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Quantum channel capacities

This chapter is focused on capacities of quantum channels for transmitting
information. The notion of a channel capacity has multiple, inequivalent
formulations in the quantum setting. For example, one may consider the
capacity with which classical or quantum information can be transmitted
through a channel, and different resources may be available to assist with
the information transmission, such as entanglement shared between a sender
and receiver before the information transmission takes place.

Three fundamental theorems are presented, characterizing the capacities
of quantum channels to transmit either classical or quantum information,
both with and without the assistance of prior shared entanglement. When
prior shared entanglement between the sender and receiver is not available,
these characterizations have a somewhat undesirable property: they require
a regularization—or an averaging over an increasingly large number of uses
of a given channel—and fail to provide capacity formulas that are either
explicit or efficiently computable for this reason. The apparent need for such
regularizations is discussed in the last section of the chapter, along with the
related phenomenon of super-activation of quantum capacity.

8.1 Classical information over quantum channels
The general scenario to be considered throughout this chapter involves two
hypothetical individuals: a sender and a receiver. The sender attempts to
transmit information, either classical or quantum, to the receiver through
multiple, independent uses of a given channel Φ. Schemes are considered in
which the sender prepares an input to these channel uses and the receiver
processes the output in such a way that information is transmitted with a
high degree of accuracy. As is standard in information theory, the chapter
mainly deals with the asymptotic regime, making use of entropic notions
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to analyze rates of information transmission in the limit of an increasingly
large number of independent channel uses.

The subject of the present section is the capacity of quantum channels to
transmit classical information, including both the case in which the sender
and receiver share prior entanglement and in which they do not. The first
subsection below introduces notions and terminology concerning channel
capacities that will be needed throughout the section, as well as in later parts
of the chapter. The second subsection is devoted to a proof of the Holevo–
Schumacher–Westmoreland theorem, which characterizes the capacity of a
channel to transmit classical information without the use of prior shared
entanglement. The final subsection proves the entanglement-assisted capacity
theorem, which characterizes the capacity of a channel to transmit classical
information with the assistance of prior shared entanglement.

8.1.1 Classical capacities of quantum channels
Five quantities that relate to the information-transmitting capabilities of
channels are defined below. The first two quantities—the classical capacity
and the entanglement-assisted classical capacity—are fundamental within
the subject of quantum channel capacities. The remaining three quantities
are the Holevo capacity, the entanglement-assisted Holevo capacity, and the
coherent information, all of which play important roles in the main results
to be presented.

The classical capacity of a channel
Intuitively (and somewhat informally) speaking, the classical capacity of a
channel describes the average number of classical bits of information that
can be transmitted, with a high degree of accuracy, through each use of that
channel. As is typical for information-theoretic notions, channel capacities
are more formally defined in terms of asymptotic behaviors, where the limit
of an increasing number of channel uses is considered.

When stating a precise mathematical definition of classical capacity, it is
convenient to refer to the emulation of one channel by another.

Definition 8.1 Let Φ ∈ C(X ,Y) and Ψ ∈ C(Z) be channels, for X , Y, and
Z being complex Euclidean spaces. It is said that the channel Φ emulates
Ψ if there exist channels Ξ E ∈ C(Z,X ) and Ξ D ∈ C(Y,Z) such that

Ψ = Ξ DΦ Ξ E. (8.1)

When this relationship holds, the channel Ξ E is called an encoding channel
and Ξ D is called a decoding channel.
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It is also convenient to refer to an approximation of a given channel by
another. In this chapter, such an approximation is always assumed to be
defined with respect to the completely bounded trace norm.

Definition 8.2 Let Ψ0,Ψ1 ∈ C(Z) be channels, for Z being a complex
Euclidean space, and let ε > 0 be a positive real number. The channel Ψ0 is
an ε-approximation to Ψ1 (equivalently, Ψ1 is an ε-approximation to Ψ0) if

∣∣∣∣∣∣Ψ0 −Ψ1
∣∣∣∣∣∣

1 < ε. (8.2)

The definition of the classical capacity of a channel, which makes use of
the previous two definitions, is as follows.

Definition 8.3 (Classical capacity of a channel) Let X and Y be complex
Euclidean spaces and let Φ ∈ C(X ,Y) be a channel. Let Γ = {0, 1} denote
the binary alphabet, let Z = CΓ, and let ∆ ∈ C(Z) denote the completely
dephasing channel defined with respect to the space Z.

1. A value α ≥ 0 is an achievable rate for classical information transmission
through Φ if (i) α = 0, or (ii) α > 0 and the following holds for every
positive real number ε > 0: for all but finitely many positive integers n,
and for m = bαnc, the channel Φ⊗n emulates an ε-approximation to the
channel ∆⊗m.

2. The classical capacity of Φ, denoted C(Φ), is the supremum value of all
achievable rates for classical information transmission through Φ.

In the context of Definition 8.3, the completely dephasing channel ∆ is
to be viewed as an ideal channel for transmitting a single bit of classical
information. When considering an emulation of the m-fold tensor product
∆⊗m of this ideal classical channel by the channel Φ⊗n, no generality is lost
in restricting one’s attention to classical-to-quantum encoding channels Ξ E

and quantum-to-classical decoding channels Ξ D. That is, one may assume

Ξ E = Ξ E∆⊗m and Ξ D = ∆⊗mΞ D. (8.3)

This assumption causes no loss of generality because
∣∣∣∣∣∣(∆⊗mΞ D

)
Φ⊗n

(
Ξ E∆⊗m

)−∆⊗m
∣∣∣∣∣∣

1
=
∣∣∣∣∣∣∆⊗m

(
Ξ DΦ⊗nΞ E −∆⊗m

)
∆⊗m

∣∣∣∣∣∣
1

≤
∣∣∣∣∣∣Ξ DΦ⊗nΞ E −∆⊗m

∣∣∣∣∣∣
1 ;

(8.4)

replacing a given choice of Ξ E and Ξ D by Ξ E∆⊗m and ∆⊗mΞ D will never
decrease the quality of the emulation achieved.
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In light of this observation, the implicit use of the completely bounded
trace norm in Definition 8.3 may appear to be somewhat heavy-handed;
an equivalent definition is obtained by requiring that Φ⊗n emulates some
channel Ψ ∈ C(Z⊗m) satisfying

∥∥(∆⊗mΨ
)
(Ea1···am,a1···am)− Ea1···am,a1···am

∥∥
1 < ε, (8.5)

which is equivalent to
〈
Ea1···am,a1···am ,Ψ(Ea1···am,a1···am)

〉
> 1− ε

2 , (8.6)

for all a1 · · · am ∈ Γm. An interpretation of this requirement is that every
string a1 · · · am ∈ Γm is transmitted by Ψ with a probability of error smaller
than ε/2.

There is, on the other hand, one benefit to using the stronger notion of
channel approximation defined by the completely bounded trace norm in
Definition 8.3, which is that it allows the quantum capacity (discussed later
in Section 8.2) to be defined in an analogous manner to the classical capacity,
simply replacing the dephasing channel ∆ by the identity channel 1L(Z). (For
the quantum capacity, the completely bounded trace norm provides the most
natural notion of channel approximation.)

The following proposition is, perhaps, self-evident, but it is nevertheless
worth stating explicitly. The same argument used to prove it may be applied
to other notions of capacity as well; there is nothing specific to the classical
capacity that is required by the proof.

Proposition 8.4 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y, and let k be a positive integer. It holds that

C
(
Φ⊗k

)
= kC(Φ). (8.7)

Proof If it is the case that α is an achievable rate for classical information
transmission through Φ, then it follows trivially that αk is an achievable
rate for classical information transmission through Φ⊗k. It therefore holds
that

C
(
Φ⊗k

) ≥ kC(Φ). (8.8)

Now assume that α > 0 is an achievable rate for classical information
transmission through Φ⊗k. For any ε > 0 and all but finitely many positive
integers n, the channel Φ⊗kbn/kc therefore emulates an ε-approximation to
∆⊗m for m = bαbn/kcc. It will be proved that α/k− δ is an achievable rate
for classical information transmission through Φ for all δ ∈ (0, α/k). For
any integer n ≥ k, the channel Φ⊗n trivially emulates any channel emulated
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by Φ⊗kbn/kc, and for δ ∈ (0, α/k), one has that αbn/kc ≥ (α/k − δ)n for
all but finitely many positive integers n. It therefore holds, for any ε > 0,
and all but finitely many positive integers n, that the channel Φ⊗n emulates
an ε-approximation to ∆⊗m for m = b(α/k − δ)nc, implying that α/k − δ
is an achievable rate for classical information transmission through Φ. In
the case that α = 0, one has that α/k is trivially an achievable rate for
classical information transmission through Φ. Taking the supremum over all
achievable rates, one finds that

C(Φ) ≥ 1
k

C
(
Φ⊗k

)
, (8.9)

which completes the proof.

The entanglement-assisted classical capacity of a channel
The entanglement-assisted classical capacity of a channel is defined in a
similar way to the classical capacity, except that one assumes the sender and
receiver may share any state of their choosing prior to the transmission of
information through the channel. (As separable states provide no advantage
in this setting, the shared state is generally assumed to be entangled.) The
ability of the sender and receiver to share entanglement, as compared with
the situation in which they do not, can result in a significant increase in the
classical capacity of a quantum channel. For instance, shared entanglement
doubles the classical capacity of the identity channel through the use of
dense coding (discussed in Section 6.3.1), and an arbitrary (constant-factor)
increase is possible for other choices of channels.

A formal definition for the entanglement-assisted classical capacity of
a channel requires only a minor change to the definition of the ordinary
classical capacity: the definition of an emulation of one channel by another
is modified to allow for the existence of a shared state as follows.

Definition 8.5 Let Φ ∈ C(X ,Y) and Ψ ∈ C(Z) be channels, for X , Y,
and Z being complex Euclidean spaces. The channel Φ emulates Ψ with the
assistance of entanglement if there exists a state ξ ∈ D(V⊗W) and channels
Ξ E ∈ C(Z ⊗ V,X ) and Ξ D ∈ C(Y ⊗W,Z), for complex Euclidean spaces V
and W, such that

Ψ(Z) =
(
Ξ D

(
ΦΞ E ⊗ 1L(W)

))
(Z ⊗ ξ) (8.10)

for all Z ∈ L(Z). (See Figure 8.1 for an illustration of the channel represented
by the right-hand side of this equation.) When this relationship holds, the
channel Ξ E is called an encoding channel, Ξ D is called a decoding channel,
and ξ is referred to as the shared state that assists this emulation.
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Figure 8.1 An illustration of the map Z 7→
(
Ξ D

(
ΦΞ E ⊗ 1L(W)

))
(Z ⊗ ξ)

referred to in Definition 8.5.

Aside from the modification represented by the previous definition, the
entanglement-assisted classical capacity is defined in an analogous way to
the ordinary classical capacity.

Definition 8.6 (Entanglement-assisted classical capacity of a channel) Let
Φ ∈ C(X ,Y) be a channel, for complex Euclidean spaces X and Y, let
Γ = {0, 1} denote the binary alphabet, let Z = CΓ, and let ∆ ∈ C(Z) denote
the completely dephasing channel defined with respect to the space Z.

1. A value α ≥ 0 is an achievable rate for entanglement-assisted classical
information transmission through Φ if (i) α = 0, or (ii) α > 0 and the
following holds for every positive real number ε > 0: for all but finitely
many positive integers n, and for m = bαnc, the channel Φ⊗n emulates
an ε-approximation to ∆⊗m with the assistance of entanglement.

2. The entanglement-assisted classical capacity of Φ, denoted CE(Φ), is the
supremum over all achievable rates for entanglement-assisted classical
information transmission through Φ.

Through the same argument used to prove Proposition 8.4, one has that
the following simple proposition holds.

Proposition 8.7 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y, and let k be a positive integer. It holds that

CE

(
Φ⊗k

)
= kCE(Φ). (8.11)

The Holevo capacity of a channel
Suppose that X is a complex Euclidean space, Σ is an alphabet, p ∈ P(Σ)
is a probability vector, and {ρa : a ∈ Σ} ⊆ D(X ) is a collection of states.
Letting η : Σ→ Pos(X ) be the ensemble defined as

η(a) = p(a)ρa (8.12)
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for each a ∈ Σ, one has that the Holevo information of η is given by

χ(η) = H
(∑

a∈Σ
p(a)ρa

)
−
∑

a∈Σ
p(a) H(ρa). (8.13)

Based on this quantity, one may define the Holevo capacity of a channel in
the manner specified by Definition 8.8 below. This definition will make use
of the following notation: for any ensemble η : Σ→ Pos(X ) and any channel
Φ ∈ C(X ,Y), one defines the ensemble Φ(η) : Σ→ Pos(Y) as

(Φ(η))(a) = Φ(η(a)) (8.14)

for each a ∈ Σ. That is, Φ(η) is the ensemble obtained by evaluating Φ on
the ensemble η in the most natural way.

Definition 8.8 Let Φ ∈ C(X ,Y) be a channel, for X and Y being complex
Euclidean spaces. The Holevo capacity of Φ is defined as

χ(Φ) = sup
η
χ(Φ(η)), (8.15)

where the supremum is over all choices of an alphabet Σ and an ensemble
of the form η : Σ→ Pos(X ).

Two restrictions may be placed on the supremum (8.15) in Definition 8.8
without decreasing the value that is defined for a given channel. The first
restriction is that the supremum may be replaced by a maximum over all
ensembles of the form η : Σ→ Pos(X ), for Σ being an alphabet of size

|Σ| = dim(X )2. (8.16)

Second, the ensembles may be restricted to ones for which rank(η(a)) ≤ 1
for each a ∈ Σ. The following proposition is useful for proving that this is so.

Proposition 8.9 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y, let Σ be an alphabet, and let η : Σ→ Pos(X ) be an ensemble.
There exists an alphabet Γ and an ensemble θ : Γ→ Pos(X ) such that

1. rank(θ(b)) ≤ 1 for each b ∈ Γ, and
2. χ(Φ(η)) ≤ χ(Φ(θ)).

Proof Assume that Λ is the alphabet for which X = CΛ, and let

η(a) =
∑

b∈Λ
λa,bxa,bx

∗
a,b (8.17)
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be a spectral decomposition of η(a) for each a ∈ Σ. The requirements of the
proposition hold for the ensemble θ : Σ× Λ→ Pos(X ) defined by

θ(a, b) = λa,bxa,bx
∗
a,b (8.18)

for each (a, b) ∈ Σ × Λ. It is evident that the first property holds, so it
remains to verify the second.

Define Z = CΣ and W = CΛ, and consider three registers Y, Z, and
W corresponding to the spaces Y, Z, and W, respectively. For the density
operator ρ ∈ D(Y ⊗ Z ⊗W) defined as

ρ =
∑

(a,b)∈Σ×Λ
λa,bΦ

(
xa,bx

∗
a,b

)⊗ Ea,a ⊗ Eb,b, (8.19)

one has that the following two equalities hold:

χ(Φ(θ)) = D
(
ρ[Y,Z,W]

∥∥ ρ[Y]⊗ ρ[Z,W]
)
,

χ(Φ(η)) = D
(
ρ[Y,Z]

∥∥ ρ[Y]⊗ ρ[Z]
)
.

(8.20)

The inequality χ(Φ(η)) ≤ χ(Φ(θ)) follows from the monotonicity of the
quantum relative entropy function under partial tracing (which represents
a special case of Theorem 5.35).

Theorem 8.10 Let X and Y be complex Euclidean spaces, let Φ ∈ C(X ,Y)
be a channel, and let Σ be an alphabet having size |Σ| = dim(X )2. There
exists an ensemble η : Σ→ Pos(X ) such that

χ(Φ(η)) = χ(Φ). (8.21)

One may assume, in addition, that rank(η(a)) ≤ 1 for each a ∈ Σ.

Proof Consider an arbitrary ensemble of the form θ : Γ → Pos(X ), for Γ
being any alphabet, and let

σ =
∑

a∈Γ
θ(a) (8.22)

denote the average state of the ensemble θ. Through Proposition 2.52, one
finds that there must exist an alphabet Λ, a probability vector p ∈ P(Λ),
and a collection of ensembles {θb : b ∈ Λ} taking the form θb : Γ→ Pos(X ),
each satisfying the constraint

∑

a∈Γ
θb(a) = σ (8.23)

and possessing the property
∣∣{a ∈ Γ : θb(a) 6= 0}

∣∣ ≤ dim(X )2, (8.24)
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so that θ is given by the convex combination

θ =
∑

b∈Λ
p(b)θb. (8.25)

By Proposition 5.48 it follows that

χ(Φ(θ)) ≤
∑

b∈Λ
p(b)χ(Φ(θb)), (8.26)

and so there must exist at least one choice of a symbol b ∈ Λ for which
p(b) > 0 and

χ(Φ(θ)) ≤ χ(Φ(θb)). (8.27)

Fix any such choice of b ∈ Λ, and let

Γ0 = {a ∈ Γ : θb(a) 6= 0}. (8.28)

For an arbitrarily chosen injective mapping f : Γ0 → Σ, one obtains an
ensemble η : Σ→ Pos(X ) such that

χ(Φ(η)) ≥ χ(Φ(θ)) (8.29)

by setting η(f(a)) = θb(a) for every a ∈ Γ0 and η(c) = 0 for c 6∈ f(Γ0).
Because the argument just presented holds for an arbitrary choice of an

ensemble θ, it follows that

χ(Φ) = sup
η
χ(Φ(η)), (8.30)

where the supremum is over all ensembles of the form η : Σ → Pos(X ). As
the set of all such ensembles is compact, there must exist an ensemble of the
same form for which the equality (8.21) holds.

The additional restriction that rank(η(a)) ≤ 1 for each a ∈ Σ may be
assumed by first using Proposition 8.9 to replace a given ensemble θ by one
satisfying the restriction rank(θ(a)) ≤ 1 for each a ∈ Γ, and then proceeding
with the argument above. This results in an ensemble η : Σ→ Pos(X ) with
rank(η(a)) ≤ 1 for each a ∈ Σ, and such that (8.21) holds, which completes
the proof.

The entanglement-assisted Holevo capacity of a channel
Along similar lines to the entanglement-assisted classical capacity, which
mirrors the definition of the classical capacity in a setting where the sender
and receiver initially share a state of their choosing, one may define the
entanglement-assisted Holevo capacity of a channel. The following definition
is helpful when formalizing this notion.
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Definition 8.11 Let Σ be an alphabet, let X and Y be complex Euclidean
spaces, let η : Σ→ Pos(X ⊗ Y) be an ensemble, and let

ρ =
∑

a∈Σ
η(a) (8.31)

denote the average state of η. It is said that η is homogeneous on Y if it
holds that

TrX (η(a)) = Tr(η(a)) TrX (ρ) (8.32)

for every a ∈ Σ.

A simple operational characterization of ensembles homogeneous on a given
complex Euclidean space is provided by the following proposition. In essence,
it states that this sort of ensemble is one obtained by applying a randomly
selected channel to the opposite subsystem of a fixed bipartite state.

Proposition 8.12 Let Σ be an alphabet, let X and Y be complex Euclidean
spaces, and let η : Σ → Pos(X ⊗ Y) be an ensemble. The following three
statements are equivalent:

1. The ensemble η is homogeneous on Y.
2. There exists a complex Euclidean space Z, a state σ ∈ D(Z ⊗ Y), a

collection of channels {Φa : a ∈ Σ} ⊆ C(Z,X ), and a probability vector
p ∈ P(Σ), such that

η(a) = p(a)
(
Φa ⊗ 1L(Y)

)
(σ) (8.33)

for every a ∈ Σ.
3. Statement 2 holds under the additional assumption that σ = uu∗ for

some choice of a unit vector u ∈ Z ⊗ Y.

Proof The fact that the second statement implies the first is immediate,
and the third statement trivially implies the second. It therefore remains to
prove that the first statement implies the third.

To this end, assume that η is homogeneous on Y, let ρ denote the average
state of the ensemble η, and let

ξ = TrX (ρ). (8.34)

Let Z be a complex Euclidean space of dimension rank(ξ), and let u ∈ Z⊗Y
be a unit vector that purifies ξ:

TrZ(uu∗) = ξ. (8.35)



474 Quantum channel capacities

As η is homogeneous on Y, it therefore holds that

Tr(η(a)) TrZ(uu∗) = TrX (η(a)) (8.36)

for every a ∈ Σ. By Proposition 2.29, one concludes that there must exist a
channel Φa ∈ C(Z,X ) such that

η(a) = Tr(η(a))
(
Φa ⊗ 1L(Y)

)(
uu∗

)
(8.37)

for every a ∈ Σ. Setting σ = uu∗ and p(a) = Tr(η(a)) for each a ∈ Σ
completes the proof.

Definition 8.13 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y. The entanglement-assisted Holevo capacity of Φ is the
quantity χE(Φ) defined as

χE(Φ) = sup
η
χ
((

Φ⊗ 1L(W)
)
(η)
)
, (8.38)

where the supremum is over all choices of a complex Euclidean space W, an
alphabet Σ, and an ensemble η : Σ→ Pos(X ⊗W) homogeneous on W.

The relationship between the entanglement-assisted classical capacity and
the entanglement-assisted Holevo capacity is discussed in Section 8.1.3. In
this context, for a given ensemble that is homogeneous on W, the bipartite
state whose existence is implied by Proposition 8.12 may be seen as being
representative of a state shared between a sender and receiver that facilitates
information transmission.

The coherent information
The final quantity, associated with a given channel, that is to be defined in
the present subsection is the coherent information.

Definition 8.14 Let Φ ∈ C(X ,Y) be a channel and let σ ∈ D(X ) be a
state, for complex Euclidean spaces X and Y. The coherent information of
σ through Φ is the quantity IC(σ ; Φ) defined as

IC(σ ; Φ) = H(Φ(σ))−H
((

Φ⊗ 1L(X )
)(

vec
(√
σ
)

vec
(√
σ
)∗))

. (8.39)

The maximum coherent information of Φ is the quantity

IC(Φ) = max
σ∈D(X )

IC(σ ; Φ). (8.40)

In general terms, the coherent information of a state σ through a channel
Φ quantifies the correlations that exist after Φ is applied to a purification
of σ. The definition implicitly takes this purification to be vec(

√
σ) for the
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sake of simplicity and concreteness; any other purification would result in
the same quantity.

Consider the state

ρ =
(
Φ⊗ 1L(X )

)(
vec
(√
σ
)

vec
(√
σ
)∗) ∈ D(Y ⊗ X ) (8.41)

of a pair of registers (Y,X), corresponding to the spaces Y and X , as
suggested by the definition above. One has that the coherent information
IC(σ ; Φ) of σ through Φ is equal to H(Y) − H(Y,X). The quantum mutual
information between Y and X is therefore given by

I(Y : X) = IC(σ ; Φ) + H(σ). (8.42)

While it is not immediately clear that the coherent information is relevant
to the notion of channel capacity, it will be proved later in the chapter that
this quantity is fundamentally important with respect to the entanglement-
assisted classical capacity and the quantum capacity (to be defined later in
Section 8.2).

The following proposition establishes an intuitive fact: with respect to an
arbitrary choice of an input state, feeding the output of one channel into a
second channel cannot lead to an increase in coherent information.

Proposition 8.15 Let Φ ∈ C(X ,Y) and Ψ ∈ C(Y,Z) be channels and let
σ ∈ D(X ) be a state, for complex Euclidean spaces X , Y, and Z. It holds
that

IC(σ ; ΨΦ) ≤ IC(σ ; Φ). (8.43)

Proof Choose complex Euclidean spaces W and V, along with isometries
A ∈ U(X ,Y ⊗W) and B ∈ U(Y,Z⊗V), so that Stinespring representations
of Φ and Ψ are obtained:

Φ(X) = TrW(AXA∗) and Ψ(Y ) = TrV(BY B∗) (8.44)

for all X ∈ L(X ) and Y ∈ L(Y). Define a unit vector u ∈ Z ⊗V ⊗W⊗X as

u = (B ⊗ 1W ⊗ 1X )(A⊗ 1X ) vec
(√
σ
)
. (8.45)

Now, consider four registers Z, V, W, and X, corresponding to the spaces
Z, V,W, and X , respectively. Assuming the compound register (Z,V,W,X)
is in the pure state uu∗, one has the following expressions:

IC(σ ; Φ) = H(Z,V)−H(Z,V,X),

IC(σ ; ΨΦ) = H(Z)−H(Z,X).
(8.46)

The proposition follows from the strong subadditivity of the von Neumann
entropy (Theorem 5.36).
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It is convenient to refer to the notion of complementary channels in some
of the proofs to be found in the present chapter. This notion is defined as
follows.

Definition 8.16 Let Φ ∈ C(X ,Y) and Ψ ∈ C(X ,Z) be channels, for
X , Y, and Z being complex Euclidean spaces. It is said that Φ and Ψ are
complementary if there exists an isometry A ∈ U(X ,Y ⊗ Z) for which it
holds that

Φ(X) = TrZ(AXA∗) and Ψ(X) = TrY(AXA∗) (8.47)

for every X ∈ L(X ).

It is immediate from Corollary 2.27 that, for every channel Φ ∈ C(X ,Y),
there must exist a complex Euclidean space Z and a channel Ψ ∈ C(X ,Z)
that is complementary to Φ; such a channel Ψ is obtained from any choice
of a Stinespring representation of Φ.

Proposition 8.17 Let Φ ∈ C(X ,Y) and Ψ ∈ C(X ,Z) be complementary
channels and let σ ∈ D(X ) be a state, for complex Euclidean spaces X , Y,
and Z. It holds that

IC(σ ; Φ) = H(Φ(σ))−H(Ψ(σ)). (8.48)

Proof By the assumption that Φ and Ψ are complementary, there must
exist an isometry A ∈ U(X ,Y ⊗ Z) such that the equations (8.47) hold for
every X ∈ L(X ). Let X, Y, and Z be registers corresponding to the spaces
X , Y, and Z, define a unit vector u ∈ Y ⊗ Z ⊗ X as

u =
(
A⊗ 1X

)
vec
(√
σ
)
. (8.49)

With respect to the pure state uu∗ of the compound register (Y,Z,X), it
holds that H(Z) = H(Y,X), and therefore

H
((

Φ⊗ 1L(X )
)(

vec
(√
σ
)

vec
(√
σ
)∗)) = H(Ψ(σ)), (8.50)

from which the proposition follows.

8.1.2 The Holevo–Schumacher–Westmoreland theorem
The Holevo–Schumacher–Westmoreland theorem, which is stated and proved
in the present section, establishes that the classical capacity of a quantum
channel is lower-bounded by its Holevo capacity, and that by regularizing
the Holevo capacity one obtains a characterization of the classical capacity.
The notion of a classical-to-quantum product state channel code, along with
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a few mathematical results that are useful for analyzing these codes, will
be introduced prior to the statement and proof of the Holevo–Schumacher–
Westmoreland theorem.

Classical-to-quantum product state channel codes
When studying the classical capacity of quantum channels, it is instructive
to consider a related but somewhat more basic task of encoding classical
information using fixed sets of quantum states. When this task is connected
with the notion of the classical capacity of a channel, a link must be made
between the particular set of states used to encode classical information and
the given channel—but it is reasonable to begin by examining the task of
encoding classical information into quantum states in isolation.

Throughout the discussion that follows, Γ = {0, 1} will denote the binary
alphabet and

{σa : a ∈ Σ} ⊆ D(X ) (8.51)

will denote a fixed collection of states, for X being a complex Euclidean
space and Σ being an alphabet.1 The situation to be considered is that
binary strings, representing classical information, are to be encoded into
tensor products of quantum states drawn from the collection (8.51) in such
a way that each binary string can be recovered from its encoding with high
probability.

In more precise terms, it is to be assumed that positive integers n and m
have been selected, and that every binary string b1 · · · bm ∈ Γm of length m

is to be encoded by a product state having the form

σa1 ⊗ · · · ⊗ σan ∈ D
(X⊗n), (8.52)

for some choice of a string a1 · · · an ∈ Σn. That is, a function f : Γm → Σn

is to be selected, and each string b1 · · · bm ∈ Γm is to be encoded by the
state (8.52) for a1 · · · an = f(b1 · · · bm). When discussing this sort of code, it
is convenient to make use of the shorthand notation

σa1···an = σa1 ⊗ · · · ⊗ σan (8.53)

for each string a1 · · · an ∈ Σn, and with respect to this notation one has that

σf(b1···bm) ∈ D
(X⊗n) (8.54)

denotes the state that encodes the string b1 · · · bm ∈ Γm.
1 The entire discussion could be generalized to allow for arbitrary alphabets Γ in place of the

binary alphabet. As there is little gain in doing this from the perspective of this book, the
assumption that Γ = {0, 1} is made in the interest of simplicity.
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From the encoding of a given binary string, one may hope to decode this
string by means of a measurement. Such a measurement takes the form
µ : Γm → Pos

(X⊗n), and succeeds in successfully recovering a particular
string b1 · · · bm from its encoding with probability

〈
µ(b1 · · · bm), σf(b1···bm)

〉
. (8.55)

As a general guideline, one is typically interested in coding schemes for
which the probability of a successful decoding is close to 1 and the ratio
m/n, which represents the rate at which classical information is effectively
transmitted, is as large as possible. The following definition summarizes
these notions.

Definition 8.18 Let Σ be an alphabet, let X be a complex Euclidean
space, let

{σa : a ∈ Σ} ⊆ D(X ) (8.56)

be a collection of states, let Γ = {0, 1} denote the binary alphabet, and let
n and m be positive integers. A classical-to-quantum product state channel
code for the collection of states (8.56) is a pair (f, µ) consisting of a function
and a measurement of the forms

f : Γm → Σn and µ : Γm → Pos
(X⊗n). (8.57)

The rate of such a code is equal to the ratio m/n, and the code is said to
have error bounded by δ if it holds that

〈
µ(b1 · · · bm), σf(b1···bm)

〉
> 1− δ (8.58)

for every string b1 · · · bm ∈ Γm.

Remark The term channel code is used in this definition to distinguish
this type of code from a source code, as discussed in Chapter 5. The two
notions are, in some sense, complementary. A channel code represents the
situation in which information is encoded into a state that possesses some
degree of randomness, while a source code represents the situation in which
information produced by a random source is encoded into a chosen state.

It is evident that some choices of sets {σa : a ∈ Σ} are better suited to
the construction of classical-to-quantum product state channel codes than
others, assuming one wishes to maximize the rate and minimize the error of
such a code. For the most part, the analysis that follows will be focused on
the situation in which a set of states has been fixed, and one is interested in
understanding the capabilities of this particular set, with respect to classical-
to-quantum product state channel codes.
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Typicality for ensembles of states
The notion of typicality is central to the proofs of multiple theorems to
be presented in the current chapter, including a fundamental theorem on
the existence of classical-to-quantum product state channel codes possessing
certain rates and error bounds.

A standard definition of typicality was introduced in Section 5.3.1—but
it is an extension of this definition to ensembles of states that will be used
in the context of channel coding. The following definition is a starting point
for a discussion of this concept, providing a notion of typicality for joint
probability distributions.

Definition 8.19 Let p ∈ P(Σ× Γ) be a probability vector, for alphabets
Σ and Γ, and let q ∈ P(Σ) be the marginal probability vector defined as

q(a) =
∑

b∈Γ
p(a, b) (8.59)

for each a ∈ Σ. For every choice of a positive real number ε > 0, a positive
integer n, and a string a1 · · · an ∈ Σn satisfying q(a1) · · · q(an) > 0, a string
b1 · · · bn ∈ Γn is said to be ε-typical conditioned on a1 · · · an ∈ Σn if

2−n(H(p)−H(q)+ε) <
p(a1, b1) · · · p(an, bn)

q(a1) · · · q(an) < 2−n(H(p)−H(q)−ε). (8.60)

One writes Ka1···an,ε(p) to denote the set of all such strings b1 · · · bn ∈ Γn.

It is also convenient to defineKa1···an,ε(p) = ∅ for any string a1 · · · an ∈ Σn

for which q(a1) · · · q(an) = 0. When a probability vector p ∈ P(Σ × Γ) is
fixed, or can safely be taken as being implicit, the notation Ka1···an,ε may
be used in place of Ka1···an,ε(p).

Intuitively speaking, if one were to select strings a1 · · · an ∈ Σn and
b1 · · · bn ∈ Γn by independently choosing (a1, b1), . . . , (an, bn) at random,
according to a given probability vector p ∈ P(Σ × Γ), then it would be
reasonable to expect b1 · · · bn to be contained in Ka1···an,ε(p), with this event
becoming increasingly likely as n becomes large. This fact is established by
the following proposition, which is based on the weak law of large numbers
(Theorem 1.15)—the methodology is essentially the same as the analogous
fact (Proposition 5.42) that was proved in regard to the standard definition
of typicality discussed in Section 5.3.1.

Proposition 8.20 Let p ∈ P(Σ× Γ) be a probability vector, for alphabets
Σ and Γ. For every ε > 0 it holds that

lim
n→∞

∑

a1···an∈Σn

∑

b1···bn∈Ka1···an,ε

p(a1, b1) · · · p(an, bn) = 1. (8.61)
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Proof Let q ∈ P(Σ) be the marginal probability vector defined as

q(a) =
∑

b∈Γ
p(a, b) (8.62)

for each a ∈ Σ, and define a random variable X : Σ× Γ→ [0,∞) as

X(a, b) =




− log(p(a, b)) + log(q(a)) if p(a, b) > 0
0 if p(a, b) = 0

(8.63)

and distributed according to the probability vector p. The expected value of
this random variable is given by

E(X) = H(p)−H(q). (8.64)

Now, for any positive integer n, and for X1, . . . , Xn being independent
random variables, each identically distributed to X, one has

Pr
(∣∣∣∣
X1 + · · ·+Xn

n
− (H(p)−H(q))

∣∣∣∣ < ε

)

=
∑

a1···an∈Σn

∑

b1···bn∈Ka1···an,ε

p(a1, b1) · · · p(an, bn).
(8.65)

The conclusion of the proposition therefore follows from the weak law of
large numbers (Theorem 1.15).

The next proposition places an upper bound on the expected size of the
set Ka1···an,ε. It is analogous to Proposition 5.43 for the standard definition
of typicality.

Proposition 8.21 Let p ∈ P(Σ× Γ) be a probability vector, for alphabets
Σ and Γ, and let q ∈ P(Σ) be the marginal probability vector defined as

q(a) =
∑

b∈Γ
p(a, b) (8.66)

for each a ∈ Σ. For every positive integer n and every positive real number
ε > 0, it holds that

∑

a1···an∈Σn
q(a1) · · · q(an)

∣∣Ka1···an,ε(p)
∣∣ < 2n(H(p)−H(q)+ε). (8.67)

Proof For each string a1 · · · an ∈ Σn satisfying q(a1) · · · q(an) > 0 and each
string b1 · · · bn ∈ Ka1···an,ε(p), one has

2−n(H(p)−H(q)+ε) <
p(a1, b1) · · · p(an, bn)

q(a1) · · · q(an) , (8.68)
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and therefore

2−n(H(p)−H(q)+ε) ∑

a1···an∈Σn
q(a1) · · · q(an)|Ka1···an,ε(p)|

=
∑

a1···an∈Σn

∑

b1···bn∈Ka1···an,ε(p)
q(a1) · · · q(an)2−n(H(p)−H(q)+ε)

<
∑

a1···an∈Σn

∑

b1···bn∈Ka1···an,ε

p(a1, b1) · · · p(an, bn) ≤ 1,

(8.69)

from which the proposition follows.

The notion of typicality for joint probability distributions established by
Definition 8.19 may be extended to ensembles of quantum states in a fairly
straightforward fashion, by referring to spectral decompositions of the states
in an ensemble.

Definition 8.22 Let η : Σ → Pos(X ) be an ensemble of states, for X a
complex Euclidean space and Σ an alphabet, and let Γ be an alphabet such
that |Γ| = dim(X ). By the spectral theorem (as stated by Corollary 1.4), it
follows that one may write

η(a) =
∑

b∈Γ
p(a, b)ua,bu∗a,b (8.70)

for some choice of a probability vector p ∈ P(Σ × Γ) and an orthonormal
basis {ua,b : b ∈ Γ} of X for each a ∈ Σ. With respect to the ensemble η, and
for each positive real number ε > 0, each positive integer n, and each string
a1 · · · an ∈ Σn, the projection onto the ε-typical subspace of X⊗n conditioned
on a1 · · · an is defined as

Λa1···an,ε =
∑

b1···bn∈Ka1···an,ε(p)
ua1,b1u

∗
a1,b1 ⊗ · · · ⊗ uan,bnu∗an,bn . (8.71)

Remark For a fixed choice of a string a1 · · · an ∈ Σn, one has that the
inclusion of each string b1 · · · bn in Ka1···an,ε(p) is determined by the multiset
of values {p(a1, b1), . . . , p(an, bn)} alone. Thus, the same is true regarding the
inclusion of each rank-one projection in the summation (8.71). It follows that
the projection Λa1···an,ε specified by Definition 8.22 is uniquely defined by
the ensemble η, and is independent of the particular choices of the spectral
decompositions (8.70).

Facts analogous to the previous two propositions, holding for ensembles
rather than joint probability distributions, follow directly.
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Proposition 8.23 Let η : Σ→ Pos(X ) be an ensemble of states, for X a
complex Euclidean space and Σ an alphabet. For every ε > 0, it holds that

lim
n→∞

∑

a1···an∈Σn

〈
Λa1···an,ε, η(a1)⊗ · · · ⊗ η(an)

〉
= 1, (8.72)

where, for each positive integer n, and each string a1 · · · an ∈ Σn, Λa1···an,ε
is the projection onto the ε-typical subspace of X⊗n conditioned on a1 · · · an,
with respect to the ensemble η. Moreover, one has

∑

a1···an∈Σn
Tr(η(a1)) · · ·Tr(η(an)) Tr

(
Λa1···an,ε

)
< 2n(β+ε) (8.73)

for

β =
∑

a∈Σ
η(a)6=0

Tr(η(a)) H
(

η(a)
Tr(η(a))

)
. (8.74)

Proof For each a ∈ Σ, let

η(a) =
∑

b∈Γ
p(a, b)ua,bu∗a,b (8.75)

be a spectral decomposition of η(a), as described in Definition 8.22, and
define q ∈ P(Σ) as

q(a) =
∑

b∈Γ
p(a, b) (8.76)

(which is equivalent to q(a) = Tr(η(a))). For each positive integer n, each
positive real number ε > 0, and each string a1 · · · an ∈ Σn, one has

〈
Λa1···an,ε, η(a1)⊗ · · · ⊗ η(an)

〉

=
∑

b1···bn∈Ka1···an,ε

p(a1, b1) · · · p(an, bn), (8.77)

and moreover

β = H(p)−H(q) and Tr
(
Λa1···an,ε

)
=
∣∣Ka1···an,ε

∣∣. (8.78)

The proposition therefore follows from Propositions 8.20 and 8.21.

A useful operator inequality
It is helpful to make use of an operator inequality, stated as Lemma 8.25
below, when analyzing the performance of classical-to-quantum product
state channel codes. The proof of this inequality makes use of the following
fact regarding square roots of positive semidefinite operators.
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Lemma 8.24 (Operator monotonicity of the square root function) Let X
be a complex Euclidean space and let P,Q ∈ Pos(X ) be positive semidefinite
operators. It holds that √

P ≤
√
P +Q. (8.79)

Proof The block operator
(
P

√
P√

P 1

)
+
(
Q 0
0 0

)
=
(
P +Q

√
P√

P 1

)
(8.80)

is positive semidefinite. As [P + Q,1] = 0 and
√
P is Hermitian, it follows

by Lemma 5.29 that
√
P ≤

√
P +Q

√
1 =

√
P +Q, (8.81)

as required.

Remark It is not difficult to prove Lemma 8.24 directly, without relying
on Lemma 5.29, by using spectral properties of operators that were also
employed in the proof of that lemma.

Lemma 8.25 (Hayashi–Nagaoka) Let X be a complex Euclidean space,
let P,Q ∈ Pos(X ) be positive semidefinite operators, and assume P ≤ 1. It
holds that

1−
√

(P +Q)+ P
√

(P +Q)+ ≤ 2(1− P ) + 4Q. (8.82)

Proof For every choice of operators A,B ∈ L(X ), one has

0 ≤ (A−B)(A−B)∗ = AA∗ +BB∗ − (AB∗ +BA∗), (8.83)

and therefore AB∗ +BA∗ ≤ AA∗ +BB∗. Setting

A = X
√
Q and B = (1−X)

√
Q, (8.84)

for a given operator X ∈ L(X ), yields

XQ(1−X)∗ + (1−X)QX∗ ≤ XQX∗ + (1−X)Q(1−X)∗, (8.85)

and therefore
Q = XQX∗ +XQ(1−X)∗ + (1−X)QX∗ + (1−X)Q(1−X)∗

≤ 2XQX∗ + 2(1−X)Q(1−X)∗.
(8.86)

For the specific choice X =
√
P +Q, one obtains

Q ≤ 2
√
P +QQ

√
P +Q+ 2

(
1−

√
P +Q

)
Q
(
1−

√
P +Q

)
, (8.87)
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and from the observation that Q ≤ P +Q it follows that

Q ≤ 2
√
P +QQ

√
P +Q

+ 2
(
1−

√
P +Q

)
(P +Q)

(
1−

√
P +Q

)

=
√
P +Q

(
21 + 4Q− 4

√
P +Q+ 2P

)√
P +Q.

(8.88)

Using the fact that P ≤ 1 together with Lemma 8.24, one has

P ≤
√
P ≤

√
P +Q, (8.89)

and therefore
Q ≤

√
P +Q

(
21− 2P + 4Q

)√
P +Q. (8.90)

Conjugating both sides of this inequality by the Moore–Penrose pseudo-
inverse of

√
P +Q yields
√

(P +Q)+Q
√

(P +Q)+ ≤ 2Πim(P+Q) − 2P + 4Q. (8.91)

It follows that

1−
√

(P +Q)+ P
√

(P +Q)+

= 1−Πim(P+Q) +
√

(P +Q)+Q
√

(P +Q)+

≤ 1 + Πim(P+Q) − 2P + 4Q
≤ 2(1− P ) + 4Q,

(8.92)

as required.

An existence proof for classical-to-quantum product state channel codes
Returning to the discussion of classical-to-quantum product state channel
codes, assume as before that an alphabet Σ, a complex Euclidean space X ,
and a collection of states

{σa : a ∈ Σ} ⊆ D(X ) (8.93)

has been fixed, and let Γ = {0, 1} denote the binary alphabet. It is natural
to ask, for any choice of a positive real number δ > 0 and positive integers
m and n, whether or not there exists a classical-to-quantum product state
channel code (f, µ) for this collection, taking the form

f : Γm → Σn and µ : Γm → Pos(X⊗n) (8.94)

and having error bounded by δ.
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In general, one may expect that making such a determination is not
tractable from a computational point of view. It is possible, however, to
prove the existence of reasonably good classical-to-quantum product state
channel codes through the probabilistic method: for suitable choices of n,
m, and δ, a random choice of a function f : Γm → Σn and a well-chosen
measurement µ : Γm → Pos(X⊗n) are considered, and a coding scheme with
error bounded by δ is obtained with a nonzero probability. The theorem
that follows gives a precise statement regarding the parameters n, m, and δ
through which this methodology proves the existence of classical-to-quantum
product state channels codes.

Theorem 8.26 Let Σ be an alphabet, let X be a complex Euclidean space,
let

{σa : a ∈ Σ} ⊆ D(X ) (8.95)

be a collection of states, and let Γ = {0, 1} denote the binary alphabet. Also
let p ∈ P(Σ) be a probability vector, let η : Σ → Pos(X ) be the ensemble
defined as

η(a) = p(a)σa (8.96)

for each a ∈ Σ, assume α is a positive real number satisfying α < χ(η),
and let δ > 0 be a positive real number. For all but finitely many positive
integers n, and for m = bαnc, there exists a function f : Γm → Σn and a
measurement µ : Γm → Pos(X⊗n) such that

〈
µ(b1 · · · bm), σf(b1···bm)

〉
> 1− δ (8.97)

for every b1 · · · bm ∈ Γm.

Proof It will first be assumed that n and m are arbitrary positive integers.
As suggested previously, the proof makes use of the probabilistic method:
a random function g : Γm+1 → Σn is chosen from a particular probability
distribution, a decoding measurement µ is defined for each possible choice
of g, and the expected probability of a decoding error for the pair (g, µ) is
analyzed. As is to be explained later in the proof, this analysis implies the
existence of a channel coding scheme (f, µ), where f : Γm → Σn is derived
from g, satisfying the requirements theorem for all but finitely many n and
for m = bαnc.

The particular distribution from which g is to be chosen is one in which
each individual output symbol of g is selected independently according to
the probability vector p. Equivalently, for a random selection of g according
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to the distribution being described, one has that

Pr
(
g(b1 · · · bm+1) = a1 · · · an

)
= p(a1) · · · p(an) (8.98)

for every choice of b1 · · · bm+1 ∈ Γm+1 and a1 · · · an ∈ Σn, and moreover
the outputs of a randomly chosen g on distinct choices of the input string
b1 · · · bm+1 are uncorrelated.

The specification of the decoding measurement µ that is to be associated
with a given g is not chosen randomly; a unique measurement is defined for
each g in a way that is dependent upon the ensemble η. First, let ε > 0 be
a sufficiently small positive real number such that the inequality

α < χ(η)− 3ε (8.99)

holds. For each string a1 · · · an ∈ Σn, let Λa1···an denote the projection onto
the ε-typical subspace of X⊗n conditioned on a1 · · · an, with respect to the
ensemble η, and let Πn be the projection onto the ε-typical subspace of X⊗n
with respect to the average state

σ =
∑

a∈Σ
p(a)σa (8.100)

of the ensemble η. (As ε has been fixed, the dependence of Λa1···an and Πn

on ε is not written explicitly, allowing for slightly less cluttered equations.)
Next, for a given choice of a function g : Γm+1 → Σn, define an operator

Q =
∑

b1···bm+1∈Γm+1

ΠnΛg(b1···bm+1)Πn , (8.101)

and, for each binary string b1 · · · bm+1 ∈ Γm+1, define an operator

Qb1···bm+1 =
√
Q+ ΠnΛg(b1···bm+1)Πn

√
Q+. (8.102)

Each operator Qb1···bm+1 is positive semidefinite, and moreover
∑

b1···bm+1∈Γm+1

Qb1···bm+1 = Πim(Q). (8.103)

Finally, the measurement µ : Γm+1 → Pos
(X⊗n) to be associated with g is

defined as

µ(b1 · · · bm+1) = Qb1···bm+1 + 1
2m+1

(
1−Πim(Q)

)
(8.104)

for each b1 · · · bm+1 ∈ Γm+1.
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For each choice of g, the probability that the measurement µ associated
with g errs in recovering a string b1 · · · bm+1 ∈ Γm+1 from its encoding is
equal to

〈
1− µ(b1 · · · bm+1), σg(b1···bm+1)

〉
. (8.105)

The next phase of the proof establishes an upper bound on the average error
probability

1
2m+1

∑

b1···bm+1∈Γm+1

〈
1− µ(b1 · · · bm+1), σg(b1···bm+1)

〉
, (8.106)

for a uniformly chosen string b1 · · · bm+1 ∈ Γm+1. To bound this average
probability of error, one may first observe that Lemma 8.25 implies that

1−Qb1···bm+1

≤ 2
(
1−ΠnΛg(b1···bm+1)Πn

)
+ 4

(
Q−ΠnΛg(b1···bm+1)Πn

) (8.107)

for each b1 · · · bm+1 ∈ Γm+1. For a fixed choice of g, the probability of an
error in recovering a given string b1 · · · bm+1 is therefore upper-bounded by

2
〈
1−ΠnΛg(b1···bm+1)Πn, σg(b1···bm+1)

〉

+ 4
〈
Q−ΠnΛg(b1···bm+1)Πn, σg(b1···bm+1)

〉
.

(8.108)

The expected value of this expression will be shown to be small, under the
additional assumption that m = bαnc, when b1 · · · bm+1 ∈ Γm+1 is chosen
uniformly and g is chosen according to the distribution described above.

The first term in the expression (8.108) will be considered first. To prove
an upper bound on the expected value of this quantity, it is convenient to
make use of the operator identity

ABA = AB +BA−B + (1−A)B(1−A). (8.109)

In particular, for any choice of a string a1 · · · an ∈ Σn, this identity implies
〈
ΠnΛa1···anΠn, σa1···an

〉

=
〈
ΠnΛa1···an , σa1···an

〉
+
〈
Λa1···anΠn, σa1···an

〉− 〈Λa1···an , σa1···an
〉

+
〈
(1−Πn)Λa1···an(1−Πn), σa1···an

〉

≥ 〈ΠnΛa1···an , σa1···an
〉

+
〈
Λa1···anΠn, σa1···an

〉− 〈Λa1···an , σa1···an
〉
.

(8.110)
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As Λa1···an is a projection operator and commutes with σa1···an , it follows
that

〈
ΠnΛa1···an , σa1···an

〉
+
〈
Λa1···anΠn, σa1···an

〉− 〈Λa1···an , σa1···an
〉

=
〈
2Πn − 1,Λa1···anσa1···an

〉

=
〈
2Πn − 1, σa1···an

〉
+
〈
1− 2Πn, (1− Λa1···an)σa1···an

〉

≥ 〈2Πn − 1, σa1···an
〉− 〈1− Λa1···an , σa1···an

〉

= 2
〈
Πn, σa1···an

〉
+
〈
Λa1···an , σa1···an

〉− 2.

(8.111)

By combining the inequalities (8.110) and (8.111), and averaging over all
choices of a1 · · · an ∈ Σn, with each ak selected independently according to
the probability vector p, one finds that

∑

a1···an∈Σn
p(a1) · · · p(an)

〈
ΠnΛa1···anΠn, σa1···an

〉

≥ 2
〈
Πn, σ

⊗n〉+
∑

a1···an∈Σn
p(a1) · · · p(an)

〈
Λa1···an , σa1···an

〉− 2.
(8.112)

The right-hand side of the expression (8.112) approaches 1 in the limit as
n goes to infinity by Propositions 5.42 and 8.23, from which it follows that

∑

a1···an∈Σn
p(a1) · · · p(an)

〈
1−ΠnΛa1···anΠn, σa1···an

〉
<
δ

8 (8.113)

for all but finitely many choices of a positive integer n. For any n for which
the inequality (8.113) holds, and for a random selection of g : Γm+1 → Σn as
described above, it therefore holds that the expected value of the expression

2
〈
1−ΠnΛg(b1···bm+1)Πn, σg(b1···bm+1)

〉
(8.114)

is at most δ/4 for an arbitrary choice of b1 · · · bm+1, and therefore the same
bound holds for a uniformly selected binary string b1 · · · bm+1 ∈ Γm+1.

The second term in the expression (8.108) will be considered next. It may
first be observed that

Q−ΠnΛg(b1···bm+1)Πn =
∑

c1···cm+1∈Γm+1

c1···cm+1 6=b1···bm+1

ΠnΛg(c1···cm+1)Πn, (8.115)

so that
〈
Q−ΠnΛg(b1···bm+1)Πn, σg(b1···bm+1)

〉

=
∑

c1···cm+1∈Γm+1

c1···cm+1 6=b1···bm+1

〈
ΠnΛg(c1···cm+1)Πn, σg(b1···bm+1)

〉
. (8.116)
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The value of the function g on each input string is chosen independently
according to the probability vector p⊗n, so there is no correlation between
g(b1 · · · bm+1) and g(c1 · · · cm+1) for b1 · · · bm+1 6= c1 · · · cm+1. It follows that
the expected value of the above expression is given by

(
2m+1 − 1

) ∑

a1···an∈Σn
p(a1) · · · p(an)

〈
Λa1···an ,Πnσ

⊗nΠn
〉
. (8.117)

By Proposition 8.23 it holds that
∑

a1···an∈Σn
p(a1) · · · p(an) Tr

(
Λa1···an

) ≤ 2n(β+ε) (8.118)

for

β =
∑

a∈Σ
p(a) H(σa), (8.119)

and by the definition of Πn one has that

λ1
(
Πnσ

⊗nΠn
) ≤ 2−n(H(σ)−ε). (8.120)

It follows that
(
2m+1 − 1

) ∑

a1···an∈Σn
p(a1) · · · p(an)

〈
Λa1···an ,Πnσ

⊗nΠn
〉

≤ 2m+1−n(χ(η)−2ε),

(8.121)

so that the expected value of the second term in the expression (8.108) is
upper-bounded by

2m−n(χ(η)−2ε)+3. (8.122)

Now assume that m = bαnc. For g : Γm+1 → Σn chosen according to the
distribution specified earlier and b1 · · · bm+1 ∈ Γm+1 chosen uniformly, one
has that the expected value of the error probability (8.106) is at most

δ

4 + 2αn−n(χ(η)−2ε)+3 ≤ δ

4 + 2−εn+3 (8.123)

for all but finitely many choices of n. As

2−εn < δ

32 (8.124)

for all sufficiently large n, it follows that the expected value of the error
probability (8.106) is smaller than δ/2 for all but finitely many choices of n.
For all but finitely many choices of n, there must therefore exist at least one
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choice of a function g : Γm+1 → Σn such that, for µ being the measurement
associated with g, it holds that

1
2m+1

∑

b1···bm+1∈Γm+1

〈
1− µ(b1 · · · bm+1), σg(b1···bm+1)

〉
<
δ

2 . (8.125)

Finally, for a given choice of n, m = bαnc, g, and µ for which the bound
(8.125) holds, consider the set

B =
{
b1 · · · bm+1 ∈ Γm+1 :

〈
1− µ(b1 · · · bm+1), σg(b1···bm+1)

〉 ≥ δ
}

(8.126)

of all strings whose encodings incur a decoding error with probability at
least δ. It holds that

δ |B|
2m+1 <

δ

2 , (8.127)

and therefore |B| ≤ 2m. By defining a function f : Γm → Σn as f = gh, for
an arbitrarily chosen injection h : Γm → Γm+1\B, one has that

〈
µ(b1 · · · bm), σf(b1···bm)

〉
> 1− δ (8.128)

for every choice of b1 · · · bm ∈ Γm, which completes the proof.

Statement and proof of the Holevo–Schumacher–Westmoreland theorem
The Holevo–Schumacher–Westmoreland theorem will now be stated, and
proved through the use of Theorem 8.26.

Theorem 8.27 (Holevo–Schumacher–Westmoreland theorem) Let X and
Y be complex Euclidean spaces and let Φ ∈ C(X ,Y) be a channel. The
classical capacity of Φ is equal to its regularized Holevo capacity:

C(Φ) = lim
n→∞

χ
(
Φ⊗n

)

n
. (8.129)

Proof The first main step of the proof is to establish the inequality

χ(Φ) ≤ C(Φ) (8.130)

through the use of Theorem 8.26. This inequality holds trivially if χ(Φ) = 0,
so it will be assumed that χ(Φ) is positive.

Consider an ensemble η : Σ → Pos(X ), for any alphabet Σ, expressed as
η(a) = p(a)ρa for each a ∈ Σ, where

{ρa : a ∈ Σ} ⊆ D(X ) (8.131)

is a collection of states and p ∈ P(Σ) is a probability vector. Assume that
χ(Φ(η)) is positive and fix a positive real number α < χ(Φ(η)). Also define
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σa = Φ(ρa) for each a ∈ Σ, let ε > 0 be a positive real number, let Γ = {0, 1}
denote the binary alphabet, and define Z = CΓ.

By Theorem 8.26, for all but finitely many choices of a positive integer n,
and for m = bαnc, there exists a classical-to-quantum product state channel
code (f, µ) of the form

f : Γm → Σn and µ : Γm → Pos(Y⊗n) (8.132)

for the collection
{σa : a ∈ Σ} ⊆ D(Y) (8.133)

that errs with probability strictly less than ε/2 on every binary string of
length m. Assume that such a choice of n, m, and a code (f, µ) have been
fixed, and define encoding and decoding channels

ΞE ∈ C
(Z⊗m,X⊗n) and ΞD ∈ C

(Y⊗n,Z⊗m) (8.134)

as follows:

ΞE(Z) =
∑

b1···bm∈Γm

〈
Eb1···bm,b1···bm , Z

〉
ρf(b1···bm),

ΞD(Y ) =
∑

b1···bm∈Γm

〈
µ(b1 · · · bm), Y

〉
Eb1···bm,b1···bm ,

(8.135)

for all Z ∈ L(Z⊗m) and Y ∈ L(Y⊗n). It follows from the properties of the
code (f, µ) suggested above that

〈
Eb1···bm,b1···bm ,

(
ΞDΦ⊗nΞE

)
(Eb1···bm,b1···bm)

〉
> 1− ε

2 (8.136)

for every b1 · · · bm ∈ Γm. As ΞE is a classical-to-quantum channel and ΞD is
quantum-to-classical, one finds that ΞDΦ⊗nΞE is a ε-approximation to the
completely dephasing channel ∆⊗m ∈ C(Z⊗m).

It has been proved that, for any choice of positive real numbers α < χ(Φ)
and ε > 0, the channel Φ⊗n emulates an ε-approximation to the completely
dephasing channel ∆⊗m for all but finitely many positive integers n and for
m = bαnc. From this fact the inequality (8.130) follows. One may apply the
same reasoning to the channel Φ⊗n in place of Φ, for any positive integer n,
to obtain

χ(Φ⊗n)
n

≤ C(Φ⊗n)
n

= C(Φ). (8.137)

The second main step of the proof establishes that the regularized Holevo
capacity is an upper bound on the classical capacity of Φ. When combined
with the inequality (8.137), one finds that the limit in (8.129) indeed exists
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and that the equality holds. There is nothing to prove if C(Φ) = 0, so it will
be assumed hereafter that C(Φ) > 0.

Let α > 0 be an achievable rate for classical information transmission
through Φ, and let ε > 0 be chosen arbitrarily. It must therefore hold, for all
but finitely many positive integers n, and for m = bαnc, that Φ⊗n emulates
an ε-approximation to the completely dephasing channel ∆⊗m ∈ C(Z⊗m).
Let n be any positive integer for which this property holds and for which
m = bαnc ≥ 2. The situation in which a sender generates a binary string
of length m, uniformly at random, and transmits this string through the
ε-approximation to ∆⊗m emulated by Φ⊗n will be considered.

Let X and Z be classical registers both having state set Γm; the register X
corresponds to the randomly generated string selected by the sender and Z
corresponds to the string obtained by the receiver when a copy of the string
stored in X is transmitted through the ε-approximation to ∆⊗m emulated
by Φ⊗n. As Φ⊗n emulates an ε-approximation to ∆⊗m, there must exist a
collection of states

{
ρb1···bm : b1 · · · bm ∈ Γm

} ⊆ D
(X⊗n), (8.138)

along with a measurement µ : Γm → Pos
(Y⊗n), such that

〈
µ(b1 · · · bm),Φ⊗n(ρb1···bm)

〉
> 1− ε

2 (8.139)

for every binary string b1 · · · bm ∈ Γm. With respect to the probability vector
p ∈ P(Γm × Γm) defined as

p(b1 · · · bm, c1 · · · cm) = 1
2m
〈
µ(c1 · · · cm),Φ⊗n(ρb1···bm)

〉
, (8.140)

which represents the probabilistic state of (X,Z) suggested above, it follows
from Holevo’s theorem (Theorem 5.49) that

I(X : Z) ≤ χ(Φ⊗n(η)), (8.141)

where η : Γm → Pos(X⊗n) is the ensemble defined as

η(b1 · · · bm) = 1
2m ρb1···bm (8.142)

for each b1 · · · bm ∈ Γm.
A lower bound on the mutual information I(X : Z) will now be derived. The

distribution represented by the marginal probability vector p[X] is uniform,
and therefore H(p[X]) = m. By (8.139), each entry of the probability vector
p[Z] is lower-bounded by (1− ε/2)2−m. It is therefore possible to write

p[Z] =
(
1− ε

2
)
r + ε

2q (8.143)
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for q ∈ P(Γm) being some choice of a probability vector and r ∈ P(Γm)
denoting the uniform probability vector, defined as r(b1 · · · bm) = 2−m for
every b1 · · · bm ∈ Γm. The inequality

H(p[Z]) ≥
(
1− ε

2
)

H(r) + ε

2 H(q) ≥
(
1− ε

2
)
m (8.144)

follows by the concavity of the Shannon entropy function (Proposition 5.5).
On the other hand, because the probability vector p satisfies

p(b1 · · · bm, b1 · · · bm) ≥
(
1− ε

2
)
2−m (8.145)

for every b1 · · · bm ∈ Γm, it must hold that

H(p) ≤ −
(
1− ε

2
)

log
(1− ε/2

2m
)
− ε

2 log
(

ε/2
22m − 2m

)

<
(
1 + ε

2
)
m+ H

(
1− ε

2 ,
ε

2
)
≤
(
1 + ε

2
)
m+ 1;

(8.146)

the first inequality is a consequence of the fact that the entropy of p subject
to the constraint (8.145) is maximized when p is defined as follows:

p(b1 · · · bm, c1 · · · cm) =





1−ε/2
2m b1 · · · bm = c1 · · · cm
ε/2

2m(2m−1) b1 · · · bm 6= c1 · · · cm.
(8.147)

It therefore follows that
χ
(
Φ⊗n

) ≥ I(X : Z) = H(p[X]) + H(p[Z])−H(p)
≥ (1− ε)m− 1 ≥ (1− ε)αn− 2,

(8.148)

and consequently
χ
(
Φ⊗n

)

n
≥ (1− ε)α− 2

n
. (8.149)

It has been proved, for any achievable rate α > 0 for classical information
transmission through Φ, and for any ε > 0, that the inequality (8.149) holds
for all but finitely many positive integers n. Because the supremum over
all achievable rates α for classical information transmission through Φ is
equal to C(Φ), this inequality may be combined with (8.137) to obtain the
required equality (8.129).

8.1.3 The entanglement-assisted classical capacity theorem
This section focuses on the entanglement-assisted classical capacity theorem,
which characterizes the entanglement-assisted classical capacity of a given
channel. It stands out among the capacity theorems presented in the present
chapter, as no regularization is required by the characterization it provides.
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Holevo–Schumacher–Westmoreland theorem with entanglement assistance
A preliminary step toward the proof of the entanglement-assisted classical
capacity theorem is the observation that, when the classical capacity and
Holevo capacity are replaced by their entanglement-assisted formulations,
a statement analogous to the Holevo–Schumacher–Westmoreland theorem
holds.

Theorem 8.28 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y. The entanglement-assisted classical capacity of Φ equals
the regularized entanglement-assisted Holevo capacity of Φ:

CE(Φ) = lim
n→∞

χE

(
Φ⊗n

)

n
. (8.150)

Proof The theorem is proved in essentially the same way as the Holevo–
Schumacher–Westmoreland theorem (Theorem 8.27), with each step being
modified to allow for the possibility of entanglement assistance.

In greater detail, let Σ be an alphabet, let W be a complex Euclidean
space, let η be an ensemble of the form η : Σ → Pos(X ⊗ W) that is
homogeneous on W, assume χ((Φ ⊗ 1L(W))(η)) is positive, and let α be a
positive real number satisfying

α < χ
((

Φ⊗ 1L(W)
)
(η)
)
. (8.151)

By Proposition 8.12, one may choose a complex Euclidean space V, a state
ξ ∈ D(V ⊗W), a probability vector p ∈ P(Σ), and a collection of channels

{Ψa : a ∈ Σ} ⊆ C(V,X ) (8.152)

such that
η(a) = p(a)

(
Ψa ⊗ 1L(W)

)
(ξ) (8.153)

for every a ∈ Σ. For each a ∈ Σ let

σa =
(
ΦΨa ⊗ 1L(W)

)
(ξ), (8.154)

and also let ε > 0 be an arbitrarily chosen positive real number.
By Theorem 8.26, for all but finitely many choices of a positive integer n,

and for m = bαnc, there exists a classical-to-quantum product state channel
code (f, µ) of the form

f : Γm → Σn and µ : Γm → Pos((Y ⊗W)⊗n) (8.155)

for the collection {σa : a ∈ Σ} ⊆ D(Y ⊗ W) that errs with probability
strictly less than ε/2 on every binary string of length m. Assume that such
a choice of n, m, and a code (f, µ) have been fixed.
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It will now be proved that the channel Φ⊗n emulates a ε-approximation
to the completely dephasing channel ∆⊗m ∈ C(Z⊗m) with the assistance of
entanglement. The entangled state to be used to assist this emulation is

V ξ⊗nV ∗ ∈ D
(V⊗n ⊗W⊗n), (8.156)

where V ∈ U
(
(V ⊗W)⊗n,V⊗n ⊗W⊗n) represents a permutation of tensor

factors:
V ((v1 ⊗ w1)⊗ · · · ⊗ (vn ⊗ wn))

= (v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wn)
(8.157)

for all vectors v1, . . . , vn ∈ V and w1, . . . , wn ∈ W.
The encoding channel ΞE ∈ C

(Z⊗m ⊗ V⊗n,X⊗n) used to perform this
emulation is defined as

ΞE =
∑

b1···bm∈Γm
Θb1···bm ⊗Ψf(b1···bm) , (8.158)

where

Ψa1···an = Ψa1 ⊗ · · · ⊗Ψan (8.159)

for each a1 · · · an ∈ Σn, and where Θb1···bm ∈ CP(Z⊗m,C) is given by

Θb1···bm(Z) = Z(b1 · · · bm, b1 · · · bm) (8.160)

for every Z ∈ L(Z⊗m). Described in words, the encoding map ΞE takes as
input a compound register (Z1, . . . ,Zm,V1, . . . ,Vn), measures (Z1, . . . ,Zm)
with respect to the standard basis measurement, and applies the channel
Ψf(b1···bm) to (V1, . . . ,Vn), for b1 · · · bm being the string obtained from the
standard basis measurement on (Z1, . . . ,Zm).

The decoding channel ΞD ∈ C
(Y⊗n ⊗ W⊗n,Z⊗m) used to perform the

emulation is defined as

ΞD(Y ) =
∑

b1···bm∈Γm

〈
Wµ(b1 · · · bm)W ∗, Y

〉
Eb1···bm,b1···bm (8.161)

for all Y ∈ L(Y⊗n ⊗W⊗n), where W ∈ U
(
(Y ⊗W)⊗n,Y⊗n ⊗W⊗n) is an

isometry representing a permutation of tensor factors that is similar to V ,
but with V replaced by Y:

W ((y1 ⊗ w1)⊗ · · · ⊗ (yn ⊗ wn))
= (y1 ⊗ · · · ⊗ yn)⊗ (w1 ⊗ · · · ⊗ wn)

(8.162)

for all choices of vectors y1, . . . , yn ∈ Y and w1, . . . , wn ∈ W.
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Now, let Ψ ∈ C(Z⊗m) denote the channel that has been emulated with
the assistance of entanglement by the above construction; this channel may
be expressed as

Ψ(Z) =
(
ΞD

(
Φ⊗nΞE ⊗ 1⊗nL(W)

))(
Z ⊗ V ξ⊗nV ∗) (8.163)

for every Z ∈ L(Z⊗m), and it may be observed that Ψ = ∆⊗mΨ∆⊗m. For
every string b1 · · · bm ∈ Γm it holds that
(
Φ⊗nΞE ⊗ 1⊗nL(W)

))(
Eb1···bm,b1···bm ⊗ V ξ⊗nV ∗

)
= Wσf(b1···bm)W

∗, (8.164)

and therefore
〈
Eb1···bm,b1···bm ,Ψ(Eb1···bm,b1···bm)

〉
> 1− ε

2 . (8.165)

It follows that Ψ is a ε-approximation to ∆⊗m, as claimed.
In summary, for any choice of positive real numbers α < χE(Φ) and ε > 0,

it holds that Φ⊗n emulates an ε-approximation to the completely dephasing
channel ∆⊗m with the assistance of entanglement, for all but finitely many
positive integers n and for m = bαnc. From this fact one concludes that
χE(Φ) ≤ CE(Φ). Applying the same argument to the channel Φ⊗n in place
of Φ, for any choice of a positive integer n, yields

χE(Φ⊗n)
n

≤ CE(Φ⊗n)
n

= CE(Φ). (8.166)

Next it will be proved that the entanglement-assisted classical capacity of
Φ cannot exceed its regularized entanglement-assisted Holevo capacity. As
in the proof of Theorem 8.27, it may be assumed that CE(Φ) > 0, and it
suffices to consider the situation in which a sender transmits a uniformly
generated binary string of length m to a receiver.

Suppose α > 0 is an achievable rate for entanglement-assisted classical
information transmission through Φ, and let ε > 0 be chosen arbitrarily.
It must therefore hold, for all but finitely many positive integers n, and
for m = bαnc, that Φ⊗n emulates an ε-approximation to the completely
dephasing channel ∆⊗m with the assistance of entanglement. Let n be an
arbitrarily chosen positive integer for which this property holds and for which
m = bαnc ≥ 2.

As before, let X and Z be classical registers both having state set Γm; X
stores the randomly generated string selected by the sender and Z represents
the string obtained by the receiver when a copy of the string stored in
X is transmitted through the ε-approximation to ∆⊗m emulated by Φ⊗n
with the assistance of entanglement. By the assumption that Φ⊗n emulates
an ε-approximation to ∆⊗m with the assistance of entanglement, one may
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conclude that there exists a choice of complex Euclidean spaces V and W,
a state ξ ∈ D(V ⊗W), a collection of channels

{
Ψb1···bm : b1 · · · bm ∈ Γm

} ⊆ C
(V,X⊗n), (8.167)

and a measurement µ : Γm → Pos(Y⊗n ⊗W), such that
〈
µ(b1 · · · bm),

(
Φ⊗nΨb1···bm ⊗ 1L(W)

)
(ξ)
〉
> 1− ε

2 (8.168)

for every string b1 · · · bm ∈ Γm. With respect to p ∈ P(Γm × Γm) defined as

p(b1 · · · bm, c1 · · · cm)

= 1
2m
〈
µ(c1 · · · cm),

(
Φ⊗nΨb1···bm ⊗ 1L(W)

)
(ξ)
〉
,

(8.169)

which represents the probabilistic state of (X,Z) suggested above, it follows
from Holevo’s theorem (Theorem 5.49) that

I(X : Z) ≤ χ((Φ⊗n ⊗ 1L(W)
)
(η)), (8.170)

for η : Γm → Pos(X⊗n ⊗W) being the ensemble defined as

η(b1 · · · bm) = 1
2m
(
Ψb1···bm ⊗ 1L(W)

)
(ξ) (8.171)

for each b1 · · · bm ∈ Γm.
The same lower-bound on the quantity I(X : Z) derived in the proof of

Theorem 8.27 holds in the present case, from which it follows that

χE

(
Φ⊗n

) ≥ I(X : Z) ≥ (1− ε)αn− 2, (8.172)

and therefore
χE

(
Φ⊗n

)

n
≥ (1− ε)α− 2

n
. (8.173)

Thus, for any achievable rate α > 0 for entanglement-assisted classical
information transmission through Φ, and for any positive real number ε > 0,
the inequality (8.173) holds for all but finitely many positive integers n.
Because the supremum over all achievable rates α for entanglement-assisted
classical information transmission through Φ is equal to CE(Φ), one may
combine this inequality with the upper bound (8.166) to obtain the required
equality (8.150).

Strongly typical strings and projections
The proof of the entanglement-assisted classical capacity theorem that is
presented in this book will make use of a notion of typicality, known as
strong typicality, that differs from the standard notion discussed previously
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in Section 5.3.1. True to its name, strong typicality is the more restrictive
of the two notions; every strongly typical string will necessarily be a typical
string, up to a simple change of parameters, while some typical strings are
not strongly typical.

Similar to the standard notion of typicality, one may define an ε-strongly
typical subspace with respect to a spectral decomposition of a given state.
Unlike the standard typical subspace, however, the strongly typical subspace
is not always uniquely determined by a given state; it can depend on the
particular choice of a spectral decomposition (in the sense of Corollary 1.4)
with respect to which it is defined. Despite this apparent drawback, the
notion of an ε-strongly typical subspace will be a useful tool when proving
the entanglement-assisted classical capacity theorem.

The definition of strong-typicality to follow uses the following notation,
for which it is to be assumed that Σ is an alphabet and n is a positive
integer. For every string a1 · · · an ∈ Σn and symbol a ∈ Σ, one writes

N(a | a1 · · · an) =
∣∣{k ∈ {1, . . . , n} : ak = a}

∣∣, (8.174)

which is the number of times the symbol a occurs in the string a1 · · · an.

Definition 8.29 Let Σ be an alphabet, let p ∈ P(Σ) be a probability
vector, let n be a positive integer, and let ε > 0 be a positive real number.
A string a1 · · · an ∈ Σn is said to be ε-strongly typical with respect to p if

∣∣∣∣
N(a | a1 · · · an)

n
− p(a)

∣∣∣∣ ≤ p(a)ε (8.175)

for every a ∈ Σ. The set of all ε-strongly typical strings of length n with
respect to p is denoted Sn,ε(p) (or by Sn,ε when p is implicit and can safely
be omitted).

The average behavior of a nonnegative real-valued function defined on the
individual symbols of a strongly typical string may be analyzed using the
following elementary proposition.

Proposition 8.30 Let Σ be an alphabet, let p ∈ P(Σ) be a probability
vector, let n be a positive integer, let ε > 0 be a positive real number, let
a1 · · · an ∈ Sn,ε(p) be an ε-strongly typical string with respect to p, and let
φ : Σ→ [0,∞) be a nonnegative real-valued function. It holds that

∣∣∣∣∣
φ(a1) + · · ·+ φ(an)

n
−
∑

a∈Σ
p(a)φ(a)

∣∣∣∣∣ ≤ ε
∑

a∈Σ
p(a)φ(a). (8.176)
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Proof The inequality (8.176) follows from the definition of strong typicality
together with the triangle inequality:

∣∣∣∣∣
φ(a1) + · · ·+ φ(an)

n
−
∑

a∈Σ
p(a)φ(a)

∣∣∣∣∣

=
∣∣∣∣∣
∑

a∈Σ

(
N(a | a1 · · · an)φ(a)

n
− p(a)φ(a)

)∣∣∣∣∣

≤
∑

a∈Σ
φ(a)

∣∣∣∣
N(a | a1 · · · an)

n
− p(a)

∣∣∣∣ ≤ ε
∑

a∈Σ
p(a)φ(a),

(8.177)

as required.

As a corollary to Proposition 8.30, one has that every ε-strongly typical
string, with respect to a given probability vector p, is necessarily δ-typical
for every choice of δ > εH(p).

Corollary 8.31 Let Σ be an alphabet, let p ∈ P(Σ) be a probability vector,
let n be a positive integer, let ε > 0 be a positive real number, and let
a1 · · · an ∈ Sn,ε(p) be an ε-strongly typical string with respect to p. It holds
that

2−n(1+ε) H(p) ≤ p(a1) · · · p(an) ≤ 2−n(1−ε) H(p). (8.178)

Proof Define a function φ : Σ→ [0,∞) as

φ(a) =




− log(p(a)) if p(a) > 0
0 if p(a) = 0.

(8.179)

With respect to this function, the implication provided by Proposition 8.30
is equivalent to (8.178).

Strings that are obtained by independently selecting symbols at random
according to a given probability vector are likely to be not only typical, but
strongly typical, with the probability of strong typicality increasing with
string length. The following lemma establishes a quantitative bound on this
probability.

Lemma 8.32 Let Σ be an alphabet, let p ∈ P(Σ) be a probability vector,
let n be a positive integer, and let ε > 0 be a positive real number. It holds
that

∑

a1···an∈Sn,ε(p)
p(a1) · · · p(an) ≥ 1− ζn,ε(p) (8.180)
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for

ζn,ε(p) = 2
∑

a∈Σ
p(a)>0

exp
(−2nε2p(a)2). (8.181)

Proof Suppose first that a ∈ Σ is fixed, and consider the probability that a
string a1 · · · an ∈ Σn, randomly selected according to the probability vector
p⊗n, satisfies

∣∣∣∣
N(a | a1 · · · an)

n
− p(a)

∣∣∣∣ > p(a)ε. (8.182)

To bound this probability, one may define X1, . . . , Xn to be independent and
identically distributed random variables, taking value 1 with probability p(a)
and value 0 otherwise, so that the probability of the event (8.182) is equal
to

Pr
(∣∣∣∣
X1 + · · ·+Xn

n
− p(a)

∣∣∣∣ > p(a)ε
)
. (8.183)

If it is the case that p(a) > 0, then Hoeffding’s inequality (Theorem 1.16)
implies that

Pr
(∣∣∣∣
X1 + · · ·+Xn

n
− p(a)

∣∣∣∣ > p(a)ε
)
≤ 2 exp

(−2nε2p(a)2), (8.184)

while it holds that

Pr
(∣∣∣∣
X1 + · · ·+Xn

n
− p(a)

∣∣∣∣ > p(a)ε
)

= 0 (8.185)

in case p(a) = 0. The lemma follows from the union bound.

The next proposition establishes upper and lower bounds on the number
of strings in an ε-strongly typical set for a given length.

Proposition 8.33 Let Σ be an alphabet, let p ∈ P(Σ) be a probability
vector, let n be a positive integer, and let ε > 0 be a positive real number. It
holds that

(1− ζn,ε(p)) 2n(1−ε) H(p) ≤
∣∣Sn,ε(p)

∣∣ ≤ 2n(1+ε) H(p), (8.186)

for ζn,ε(p) as defined in Lemma 8.32.

Proof By Corollary 8.31, one has

p(a1) · · · p(an) ≥ 2−n(1+ε) H(p) (8.187)
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for every string a1 · · · an ∈ Sn,ε(p). Consequently,

1 ≥
∑

a1···an∈Sn,ε(p)
p(a1) · · · p(an) ≥

∣∣Sn,ε(p)
∣∣2−n(1+ε) H(p), (8.188)

and therefore
∣∣Sn,ε(p)

∣∣ ≤ 2n(1+ε) H(p). (8.189)

Along similar lines, one has

p(a1) · · · p(an) ≤ 2−n(1−ε) H(p) (8.190)

for every string a1 · · · an ∈ Sn,ε(p). By Lemma 8.32, it follows that

1− ζn,ε(p) ≤
∑

a1···an∈Sn,ε(p)
p(a1) · · · p(an) ≤

∣∣Sn,ε(p)
∣∣ 2−n(1−ε) H(p), (8.191)

and therefore
∣∣Sn,ε(p)

∣∣ ≥ (1− ζn,ε(p)) 2n(1−ε) H(p), (8.192)

as required.

The ε-strongly typical subspaces associated with a given density operator
are defined as follows.

Definition 8.34 Let X be a complex Euclidean space, let ρ ∈ D(X ) be a
density operator, let ε > 0 be a positive real number, and let n be a positive
integer. Also let

ρ =
∑

a∈Σ
p(a)xax∗a (8.193)

be a spectral decomposition of ρ, for Σ being an alphabet, p ∈ P(Σ) being
a probability vector, and {xa : a ∈ Σ} ⊂ X being an orthonormal set of
vectors. The projection operator onto the ε-strongly typical subspace of X⊗n
with respect to the spectral decomposition (8.193) is defined as

Λ =
∑

a1···an∈Sn,ε(p)
xa1x

∗
a1 ⊗ · · · ⊗ xanx∗an . (8.194)

With respect to the decomposition (8.193), the ε-strongly typical subspace
of X⊗n is defined as the image of Λ.

Example 8.35 Let Σ = {0, 1}, let X = CΣ, and let ρ = 1/2 ∈ D(X ).
With respect to the spectral decomposition

ρ = 1
2e0e

∗
0 + 1

2e1e
∗
1, (8.195)
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for n = 2, and for any choice of ε ∈ (0, 1), one has that the corresponding
projection operator onto the ε-strongly typical subspace is given by

Λ0 = E0,0 ⊗ E1,1 + E1,1 ⊗ E0,0. (8.196)

Replacing the spectral decomposition by

ρ = 1
2x0x

∗
0 + 1

2x1x
∗
1, (8.197)

for
x0 = e0 + e1√

2
and x1 = e0 − e1√

2
, (8.198)

one obtains the corresponding projection operator

Λ1 = x0x
∗
0 ⊗ x1x

∗
1 + x1x

∗
1 ⊗ x0x

∗
0 6= Λ0. (8.199)

Two lemmas on the output entropy of channels
The proof of the entanglement-assisted classical capacity theorem appearing
at the end of the present section will make use of multiple lemmas. The two
lemmas that follow concern the output entropy of channels. The first of
these two lemmas will also be used in the next section of the chapter, to
prove that the coherent information lower-bounds the quantum capacity of
a channel.

Lemma 8.36 Let X and Y be complex Euclidean spaces, let Φ ∈ C(X ,Y)
be a channel, let ρ ∈ D(X ) be a density operator, let ε > 0 be a positive real
number, and let n be a positive integer. Also let

ρ =
∑

a∈Σ
p(a)xax∗a (8.200)

be a spectral decomposition of ρ, for Σ being an alphabet, {xa : a ∈ Σ} ⊂ X
being an orthonormal set, and p ∈ P(Σ) being a probability vector, let Λn,ε
denote the projection operator onto the ε-strongly typical subspace of X⊗n
with respect to the decomposition (8.200), and let

ωn,ε = Λn,ε
Tr(Λn,ε)

. (8.201)

It holds that
∣∣∣∣∣
H
(
Φ⊗n(ωn,ε)

)

n
−H(Φ(ρ))

∣∣∣∣∣

≤ 2εH(ρ) + εH(Φ(ρ))− log(1− ζn,ε(p))
n

,

(8.202)

for ζn,ε(p) being the quantity defined in Lemma 8.32.
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Proof It may be verified that the equation

H(Φ(ρ))− 1
n

H
(
Φ⊗n(ωn,ε)

)

= 1
n

D
(
Φ⊗n(ωn,ε)

∥∥Φ⊗n
(
ρ⊗n

))

+ 1
n

Tr
((

Φ⊗n(ωn,ε)− Φ(ρ)⊗n
)

log
(
Φ(ρ)⊗n

))
(8.203)

holds for every positive integer n. Bounds on the absolute values of the two
terms on the right-hand side of this equation will be established separately.

The first term on the right-hand side of (8.203) is nonnegative, and an
upper bound on it may be obtained from the monotonicity of the quantum
relative entropy under the action of channels (Theorem 5.35). Specifically,
one has

1
n

D
(
Φ⊗n(ωn,ε)

∥∥Φ⊗n(ρ⊗n)
) ≤ 1

n
D
(
ωn,ε

∥∥ ρ⊗n
)

= − 1
n

log(|Sn,ε|)−
1

n|Sn,ε|
∑

a1···an∈Sn,ε
log(p(a1) · · · p(an)),

(8.204)

where Sn,ε denotes the set of ε-strongly typical strings of length n with
respect to p. By Corollary 8.31 it holds that

− 1
n|Sn,ε|

∑

a1···an∈Sn,ε
log(p(a1) · · · p(an)) ≤ (1 + ε) H(ρ), (8.205)

and by Proposition 8.33, one has

1
n

log(|Sn,ε|) ≥
log(1− ζn,ε(p))

n
+ (1− ε) H(ρ). (8.206)

It therefore holds that
1
n

D
(
Φ⊗n(ωn,ε)

∥∥Φ⊗n(ρ⊗n)
) ≤ 2εH(ρ)− log(1− ζn,ε(p))

n
. (8.207)

To bound the absolute value of second term on the right-hand side of
(8.203), one may first define a function φ : Σ→ [0,∞) as

φ(a) =




−Tr(Φ(xax∗a) log(Φ(ρ))) if p(a) > 0
0 if p(a) = 0

(8.208)

for each a ∈ Σ. It is evident from its specification that φ(a) is nonnegative
for each a ∈ Σ, and is finite by virtue of the fact that

im(Φ(xax∗a)) ⊆ im(Φ(ρ)) (8.209)
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for each a ∈ Σ with p(a) > 0. Using the identity

log
(
P⊗n

)
=

n∑

k=1
1⊗(k−1) ⊗ log(P )⊗ 1⊗(n−k), (8.210)

it may be verified that

Tr
(
Φ⊗n(ωn,ε) log

(
Φ(ρ)⊗n

))

= − 1
|Sn,ε|

∑

a1···an∈Sn,ε
(φ(a1) + · · ·+ φ(an)). (8.211)

By combining Proposition 8.30 with the observation that

H(Φ(ρ)) =
∑

a∈Σ
p(a)φ(a), (8.212)

one finds that
∣∣∣∣∣
1
n

Tr
((

Φ⊗n(ωn,ε)− Φ(ρ)⊗n
)

log
(
Φ(ρ)⊗n

))
∣∣∣∣∣

≤ 1
|Sn,ε|

∑

a1···an∈Sn,ε

∣∣∣∣∣H(Φ(ρ))− φ(a1) + · · ·+ φ(an)
n

∣∣∣∣∣

≤ εH(Φ(ρ)).

(8.213)

The inequalities (8.207) and (8.213) together imply the required inequality
(8.202), which completes the proof.

Lemma 8.37 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean spaces
X and Y. The function f : D(X )→ R defined by

f(ρ) = H(ρ)−H(Φ(ρ)) (8.214)

is concave.

Proof Let Z be an arbitrary complex Euclidean space, and consider first
the function g : D(Y ⊗ Z)→ R defined as

g(σ) = H(σ)−H(TrZ(σ)) (8.215)

for every σ ∈ D(Y ⊗ Z). An alternative expression for g is

g(σ) = −D(σ‖TrZ(σ)⊗ 1Z), (8.216)

and the concavity of g therefore follows from the joint convexity of quantum
relative entropy (Corollary 5.33).
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For a suitable choice of a complex Euclidean space Z, let A ∈ U(X ,Y⊗Z)
be an isometry that yields a Stinespring representation of Φ:

Φ(X) = TrZ(AXA∗) (8.217)

for every X ∈ L(X ). The function f is given by f(ρ) = g(AρA∗) for every
ρ ∈ D(X ), and therefore the concavity of g implies that f is concave as
well.

An additivity lemma concerning the coherent information
Another lemma that will be used in the proof of the entanglement-assisted
capacity theorem is proved below. It states that the quantity

max
σ∈D(X )

(
H(σ) + IC(σ ; Φ)

)
, (8.218)

defined for each channel Φ ∈ C(X ,Y), is additive with respect to tensor
products. It is precisely this quantity that the entanglement-assisted classical
capacity theorem establishes is equal to the entanglement-assisted classical
capacity of the channel Φ.

Lemma 8.38 (Adami–Cerf) Let Φ0 ∈ C(X0,Y0) and Φ1 ∈ C(X1,Y1) be
channels, for complex Euclidean spaces X0, X1, Y0, and Y1. It holds that

max
σ∈D(X0⊗X1)

(
H(σ) + IC(σ ; Φ0 ⊗ Φ1)

)

= max
σ0∈D(X0)

(
H(σ0) + IC(σ0 ; Φ0)

)
+ max
σ1∈D(X1)

(
H(σ1) + IC(σ1 ; Φ1)

)
.

(8.219)

Proof Choose isometries A0 ∈ U(X0,Y0 ⊗ Z0) and A1 ∈ U(X1,Y1 ⊗ Z1),
for an appropriate choice of complex Euclidean spaces Z0 and Z1, so that
Stinespring representations of Φ0 and Φ1 are obtained:

Φ0(X0) = TrZ0

(
A0X0A

∗
0
)

and Φ1(X1) = TrZ1

(
A1X1A

∗
1
)

(8.220)

for all X0 ∈ L(X0) and X1 ∈ L(X1). The channels Ψ0 ∈ C(X0,Z0) and
Ψ1 ∈ C(X1,Z1) defined as

Ψ0(X0) = TrY0

(
A0X0A

∗
0
)

and Ψ1(X1) = TrY1

(
A1X1A

∗
1
)

(8.221)

for all X0 ∈ L(X0) and X1 ∈ L(X1) are therefore complementary to Φ0
and Φ1, respectively.

Now, consider registers X0, X1, Y0, Y1, Z0, and Z1 corresponding to the
spaces X0, X1, Y0, Y1, Z0, and Z1, respectively. Let σ ∈ D(X0 ⊗ X1) be an
arbitrary density operator. With respect to the state

(A0 ⊗A1)σ(A0 ⊗A1)∗ ∈ D(Y0 ⊗Z0 ⊗ Y1 ⊗Z1) (8.222)
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of (Y0,Z0,Y1,Z1), one has that

H(σ) + IC(σ ; Φ0 ⊗ Φ1)
= H(Y0,Z0,Y1,Z1) + H(Y0,Y1)−H(Z0,Z1).

(8.223)

For every state of (Y0,Z0,Y1,Z1), including the state (8.222), it holds that

H(Y0,Z0,Y1,Z1) ≤ H(Z0,Y1,Z1) + H(Y0,Z0)−H(Z0)
≤ H(Z0,Z1) + H(Y1,Z1)−H(Z1) + H(Y0,Z0)−H(Z0);

(8.224)

both inequalities follow from the strong subadditivity of the von Neumann
entropy (Theorem 5.36). The subadditivity of the von Neumann entropy
(Theorem 5.24) implies H(Y0,Y1) ≤ H(Y0) + H(Y1), and therefore

H(Y0,Z0,Y1,Z1) + H(Y0,Y1)−H(Z0,Z1)
≤ (H(Y0,Z0) + H(Y0)−H(Z0)

)

+
(
H(Y1,Z1) + H(Y1)−H(Z1)

)
.

(8.225)

For σ0 = σ[X0] and σ1 = σ[X1], one has the equations

H(Y0,Z0) + H(Y0)−H(Z0) = H(σ0) + IC(σ0 ; Φ0),
H(Y1,Z1) + H(Y1)−H(Z1) = H(σ1) + IC(σ1 ; Φ1).

(8.226)

It follows that
H(σ) + IC(σ ; Φ0 ⊗ Φ1)
≤ (H(σ0) + IC(σ0 ; Φ0)

)
+
(
H(σ1) + IC(σ1 ; Φ1)

)
.

(8.227)

Maximizing over all σ ∈ D(X0 ⊗X1), one obtains the inequality

max
σ∈D(X0⊗X1)

(
H(σ) + IC(σ ; Φ0 ⊗ Φ1)

)

≤ max
σ0∈D(X0)

(
H(σ0) + IC(σ0 ; Φ0)

)
+ max
σ1∈D(X1)

(
H(σ1) + IC(σ1 ; Φ1)

)
.

(8.228)

For the reverse inequality, it suffices to observe that

H(σ0 ⊗ σ1) + IC(σ0 ⊗ σ1 ; Φ0 ⊗ Φ1)
= H(σ0) + IC(σ0 ; Φ0) + H(σ1) + IC(σ1 ; Φ1)

(8.229)

for every choice of σ0 ∈ D(X0) and σ1 ∈ D(X1), and therefore

max
σ∈D(X0⊗X1)

(
H(σ) + IC(σ ; Φ0 ⊗ Φ1)

)

≥ max
σ0∈D(X0)

(
H(σ0) + IC(σ0 ; Φ0)

)
+ max
σ1∈D(X1)

(
H(σ1) + IC(σ1 ; Φ1)

)
,

(8.230)

which completes the proof.

8.1 Classical information over quantum channels 507

A lower-bound on the Holevo capacity for flat states by dense coding
Next in the sequence of lemmas needed to prove the entanglement-assisted
classical capacity theorem is the following lemma, which establishes a lower
bound on the entanglement-assisted Holevo capacity of a given channel. Its
proof may be viewed an application of dense coding (q.v. Section 6.3.1).

Lemma 8.39 Let X and Y be complex Euclidean spaces, let Φ ∈ C(X ,Y)
be a channel, let Π ∈ Proj(X ) be a nonzero projection operator, and let
ω = Π/Tr(Π). It holds that

χE(Φ) ≥ H(ω) + IC(ω ; Φ). (8.231)

Proof Let m = rank(Π), let W = CZm , let V ∈ U(W,X ) be any isometry
satisfying V V ∗ = Π, and let

τ = 1
m

vec(V ) vec(V )∗ ∈ D(X ⊗W). (8.232)

Recall the collection of discrete Weyl operators

{Wa,b : a, b ∈ Zm} ⊂ U(W), (8.233)

as defined in Section 4.1.2 of Chapter 4, and define a collection of unitary
channels

{
Ψa,b : a, b ∈ Zm

} ⊆ C(W) (8.234)

in correspondence with these operators:

Ψa,b(Y ) = Wa,bYW
∗
a,b (8.235)

for each Y ∈ L(W). Finally, consider the ensemble

η : Zm × Zm → Pos(X ⊗W) (8.236)

defined as

η(a, b) = 1
m2

(
1L(X ) ⊗Ψa,b

)
(τ), (8.237)

for all (a, b) ∈ Zm × Zm.
It holds that

H
(

1
m2

∑

a,b∈Zm
(Φ⊗Ψa,b)(τ)

)

= H
(

Φ(ω)⊗ 1W
m

)
= H

(
Φ(ω)

)
+ H(ω)

(8.238)
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and
1
m2

∑

a,b∈Zn
H
(
(Φ⊗Ψa,b)(τ)

)
= H

(
(Φ⊗ 1L(W))(τ)

)

= H
(
(Φ⊗ 1L(X ))

(
vec
(√
ω
)

vec
(√
ω
)∗))

,

(8.239)

from which it follows that

χ
(
(Φ⊗ 1L(W))(η)

)
= H(ω) + IC(ω ; Φ). (8.240)

Moreover, η is homogeneous on W, as is evident from the fact that

TrX (η(a, b)) = 1
m31W (8.241)

for each choice of (a, b) ∈ Zm × Zm. It therefore holds that

χE(Φ) ≥ χ((Φ⊗ 1L(W))(η)
)

= H(ω) + IC(ω ; Φ), (8.242)

which completes the proof.

An upper-bound on the Holevo capacity
The final lemma needed for the proof of the entanglement-assisted classical
capacity theorem establishes an upper bound on the entanglement-assisted
Holevo capacity of a channel.

Lemma 8.40 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean spaces
X and Y. Also let W be a complex Euclidean space, let Σ be an alphabet, let
η : Σ→ Pos(X ⊗W) be an ensemble that is homogeneous on W, and let

σ =
∑

a∈Σ
TrW(η(a)). (8.243)

It holds that
χ
((

Φ⊗ 1L(W)
)
(η)
) ≤ H(σ) + IC(σ ; Φ). (8.244)

Proof Assume that Z is a complex Euclidean space and A ∈ U(X ,Y ⊗Z)
is an isometry for which

Φ(X) = TrZ
(
AXA∗

)
(8.245)

for all X ∈ L(X ). The channel Ψ ∈ C(X ,Z) defined by

Ψ(X) = TrY
(
AXA∗

)
(8.246)

for all X ∈ L(X ) is therefore complementary to Φ, so that

IC(σ ; Φ) = H(Φ(σ))−H(Ψ(σ)). (8.247)
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It therefore suffices to prove that

χ
((

Φ⊗ 1L(W))(η)
) ≤ H(σ) + H(Φ(σ))−H(Ψ(σ)). (8.248)

By the assumption that η is homogeneous onW, Proposition 8.12 implies
that there must exist a complex Euclidean space V, a collection of channels

{Ξa : a ∈ Σ} ⊆ C(V,X ), (8.249)

a unit vector u ∈ V ⊗W, and a probability vector p ∈ P(Σ) such that

η(a) = p(a)
(
Ξa ⊗ 1L(W)

)
(uu∗) (8.250)

for every a ∈ Σ. Assume hereafter that such a choice for these objects has
been fixed, and define states τ ∈ D(W) and ξ ∈ D(V) as

τ = TrV(uu∗) and ξ = TrW(uu∗). (8.251)

It may be noted that
σ =

∑

a∈Σ
p(a)Ξa(ξ). (8.252)

Let U be a complex Euclidean space such that dim(U) = dim(V ⊗ X ), and
select a collection of isometries {Ba : a ∈ Σ} ⊂ U(V,X ⊗ U) satisfying

Ξa(V ) = TrU (BaV B∗a) (8.253)

for every V ∈ L(V).
Assume momentarily that a ∈ Σ has been fixed, and define a unit vector

va = (A⊗ 1U ⊗ 1W)(Ba ⊗ 1W)u ∈ Y ⊗ Z ⊗ U ⊗W. (8.254)

Let Y, Z, U, and W be registers having corresponding complex Euclidean
spaces Y, Z, U , and W, and consider the situation in which the compound
register (Y,Z,U,W) is in the pure state vav∗a. The following equalities may
be verified:

H(W) = H(τ),
H(Y,W) = H

((
ΦΞa ⊗ 1L(W)

)
(uu∗)

)
,

H(U,W) = H(Y,Z) = H
(
Ξa(ξ)

)
,

H(Y,U,W) = H(Z) = H
(
(ΨΞa)(ξ)

)
.

(8.255)

By the strong subadditivity of the von Neumann entropy (Theorem 5.36),
it holds that

H(W)−H(Y,W) ≤ H(U,W)−H(Y,U,W), (8.256)
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and therefore

H(τ)−H
(
(ΦΞa ⊗ 1L(W))(uu∗)

) ≤ H
(
Ξa(ξ)

)−H
(
(ΨΞa)(ξ)

)
. (8.257)

Finally, in accordance with the probability vector p, one may average the
two sides of (8.257) over all a ∈ Σ and apply Lemma 8.37, obtaining

H(τ)−
∑

a∈Σ
p(a) H

(
(ΦΞa ⊗ 1L(W))(uu∗)

)

≤
∑

a∈Σ
p(a)

(
H
(
Ξa(ξ)

)−H
(
(ΨΞa)(ξ)

)) ≤ H(σ)−H(Ψ(σ)).
(8.258)

By the subadditivity of the von Neumann entropy (Proposition 5.9) one has

H
(∑

a∈Σ
p(a)(ΦΞa ⊗ 1L(W))(uu∗)

)
≤ H(Φ(σ)) + H(τ). (8.259)

The inequality (8.248) follows from (8.258) and (8.259), which completes
the proof.

The entanglement-assisted classical capacity theorem
Finally, the entanglement-assisted classical capacity theorem will be stated,
and proved through the use of the lemmas presented above.

Theorem 8.41 (Entanglement-assisted classical capacity theorem) Let X
and Y be complex Euclidean spaces and let Φ ∈ C(X ,Y) be a channel. It
holds that

CE(Φ) = max
σ∈D(X )

(
H(σ) + IC(σ ; Φ)

)
. (8.260)

Proof By applying Lemma 8.40, followed by Lemma 8.38, one may conclude
that

χE(Φ⊗n) ≤ max
σ∈D(X⊗n)

(
H(σ) + IC

(
σ ; Φ⊗n

))

= n max
σ∈D(X )

(
H(σ) + IC

(
σ ; Φ

)) (8.261)

for every positive integer n. By Theorem 8.28, it therefore follows that

CE(Φ) = lim
n→∞

χE

(
Φ⊗n

)

n
≤ max

σ∈D(X )

(
H(σ) + IC

(
σ ; Φ

))
. (8.262)

For the reverse inequality, one may first choose a complex Euclidean space
Z and an isometry A ∈ U(X ,Y ⊗ Z) such that

Φ(X) = TrZ
(
AXA∗

)
(8.263)
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for all X ∈ L(X ). It holds that the channel Ψ ∈ C(X ,Z), defined by

Ψ(X) = TrY
(
AXA∗

)
(8.264)

for all X ∈ L(X ), is complementary to Φ, so that Proposition 8.17 implies

IC(σ ; Φ) = H(Φ(σ))−H(Ψ(σ)) (8.265)

for all σ ∈ D(X ).
Next, let σ ∈ D(X ) be any density operator, let δ > 0 be chosen arbitrarily,

and choose ε > 0 to be sufficiently small so that

(7 H(σ) + H(Φ(σ)) + H(Ψ(σ)))ε < δ. (8.266)

Also let

ωn,ε = Λn,ε
Tr(Λn,ε)

(8.267)

for Λn,ε denoting the ε-strongly typical projection with respect to any fixed
spectral decomposition of σ, for each positive integer n.

By Lemma 8.36, one may conclude that the following three inequalities
hold simultaneously for all but finitely many positive integers n:

H(σ)− H(ωn,ε)
n

≤ 3 H(σ)ε+ δ,

H(Φ(σ))− H(Φ⊗n(ωn,ε))
n

≤ (2 H(σ) + H(Φ(σ)))ε+ δ,

H(Φ⊗n(ωn,ε))
n

−H(Ψ(σ)) ≤ (2 H(σ) + H(Ψ(σ)))ε+ δ.

(8.268)

By Lemma 8.39, it therefore holds that

χE(Φ⊗n)
n

≥ 1
n

(
H(ωn,ε) + H(Φ⊗n(ωn,ε))−H(Ψ⊗n(ωn,ε))

)

≥ H(σ) + H(Φ(σ))−H(Ψ(σ))− 4δ
(8.269)

for all but finitely many positive integers n, and consequently

CE(Φ) = lim
n→∞

χE

(
Φ⊗n

)

n
≥ H(σ) + H(Φ(σ))−H(Ψ(σ))− 4δ. (8.270)

As this inequality holds for all δ > 0, one has

CE(Φ) ≥ H(σ) + H(Φ(σ))−H(Ψ(σ)) = H(σ) + IC

(
σ ; Φ

)
, (8.271)

and maximizing over all σ ∈ D(X ) completes the proof.
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8.2 Quantum information over quantum channels
This section is concerned with the capacity of quantum channels to transmit
quantum information from a sender to a receiver. Along similar lines to the
classical capacities considered in the previous section, one may consider the
quantum capacity of a channel both when the sender and receiver share
prior entanglement, used to assist with the information transmission, and
when they do not.

As it turns out, the capacity of a channel to transmit quantum information
with the assistance of entanglement is, in all cases, equal to one-half of the
entanglement-assisted classical capacity of the same channel. This fact is
proved below through a combination of the teleportation and dense coding
protocols discussed in Section 6.3.1. As the entanglement-assisted classical
capacity has already been characterized by Theorem 8.41, a characterization
of the capacity of a quantum channel to transmit quantum information with
the assistance of entanglement follows directly. For this reason, the primary
focus of the section is on an analysis of the capacity of quantum channels
to transmit quantum information without the assistance of entanglement.

The first subsection below presents a definition of the quantum capacity
of a channel, together with the closely related notion of a channel’s capacity
to generate shared entanglement. The second subsection presents a proof of
the quantum capacity theorem, which characterizes the capacity of a given
channel to transmit quantum information.

8.2.1 Definitions of quantum capacity and related notions
Definitions of the quantum capacity and entanglement-generation capacity
of a channel are presented below, and it is proved that the two quantities
coincide. The entanglement-assisted quantum capacity of a channel is also
defined, and its simple relationship to the entanglement-assisted classical
capacity of a channel is clarified.

The quantum capacity of a channel
Informally speaking, the quantum capacity of a channel is the number of
qubits, on average, that can be accurately transmitted with each use of that
channel. Like the capacities discussed in the previous section, the quantum
capacity of a channel is defined in information-theoretic terms, referring to
a situation in which an asymptotically large number of channel uses, acting
on a collection of possibly entangled registers, is made available.
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The definition of quantum capacity that follows makes use of the same
notions of an emulation of one channel by another (Definition 8.1) and of an
ε-approximation of one channel by another (Definition 8.2) that were used
in the previous section.

Definition 8.42 (Quantum capacity of a channel) Let Φ ∈ C(X ,Y) be a
channel, for complex Euclidean spaces X and Y, and also let Z = CΓ for
Γ = {0, 1} denoting the binary alphabet.

1. A value α ≥ 0 is an achievable rate for the transmission of quantum
information through Φ if (i) α = 0, or (ii) α > 0 and the following holds
for every choice of a positive real number ε > 0: for all but finitely many
positive integers n, and for m = bαnc, the channel Φ⊗n emulates an
ε-approximation to the identity channel 1⊗mL(Z).

2. The quantum capacity of Φ, which is denoted Q(Φ), is defined as the
supremum of all achievable rates for quantum information transmission
through Φ.

The argument through which Proposition 8.4 in the previous section was
proved yields the following analogous proposition for the quantum capacity.

Proposition 8.43 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y. It holds that Q(Φ⊗k) = kQ(Φ) for every positive integer k.

The entanglement generation capacity of a channel
The entanglement generation capacity of a channel is defined in a similar way
to the quantum capacity, except that the associated task is more narrowly
focused: by means of multiple, independent uses of a channel, a sender and
receiver aim to establish a state, shared between them, having high fidelity
with a maximally entangled state.

Definition 8.44 (Entanglement generation capacity of a channel) Let X
and Y be complex Euclidean spaces, let Φ ∈ C(X ,Y) be a channel, and let
Z = CΓ for Γ = {0, 1} denoting the binary alphabet.

1. A value α ≥ 0 is an achievable rate for entanglement generation through
Φ if (i) α = 0, or (ii) α > 0 and the following holds for every positive
real number ε > 0: for all but finitely many positive integers n, and
for m = bαnc, there exists a state ρ ∈ D(X⊗n ⊗ Z⊗m) and a channel
Ξ ∈ C(Y⊗n,Z⊗m) such that

F
(
2−m vec(1⊗mZ ) vec(1⊗mZ )∗,

(
ΞΦ⊗n ⊗ 1⊗mL(Z)

)
(ρ)
)
≥ 1− ε. (8.272)
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2. The entanglement generation capacity of Φ, denoted QEG(Φ), is defined
as the supremum of all achievable rates for entanglement generation
through Φ.

Remark For any choice of complex Euclidean spaces X and Y, a unit
vector y ∈ Y, and a channel Ψ ∈ C(X ,Y), the maximum value for the
fidelity F(yy∗,Ψ(ρ)) over ρ ∈ D(X ) is achieved when ρ is a pure state. It
follows from this observation that the quantity QEG(Φ) would not change if
the states ρ ∈ D(X⊗n ⊗ Z⊗m) considered in the specification of achievable
rates in Definition 8.44 are constrained to be pure states.

Equivalence of quantum capacity and entanglement generation capacity
The task associated with entanglement generation capacity would seem to
be more specialized than the one associated with quantum capacity. That
is, the emulation of a close approximation to an identity channel evidently
allows a sender and receiver to generate a shared state having high fidelity
with a maximally entangled state, but it is not immediate that the ability
of a channel to generate near-maximally entangled states should allow it to
accurately transmit quantum information at a similar rate. One may note,
in particular, that the teleportation protocol discussed in Section 6.3.1 is not
immediately applicable in this situation, as the protocol requires classical
communication that must be considered in the calculation of transmission
rates. Nevertheless, the relationship between entanglement generation and
identity channel emulation provided by the following theorem allows one to
prove that the quantum capacity and entanglement generation capacity of
any given channel do indeed coincide.

Theorem 8.45 Let X and Y be complex Euclidean spaces, let Φ ∈ C(X ,Y)
be a channel, and let u ∈ X ⊗ Y be a unit vector. Also let n = dim(Y) and
let δ ≥ 0 be a nonnegative real number such that

F
( 1
n

vec(1Y) vec(1Y)∗,
(
Φ⊗ 1L(Y)

)
(uu∗)

)
≥ 1− δ. (8.273)

For any complex Euclidean space Z satisfying dim(Z) ≤ n/2, it holds that
Φ emulates an ε-approximation to the identity channel 1L(Z) for ε = 4δ 1

4 .

Proof Let A ∈ L(Y,X ) be the operator defined by the equation vec(A) = u,
let r = rank(A), and let

A =
r∑

k=1

√
pkxky

∗
k (8.274)

be a singular value decomposition of A, so that (p1, . . . , pr) is a probability
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vector and {x1, . . . , xr} ⊂ X and {y1, . . . , yr} ⊂ Y are orthonormal sets.
Also define W ∈ L(Y,X ) as

W =
r∑

k=1
xky

∗
k, (8.275)

and define a unit vector v ∈ X ⊗ Y as

v = 1√
r

vec(W ). (8.276)

By the monotonicity of the fidelity function under partial tracing, one has

1√
n

r∑

k=1

√
pk = F

( 1
n
1Y ,TrX (uu∗)

)

≥ F
( 1
n

vec(1Y) vec(1Y)∗,
(
Φ⊗ 1L(Y)

)
(uu∗)

)
≥ 1− δ,

(8.277)

and therefore

F(uu∗, vv∗) = 1√
r

r∑

k=1

√
pk ≥

1√
n

r∑

k=1

√
pk ≥ 1− δ. (8.278)

Consequently, by Theorems 3.27 and 3.29, one has

F
( 1
n

vec(1Y) vec(1Y)∗,
(
Φ⊗ 1L(Y)

)
(vv∗)

)
+ 1

≥ F
( 1
n

vec(1Y) vec(1Y)∗,
(
Φ⊗ 1L(Y)

)
(uu∗)

)2
+ F

(
vv∗, uu∗

)2

≥ 2(1− δ)2,

(8.279)

and therefore

F
( 1
n

vec(1Y) vec(1Y)∗,
(
Φ⊗ 1L(Y)

)
(vv∗)

)
≥ 1− 4δ. (8.280)

Next, define a projection operator Πr = W ∗W ∈ Proj(Y) and define
Vr = im(Πr). For each choice of k beginning with r and decreasing to 1,
choose wk ∈ Vk to be a unit vector that minimizes the quantity

αk =
〈
wkw

∗
k,Φ

(
Wwkw

∗
kW

∗)〉, (8.281)

and define
Vk−1 = {z ∈ Vk : 〈wk, z〉 = 0}. (8.282)

Observe that α1 ≥ α2 ≥ · · · ≥ αr and that {w1, . . . , wk} is an orthonormal
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basis for Vk, for each k ∈ {1, . . . , r}. In particular, it holds that

v = 1√
r

(W ⊗ 1Y) vec(Πr) = 1√
r

r∑

k=1
Wwk ⊗ wk. (8.283)

At this point, a calculation reveals that

F
( 1
n

vec(1Y) vec(1Y)∗,
(
Φ⊗ 1L(Y)

)
(vv∗)

)2

= 1
nr

∑

j,k∈{1,...,r}

〈
wjw

∗
k,Φ(Wwjw

∗
kW

∗)
〉
.

(8.284)

By the complete positivity of Φ, one may conclude that
∣∣〈wjw∗k,Φ(Wwjw

∗
kW

∗)
〉∣∣

≤
√〈

wjw∗j ,Φ(Wwjw∗jW
∗)
〉√〈

wkw
∗
k,Φ(Wwkw

∗
kW

∗)
〉

= √αjαk ,
(8.285)

for each choice of j, k ∈ {1, . . . , r}. Therefore, by the triangle inequality, it
holds that

F
( 1
n

vec(1Y) vec(1Y)∗,
(
Φ⊗ 1L(Y)

)
(vv∗)

)
≤ 1√

nr

r∑

k=1

√
αk. (8.286)

Applying the Cauchy–Schwarz inequality, one obtains

1√
nr

r∑

k=1

√
αk ≤

√√√√ 1
n

r∑

k=1
αk, (8.287)

and therefore
1
n

r∑

k=1
αk ≥ (1− 4δ)2 ≥ 1− 8δ. (8.288)

Now let
m = max

{
k ∈ {1, . . . , r} : αk ≥ 1− 16δ

}
. (8.289)

It follows from (8.288) that

1− 8δ ≤ m

n
+ n−m

n
(1− 16δ), (8.290)

and therefore m ≥ n/2. By the definition of the values α1, . . . , αr, one may
conclude that

〈
ww∗,Φ(Www∗W ∗)

〉 ≥ 1− 16δ (8.291)

for every unit vector w ∈ Vm.
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Finally, let V ∈ U(Z,Y) be any isometry for which im(V ) ⊆ Vm. Such
an isometry exists by the assumption that dim(Z) ≤ n/2 together with the
fact that n/2 ≤ m = dim(Vm). Let ΞE ∈ C(Z,X ) and ΞD ∈ C(Y,Z) be
channels of the form

ΞE(Z) = WV ZV ∗W ∗ + ΨE(Z),
ΞD(Y ) = V ∗Y V + ΨD(Y ),

(8.292)

for all Z ∈ L(Z) and Y ∈ L(Y), where ΨE ∈ CP(Z,X ) and ΨD ∈ CP(Y,Z)
are completely positive maps that cause ΞE and ΞD to be trace preserving.
For every unit vector z ∈ Z it holds that

〈
zz∗, (ΞDΦΞE)(zz∗)

〉

≥ 〈V zz∗V ∗,Φ(WV zz∗V ∗W ∗)
〉 ≥ 1− 16δ,

(8.293)

and therefore
∥∥zz∗ − (ΞDΦΞE)(zz∗)

∥∥
1 ≤ 8

√
δ (8.294)

by one of the Fuchs–van de Graaf inequalities (Theorem 3.33). Applying
Theorem 3.56, one therefore finds that

∣∣∣∣∣∣ΞDΦΞE − 1L(Z)
∣∣∣∣∣∣

1 ≤ 4δ
1
4 , (8.295)

which completes the proof.

Theorem 8.46 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y. The entanglement generation capacity and the quantum
capacity of Φ are equal: Q(Φ) = QEG(Φ).

Proof It will first be proved that Q(Φ) ≤ QEG(Φ), which is straightforward.
If the quantum capacity of Φ is zero, there is nothing to prove, so it will
be assumed that Q(Φ) > 0. Let α > 0 be an achievable rate for quantum
information transmission through Φ, and let ε > 0 be chosen arbitrarily.

Setting Γ = {0, 1} and Z = CΓ, one therefore has that the channel Φ⊗n
emulates an ε-approximation to the identity channel 1⊗mL(Z) for all but finitely
many positive integers n and for m = bαnc. That is, for all but finitely
many positive integers n, and for m = bαnc, there must exist channels
ΞE ∈ C(Z⊗m,X⊗n) and ΞD ∈ C(Y⊗n,Z⊗m) such that

∣∣∣∣∣∣ΞDΦ⊗nΞE − 1⊗mL(Z)

∣∣∣∣∣∣
1 < ε. (8.296)
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Supposing that n and m are positive integers for which such channels exist,
one may consider the density operators

τ = 2−m vec(1⊗mZ ) vec(1⊗mZ )∗ and ρ =
(
ΞE ⊗ 1⊗mL(Z)

)
(τ), (8.297)

along with the channel Ξ = ΞD. One of the Fuchs–van de Graaf inequalities
(Theorem 3.33) implies that

F
(
τ,
(
ΞΦ⊗n ⊗ 1⊗mL(Z)

)
(ρ)
)

= F
(
τ,
(
ΞDΦ⊗nΞE ⊗ 1⊗mL(Z)

)
(τ)
)

≥ 1− 1
2
∥∥(ΞDΦ⊗nΞE ⊗ 1⊗mL(Z)

)
(τ)− τ

∥∥
1 > 1− ε

2 .
(8.298)

Because this is so for all but finitely many positive integers n and for
m = bαnc, it holds that α is an achievable rate for entanglement generation
through Φ. Taking the supremum over all achievable rates α for quantum
communication through Φ, one obtains Q(Φ) ≤ QEG(Φ).

It remains to prove that QEG(Φ) ≤ Q(Φ). As for the reverse inequality just
proved, there is nothing to prove if QEG(Φ) = 0, so it will be assumed that
QEG(Φ) > 0. Let α > 0 be an achievable rate for entanglement generation
through Φ and let β ∈ (0, α) be chosen arbitrarily. It will be proved that β
is an achievable rate for quantum communication through Φ. The required
relation QEG(Φ) ≤ Q(Φ) follows by taking the supremum over all achievable
rates α for entanglement generation through Φ and over all β ∈ (0, α).

Let ε > 0 be chosen arbitrarily and let δ = ε4/256, so that ε = 4δ 1
4 . For

all but finitely many positive integers n, and for m = bαnc, there exists a
state ρ ∈ D(X⊗n ⊗Z⊗m) and a channel Ξ ∈ C(Y⊗n,Z⊗m) such that

F
(
2−m vec(1⊗mZ ) vec(1⊗mZ )∗,

(
ΞΦ⊗n ⊗ 1⊗mL(Z)

)
(ρ)
) ≥ 1− δ. (8.299)

Note that the existence of a state ρ for which (8.299) holds implies the
existence of a pure state ρ = uu∗ for which the same inequality holds, by
virtue of the fact that the function

ρ 7→ F
(
2−m vec(1⊗mZ ) vec(1⊗mZ )∗,

(
ΞΦ⊗n ⊗ 1⊗mL(Z)

)
(ρ)
)2

=
〈
2−m vec(1⊗mZ ) vec(1⊗mZ )∗,

(
ΞΦ⊗n ⊗ 1⊗mL(Z)

)
(ρ)
〉 (8.300)

must achieve its maximum value (over all density operators) on a pure state.
By Theorem 8.45, it follows that Φ⊗n emulates an ε-approximation to the
identity channel 1⊗kL(Z) for k = m− 1.

Under the assumption n ≥ 1/(α−β), one has that βn ≤ αn−1. Thus, for
all but finitely many positive integers n and for k = bβnc, it holds that Φ⊗n
emulates an ε-approximation to the identity channel 1⊗kL(Z). As ε > 0 has
been chosen arbitrarily, it follows that β is an achievable rate for quantum
communication through Φ, which completes the proof.
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The entanglement-assisted quantum capacity of a channel
The entanglement-assisted quantum capacity of a channel, which will be
proved is equal to one-half of its entanglement-assisted classical capacity,
may be formally defined as follows.

Definition 8.47 (Entanglement-assisited quantum capacity of a channel)
Let X and Y be complex Euclidean spaces and let Φ ∈ C(X ,Y) be a channel.
Also let Γ = {0, 1} denote the binary alphabet, and let Z = CΓ.

1. A value α ≥ 0 is an achievable rate for entanglement-assisted quantum
information transmission through Φ if (i) α = 0, or (ii) α > 0 and the
following holds for every choice of a positive real number ε > 0: for all
but finitely many positive integers n, and for m = bαnc, the channel
Φ⊗n emulates an ε-approximation to the identity channel 1⊗mL(Z) with the
assistance of entanglement.

2. The entanglement-assisted quantum capacity of Φ, denoted QE(Φ), is
the supremum of all achievable rates for entanglement-assisted quantum
information transmission through Φ.

Proposition 8.48 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y. It holds that

QE(Φ) = CE(Φ)
2 . (8.301)

Proof Assume α is an achievable rate for entanglement-assisted classical
communication through Φ. It will be proved that α/2 is an achievable rate for
entanglement-assisted quantum information transmission through Φ. Taking
the supremum over all achievable rates α for entanglement-assisted classical
communication through Φ, one obtains

QE(Φ) ≥ CE(Φ)
2 . (8.302)

As the case α = 0 is trivial, it will be assumed that α > 0.
Suppose n and m = bαnc are positive integers and ε > 0 is a positive real

number such that Φ⊗n emulates an ε-approximation to the channel ∆⊗m,
where ∆ ∈ C(Z) denotes the completely dephasing channel as usual. Let
k = bm/2c, and consider the maximally entangled state

τ = 2−k vec
(
1⊗kZ

)
vec
(
1⊗kZ

)∗
. (8.303)

By tensoring τ with the state ξ used for the emulation of an ε-approximation
to ∆⊗m by Φ⊗n, one may define a new channel Ψ ∈ C(Z⊗k) through the use
of the traditional teleportation protocol (q.v. Example 6.50 in Section 6.3.1),
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but where the classical communication channel required for teleportation is
replaced by the ε-approximation to the channel ∆⊗m emulated by Φ⊗n. It
holds that Ψ is an ε-approximation to the identity channel 1⊗kL(Z).

One therefore has that, for all ε > 0, for all but finitely many positive
integers n, and for

k =
⌊bαnc

2

⌋
=
⌊
αn

2

⌋
, (8.304)

the channel Φ⊗n emulates an ε-approximation to the identity channel 1⊗kL(Z)

through the assistance of entanglement. It is therefore the case that α/2 is an
achievable rate for entanglement-assisted quantum communication through
Φ, as required.

Now assume α is an achievable rate for entanglement-assisted quantum
communication through Φ. It will be proved that 2α is an achievable rate for
entanglement-assisted classical communication through Φ. This statement is
trivial in the case α = 0, so it will be assumed that α > 0. The proof is
essentially the same as the reverse direction just considered, with dense
coding replacing teleportation.

Suppose that n and m = bαnc are positive integers and ε > 0 is a positive
real number such that Φ⊗n emulates an ε-approximation to 1⊗mL(Z). Using the
maximally entangled state

τ = 2−m vec
(
1⊗mZ

)
vec
(
1⊗mZ

)∗
, (8.305)

tensored with the state ξ used for the emulation of 1⊗mL(Z) by Φ⊗n, one may
define a new channel Ψ ∈ C(Z⊗2m) through the traditional dense coding
protocol (q.v. Example 6.55 in Section 6.3.1), where the quantum channel
required for dense coding is replaced by the ε-approximation to the channel
1⊗mL(Z) emulated by Φ⊗n. It holds that Ψ is an ε-approximation to ∆⊗2m.

It therefore holds that, for all ε > 0, for all but finitely many values of n,
and for m = bαnc, that Φ⊗n emulates an ε-approximation to the channel
∆⊗2m, which implies that 2α is an achievable rate for entanglement-assisted
classical communication through Φ. The inequality

CE(Φ) ≥ 2QE(Φ) (8.306)

is obtained when one takes the supremum over all achievable rates α for
entanglement-assisted quantum communication through Φ.

The equality (8.301) therefore holds, which completes the proof.
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8.2.2 The quantum capacity theorem
The purpose of the present subsection is to state and prove the quantum
capacity theorem, which yields an expression for the quantum capacity of
a given channel. Similar to the Holevo–Schumacher–Westmoreland theorem
(Theorem 8.27), the expression that is obtained from the quantum capacity
theorem includes a regularization over an increasing number of uses of a
given channel.

The subsections that follow include statements and proofs of lemmas that
will be used to prove the quantum capacity theorem, as well as the statement
and proof of the theorem itself.

A decoupling lemma
The first of several lemmas that will be used to prove the quantum capacity
theorem concerns a phenomenon known as decoupling. Informally speaking,
this is the phenomenon whereby the action of a sufficiently noisy channel
on a randomly chosen subspace of its input space can be expected not only
to destroy entanglement with a secondary system, but to destroy classical
correlations as well. The lemma that follows proves a fact along these lines
that is specialized to the task at hand.

Lemma 8.49 Let X , Y, W, and Z be complex Euclidean spaces such
that dim(Z) ≤ dim(X ) ≤ dim(Y ⊗ W), and let A ∈ U(X ,Y ⊗ W) and
V ∈ U(Z,X ) be isometries. Define a state ξ ∈ D(W ⊗X ) as

ξ = 1
n

TrY
(
vec(A) vec(A)∗

)
, (8.307)

and for each unitary operator U ∈ U(X ) define a state ρU ∈ D(W ⊗Z) as

ρU = 1
m

TrY
(
vec(AUV ) vec(AUV )∗

)
, (8.308)

where n = dim(X ) and m = dim(Z). It holds that
∫ ∥∥ρU − TrZ(ρU )⊗ ω

∥∥2
2 dη(U) ≤ Tr(ξ2) , (8.309)

for ω = 1Z/m and η denoting the Haar measure on U(X ).

Proof Observe first that
∥∥ρU − TrZ(ρU )⊗ ω

∥∥2
2 = Tr

(
ρ2
U

)− 1
m

Tr
((

TrZ(ρU )
)2)

. (8.310)

The lemma requires a bound on the integral of the expression represented
by (8.310) over all U , and toward this goal the two terms on the right-hand
side of that equation will be integrated separately.
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To integrate the first term on the right-hand side of (8.310), let Γ be the
alphabet for which Y = CΓ, define Ba =

(
e∗a ⊗ 1W

)
A for each a ∈ Γ, and

observe that

ρU = 1
m

∑

a∈Γ
vec(BaUV ) vec(BaUV )∗. (8.311)

It therefore holds that

Tr
(
ρ2
U

)
= 1
m2

∑

a,b∈Γ

∣∣Tr
(
V ∗U∗B∗aBbUV

)∣∣2

= 1
m2

∑

a,b∈Γ
Tr
(
V ∗U∗B∗aBbUV ⊗ V ∗U∗B∗bBaUV

)

=
〈
UV V ∗U∗ ⊗ UV V ∗U∗, 1

m2
∑

a,b∈Γ
B∗aBb ⊗B∗bBa

〉
.

(8.312)

Integrating over all U ∈ U(X ) yields
∫

Tr
(
ρ2
U

)
dη(U) =

〈
Ξ
(
V V ∗ ⊗ V V ∗), 1

m2
∑

a,b∈Γ
B∗aBb ⊗B∗bBa

〉
, (8.313)

for Ξ ∈ C(X ⊗X ) denoting the Werner twirling channel (q.v. Example 7.25
in the previous chapter). Making use of the expression

Ξ(X) = 2
n(n+ 1)〈ΠX6X , X〉ΠX6X + 2

n(n− 1)〈ΠX7X , X〉ΠX7X , (8.314)

which holds for every X ∈ L(X ⊗ X ), and observing the equations
〈
ΠX6X , V V ∗ ⊗ V V ∗

〉
= m(m+ 1)

2 , (8.315)
〈
ΠX7X , V V ∗ ⊗ V V ∗

〉
= m(m− 1)

2 , (8.316)

it follows that
∫

Tr
(
ρ2
U

)
dη(U)

= 1
nm

〈
m+ 1
n+ 1 ΠX6X + m− 1

n− 1 ΠX7X ,
∑

a,b∈Γ
B∗aBb ⊗B∗bBa

〉
.

(8.317)

A similar methodology can be used to integrate the second term on the
right-hand side of (8.310). In particular, one has

TrZ(ρU ) = 1
m

∑

a∈Γ
BaUV V

∗U∗B∗a, (8.318)
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and therefore

Tr
((

TrZ(ρU )
)2)

= 1
m2

∑

a,b∈Γ
Tr
(
V ∗U∗B∗aBbUV V

∗U∗B∗bBaUV
)

=
〈
WZ ,

1
m2

∑

a,b∈Γ
V ∗U∗B∗aBbUV ⊗ V ∗U∗B∗bBaUV

〉

=
〈

(UV ⊗ UV )WZ(UV ⊗ UV )∗, 1
m2

∑

a,b∈Γ
B∗aBb ⊗B∗bBa

〉
,

(8.319)

where WZ ∈ U(Z⊗Z) denotes the swap operator on Z⊗Z, and the second
equality has used the identity 〈WZ , X ⊗ Y 〉 = Tr(XY ). Integrating over all
U ∈ U(X ) yields

∫
Tr
((

TrZ(ρU )
)2) dη(U)

=
〈

Ξ
(
(V ⊗ V )WZ(V ⊗ V )∗

)
,

1
m2

∑

a,b∈Γ
B∗aBb ⊗B∗bBa

〉
.

(8.320)

By making use of the equations
〈
ΠX6X , (V ⊗ V )WZ(V ⊗ V )∗

〉
= m(m+ 1)

2 ,

〈
ΠX7X , (V ⊗ V )WZ(V ⊗ V )∗

〉
= −m(m− 1)

2 ,

(8.321)

and performing a similar calculation to the one above, one finds that
∫

Tr
((

TrZ(ρU )
)2) dη(U)

= 1
nm

〈
m+ 1
n+ 1 ΠX6X −

m− 1
n− 1 ΠX7X ,

∑

a,b∈Γ
B∗aBb ⊗B∗bBa

〉
.

(8.322)

Combining (8.310), (8.317), and (8.322), together with some algebra, it
follows that

∫ ∥∥ρU − TrZ(ρU )⊗ ω
∥∥2

2 dη(U)

= m2 − 1
m2(n2 − 1)

〈
1X ⊗ 1X −

1
n
WX ,

∑

a,b∈Γ
B∗aBb ⊗B∗bBa

〉
,

(8.323)

where WX denotes the swap operator on X ⊗ X . By similar calculations to
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(8.312) and (8.319) above, but replacing U and V by 1X , it may be verified
that

Tr(ξ2) = 1
n2 Tr

( ∑

a,b∈Γ
B∗aBb ⊗B∗bBa

)
(8.324)

and

Tr
(
(TrX (ξ))2

)
= 1
n2

〈
WX ,

∑

a,b∈Γ
B∗aBb ⊗B∗bBa

〉
. (8.325)

Consequently,
∫ ∥∥ρU − TrZ(ρU )⊗ ω

∥∥2
2 dη(U)

= 1−m−2

1− n−2

(
Tr(ξ2)− 1

n
Tr
(
(TrX (ξ))2

))
≤ Tr(ξ2),

(8.326)

as required.

A lower-bound on entanglement generation decoding fidelity
The next lemma is used, within the proof of the quantum capacity theorem,
to infer the existence of a decoding channel for the task of entanglement
generation. This inference is based on a calculation involving a Stinespring
representation of the channel through which entanglement generation is to
be considered.

Lemma 8.50 Let X , Y, W, and Z be complex Euclidean spaces such
that dim(Z) ≤ dim(X ) ≤ dim(Y ⊗ W), and let A ∈ U(X ,Y ⊗ W) and
W ∈ U(Z,X ) be isometries. Define a channel Φ ∈ C(X ,Y) as

Φ(X) = TrW
(
AXA∗

)
(8.327)

for all X ∈ L(X ), and define a state ρ ∈ D(W ⊗Z) as

ρ = 1
m

TrY
(
vec(AW ) vec(AW )∗

)
, (8.328)

where m = dim(Z). There exists a channel Ξ ∈ C(Y,Z) such that

F
( 1
m

vec(1Z) vec(1Z)∗, 1
m

(ΞΦ⊗ 1L(Z))
(
vec(W ) vec(W )∗

))

≥ F
(
ρ,TrZ(ρ)⊗ ω),

(8.329)

where ω = 1Z/m.
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Proof Let V be a complex Euclidean space of sufficiently large dimension
that the inequalities dim(V) ≥ dim(W) and dim(V⊗Z) ≥ dim(Y) hold, and
let B ∈ L(W,V) be an operator such that TrV

(
vec(B) vec(B)∗

)
= TrZ(ρ).

For the vector

u = 1√
m

vec(B ⊗ 1Z) ∈ (V ⊗ Z)⊗ (W ⊗Z), (8.330)

one has that TrV⊗Z(uu∗) = TrZ(ρ)⊗ ω. It is evident that the vector

v = 1√
m

vec(AW ) ∈ Y ⊗W ⊗Z (8.331)

satisfies TrY(vv∗) = ρ, so it follows by Uhlmann’s theorem (Theorem 3.22)
that there exists an isometry V ∈ U(Y,V ⊗ Z) such that

F
(
ρ,TrZ(ρ)⊗ ω) = F

(
uu∗, (V ⊗ 1W⊗Z)vv∗(V ⊗ 1W⊗Z)∗

)
. (8.332)

Define a channel Ξ ∈ C(Y,Z) as

Ξ(Y ) = TrV(V Y V ∗) (8.333)

for every Y ∈ L(Y). It holds that

TrV
(
TrW(uu∗)

)
= 1
m

vec(1Z) vec(1Z)∗ (8.334)

and
TrV

(
TrW

(
(V ⊗ 1W⊗Z)vv∗(V ⊗ 1W⊗Z)∗

)

= 1
m

(ΞΦ⊗ 1L(Z))(vec(W ) vec(W )∗),
(8.335)

and therefore
F
(
uu∗, (V ⊗ 1W⊗Z)vv∗(V ⊗ 1W⊗Z)∗

)

≤ F
( 1
m

vec(1Z) vec(1Z)∗, 1
m

(ΞΦ⊗ 1L(Z))(vec(W ) vec(W )∗)
) (8.336)

by the monotonicity of the fidelity under partial tracing (which is a special
case of Theorem 3.27). The channel Ξ therefore satisfies the requirement of
the lemma.

Two additional lemmas needed for the quantum capacity theorem
The two lemmas that follow represent technical facts that will be utilized
in the proof of the quantum capacity theorem. The first lemma concerns
the approximation of one isometry by another isometry that meets certain
spectral requirements, and the second lemma is a general fact regarding
Haar measure.
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Lemma 8.51 Let X , Y, and W be complex Euclidean spaces such that
dim(X ) ≤ dim(Y⊗W), let A ∈ U(X ,Y⊗W) be an isometry, let Λ ∈ Proj(Y)
and Π ∈ Proj(W) be projection operators, and let ε ∈ (0, 1/4) be a positive
real number. Also let n = dim(X ), and assume that the constraints

〈
Λ⊗Π, AA∗

〉 ≥ (1− ε)n (8.337)

and

2 rank(Π) ≤ dim(W) (8.338)

are satisfied. There exists an isometry B ∈ U(X ,Y ⊗W) such that

1. ‖A−B‖2 < 3ε1/4√n,
2. TrW(BB∗) ≤ 4Λ TrW(AA∗)Λ, and
3. rank(TrY(BB∗)) ≤ 2 rank(Π).

Proof By means of the singular value theorem, one may write

(Λ⊗Π)A =
n∑

k=1
skukx

∗
k (8.339)

for an orthonormal basis {x1, . . . , xn} of X , an orthonormal set {u1, . . . , un}
of vectors in Y⊗W, and a collection {s1, . . . , sn} ⊂ [0, 1] of nonnegative real
numbers. It holds that

n∑

k=1
s2
k =

〈
Λ⊗Π, AA∗

〉 ≥ (1− ε)n. (8.340)

Define Γ ⊆ {1, . . . , n} as

Γ =
{
k ∈ {1, . . . , n} : s2

k ≥ 1−√ε
}
, (8.341)

and observe the inequality
n∑

k=1
s2
k ≤ |Γ|+ (n− |Γ|)(1−√ε). (8.342)

From (8.340) and (8.342) it follows that

|Γ| ≥ (1−√ε)n > n

2 . (8.343)

There must therefore exist an injective function f : {1, . . . , n}\Γ → Γ; this
function may be chosen arbitrarily, but will be fixed for the remainder of
the proof.
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Next, let W ∈ U(W) be any unitary operator satisfying ΠWΠ = 0. The
assumption that 2 rank(Π) ≤ dim(W) guarantees the existence of such an
operator W . As for the function f , the unitary operator W may be chosen
arbitrarily, subject to the condition ΠWΠ = 0, but is understood to be fixed
for the remainder of the proof.

Finally, define an isometry B ∈ U(X ,Y ⊗W) as follows:

B =
∑

k∈Γ
ukx

∗
k +

∑

k∈{1,...,n}\Γ
(1Y ⊗W )uf(k)x

∗
k. (8.344)

It remains to prove that B has the properties required by the statement of
the lemma.

First, it will be verified that B is indeed an isometry. The set {uk : k ∈ Γ}
is evidently orthonormal, as is the set

{(1Y ⊗W )uf(k) : k ∈ {1, . . . , n}\Γ}. (8.345)

For every choice of k ∈ {1, . . . , n} one has

skuk ∈ im
(
(Λ⊗Π)A

) ⊆ im
(
1Y ⊗Π

)
, (8.346)

and therefore skuk = sk(1Y ⊗Π)uk. It follows that

sjsk
〈
uj , (1Y ⊗W )uk

〉
= sjsk

〈
(1Y ⊗Π)uj , (1Y ⊗ΠW )uk

〉

= sjsk
〈
uj , (1Y ⊗ΠWΠ)uk

〉
= 0

(8.347)

for every choice of j, k ∈ {1, . . . , n}, by virtue of the fact that ΠWΠ = 0.
For j, k ∈ Γ, it must hold that sjsk > 0, and therefore uj ⊥ (1Y ⊗W )uk.
This implies that the set

{uk : k ∈ Γ} ∪ {(1Y ⊗W )uf(k) : k ∈ {1, . . . , n}\Γ} (8.348)

is orthonormal, and therefore B is an isometry.
Next, observe that

‖A−B‖2 ≤ ‖A− (Λ⊗Π)A‖2 + ‖(Λ⊗Π)A−B‖2. (8.349)

The first term in this expression is bounded as

‖A− (Λ⊗Π)A‖2 =
√〈

1− Λ⊗Π, AA∗
〉 ≤ √εn. (8.350)

For the second term, it holds that
∥∥(Λ⊗Π)A−B

∥∥2
2 =

∑

k∈Γ
(sk − 1)2 +

∑

k∈{1,...,n}\Γ

(
s2
k + 1

)

= n+
n∑

k=1
s2
k − 2

∑

k∈Γ
sk ≤ 2n− 2|Γ|(1−√ε)

1
2 .

(8.351)
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To obtain the first equality in the previous equation, it is helpful to observe
that

skuk ⊥ (1Y ⊗W )uf(k) (8.352)

for k ∈ {1, . . . , n}\Γ, which makes use of the equation (8.347) along with
the inclusion f(k) ∈ Γ. By the inequality (8.343) it therefore holds that

∥∥(Λ⊗Π)A−B
∥∥2

2 ≤ 2n− 2
(
1−√ε)

3
2n < 3n

√
ε, (8.353)

from which it follows that

‖A−B‖2 < 3ε1/4√n. (8.354)

The first requirement on B listed in the statement of the lemma is therefore
fulfilled.

The second requirement on B may be verified as follows:

TrW
(
BB∗

) ≤ 2
∑

k∈Γ
TrW

(
uku

∗
k

)

≤ 2
1−√ε TrW

(
(Λ⊗Π)AA∗(Λ⊗Π)

) ≤ 4Λ TrW(AA∗)Λ.
(8.355)

Finally, to verify that the third requirement on B is satisfied, one may
again use the observation that (1⊗Π)uk = uk, which implies that

im(TrY(uku∗k)) ⊆ im(Π), (8.356)

for each k ∈ Γ. As

TrY(BB∗) =
∑

k∈Γ
TrY(uku∗k) +

∑

k∈{1,...,n}\Γ
W (TrY(uf(k)u

∗
f(k)))W ∗, (8.357)

it follows that
im
(
TrY(BB∗)

) ⊆ im(Π) + im(WΠ) (8.358)

and therefore
rank

(
TrY(BB∗)

) ≤ 2 rank(Π), (8.359)

as required.

Lemma 8.52 Let X , W, and Z be complex Euclidean spaces such that
dim(Z) ≤ dim(X ), let V ∈ U(Z,X ) be an isometry, and let Z ∈ L(W ⊗X )
be an operator. It holds that

∫ ∥∥(1W ⊗ V ∗U∗
)
Z
(
1W ⊗ UV

)∥∥
1 dη(U) ≤ m

n
‖Z‖1 (8.360)

where m = dim(Z), n = dim(X ), and η denotes the Haar measure on U(X ).
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Proof Let {W1, . . . ,Wn2} ⊂ U(X ) be an orthogonal collection of unitary
operators. (The discrete Weyl operators, defined in Section 4.1.2, provide an
explicit choice for such a collection.) It therefore holds that the completely
depolarizing channel Ω ∈ C(X ) may be expressed as

Ω(X) = 1
n2

n2∑

k=1
WkXW

∗
k (8.361)

for all X ∈ L(X ). Define Y = Cn2 , and define a channel Φ ∈ C(X ,Z ⊗Y) as

Φ(X) = 1
nm

n2∑

k=1
V ∗W ∗kXWkV ⊗ Ek,k (8.362)

for every X ∈ L(X ). The fact that Φ is a channel follows from Corollary 2.27
together with the calculation

1
nm

n2∑

k=1
WkV V

∗W ∗k = n

m
Ω(V V ∗) = 1X . (8.363)

Next, by the right unitary invariance of the Haar measure, it holds that
∫ ∥∥(1W ⊗ V ∗U∗

)
Z
(
1W ⊗ UV

)∥∥
1 dη(U)

=
∫ ∥∥(1W ⊗ V ∗W ∗kU∗

)
Z
(
1W ⊗ UWkV

)∥∥
1 dη(U)

(8.364)

for every choice of k ∈ {1, . . . , n2}, and therefore
∫ ∥∥(1W ⊗ UV

)∗
Z
(
1W ⊗ UV

)∥∥
1 dη(U)

= 1
n2

n2∑

k=1

∫ ∥∥∥
(
1W ⊗ UWkV

)∗
Z
(
1W ⊗ UWkV

)∥∥∥
1

dη(U)

= 1
n2

∫ ∥∥∥∥∥
n2∑

k=1

(
1W ⊗ UWkV

)∗
Z
(
1W ⊗ UWkV

)⊗ Ek,k
∥∥∥∥∥

1

dη(U)

= m

n

∫ ∥∥(1L(W) ⊗ Φ
)(

(1W ⊗ U∗)Z(1W ⊗ U)
)∥∥

1 dη(U).

(8.365)

As the trace norm is non-increasing under the action of channels, as well as
unitary invariant, it follows that

m

n

∫ ∥∥(1L(W) ⊗ Φ
)(

(1W ⊗ U∗)Z(1W ⊗ U)
)∥∥

1 dη(U)

≤ m

n

∫ ∥∥(1W ⊗ U∗)Z(1W ⊗ U)
∥∥

1 dη(U) = m

n
‖Z‖1,

(8.366)

which completes the proof.
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The quantum capacity theorem
As the following theorem establishes, the entanglement-generation capacity
of a given channel is always at least as large as the coherent information
of the completely mixed state through that channel. This fact, which will
be generalized to arbitrary states in place of the completely mixed state in
a corollary to the theorem, lies at the heart of the proof of the quantum
capacity theorem.

Theorem 8.53 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y. The entanglement generation capacity of Φ is at least the
coherent information of the completely mixed state ω ∈ D(X ) through Φ:

IC(ω ; Φ) ≤ QEG(Φ). (8.367)

Proof Let W be a complex Euclidean space such that

dim(W) = 2 dim(X ⊗ Y), (8.368)

and let A ∈ U(X ,Y ⊗W) be an isometry for which

Φ(X) = TrW
(
AXA∗

)
(8.369)

for all X ∈ L(X ). The somewhat unusual factor of 2 on the right-hand side
of (8.368) will guarantee that the assumptions required by Lemma 8.51 are
met, as is mentioned later in the proof. Define a channel Ψ ∈ C(X ,W) as

Ψ(X) = TrY
(
AXA∗

)
(8.370)

for all X ∈ L(X ), so that Ψ is complementary to Φ. It therefore holds that

IC(ω ; Φ) = H(Φ(ω))−H(Ψ(ω)). (8.371)

The theorem is vacuous in the case that IC(ω ; Φ) ≤ 0, so hereafter it
will be assumed that IC(ω ; Φ) is positive. To prove the theorem, it suffices
to demonstrate that every positive real number smaller than IC(ω ; Φ) is an
achievable rate for entanglement generation through Φ. Toward this goal,
assume that an arbitrary positive real number α satisfying α < IC(ω ; Φ) has
been fixed, and that ε > 0 is a positive real number chosen to be sufficiently
small so that the inequality

α < IC(ω ; Φ)− 2ε(H(Φ(ω)) + H(Ψ(ω))) (8.372)

is satisfied. The remainder of the proof is devoted to proving that α is an
achievable rate for entanglement generation through Φ.

8.2 Quantum information over quantum channels 531

Consider an arbitrary positive integer n ≥ 1/α, and let m = bαnc. Also
let Γ = {0, 1} denote the binary alphabet, and let Z = CΓ. The task in
which a state having high fidelity with the maximally entangled state

2−m vec
(
1⊗mZ

)
vec
(
1⊗mZ

)∗ (8.373)

is established between a sender and receiver through the channel Φ⊗n is to
be considered. Note that the quantity IC(ω ; Φ) is at most log(dim(X )), and
therefore α < log(dim(X )), and this implies dim(Z⊗m) ≤ dim(X⊗n). For
any isometry W ∈ U(Z⊗m,X⊗n) and a channel Ξ ∈ C(Y⊗n,Z⊗m), the state

2−m
(
ΞΦ⊗n ⊗ 1⊗mL(Z)

)(
vec(W ) vec(W )∗

)
(8.374)

may be established through the channel Φ⊗n, so one may aim to prove that
there exists a choice of Ξ and W for which the fidelity between the states
(8.373) and (8.374) is high.

It is helpful at this point to let An ∈ U(X⊗n,Y⊗n⊗W⊗n) be the isometry
defined by the equation

〈
y1 ⊗ · · · ⊗ yn ⊗ w1 ⊗ · · · ⊗ wn, An(x1 ⊗ · · · ⊗ xn)

〉

= 〈y1 ⊗ w1, Ax1〉 · · · 〈yn ⊗ wn, Axn〉
(8.375)

holding for every choice of vectors x1, . . . , xn ∈ X , y1, . . . , yn ∈ Y, and
w1, . . . , wn ∈ W. In effect, An is equivalent to A⊗n, except that the tensor
factors in its output space have been permuted, so that the output space
becomes Y⊗n ⊗W⊗n rather than (Y ⊗W)⊗n. It may be noted that

Φ⊗n(X) = TrW⊗n
(
AnXA

∗
n

)
and Ψ⊗n(X) = TrY⊗n

(
AnXA

∗
n

)
(8.376)

for every X ∈ L(X⊗n).
Now, under the assumption that the decoding channel Ξ ∈ C(Y⊗n,Z⊗m)

has been selected optimally, Lemma 8.50 implies that the fidelity between
the states (8.373) and (8.374) is lower-bounded by

F
(
ρ , TrZ⊗m(ρ)⊗ ω⊗mZ

)
(8.377)

for ρ ∈ D(W⊗n ⊗Z⊗m) defined as

ρ = 2−m TrY⊗n
(
vec(AnW ) vec(AnW )∗

)
(8.378)

and for ωZ ∈ D(Z) denoting the completely mixed state on Z.
The probabilistic method will be employed to prove the existence of an

isometry W for which the expression (8.377) is close to 1, provided that n
is sufficiently large. In particular, one may fix V ∈ U(Z⊗m,X⊗n) to be an
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arbitrary isometry, and let W = UV for U chosen at random with respect to
the Haar measure on U(X⊗n). The analysis that follows demonstrates that,
for an operator W chosen in this way, one expects the quantity (8.377) to
be close to 1, for sufficiently large n, which proves the existence of a choice
of W for which this is true.

Let k = dim(X ) and define ξ ∈ D(W⊗n ⊗X⊗n) as

ξ = 1
kn

TrY⊗n
(
vec(An) vec(An)∗

)
. (8.379)

Also define ρU ∈ D(W⊗n ⊗Z⊗m) as

ρU = 1
2m TrY⊗n

(
vec(AnUV ) vec(AnUV )∗

)
, (8.380)

for each unitary operator U ∈ U(X⊗n), and observe that

ρU = kn

2m
(
1⊗nW ⊗ V TUT)ξ

(
1⊗nW ⊗ V TUT)∗. (8.381)

For the isometry W = UV , the fidelity between the states (8.373) and
(8.374) is lower-bounded by

F
(
ρU , TrZ⊗m(ρU )⊗ ω⊗mZ

)
, (8.382)

for a suitable choice of the decoding channel Ξ.
Let Λn,ε ∈ Proj(Y⊗n) and Πn,ε ∈ Proj(W⊗n) be the projection operators

onto the ε-strongly typical subspaces of Y⊗n and W⊗n, with respect to any
fixed choice of spectral decompositions of Φ(ω) and Ψ(ω), respectively. One
may observe that because ε > 0 and rank(Ψ(ω)) ≤ dim(X ⊗ Y), it holds
that

rank(Πn,ε) ≤
1
2n dim(W⊗n) ≤ 1

2 dim(W⊗n). (8.383)

This is a very coarse bound that will nevertheless be required in order to
utilize Lemma 8.51, and explains the factor of 2 in (8.368).

By Lemma 8.32, there must exist positive real numbers K and δ, both
independent of n and ε, and both assumed to be fixed for the remainder of
the proof, such that for

ζn,ε = K exp(−δnε2), (8.384)
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one has these inequalities:
1
kn
〈
Λn,ε ⊗ 1⊗nW ⊗ 1⊗nX , vec(An) vec(An)∗

〉

=
〈
Λn,ε, (Φ(ω))⊗n

〉 ≥ 1− ζn,ε
2 ,

1
kn
〈
1⊗nY ⊗Πn,ε ⊗ 1⊗nX , vec(An) vec(An)∗

〉

=
〈
Πn,ε, (Ψ(ω))⊗n

〉 ≥ 1− ζn,ε
2 .

(8.385)

It follows that
1
kn
〈
Λn,ε ⊗Πn,ε ⊗ 1⊗nX , vec(An) vec(An)∗

〉 ≥ 1− ζn,ε, (8.386)

which is equivalent to
〈
Λn,ε ⊗Πn,ε , AnA

∗
n

〉 ≥ (1− ζn,ε) kn. (8.387)

If n is sufficiently large so that ζn,ε < 1/4, it follows by Lemma 8.51 that
there exists an isometry Bn ∈ U(X⊗n,Y⊗n ⊗ W⊗n) satisfying these three
conditions: ∥∥An −Bn

∥∥
2 ≤ 3 ζ1/4

n,ε k
n/2,

TrW⊗n
(
BnB

∗
n

) ≤ 4Λn,ε TrW⊗n
(
AnA

∗
n

)
Λn,ε,

rank
(
TrY⊗n

(
BnB

∗
n

)) ≤ 2 rank(Πn,ε).
(8.388)

By Proposition 8.33, the third condition implies that

rank
(
TrY⊗n

(
BnB

∗
n

)) ≤ 2n(1+ε) H(Ψ(ω))+1. (8.389)

Using the second condition, together with Corollary 8.31 and the inequality
Tr(P 2) ≤ λ1(P ) Tr(P ), which holds for all P ≥ 0, one obtains

Tr
(( 1

kn
TrW⊗n

(
BnB

∗
n

))2)

≤ Tr
(( 4

kn
Λn,ε TrW⊗n

(
AnA

∗
n

)
Λn,ε

)2)

= 16 Tr
((

Λn,εΦ(ω)⊗nΛn,ε
)2)

≤ 2−n(1−ε) H(Φ(ω))+4.

(8.390)

Finally, define

σ = 1
kn

TrY⊗n
(
vec(Bn) vec(Bn)∗

)
, (8.391)
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and also define

τU = 1
2m TrY⊗n

(
vec(BnUV ) vec(BnUV )∗

)

= kn

2m
(
1⊗nW ⊗ V TUT)σ

(
1⊗nW ⊗ V TUT)∗

(8.392)

for each U ∈ U(X⊗n). It holds that
∥∥∥ρU − TrZ⊗m(ρU )⊗ ω⊗mZ

∥∥∥
1

≤
∥∥ρU − τU

∥∥
1 +

∥∥∥τU − TrZ⊗m(τU )⊗ ω⊗mZ
∥∥∥

1

+
∥∥∥
(
TrZ⊗m(τU )− TrZ⊗m(ρU )

)⊗ ω⊗mZ
∥∥∥

1

≤
∥∥∥τU − TrZ⊗m(τU )⊗ ω⊗mZ

∥∥∥
1

+ 2
∥∥ρU − τU

∥∥
1,

(8.393)

and so it remains to consider the average value of the two terms in the final
expression of this inequality. When considering the first term in the final
expression of (8.393), it may be noted that

im
(
τU
) ⊆ im

(
TrZ⊗m(τU )⊗ ω⊗mZ

)
(8.394)

and therefore

rank
(
τU − TrZ⊗m(τU )⊗ ω⊗mZ

)
≤ rank

(
TrZ⊗m(τU )⊗ ω⊗mZ

)

≤ 2m rank
(
TrY⊗n

(
BnB

∗
n

)) ≤ 2n(1+ε) H(Ψ(ω))+m+1.
(8.395)

In addition, one has

Tr(σ2) = Tr
(( 1

kn
TrW⊗n

(
BnB

∗
n

))2)
≤ 2−n(1−ε) H(Φ(ω))+4. (8.396)

Making use of Lemma 8.49, it therefore follows that
∫ ∥∥τU − TrZ⊗m(τU )⊗ ω⊗mZ

∥∥2
1 dη(U)

≤ 2n(1+ε) H(Ψ(ω))+m+1
∫ ∥∥τU − TrZ⊗m(τU )⊗ ω⊗mZ

∥∥2
2 dη(U)

≤ 2n((1+ε) H(Ψ(ω))−(1−ε) H(Φ(ω)))+m+5

= 2−n(Ic(ω ;Φ)−2ε(H(Φ(ω))+H(Ψ(ω))))+m+5.

(8.397)

By the assumption (8.372), and using the fact that m = bαnc, one has that
this quantity approaches 0 in the limit as n approaches infinity. It therefore
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holds (by Jensen’s inequality) that the quantity
∫ ∥∥τU − TrZ⊗m(τU )⊗ ω⊗mZ

∥∥
1 dη(U) (8.398)

also approaches 0 in the limit as n approaches infinity. The average value of
the second term in the final expression of (8.393) may be upper-bounded as

∫
‖ρU − τU ‖1 dη(U)

= kn

2m
∫ ∥∥∥

(
1W⊗n ⊗ V TUT)(ξ − σ)

(
1W⊗n ⊗ V TUT)∗∥∥∥

1
dη(U)

≤ ‖ξ − σ‖1 ≤
1
kn
∥∥vec(An) vec(An)∗ − vec(Bn) vec(Bn)∗

∥∥
1

≤ 2
kn/2

∥∥An −Bn
∥∥

2 ≤ 6 ζ1/4
n,ε

(8.399)

by Lemma 8.52. Once again, this quantity approaches 0 in the limit as n
approaches infinity. It follows that the entanglement generation capacity of
Φ is at least α, which completes the proof.

Corollary 8.54 Let X and Y be complex Euclidean spaces, let Φ ∈ C(X ,Y)
be a channel, and let σ ∈ D(X ) be a density operator. The quantum capacity
of Φ is lower-bounded by the coherent information of σ through Φ:

IC(σ; Φ) ≤ Q(Φ). (8.400)

Proof Observe first that it is a consequence of Theorem 8.53 that

IC(ωV ; Φ) ≤ Q(Φ) (8.401)

for every nontrivial subspace V ⊆ X , where

ωV = ΠV
dim(V) (8.402)

is the flat state corresponding to the subspace V. To verify that this is so, let
Z be any complex Euclidean space with dim(Z) = dim(V), let V ∈ U(Z,X )
be an isometry such that V V ∗ = ΠV , and define a channel Ξ ∈ C(Z,Y) as

Ξ(Z) = Φ(V ZV ∗) (8.403)

for all Z ∈ L(Z). It is evident that Q(Ξ) ≤ Q(Φ); the channel Φ emulates
Ξ, so for every positive integer n it holds that Φ⊗n emulates every channel
that can be emulated by Ξ⊗n. It follows that

Q(Φ) ≥ Q(Ξ) = QEG(Ξ) ≥ IC(ωZ ; Ξ)
= IC(V ωZV ∗; Φ) = IC(ωV ; Φ),

(8.404)
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as claimed.
Now, let A ∈ U(X ,Y ⊗W) be an isometry such that

Φ(X) = TrW(AXA∗) (8.405)

for all X ∈ L(X ), for a suitable choice of a complex Euclidean spaceW, and
define a channel Ψ ∈ C(X ,W) as

Ψ(X) = TrY(AXA∗) (8.406)

for all X ∈ L(X ). It therefore holds that Ψ is complementary to Φ, so that

IC(σ; Φ) = H(Φ(σ))−H(Ψ(σ)). (8.407)

Let
σ =

∑

a∈Σ
p(a)xax∗a (8.408)

be a spectral decomposition of σ, and let

ωn,ε = Λn,ε
Tr(Λn,ε)

∈ D(X⊗n) (8.409)

for each positive integer n and each positive real number ε > 0, for Λn,ε
denoting the projection onto the ε-strongly typical subspace of X⊗n, with
respect to the spectral decomposition (8.408).

Next, let ε > 0 be a positive real number, to be chosen arbitrarily. By
Lemma 8.36, it follows that there must exist a positive integer n0 such that,
for all n ≥ n0, one has

∣∣∣∣
1
n

H
(
Φ⊗n(ωn,ε)

)−H(Φ(σ))
∣∣∣∣ ≤ (2 H(σ) + H(Φ(σ)) + 1)ε. (8.410)

Along similar lines, there must exist a positive integer n1 such that, for all
n ≥ n1, one has

∣∣∣∣
1
n

H
(
Ψ⊗n(ωn,ε)

)−H(Ψ(σ))
∣∣∣∣ ≤ (2 H(σ) + H(Ψ(σ)) + 1)ε. (8.411)

There must therefore exist a positive integer n such that
∣∣∣∣
1
n

IC

(
ωn,ε; Φ⊗n

)− IC(σ; Φ)
∣∣∣∣

≤ (4 H(σ) + H(Φ(σ)) + H(Ψ(σ)) + 2)ε.
(8.412)

By the argument presented at the beginning of the proof, it holds that

IC

(
ωn,ε; Φ⊗n

)

n
≤ Q(Φ⊗n)

n
= Q(Φ), (8.413)
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and therefore

Q(Φ) ≥ IC

(
σ; Φ

)− (4 H(σ) + H(Φ(σ)) + H(Ψ(σ)) + 2)ε. (8.414)

As ε has been chosen to be an arbitrary positive real number, it follows that

Q(Φ) ≥ IC

(
σ; Φ

)
, (8.415)

which completes the proof.

Finally, the quantum capacity theorem may be stated and proved.

Theorem 8.55 (Quantum capacity theorem) Let X and Y be complex
Euclidean spaces and let Φ ∈ C(X ,Y) be a channel. It holds that

Q(Φ) = lim
n→∞

IC(Φ⊗n)
n

(8.416)

Proof For every positive integer n and every density operator σ ∈ D(X⊗n),
one has

IC(σ ; Φ⊗n) ≤ Q(Φ⊗n) = nQ(Φ) (8.417)

by Corollary 8.54, and therefore

IC(Φ⊗n)
n

≤ Q(Φ). (8.418)

If it holds that Q(Φ) = 0, then the theorem evidently follows, so it will be
assumed that Q(Φ) > 0 for the remainder of the proof.

Suppose that α > 0 is an achievable rate for entanglement generation
through Φ, let δ ∈ (0, 1) be chosen arbitrarily, and set ε = δ2/2. Also
let Γ = {0, 1} and Z = CΓ. As α is an achievable rate for entanglement
generation through Φ, it holds, for all but finitely many positive integers n
and for m = bαnc, that there must exist a unit vector u ∈ X⊗n ⊗Z⊗m and
a channel Ξ ∈ C(Y⊗n,Z⊗m) such that

F
(
2−m vec(1⊗mZ ) vec(1⊗mZ )∗,

(
ΞΦ⊗n ⊗ 1⊗mL(Z)

)
(uu∗)

)
> 1− ε, (8.419)

and therefore
∥∥∥2−m vec(1⊗mZ ) vec(1⊗mZ )∗ − (ΞΦ⊗n ⊗ 1⊗mL(Z)

)
(uu∗)

∥∥∥
1
< 2δ (8.420)

by one of the Fuchs–van de Graaf inequalities (Theorem 3.33). For any unit
vector u ∈ X⊗n⊗Z⊗m for which the inequality (8.420) holds, one concludes
from the Fannes–Audenaert inequality (Theorem 5.26) that for

ρ = TrZ⊗m(uu∗) (8.421)
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the inequalities
H
((

ΞΦ⊗n ⊗ 1⊗mL(Z)

)
(uu∗)

) ≤ 2δm+ 1 (8.422)

and
m−H

(
ΞΦ⊗n(ρ)

) ≤ δm+ 1 (8.423)

are satisfied. Together with Proposition 8.15, these inequalities imply that

IC

(
ρ; Φ⊗n

) ≥ IC

(
ρ; ΞΦ⊗n

) ≥ (1− 3δ)m− 2. (8.424)

As m = bαnc ≥ αn− 1, it follows that

IC

(
ρ; Φ⊗n

)

n
≥ (1− 3δ)α− 3

n
(8.425)

It has been proved that for any achievable rate α > 0 for entanglement
generation through Φ, and for any δ > 0, that

(1− 3δ)α− 3
n
≤ IC

(
ρ; Φ⊗n

)

n
≤ Q(Φ) (8.426)

for all but finitely many positive integers n. Because Q(Φ) is equal to the
supremum value of all achievable rates for entanglement generation through
Φ, and δ > 0 may be chosen to be arbitrarily small, the required equality
(8.416) follows.

8.3 Non-additivity and super-activation
Expressions for the classical and quantum capacities of a quantum channel
are given by regularizations of the Holevo capacity and maximum coherent
information,

C(Φ) = lim
n→∞

χ(Φ⊗n)
n

and Q(Ψ) = lim
n→∞

IC(Ψ⊗n)
n

, (8.427)

as has been established by the Holevo–Schumacher–Westmoreland theorem
and quantum capacity theorem (Theorems 8.27 and 8.55). Non-regularized
analogues of these formulas do not, in general, hold. In particular, the strict
inequalities

χ(Φ⊗ Φ) > 2χ(Φ) and IC(Ψ⊗Ψ) > 2IC(Ψ) (8.428)

hold for a suitable choice of channels Φ and Ψ, as is demonstrated in the
subsections that follow. These examples reveal that the Holevo capacity
does not coincide directly with the classical capacity, and likewise for the
maximum coherent information and quantum capacity.
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With respect to the Holevo capacity, the fact that a strict inequality may
hold for some channels Φ in (8.428) will be demonstrated in Section 8.3.1,
through the use of Theorem 7.49 from the previous chapter. The existence
of such channels is far from obvious, and no explicit examples are known
at the time of this book’s writing—it is only the existence of such channels
that is known. The now falsified conjecture that the equality

χ(Φ0 ⊗ Φ1) = χ(Φ0) + χ(Φ1) (8.429)

should hold for all choices of channels Φ0 and Φ1 was known for some time
as the additivity conjecture.

In contrast, it is not difficult to find an example of a channel Ψ for which
a strict inequality in (8.428) holds. There are, in fact, very striking examples
of channels that go beyond the demonstration of non-additivity of maximum
coherent information. In particular, one may find channels Ψ0 and Ψ1 such
that both Ψ0 and Ψ1 have zero quantum capacity, and therefore

IC(Ψ0) = IC(Ψ1) = 0, (8.430)

but for which
IC(Ψ0 ⊗Ψ1) > 0, (8.431)

and therefore Ψ0 ⊗Ψ1 has nonzero quantum capacity. This phenomenon is
known as super-activation, and is discussed in Section 8.3.2. From such a
choice of channels Ψ0 and Ψ1, the construction of a channel Ψ for which the
strict inequality (8.428) holds is possible.

8.3.1 Non-additivity of the Holevo capacity
The fact that there exists a channel Φ for which

χ(Φ⊗ Φ) > 2χ(Φ) (8.432)

is demonstrated below. The proof makes use of Theorem 7.49, together with
two basic ideas: one concerns the direct sum of two channels, and the other is
a construction that relates the minimum output entropy of a given channel
to the Holevo capacity of a channel constructed from the one given.

Direct sums of channels and their minimum output entropy
The direct sum of two maps is defined as follows. (One may also consider
direct sums of more than two maps, but it is sufficient for the needs of the
present section to consider the case of just two maps.)
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Definition 8.56 Let X0, X1, Y0, and Y1 be complex Euclidean spaces and
let Φ0 ∈ T(X0,Y0) and Φ1 ∈ T(X1,Y1) be maps. The direct sum of Φ0 and
Φ1 is the map Φ0 ⊕ Φ1 ∈ T(X0 ⊕X1,Y0 ⊕ Y1) defined as

(Φ0 ⊕ Φ1)
(
X0 ·
· X1

)
=
(

Φ0(X0) 0
0 Φ1(X1)

)
(8.433)

for every X0 ∈ L(X0) and X1 ∈ L(X1). The dots in (8.433) indicate arbitrary
operators in L(X1,X0) and L(X0,X1) that have no influence on the output
of the map Φ0 ⊕ Φ1.

The direct sum of two channels is also a channel, as is established by the
following straightforward proposition.

Proposition 8.57 Let X0, X1, Y0, and Y1 be complex Euclidean spaces
and let Φ0 ∈ C(X0,Y0) and Φ1 ∈ C(X1,Y1) be channels. The direct sum of
Φ0 and Φ1 is a channel: Φ0 ⊕ Φ1 ∈ C(X0 ⊕X1,Y0 ⊕ Y1).

Proof It is immediate from the definition of the direct sum of Φ0 and
Φ1 that Φ0 ⊕ Φ1 is trace preserving, so it suffices to prove that Φ0 ⊕ Φ1
is completely positive. Because Φ0 and Φ1 are completely positive, Kraus
representations of the form

Φ0(X0) =
∑

a∈Σ
AaX0A

∗
a and Φ1(X1) =

∑

b∈Γ
BbX1B

∗
b (8.434)

of these maps must exist. Through a direct computation, one may verify
that

(Φ0 ⊕ Φ1)(X) =
∑

a∈Σ

(
Aa 0
0 0

)
X

(
Aa 0
0 0

)∗

+
∑

b∈Γ

(
0 0
0 Bb

)
X

(
0 0
0 Bb

)∗ (8.435)

for all X ∈ L(X0 ⊕ X1). It follows that Φ0 ⊕ Φ1 is completely positive, as
required.

By Theorem 7.49, there exist channels Φ0 and Φ1 such that

Hmin(Φ0 ⊗ Φ1) < Hmin(Φ0) + Hmin(Φ1). (8.436)

It is possible to obtain, from this fact, an example of a single channel Φ such
that

Hmin(Φ⊗ Φ) < 2 Hmin(Φ). (8.437)

The following corollary (to Theorem 7.49) establishes that this is so.
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Corollary 8.58 There exists a channel Φ ∈ C(X ,Y), for some choice of
complex Euclidean spaces X and Y, such that

Hmin(Φ⊗ Φ) < 2 Hmin(Φ). (8.438)

Proof By Theorem 7.49, there exist complex Euclidean spaces Z and W
and channels Ψ0,Ψ1 ∈ C(Z,W) such that

Hmin(Ψ0 ⊗Ψ1) < Hmin(Ψ0) + Hmin(Ψ1). (8.439)

Assume that such a choice of channels has been fixed for the remainder of
the proof.

Let σ0, σ1 ∈ D(Z) be density operators satisfying

H(Ψ0(σ0)) = Hmin(Ψ0) and H(Ψ1(σ1)) = Hmin(Ψ1), (8.440)

and define channels Φ0,Φ1 ∈ C(Z,W ⊗W) as

Φ0(Z) = Ψ0(Z)⊗Ψ1(σ1) and Φ1(Z) = Ψ0(σ0)⊗Ψ1(Z) (8.441)

for all Z ∈ L(Z). Observe that

Hmin(Φ0) = Hmin(Ψ0) + Hmin(Ψ1) = Hmin(Φ1) (8.442)

and
Hmin(Φ0 ⊗ Φ1) = Hmin(Ψ0 ⊗Ψ1) + Hmin(Ψ0) + Hmin(Ψ1)

< 2 Hmin(Ψ0) + 2 Hmin(Ψ0) = Hmin(Φ0) + Hmin(Φ1).
(8.443)

Finally, let X = Z ⊕ Z and Y = (W ⊗ W) ⊕ (W ⊗ W), and define
Φ ∈ C(X ,Y) as

Φ = Φ0 ⊕ Φ1. (8.444)

It remains to verify that Hmin(Φ⊗ Φ) < 2 Hmin(Φ).
For any state ρ ∈ D(Z ⊕ Z), one may write

ρ =
(
λρ0 Z

Z∗ (1− λ)ρ1

)
(8.445)

for some choice of λ ∈ [0, 1], ρ0, ρ1 ∈ D(Z), and Z ∈ L(Z). Evaluating Φ on
such a state ρ yields

Φ(ρ) =
(
λΦ0(ρ0) 0

0 (1− λ)Φ1(ρ1)

)
, (8.446)

so that

H(Φ(ρ)) = λH(Φ0(ρ0)) + (1− λ) H(Φ1(ρ1)) + H(λ, 1− λ). (8.447)
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One concludes that

Hmin(Φ) = Hmin(Φ0) = Hmin(Φ1). (8.448)

Finally, define an isometry V ∈ U(Z ⊗ Z, (Z ⊕ Z) ⊗ (Z ⊕ Z)) by the
equation

V (z0 ⊗ z1) = (z0 ⊕ 0)⊗ (0⊕ z1) (8.449)

holding for all z0, z1 ∈ Z. For every choice of operators Z0, Z1 ∈ L(Z) it
therefore holds that

V (Z0 ⊗ Z1)V ∗ =
(
Z0 0
0 0

)
⊗
(

0 0
0 Z1

)
, (8.450)

so that

(Φ⊗ Φ)
(
V (Z0 ⊗ Z1)V ∗

)
=
(

Φ0(Z0) 0
0 0

)
⊗
(

0 0
0 Φ1(Z1)

)
. (8.451)

One concludes that

H
(
(Φ⊗ Φ)(V ξV ∗)

)
= H

(
(Φ0 ⊗ Φ1)(ξ)

)
(8.452)

for every density operator ξ ∈ D(Z ⊗ Z), and therefore

Hmin(Φ⊗Φ) ≤ Hmin(Φ0⊗Φ1) < Hmin(Φ0)+Hmin(Φ1) = 2 Hmin(Φ), (8.453)

as required.

From low minimum output entropy to high Holevo capacity
The construction to be described below allows one to conclude that there
exists a channel Ψ for which the Holevo capacity is super-additive, meaning
that

χ(Ψ⊗Ψ) > 2χ(Ψ), (8.454)

by means of Corollary 8.58.
Suppose that X and Y are complex Euclidean spaces and Φ ∈ C(X ,Y) is

an arbitrary channel. Suppose further that Σ is an alphabet and

{Ua : a ∈ Σ} ⊂ U(Y) (8.455)

is a collection of unitary operators with the property that the completely
depolarizing channel Ω ∈ C(Y) is given by

Ω(Y ) = 1
|Σ|

∑

a∈Σ
UaY U

∗
a (8.456)

for all Y ∈ L(Y). (Such a collection may, for instance, be derived from the
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discrete Weyl operators defined in Section 4.1.2.) Let Z = CΣ and define a
new channel Ψ ∈ C(Z ⊗ X ,Y) by the equation

Ψ(Ea,b ⊗X) =




UaΦ(X)U∗a if a = b

0 otherwise
(8.457)

holding for all a, b ∈ Σ and X ∈ L(X ).
The action of the channel Ψ may alternatively be described as follows. A

pair of registers (Z,X) is taken as input, and a measurement of the register
Z with respect to the standard basis of Z is made, yielding a symbol a ∈ Σ.
The channel Φ is applied to X, resulting in a register Y, and the unitary
channel described by Ua is applied to Y. The measurement outcome a is
discarded and Y is taken to be the output of the channel.

As the following proposition shows, the Holevo capacity of the channel Ψ
constructed in this way is determined by the minimum output entropy of
the channel Φ.

Proposition 8.59 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y, let Σ be an alphabet, let {Ua : a ∈ Σ} ⊂ U(Y) be a
collection of unitary operators for which the equation (8.456) holds for all
Y ∈ L(Y), let Z = CΣ, and let Ψ ∈ C(Z ⊗ X ,Y) be a channel defined by
the equation (8.457) holding for all a, b ∈ Σ and X ∈ L(X ). It holds that

χ(Ψ) = log(dim(Y))−Hmin(Φ). (8.458)

Proof Consider first the ensemble η : Σ→ Pos(Z ⊗ X ) defined as

η(a) = 1
|Σ|Ea,a ⊗ ρ (8.459)

for all a ∈ Σ, where ρ ∈ D(X ) is any state for which

Hmin(Φ) = H(Φ(ρ)). (8.460)

One has

χ(Ψ(η)) = H
(

1
|Σ|

∑

a∈Σ
UaΦ(ρ)U∗a

)
− 1
|Σ|

∑

a∈Σ
H
(
UaΦ(ρ)U∗a

)

= H
(
Ω(ρ)

)−H(Φ(ρ))
= log(dim(Y))−Hmin(Φ).

(8.461)

It therefore holds that

χ(Ψ) ≥ log(dim(Y))−Hmin(Φ). (8.462)
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Next, consider an arbitrary state σ ∈ D(Z ⊗ X ). For ∆ ∈ C(Z) denoting
the completely dephasing channel, one may write

(
∆⊗ 1L(X )

)
(σ) =

∑

a∈Σ
q(a)Ea,a ⊗ ξa, (8.463)

for some choice of a probability vector q ∈ P(Σ) and a collection of states

{ξa : a ∈ Σ} ⊆ D(X ). (8.464)

It holds that
Ψ(σ) =

∑

a∈Σ
q(a)UaΦ(ξa)U∗a , (8.465)

and therefore

H(Ψ(σ)) ≥
∑

a∈Σ
q(a) H

(
Φ(ξa)

) ≥ Hmin(Φ) (8.466)

by the concavity of the von Neumann entropy function (Theorem 5.23).
Finally, consider an arbitrary ensemble η : Γ→ Pos(Z ⊗ X ), written as

η(b) = p(b)σb (8.467)

for each b ∈ Γ, for p ∈ P(Γ) being a probability vector and

{σb : b ∈ Γ} ⊆ D(Z ⊗ X ) (8.468)

being a collection of states. It holds that

χ(Ψ(η)) = H
(∑

b∈Γ
p(b)Ψ(σb)

)
−
∑

b∈Γ
p(b) H(Ψ(σb))

≤ log(dim(Y))−Hmin(Φ).
(8.469)

The ensemble η was chosen arbitrarily, and therefore

χ(Ψ) ≤ log(dim(Y))−Hmin(Φ), (8.470)

which completes the proof.

Theorem 8.60 There exists a channel Ψ ∈ C(W,Y), for some choice of
complex Euclidean spaces W and Y, such that

χ(Ψ⊗Ψ) > 2χ(Ψ). (8.471)

Proof By Corollary 8.58 there exist complex Euclidean spaces X and Y
and a channel Φ ∈ C(X ,Y) for which the inequality

Hmin(Φ⊗ Φ) < 2 Hmin(Φ) (8.472)
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holds. Let Σ be an alphabet and let

{Ua : a ∈ Σ} ⊂ U(Y) (8.473)

be a collection of unitary operators for which

Ω(Y ) = 1
|Σ|

∑

a∈Σ
UaY U

∗
a (8.474)

for all Y ∈ L(Y). Also let Z = CΣ and let Ψ ∈ C(Z ⊗ X ,Y) be the channel
defined by the equation (8.457) above for all a, b ∈ Σ and X ∈ L(X ).

Up to a permutation of the tensor factors of its input space, Ψ ⊗ Ψ is
equivalent to the channel Ξ ∈ C((Z ⊗ Z)⊗ (X ⊗ X ),Y ⊗ Y) that would be
obtained from the channel Φ⊗ Φ by means of a similar construction, using
the collection of unitary operators

{Ua ⊗ Ub : (a, b) ∈ Σ× Σ} ⊂ U(Y ⊗ Y). (8.475)

It therefore follows from Proposition 8.59 that

χ(Ψ) = log(dim(Y))−Hmin(Φ) (8.476)

while

χ(Ψ⊗Ψ) = log(dim(Y ⊗ Y))−Hmin(Φ⊗ Φ) > 2χ(Ψ). (8.477)

Taking W = Z ⊗ X , the theorem is therefore proved.

One consequence of this theorem is that an analogous statement to the
Holevo–Schumacher–Westmoreland theorem (Theorem 8.27), but without a
regularization, does not hold in general. That is, because

C(Φ) ≥ χ(Φ⊗ Φ)
2 , (8.478)

it is the case that C(Φ) > χ(Φ) for some choices of a channel Φ.

8.3.2 Super-activation of quantum channel capacity
The purpose of the present subsection is to demonstrate the phenomenon of
super-activation, in which the tensor product of two zero-capacity channels
have positive quantum capacity. As a byproduct, one obtains an example of
a channel Ψ satisfying IC(Ψ⊗Ψ) > 2IC(Ψ).
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Two classes of zero-capacity channels
It is possible to prove that certain classes of channels have zero quantum
capacity. Self-complementary channels and channels whose Choi operators
are PPT fall into this category. The following proposition establishes that
channels whose Choi operators are PPT must have zero capacity.

Proposition 8.61 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y, such that J(Φ) ∈ PPT(Y : X ). It holds that Q(Φ) = 0.

Proof The first step of the proof is to establish that, for every choice of a
complex Euclidean space W and a state ρ ∈ D(X ⊗W), one has

(
Φ⊗ 1L(W)

)
(ρ) ∈ PPT(Y :W). (8.479)

Toward this goal, observe that for any choice of a complex Euclidean space
W and a positive semidefinite operator P ∈ Pos(X ⊗W), there must exist
a completely positive map ΨP ∈ CP(X ,W) satisfying

P =
(
1L(X ) ⊗ΨP

)(
vec(1X ) vec(1X )∗

)
. (8.480)

The map ΨP is, in fact, uniquely defined by this requirement; one may obtain
its Choi representation by swapping the tensor factors of P . It follows that,
for any complex Euclidean space W and any state ρ ∈ D(X ⊗W), one must
have

(
T⊗ 1L(W)

)((
Φ⊗ 1L(W)

)
(ρ)
)

=
(
1L(Y) ⊗Ψρ

)((
T⊗ 1L(X )

)
(J(Φ))

) ∈ Pos(Y :W)
(8.481)

by virtue of the fact that Ψρ is completely positive and J(Φ) ∈ PPT(Y : X ),
which establishes (8.479).

As J(Φ) ∈ PPT(Y : X ) , it follows that

J
(
Φ⊗n

) ∈ PPT
(Y⊗n : X⊗n) (8.482)

for every positive integer n. For every choice of positive integers n and m, for
Z = CΓ for Γ = {0, 1}, and for any channel Ξ ∈ C(Y⊗n,Z⊗m), it therefore
holds that

(
ΞΦ⊗n ⊗ 1⊗mL(Z)

)
(ρ) ∈ PPT

(Z⊗m : Z⊗m) (8.483)

for every state ρ ∈ D(X⊗n ⊗Z⊗m). By Proposition 6.42, one therefore has

F
(
2−m vec

(
1⊗mZ

)
vec
(
1⊗mZ

)∗
,
(
ΞΦ⊗n ⊗ 1⊗mL(Z)

)
(ρ)
)
≤ 2−m/2. (8.484)
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For every choice of a positive real number α > 0, it must therefore be
the case that α fails to be an achievable rate for entanglement generation
though Φ. Consequently, Φ has zero capacity for entanglement generation,
which implies Q(Φ) = 0 by Theorem 8.46.

The second category of channels mentioned above having zero quantum
capacity are self-complementary channels. These are channels Φ ∈ C(X ,Y)
such that there exists an isometry A ∈ U(X ,Y ⊗ Y) such that

Φ(X) =
(
1L(Y) ⊗ Tr

)
(AXA∗) =

(
Tr⊗ 1L(Y)

)
(AXA∗) (8.485)

for every X ∈ L(X ). By Proposition 8.17, the coherent information of every
state σ ∈ D(X ) through a self-complementary channel Φ must be zero:

IC(σ; Φ) = H(Φ(σ))−H(Φ(σ)) = 0. (8.486)

As every tensor power of a self-complementary channel is necessarily self-
complementary, the quantum capacity theorem (Theorem 8.55) implies that
self-complementary channels have zero quantum capacity. The following
proposition states a more general variant of this observation.

Proposition 8.62 Let Φ ∈ C(X ,Y) and Ψ ∈ C(X ,Z) be complementary
channels, for complex Euclidean spaces X , Y, and Z, and suppose that there
exists a channel Ξ ∈ C(Z,Y) such that Φ = ΞΨ. It holds that Φ has zero
quantum capacity: Q(Φ) = 0.

Proof Let n be a positive integer and let σ ∈ D(X⊗n) be a state. One has

IC(σ; Φ⊗n) = IC(σ; Ξ⊗nΨ⊗n) ≤ IC(σ; Ψ⊗n) (8.487)

by Proposition 8.15. Because Ψ is complementary to Φ, it holds that Ψ⊗n
is complementary to Φ⊗n, and therefore

IC(σ; Φ⊗n) = H
(
Φ⊗n(σ)

)−H
(
Ψ⊗n(σ)

)

= −IC(σ; Ψ⊗n) ≤ −IC(σ; Φ⊗n),
(8.488)

which implies
IC(σ; Φ⊗n) ≤ 0. (8.489)

As this is so for every choice of n and every state σ ∈ D(X⊗n), it follows
that Q(Φ) = 0 by Theorem 8.55.

Remark Channels of the form Φ ∈ C(X ,Y) for which there exists a channel
Ψ ∈ C(X ,Z) complementary to Φ, as well as a channel Ξ ∈ C(Z,Y) for
which Φ = ΞΨ, are known as anti-degradable channels.
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50% erasure channels
A 50%-erasure channel is a simple type of self-complementary channel that
plays a special role in the example of super-activation to be presented below.
For any choice of a complex Euclidean space X , the 50%-erasure channel
defined with respect to X is the channel Ξ ∈ C(X ,C⊕ X ) defined for each
X ∈ L(X ) as

Ξ(X) = 1
2

(
Tr(X) 0

0 X

)
. (8.490)

Intuitively speaking, a 50%-erasure channel acts as the identity channel
with probability 1/2, and otherwise its input is erased. Under the assumption
that X = CΣ, for Σ being a given alphabet, one may associate the complex
Euclidean space C⊕X with C{#}∪Σ, for # being a special blank symbol that
is not contained in Σ. With this interpretation, the event that the input is
erased may be associated with the blank symbol # being produced, so that

Ξ(X) = 1
2X + 1

2 Tr(X)E#,# (8.491)

for every X ∈ L(X ).
For every choice of X , the 50%-erasure channel Ξ ∈ C(X ,C ⊕ X ) is self-

complementary: one has

Ξ(X) =
(
Tr⊗ 1)

(
AXA∗

)
=
(
1⊗ Tr)

(
AXA∗

)
(8.492)

for A ∈ U(X , (C⊕X )⊗ (C⊕X )) being the isometry defined as

Ax = 1√
2

(0⊕ x)⊗ (1⊕ 0) + 1√
2

(1⊕ 0)⊗ (0⊕ x) (8.493)

for every x ∈ X . It follows that Q(Ξ) = 0.

A theorem of Smith and Yard
The following theorem allows one to prove lower bounds on the maximum
coherent information of a channel tensored with a 50%-erasure channel on
a sufficiently large space. For a suitable choice of a zero-capacity channel
tensored with a 50%-erasure channel, the theorem leads to a demonstration
of the super-activation phenomenon.

Theorem 8.63 (Smith–Yard) Let X , Y, and Z be complex Euclidean
spaces, let A ∈ U(X ,Y ⊗ Z) be an isometry, and let Φ ∈ C(X ,Y) and
Ψ ∈ C(X ,Z) be complementary channels defined as

Φ(X) = TrZ(AXA∗) and Ψ(X) = TrY(AXA∗) (8.494)

8.3 Non-additivity and super-activation 549

for every X ∈ L(X ). Also let Σ be an alphabet, let η : Σ → Pos(X ) be an
ensemble of states, let W be a complex Euclidean space satisfying

dim(W) ≥
∑

a∈Σ
rank(η(a)), (8.495)

and let Ξ ∈ C(W,C ⊕ W) denote the 50%-erasure channel on W. There
exists a density operator ρ ∈ D(X ⊗W) such that

IC(ρ ; Φ⊗ Ξ) = 1
2χ(Φ(η))− 1

2χ(Ψ(η)). (8.496)

Proof By the assumption

dim(W) ≥
∑

a∈Σ
rank(η(a)), (8.497)

one may choose a collection of vectors {ua : a ∈ Σ} ⊂ X ⊗W for which it
holds that

TrW(uau∗a) = η(a) (8.498)

for each a ∈ Σ, and for which
{
TrX (uau∗a) : a ∈ Σ} (8.499)

is an orthogonal set of operators. Let V = CΣ, define a unit vector

u =
∑

a∈Σ
ea ⊗ ua ∈ V ⊗ X ⊗W, (8.500)

and let ρ = TrV(uu∗). One may observe that, by virtue of the fact that
(8.499) is an orthogonal set, it holds that

TrW(uu∗) =
∑

a∈Σ
Ea,a ⊗ η(a). (8.501)

For the unit vector v ∈ V ⊗ Y ⊗ Z ⊗W defined as v = (1V ⊗ A⊗ 1W)u, it
therefore holds that

TrW(vv∗) =
∑

a∈Σ
Ea,a ⊗Aη(a)A∗. (8.502)

The 50%-erasure channel Ξ has the property that

H
(
(Φ⊗ Ξ)(ρ)) = 1

2 H
(
(Φ⊗ 1L(W))(ρ)

)
+ 1

2 H
(
Φ(TrW(ρ))

)
+ 1, (8.503)

and likewise for the channel Ψ in place of Φ. As Ψ is complementary to Φ
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and Ξ is self-complementary, it follows that

IC(ρ; Φ⊗ Ξ) = H
(
(Φ⊗ Ξ)(ρ)

)−H
(
(Ψ⊗ Ξ)(ρ)

)

= 1
2 H

(
(Φ⊗ 1L(W))(ρ)

)− 1
2 H

(
(Ψ⊗ 1L(W))(ρ)

)

+ 1
2 H

(
Φ(TrW(ρ))

)− 1
2 H

(
Ψ(TrW(ρ))

)
.

(8.504)

Now, let V, Y, Z, and W be registers corresponding to the spaces V, Y,
Z, and W, respectively, and consider the situation in which the compound
register (V,Y,Z,W) is in the pure state vv∗. It holds that

H
(
(Φ⊗ 1L(W))(ρ)

)
= H(Y,W) = H(V,Z),

H
(
(Ψ⊗ 1L(W))(ρ)

)
= H(Z,W) = H(V,Y),

H
(
Φ(TrW(ρ))

)
= H(Y),

H
(
Ψ(TrW(ρ))

)
= H(Z),

(8.505)

and therefore

IC(ρ; Φ⊗ Ξ) = 1
2 I(V : Y)− 1

2 I(V : Z) = 1
2χ(Φ(η))− 1

2χ(Ψ(η)), (8.506)

as required.

An explicit example of super-activation
An example of the super-activation phenomenon, based on Theorem 8.63,
will now be described. The first step is to define a zero-capacity channel Φ
as follows. Let

A1 =




0 0 α 0
0 0 0 0
γ 0 0 0
0 γ 0 0


 , A2 =




0 0 0 0
0 0 0 α

−γ 0 0 0
0 γ 0 0


 ,

A3 =




β 0 0 0
0 0 0 0
0 0 β 0
0 0 0 0


 , A4 =




0 0 0 0
β 0 0 0
0 0 0 β

0 0 0 0


 ,

A5 =




0 0 0 0
0 β 0 0
0 0 0 0
0 0 0 −β


 , A6 =




0 β 0 0
0 0 0 0
0 0 0 0
0 0 β 0


 ,

(8.507)
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where

α =
√√

2− 1, β =
√

1− 1√
2
, and γ =

√
1√
2
− 1

2 , (8.508)

and define Φ ∈ C(C4) as

Φ(X) =
6∑

k=1
AkXA

∗
k (8.509)

for every X ∈ L(C4).
The fact that Φ is a zero-capacity channel follows from the fact that the

Choi representation of Φ is a PPT operator. One way to verify this claim is
to check that

(
T⊗ 1L(C4)

)
(J(Φ)) = J(Θ) (8.510)

for Θ ∈ C(C4) being the channel defined as

Θ(X) =
6∑

k=1
BkXB

∗
k (8.511)

for every X ∈ L(C4), where

B1 =




0 0 α 0
0 0 0 0
γ 0 0 0
0 γ 0 0


 , B2 =




0 0 0 0
0 0 0 α

γ 0 0 0
0 −γ 0 0


 ,

B3 =




β 0 0 0
0 0 0 0
0 0 β 0
0 0 0 0


 , B4 =




0 0 0 0
β 0 0 0
0 0 0 −β
0 0 0 0


 ,

B5 =




0 0 0 0
0 β 0 0
0 0 0 0
0 0 0 β


 , B6 =




0 β 0 0
0 0 0 0
0 0 0 0
0 0 β 0


 .

(8.512)

It therefore follows from Proposition 8.61 that Φ has zero quantum capacity.
A channel complementary to Φ is given by Ψ ∈ C(C4,C6) defined as

Ψ(X) =
4∑

k=1
CkXC

∗
k (8.513)
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for every X ∈ L(C4), where

C1 =




0 0 α 0
0 0 0 0
β 0 0 0
0 0 0 0
0 0 0 0
0 β 0 0




, C2 =




0 0 0 0
0 0 0 α

0 0 0 0
β 0 0 0
0 β 0 0
0 0 0 0




,

C3 =




γ 0 0 0
−γ 0 0 0
0 0 β 0
0 0 0 β

0 0 0 0
0 0 0 0




, C4 =




0 γ 0 0
0 γ 0 0
0 0 0 0
0 0 0 0
0 0 0 −β
0 0 β 0




.

(8.514)

Finally, define density operators

σ0 =




1
2 0 0 0
0 1

2 0 0
0 0 0 0
0 0 0 0


 and σ1 =




0 0 0 0
0 0 0 0
0 0 1

2 0
0 0 0 1

2


 , (8.515)

and define an ensemble η : {0, 1} → Pos(C4) as

η(0) = 1
2σ0 and η(1) = 1

2σ1. (8.516)

It holds that

Φ(σ0) =




2−
√

2
2 0 0 0
0 2−

√
2

2 0 0
0 0

√
2−1
2 0

0 0 0
√

2−1
2




(8.517)

and

Φ(σ1) =




√
2−1
2 0 0 0
0

√
2−1
2 0 0

0 0 2−
√

2
2 0

0 0 0 2−
√

2
2



, (8.518)
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while

Ψ(σ0) = Ψ(σ1) =




√
2−1
2 0 0 0 0 0
0

√
2−1
2 0 0 0 0

0 0 2−
√

2
4 0 0 0

0 0 0 2−
√

2
4 0 0

0 0 0 0 2−
√

2
4 0

0 0 0 0 0 2−
√

2
4




. (8.519)

One therefore has that

χ(Φ(η)) = H
(

1
4 ,

1
4 ,

1
4 ,

1
4

)
−H

(
2−
√

2
2 , 2−

√
2

2 ,
√

2−1
2 ,

√
2−1
2

)
> 1

50 , (8.520)

while χ(Ψ(η)) = 0. By Theorem 8.63, there must exist a density operator
ρ ∈ D(C4 ⊗ C4) such that

IC(ρ; Φ⊗ Ξ) > 1
100 , (8.521)

for Ξ ∈ C(C4,C⊕C4) being a 50%-erasure channel. One therefore has that
Q(Φ) = Q(Ξ) = 0, while Q(Φ⊗ Ξ) > 0.

The need for a regularization in the quantum capacity theorem
The super-activation example described above illustrates that the maximum
coherent information is not additive; one has

IC(Φ⊗ Ξ) > IC(Φ) + IC(Ξ) (8.522)

for the channels Φ and Ξ specified in that example. As these channels are
different, it does not follow immediately that a strict inequality of the form

IC(Ψ⊗n) > nIC(Ψ) (8.523)

holds for any choice of a channel Ψ and a positive integer n. It is possible,
however, to conclude that such an inequality does hold (for n = 2) using a
direct sum construction along similar lines to the one used in the context
of the Holevo capacity and minimum output entropy. The following three
propositions that concern direct sums of channels will be used to reach this
conclusion.

Proposition 8.64 Let X0, X1, Y0, Y1, Z0, and Z1 be complex Euclidean
spaces, and let Φ0 ∈ C(X0,Y0), Φ1 ∈ C(X1,Y1), Ψ0 ∈ C(X0,Z0), and
Ψ1 ∈ C(X1,Z1) be channels such that Ψ0 is complementary to Φ0 and Ψ1 is
complementary to Φ1. The channel Ψ0 ⊕Ψ1 is complementary to Φ0 ⊕ Φ1.
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Proof Let A0 ∈ U(X0,Y0⊗Z0) and A1 ∈ U(X1,Y1⊗Z1) be isometries such
that the following equations hold for all X0 ∈ L(X0) and X1 ∈ L(X1):

Φ0(X0) = TrZ0

(
A0X0A

∗
0
)
, Ψ0(X0) = TrY0

(
A0X0A

∗
0
)
,

Φ1(X1) = TrZ1

(
A1X1A

∗
1
)
, Ψ1(X1) = TrY1

(
A1X1A

∗
1
)
.

(8.524)

Let W ∈ U
(
(Y0 ⊗ Z0)⊕ (Y1 ⊗ Z1), (Y0 ⊕ Y1)⊗ (Z0 ⊕ Z1)

)
be the isometry

defined by the equation

W
(
(y0 ⊗ z0)⊕ (y1 ⊗ z1)

)

= (y0 ⊕ 0)⊗ (z0 ⊕ 0) + (0⊕ y1)⊗ (0⊕ z1)
(8.525)

for every y0 ∈ Y0, y1 ∈ Y1, z0 ∈ Z0, and z1 ∈ Z1. The equations

(Φ0 ⊕ Φ1)(X) = TrZ0⊕Z1

(
W

(
A0 0
0 A1

)
X

(
A∗0 0
0 A∗1

)
W ∗

)

(Ψ0 ⊕Ψ1)(X) = TrY0⊕Y1

(
W

(
A0 0
0 A1

)
X

(
A∗0 0
0 A∗1

)
W ∗

) (8.526)

hold for all X ∈ L(X0 ⊕X1), which implies that Ψ0 ⊕Ψ1 is complementary
to Φ0 ⊕ Φ1, as required.

Proposition 8.65 Let Φ0 ∈ C(X0,Y0) and Φ1 ∈ C(X1,Y1) be channels, for
X0, X1, Y0, and Y1 being complex Euclidean spaces, and let σ ∈ D(X0⊕X1)
be an arbitrary state, written as

σ =
(
λσ0 X

X∗ (1− λ)σ1

)
(8.527)

for λ ∈ [0, 1], σ0 ∈ D(X0), σ1 ∈ D(X1), and X ∈ L(X1,X0). It holds that

IC(σ; Φ0 ⊕ Φ1) = λIC(σ0; Φ0) + (1− λ)IC(σ1; Φ1). (8.528)

Proof Observe first that

H((Φ0 ⊕ Φ1)(σ)) = H
(
λΦ0(σ0) 0

0 (1− λ)Φ1(σ1)

)

= λH(Φ0(σ0)) + (1− λ) H(Φ1(σ1)) + H(λ, 1− λ).
(8.529)

Assuming that Z0 and Z1 are complex Euclidean spaces and Ψ0 ∈ C(X0,Z0)
and Ψ1 ∈ C(X1,Z1) are channels complementary to Φ0 and Φ1, respectively,
one has that

H((Ψ0 ⊕Ψ1)(σ))
= λH(Ψ0(σ0)) + (1− λ) H(Ψ1(σ1)) + H(λ, 1− λ)

(8.530)
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by a similar calculation to (8.529). As Ψ0⊕Ψ1 is complementary to Φ0⊕Φ1,
as established in Proposition 8.64, it follows that

IC(σ; Φ0 ⊕ Φ1) = H((Φ0 ⊕ Φ1)(σ))−H((Ψ0 ⊕Ψ1)(σ))
= λ

(
H(Φ0(σ0))−H(Ψ0(σ0))

)

+ (1− λ)
(
H(Φ1(σ1))−H(Ψ1(σ1))

)

= λIC(σ0; Φ0) + (1− λ)IC(σ1; Φ1)

(8.531)

as required.

Proposition 8.66 Let X0, X1, Y0, and Y1 be complex Euclidean spaces
and let Φ0 ∈ C(X0,Y0) and Φ1 ∈ C(X1,Y1) be channels. It holds that

IC((Φ0 ⊕ Φ1)⊗ (Φ0 ⊕ Φ1)) ≥ IC(Φ0 ⊗ Φ1). (8.532)

Proof Define an isometry W ∈ U
(X0 ⊗ X1, (X0 ⊕ X1)⊗ (X0 ⊕ X1)

)
by the

equation
W (x0 ⊗ x1) = (x0 ⊕ 0)⊗ (0⊕ x1) (8.533)

holding for all x0 ∈ X0 and x1 ∈ X1, and along similar lines, define an
isometry V ∈ U

(Y0 ⊗ Y1, (Y0 ⊕ Y1)⊗ (Y0 ⊕ Y1)
)

by the equation

V (y0 ⊗ y1) = (y0 ⊕ 0)⊗ (0⊕ y1) (8.534)

for all y0 ∈ Y0 and y1 ∈ Y1. One has that
(
(Φ0 ⊕ Φ1)⊗ (Φ0 ⊕ Φ1)

)
(W (X0 ⊗X1)W ∗)

=
(

Φ0(X0) 0
0 0

)
⊗
(

0 0
0 Φ1(X1)

)

= V (Φ0(X0)⊗ Φ1(X1))V ∗

(8.535)

for all X0 ∈ L(X0) and X1 ∈ L(X1).
For every choice of a density operator σ ∈ D(X0 ⊗X1), it follows that

IC(WσW ∗; (Φ0 ⊕ Φ1)⊗ (Φ0 ⊕ Φ1)) = IC(σ; Φ0 ⊗ Φ1), (8.536)

which implies the proposition.

Finally, consider the channel Ψ = Φ ⊕ Ξ, for Φ and Ξ as in the example
of super-activation described above. By Proposition 8.65, one may conclude
that IC(Φ⊕ Ξ) = 0, while Proposition 8.66 implies

IC

(
(Φ⊕ Ξ)⊗ (Φ⊕ Ξ)

) ≥ IC(Φ⊗ Ξ) > 0. (8.537)

It therefore holds that the channel Ψ = Φ⊕ Ξ satisfies the strict inequality
(8.523) for n = 2.
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As a consequence of this fact, one has that the quantum capacity and
maximum coherent information differ for some channels. In this sense, the
regularization in the quantum capacity theorem (Theorem 8.55) is similar to
the one in the Holevo–Schumacher–Westmoreland theorem (Theorem 8.27)
in that it cannot generally be removed.

8.4 Exercises
Exercise 8.1 Let Φ0 ∈ C(X0,Y0) and Φ1 ∈ C(X1,Y1) be channels, for an
arbitrary choice of complex Euclidean spaces X0, X1, Y0, and Y1.

(a) Prove that
IC(Φ0 ⊕ Φ1) = max

{
IC(Φ0), IC(Φ1)

}
. (8.538)

(b) Prove that

χ(Φ0 ⊕ Φ1) = max
λ∈[0,1]

(
λχ(Φ0) + (1− λ)χ(Φ1) + H(λ, 1− λ)

)
. (8.539)

Exercise 8.2 Let X , Y, Z, and W be complex Euclidean spaces, let
Φ ∈ C(X ,Y) and Ψ ∈ C(Z,W) be channels, and assume that Φ is an
entanglement breaking channel (q.v. Exercise 6.1). Prove that the following
identities hold:

(a) Hmin(Φ⊗Ψ) = Hmin(Φ) + Hmin(Ψ).
(b) χ(Φ⊗Ψ) = χ(Φ) + χ(Ψ).
(c) IC(Φ⊗Ψ) = IC(Ψ).

Exercise 8.3 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean spaces
X and Y. It is said that Φ is degradable if there exists a complex Euclidean
space Z and a channel Ψ ∈ C(Y,Z) such that ΨΦ is complementary to Φ.

(a) Prove that, for any choice of a degradable channel Φ ∈ C(X ,Y), states
σ0, σ1 ∈ D(X ), and a real number λ ∈ [0, 1], the following inequality
holds:

IC

(
λσ0 + (1− λ)σ1; Φ) ≥ λIC(σ0; Φ) + (1− λ)IC(σ1; Φ). (8.540)

(Equivalently, the function σ 7→ IC(σ; Φ) defined on D(X ) is concave.)
(b) Prove that, for any choice of complex Euclidean spaces X , Y, Z, and
W and degradable channels Φ ∈ C(X ,Y) and Ψ ∈ C(Z,W), it holds
that

IC(Φ⊗Ψ) = IC(Φ) + IC(Ψ). (8.541)
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Exercise 8.4 Let X be a complex Euclidean space, let λ ∈ [0, 1], and
define a channel Ξ ∈ C(X ,C⊕X ) as

Ξ(X) =
(
λTr(X) 0

0 (1− λ)X

)
(8.542)

for all X ∈ L(X ).

(a) Give a closed-form expression for the coherent information IC(σ; Ξ) of
an arbitrary state σ ∈ D(X ) through Ξ.

(b) Give a closed-form expression for the entanglement-assisted classical
capacity CE(Ξ) of Ξ.

(c) Give a closed-form expression for the quantum capacity Q(Ξ) of Ξ.

The closed-form expressions for parts (b) and (c) should be functions of λ
and n = dim(X ) alone.

Exercise 8.5 Let n be a positive integer, let X = CZn , and let

{Wa,b : a, b ∈ Zn} (8.543)

denote the set of discrete Weyl operators acting on X (q.v. Section 4.1.2 of
Chapter 4). Also let p ∈ P(Zn) be a probability vector, and define a channel
Φ ∈ C(X ) as

Φ(X) =
∑

a∈Zn
p(a)W0,aXW

∗
0,a (8.544)

for all X ∈ L(X ). Prove that

IC(Φ) = log(n)−H(p). (8.545)

Exercise 8.6 For every positive integer n and every real number ε ∈ [0, 1],
define a channel Φn,ε ∈ C(Cn) as

Φn,ε = ε1n + (1− ε)Ωn, (8.546)

where 1n ∈ C(Cn) and Ωn ∈ C(Cn) denote the identity and completely
depolarizing channels defined with respect to the space Cn.

(a) Prove that, for every choice of a positive real number K, there exists a
choice of n and ε for which

CE(Φn,ε) ≥ Kχ(Φn,ε) > 0. (8.547)

(b) Prove that the fact established by a correct answer to part (a) remains
true when χ(Φn,ε) is replaced by C(Φn,ε).
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