside from the beginning state p and the ending
state g, the DFA M only touches states contained in the set {1,...,k}
when reading w in this way.

For example, the language B), , is simply the set of all strings causing M to move
from p to q because restricting the intermediate states that M touches to those con-
tained in the set {1,...,n} is no restriction whatsoever. At the other extreme, the
set 32,q must be a finite set; it could be the empty set if there are no direct transitions
from p to g, it includes the empty string in the case p = g, and in general it includes
a length-one string corresponding to each symbol that causes M to transition from
p togq.

Now, we will prove by induction on k that there exists a regular expression R’;,q
satisfying

k _ nk
L(Rk,) = Bt ,, (4.27)

for every choice of p,q € {1,...,n} and k € {0,...,n}. The base case is k = 0. The
language 32,q is finite for every p,q € {1,...,n}, consisting entirely of strings of
length 0 or 1, so it is straightforward to define a corresponding regular expression
Rg,q that matches Bg/q.

42

Lecture 4

For the induction step, we assume k > 1, and that there exists a regular expres-
sion R';,fql satisfying . .
L(RM) = BM (4.28)
for every p,q € {1,...,n}. Itis the case that
k _ pk—1 k—1(pk—1*pk—1
Byg=Bpg UB,, (Bix') By, (4.29)

This equality reflects the fact that the strings that cause M to move from p to g
through the intermediate states {1,...,k} are precisely those strings that either
(i) cause M to move from p to g through the intermediate states {1,...,k — 1}, so
that state k is not visited as an intermediate state, or (ii) cause M to move from p
to g through the intermediate states {1,...,k}, visiting the state k as an interme-
diate state one or more times. We may therefore define a regular expression R’;,q
satisfying (4.27) for every p,q € {1,...,n} as

ko _ pk=1,; pk—1/pk—1*pk—1
Rpq =Ry UR, (Rk,k) Ry, (4.30)
Finally, we obtain a regular expression R satisfying L(R) = A by defining

R=J Ry, (4.31)
qeF

In words, R is the regular expression we obtain by forming the union over all

regular expressions R; . where g is an accept state. This completes the proof. [

There is a procedure that can be used to convert a given DFA into an equivalent
regular expression. The idea behind this conversion process has some similarities
to the proof above. It tends to get messy, producing rather large and complicated-
looking regular expressions from relatively simple DFAs, but it works—and just
like the conversion of an NFA to an equivalent DFA, it can be implemented by a
computer.

43

