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Permutation invariance and unitarily invariant measures

This chapter introduces two notions—permutation invariance and unitarily
invariant measures—having interesting applications in quantum information
theory. A state of a collection of identical registers is said to be permutation
invariant if it is unchanged under arbitrary permutations of the contents of
the registers. Unitarily invariant measures are Borel measures, defined for
sets of vectors or operators, that are unchanged by the action of all unitary
operators acting on the underlying space. The two notions are distinct but
nevertheless linked, with the interplay between them offering a useful tool
for performing calculations in both settings.

7.1 Permutation-invariant vectors and operators
This section of the chapter discusses properties of permutation-invariant
states of collections of identical registers. Somewhat more generally, one
may consider permutation-invariant positive semidefinite operators, as well
as permutation-invariant vectors.

It is to be assumed for the entirety of the section that an alphabet Σ and
a positive integer n ≥ 2 have been fixed, and that X1, . . . ,Xn is a sequence of
registers, all sharing the same classical state set Σ. The assumption that the
registers X1, . . . ,Xn share the same classical state set Σ allows one to identify
the complex Euclidean spaces X1, . . . ,Xn associated with these registers with
a single space X = CΣ, and to write

X⊗n = X1 ⊗ · · · ⊗ Xn (7.1)

for the sake of brevity.
Algebraic properties of states of the compound register (X1, . . . ,Xn) that

relate to permutations and symmetries among the individual registers will
be a primary focus of the section.
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Figure 7.1 The action of the operator Wπ on a register (X1,X2,X3,X4)
when π = (1 2 3 4). If the register (X1,X2,X3,X4) was initially in the
product state ρ = ρ1⊗ρ2⊗ρ3⊗ρ4, and the contents of these registers were
permuted according to π as illustrated, the resulting state would then be
given by WπρW

∗
π = ρ4 ⊗ ρ1 ⊗ ρ2 ⊗ ρ3. For non-product states, the action

of Wπ is determined by linearity.

7.1.1 The subspace of permutation-invariant vectors
Within the tensor product space

X⊗n = X1 ⊗ · · · ⊗ Xn , (7.2)

some vectors are unchanged under all permutations of the tensor factors
X1, . . . ,Xn. The set of all such vectors forms a subspace that is known as
the symmetric subspace. A more formal description of this subspace will be
given shortly, following a short discussion of those operators that represent
permutations among the tensor factors of the space (7.2).

Permutations of tensor factors
Define a unitary operator Wπ ∈ U(X⊗n), for each permutation π ∈ Sn, by
the action

Wπ(x1 ⊗ · · · ⊗ xn) = xπ−1(1) ⊗ · · · ⊗ xπ−1(n) (7.3)

for every choice of vectors x1, . . . , xn ∈ X . The action of the operator Wπ,
when considered as a channel acting on a state ρ as

ρ 7→WπρW
∗
π , (7.4)

corresponds to permuting the contents of the registers X1, . . . ,Xn in the
manner described by π. Figure 7.1 depicts an example of this action.
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One may observe that

WπWσ = Wπσ and W−1
π = W ∗π = Wπ−1 (7.5)

for all permutations π, σ ∈ Sn. Each operator Wπ is a permutation operator,
in the sense that it is a unitary operator with entries drawn from the set
{0, 1}, and therefore one has

Wπ = Wπ and W T
π = W ∗π (7.6)

for every π ∈ Sn.

The symmetric subspace
As suggested above, some vectors in X⊗n are invariant under the action of
Wπ for every choice of π ∈ Sn, and it holds that the set of all such vectors
forms a subspace known as the symmetric subspace. This subspace will be
denoted X6n, which is defined in more precise terms as

X6n =
{
x ∈ X⊗n : x = Wπx for every π ∈ Sn

}
. (7.7)

This space may alternatively be denoted X1 6 · · ·6Xn when it is useful to do
so. (The use of this notation naturally assumes that X1, . . . ,Xn have been
identified with a single complex Euclidean space X .)

The following proposition serves as a convenient starting point from which
other facts regarding the symmetric subspace may be derived.

Proposition 7.1 Let X be a complex Euclidean space and n a positive
integer. The projection onto the symmetric subspace X6n is given by

ΠX6n = 1
n!

∑

π∈Sn
Wπ. (7.8)

Proof Using the equations (7.5), one may verify directly that the operator

Π = 1
n!

∑

π∈Sn
Wπ (7.9)

is Hermitian and squares to itself, implying that it is a projection operator.
It holds that WπΠ = Π for every π ∈ Sn, implying that

im(Π) ⊆ X6n. (7.10)

On the other hand, for every x ∈ X6n, it is evident that Πx = x, implying

X6n ⊆ im(Π). (7.11)

As Π is a projection operator that satisfies im(Π) = X6n, the proposition is
proved.
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An orthonormal basis for the symmetric subspace X6n will be identified
next, and in the process the dimension of this space will be determined. It
is helpful to make use of basic combinatorial concepts for this purpose.

First, for every alphabet Σ and every positive integer n, one defines the
set Bag(n,Σ) to be the collection of all functions of the form φ : Σ → N
(where N = {0, 1, 2, . . .}) possessing the property

∑

a∈Σ
φ(a) = n. (7.12)

Each function φ ∈ Bag(n,Σ) may be viewed as describing a bag containing
a total of n objects, each labeled by a symbol from the alphabet Σ. For each
a ∈ Σ, the value φ(a) specifies the number of objects in the bag that are
labeled by a. The objects are not considered to be ordered within the bag—it
is only the number of objects having each possible label that is indicated by
the function φ. Equivalently, a function φ ∈ Bag(n,Σ) may be interpreted
as a description of a multiset of size exactly n with elements drawn from Σ.

An n-tuple (a1, . . . , an) ∈ Σn is consistent with a function φ ∈ Bag(n,Σ)
if and only if

φ(a) =
∣∣{k ∈ {1, . . . , n} : a = ak

}∣∣ (7.13)

for every a ∈ Σ. In words, (a1, . . . , an) is consistent with φ if and only if
(a1, . . . , an) represents one possible ordering of the elements in the multiset
specified by φ. For each φ ∈ Bag(n,Σ), the set Σn

φ is defined as the subset of
Σn containing those elements (a1, . . . , an) ∈ Σn that are consistent with φ.
This yields a partition of Σn, as each n-tuple (a1, . . . , an) ∈ Σn is consistent
with precisely one function φ ∈ Bag(n,Σ). For any two n-tuples

(a1, . . . , an), (b1, . . . , bn) ∈ Σn
φ (7.14)

that are consistent with the same function φ ∈ Bag(n,Σ), there must exist
at least one permutation π ∈ Sn for which

(a1, . . . , an) =
(
bπ(1), . . . , bπ(n)

)
. (7.15)

The number of distinct functions φ ∈ Bag(n,Σ) is given by the formula

|Bag(n,Σ)| =
(
|Σ|+ n− 1
|Σ| − 1

)
, (7.16)

and for each φ ∈ Bag(n,Σ) the number of distinct n-tuples within the subset
Σn
φ is given by

∣∣Σn
φ

∣∣ = n!∏
a∈Σ

(
φ(a)!

) . (7.17)
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As the following proposition establishes, an orthonormal basis for the
symmetric subspace X6n may be obtained through the notions that were
just introduced.

Proposition 7.2 Let Σ be an alphabet, let n be a positive integer, and let
X = CΣ. Define a vector uφ ∈ X⊗n for each φ ∈ Bag(n,Σ) as

uφ =
∣∣Σn

φ

∣∣− 1
2

∑

(a1,...,an)∈Σn
φ

ea1 ⊗ · · · ⊗ ean . (7.18)

The collection
{
uφ : φ ∈ Bag(n,Σ)

}
(7.19)

is an orthonormal basis for X6n.

Proof It is evident that each vector uφ is a unit vector. Moreover, for each
choice of φ, ψ ∈ Bag(n,Σ) with φ 6= ψ, it holds that

Σn
φ ∩ Σn

ψ = ∅, (7.20)

and therefore 〈uφ, uψ〉 = 0, as each element (a1, . . . , an) ∈ Σn is consistent
with precisely one element of Bag(n,Σ). It therefore holds that (7.19) is an
orthonormal set. As each vector uφ is invariant under the action of Wπ for
every π ∈ Sn, it holds that

uφ ∈ X6n (7.21)

for every φ ∈ Bag(n,Σ).
To complete the proof, it remains to prove that the set

{uφ : φ ∈ Bag(n,Σ)} (7.22)

spans all of X6n. This fact follows from the observation that, for every
n-tuple (a1, . . . , an) ∈ Σn, it holds that

ΠX6n(ea1 ⊗ · · · ⊗ ean)

= 1
n!

∑

π∈Sn
Wπ

(
ea1 ⊗ · · · ⊗ ean

)
=
∣∣Σn

φ

∣∣− 1
2uφ,

(7.23)

for the unique element φ ∈ Bag(n,Σ) with which the n-tuple (a1, . . . , an) is
consistent.

7.1 Permutation-invariant vectors and operators 395

Corollary 7.3 Let X be a complex Euclidean space and let n be a positive
integer. It holds that

dim
(X6n) =

(
dim(X ) + n− 1

dim(X )− 1

)
=
(

dim(X ) + n− 1
n

)
. (7.24)

Example 7.4 Suppose Σ = {0, 1}, X = CΣ, and n = 3. The following
four vectors form an orthonormal basis of X63:

u0 = e0 ⊗ e0 ⊗ e0

u1 = 1√
3

(e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0)

u2 = 1√
3

(e0 ⊗ e1 ⊗ e1 + e1 ⊗ e0 ⊗ e1 + e1 ⊗ e1 ⊗ e0)

u3 = e1 ⊗ e1 ⊗ e1.

(7.25)

Tensor power spanning sets for the symmetric subspace
It is evident that the inclusion

v⊗n ∈ X6n (7.26)

holds for every vector v ∈ X . The following theorem demonstrates that the
symmetric subspace X6n is, in fact, spanned by the set of all vectors having
this form. This fact remains true when the entries of v are restricted to finite
subsets of C, provided that those sets are sufficiently large.

Theorem 7.5 Let Σ be an alphabet, let n be a positive integer, and let
X = CΣ. For any set A ⊆ C satisfying |A| ≥ n+ 1 it holds that

span
{
v⊗n : v ∈ AΣ

}
= X6n. (7.27)

Theorem 7.5 can be proved in multiple ways. One proof makes use of the
following elementary fact concerning multivariate polynomials.

Lemma 7.6 (Schwartz–Zippel) Let P be a multivariate polynomial, with
variables Z1, . . . , Zm and complex number coefficients, that is not identically
zero and has total degree at most n, and let A ⊂ C be a nonempty, finite set
of complex numbers. It holds that

∣∣{(α1, . . . , αm) ∈ Am : P (α1, . . . , αm) = 0
}∣∣ ≤ n|A|m−1. (7.28)

Proof The lemma is trivial in the case that |A| ≤ n, so it will be assumed
that |A| ≥ n+ 1 for the remainder of the proof, which is by induction on m.
When m = 1, the lemma follows from the fact that a nonzero, univariate
polynomial with degree at most n can have at most n roots.
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Under the assumption that m ≥ 2, one may write

P (Z1, . . . , Zm) =
n∑

k=0
Qk(Z1, . . . , Zm−1)Zkm, (7.29)

for Q0, . . . , Qn being complex polynomials in variables Z1, . . . , Zm−1, and
with the total degree of Qk being at most n− k for each k ∈ {0, . . . , n}. Fix
k to be the largest value in the set {0, . . . , n} for which Qk is nonzero. Given
that P is nonzero, there must exist such a choice of k.

As Qk has total degree at most n − k, it follows from the hypothesis of
induction that

∣∣{(α1, . . . , αm−1) ∈ Am−1 : Qk(α1, . . . , αm−1) 6= 0
}∣∣

≥ |A|m−1 − (n− k)|A|m−2.
(7.30)

For each choice of (α1, . . . , αm−1) ∈ Am−1 for which Qk(α1, . . . , αm−1) 6= 0,
it holds that

P (α1, . . . , αm−1, Zm) =
k∑

j=0
Qj(α1, . . . , αm−1)Zjm (7.31)

is a univariate polynomial of degree k in the variable Zm, implying that
there must exist at least |A| − k choices of αm ∈ A for which

P (α1, . . . , αm) 6= 0. (7.32)

It follows that there are at least
(|A|m−1 − (n− k)|A|m−2)(|A| − k) ≥ |A|m − n|A|m−1 (7.33)

distinct m-tuples (α1, . . . , αm) ∈ Am for which P (α1, . . . , αm) 6= 0, which
completes the proof of the lemma.

Remark Although it is irrelevant to its use in proving Theorem 7.5, one
may observe that Lemma 7.6 holds for P being a multivariate polynomial
over any field, not just the field of complex numbers. This fact is established
by the proof above, which has not used properties of the complex numbers
that do not hold for arbitrary fields.

Proof of Theorem 7.5 For every choice of a permutation π ∈ Sn and a
vector v ∈ CΣ, it holds that

Wπv
⊗n = v⊗n. (7.34)

It follows that v⊗n ∈ X6n, and therefore

span
{
v⊗n : v ∈ AΣ

}
⊆ X6n. (7.35)
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To prove the reverse inclusion, let w ∈ X6n be any nonzero vector, and
write

w =
∑

φ∈Bag(n,Σ)
αφuφ, (7.36)

for some collection of complex number coefficients {αφ : φ ∈ Bag(n,Σ)},
with each vector uφ being defined as in (7.18). It will be proved that

〈w, v⊗n〉 6= 0 (7.37)

for at least one choice of a vector v ∈ AΣ. The required inclusion follows
from this fact, for if the containment (7.35) were proper, it would be possible
to choose w ∈ X6n that is orthogonal to v⊗n for every v ∈ AΣ.

For the remainder of the proof it will be assumed that A is a finite set,
which causes no loss of generality, for if A were infinite, one could restrict
their attention to an arbitrary finite subset of A having size at least n+ 1,
yielding the desired inclusion.

Define a multivariate polynomial

Q =
∑

φ∈Bag(n,Σ)
αφ
√
|Σn
φ|
∏

a∈Σ
Zφ(a)
a (7.38)

in a collection of variables {Za : a ∈ Σ}. As the monomials
∏

a∈Σ
Zφ(a)
a (7.39)

are distinct as φ ranges over the elements of Bag(n,Σ), with each monomial
having total degree n, it follows that Q is a nonzero polynomial with total
degree n. A calculation reveals that

Q(v) = 〈w, v⊗n〉 (7.40)

for every vector v ∈ CΣ, where Q(v) refers to the complex number obtained
by the substitution of the value v(a) for the variable Za in Q for each a ∈ Σ.
As Q is a nonzero multivariate polynomial with total degree n, it follows
from the Schwartz–Zippel lemma (Lemma 7.6) that Q(v) = 0 for at most

n|A||Σ|−1 < |A||Σ| (7.41)

choices of vectors v ∈ AΣ, implying that there exists at least one vector
v ∈ AΣ for which 〈w, v⊗n〉 6= 0, completing the proof.
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The anti-symmetric subspace
Along similar lines to the symmetric subspace X6n of the tensor product
space X⊗n, one may define the anti-symmetric subspace of the same tensor
product space as

X7n =
{
x ∈ X⊗n : Wπx = sign(π)x for every π ∈ Sn

}
. (7.42)

The short discussion on the anti-symmetric subspace that follows may, for
the most part, be considered as an aside; with the exception of the case in
which n = 2, the anti-symmetric subspace does not play a significant role
elsewhere in this book. It is, nevertheless, natural to consider this subspace
along side of the symmetric subspace. The following propositions establish
a few basic facts about the anti-symmetric subspace.

Proposition 7.7 Let X be a complex Euclidean space and n a positive
integer. The projection onto the anti-symmetric subspace X7n is given by

ΠX7n = 1
n!

∑

π∈Sn
sign(π)Wπ. (7.43)

Proof The proof is similar to the proof of Proposition 7.1. Using (7.5), along
with the fact that sign(π) sign(σ) = sign(πσ) for every choice of π, σ ∈ Sn,
it may be verified that the operator

Π = 1
n!

∑

π∈Sn
sign(π)Wπ (7.44)

is Hermitian and squares to itself, implying that it is a projection operator.
For every π ∈ Sn it holds that

WπΠ = sign(π)Π, (7.45)

from which it follows that

im(Π) ⊆ X7n. (7.46)

For every vector x ∈ X7n, it holds that Πx = x, implying that

X7n ⊆ im(Π). (7.47)

As Π is a projection operator satisfying im(Π) = X7n, the proposition is
proved.
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When constructing an orthonormal basis of the anti-symmetric subspace
X7n, for X = CΣ, it is convenient to assume that a total ordering of Σ has
been fixed. For every n-tuple (a1, . . . , an) ∈ Σn for which a1 < · · · < an,
define a vector

ua1,...,an = 1√
n!

∑

π∈Sn
sign(π)Wπ(ea1 ⊗ · · · ⊗ ean). (7.48)

Proposition 7.8 Let Σ be an alphabet, let n ≥ 2 be a positive integer,
let X = CΣ, and define ua1,...,an ∈ X⊗n for each n-tuple (a1, . . . , an) ∈ Σn

satisfying a1 < · · · < an as in (7.48). The collection
{
ua1,...,an : (a1, . . . , an) ∈ Σn, a1 < · · · < an

}
(7.49)

is an orthonormal basis for X7n.

Proof Each vector ua1,...,an is evidently a unit vector, and is contained
in the space X7n. For distinct n-tuples (a1, . . . , an) and (b1, . . . , bn) with
a1 < · · · < an and b1 < · · · < bn it holds that

〈ua1,...,an , ub1,...,bn〉 = 0, (7.50)

as these vectors are linear combinations of disjoint sets of standard basis
vectors. It therefore remains to prove that the collection (7.49) spans X7n.

For any choice of distinct indices j, k ∈ {1, . . . , n}, and for (j k) ∈ Sn
being the permutation that swaps j and k, leaving all other elements of
{1, . . . , n} fixed, one has

W(j k)ΠX7n = −ΠX7n = ΠX7nW(j k). (7.51)

Consequently, for any choice of an n-tuple (a1, . . . , an) ∈ Σn for which there
exist distinct indices j, k ∈ {1, . . . , n} for which aj = ak, it holds that

ΠX7n(ea1 ⊗ · · · ⊗ ean) = ΠX7nW(j k)(ea1 ⊗ · · · ⊗ ean)
= −ΠX7n(ea1 ⊗ · · · ⊗ ean),

(7.52)

and therefore
ΠX7n(ea1 ⊗ · · · ⊗ ean) = 0. (7.53)

On the other hand, if (a1, . . . , an) ∈ Σn is an n-tuple for which a1, . . . , an
are distinct elements of Σ, it must hold that

(
aπ(1), . . . , aπ(n)

)
= (b1, . . . , bn) (7.54)

for some choice of a permutation π ∈ Sn and an n-tuple (b1, . . . , bn) ∈ Σn
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satisfying b1 < · · · < bn. One therefore has

ΠX7n(ea1 ⊗ · · · ⊗ ean) = ΠX7nWπ(eb1 ⊗ · · · ⊗ ebn)

= sign(π)ΠX7n(eb1 ⊗ · · · ⊗ ebn) = sign(π)√
n!

ub1,...,bn .
(7.55)

It therefore holds that

im
(
ΠX7n

) ⊆ span
{
ua1,...,an : (a1, . . . , an) ∈ Σn, a1 < · · · < an

}
, (7.56)

which completes the proof.

By the previous proposition, one has that the dimension of the anti-
symmetric subspace is equal to the number of n-tuples (a1, . . . , an) ∈ Σn

satisfying a1 < · · · < an. This number is equal to the number of subsets of
Σ having n elements.

Corollary 7.9 Let X be a complex Euclidean space and let n be a positive
integer. It holds that

dim
(X7n) =

(
dim(X )

n

)
. (7.57)

7.1.2 The algebra of permutation-invariant operators
By its definition, the symmetric subspace X6n includes all vectors x ∈ X⊗n
that are invariant under the action of Wπ for each π ∈ Sn. One may consider
a similar notion for operators, with the action x 7→ Wπx being replaced by
the action

X 7→WπXW
∗
π (7.58)

for each X ∈ L(X⊗n). The notation L(X )6n will be used to denote the set
of operators X that are invariant under this action:

L(X )6n =
{
X ∈ L

(X⊗n) : X = WπXW
∗
π for all π ∈ Sn

}
. (7.59)

Similar to the analogous notion for vectors, one may denote this set as
L(X1) 6 · · ·6 L(Xn) when it is convenient to do this, under the assumption
that the spaces X1, . . . ,Xn have been identified with a single space X .

Assuming that X1, . . . ,Xn are registers sharing the same classical state set
Σ, and identifying each of the spaces X1, . . . ,Xn with X = CΣ, one observes
that the density operator elements of the set L(X )6n represent states of the
compound register (X1, . . . ,Xn) that are invariant under all permutations of
the registers X1, . . . ,Xn. Such states are said to be exchangeable.
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Algebraic properties of the set L(X )6n, along with a relationship between
exchangeable states and permutation-invariant vectors, are described in the
subsections that follow.

Vector space structure of the permutation-invariant operators
The notation L(X )6n is a natural choice for the space of all permutation-
invariant operators; if one regards L(X ) as a vector space, then L(X )6n

indeed coincides with the symmetric subspace of the tensor product space
L(X )⊗n. The next proposition formalizes this connection and states some
immediate consequences of the results of the previous section.

Proposition 7.10 Let X be a complex Euclidean space, let n be a positive
integer, and let X ∈ L(X⊗n). The following statements are equivalent:

1. X ∈ L(X )6n.
2. For V ∈ U(X⊗n ⊗ X⊗n, (X ⊗ X )⊗n) being the isometry defined by the

equation

V vec(Y1 ⊗ · · · ⊗ Yn) = vec(Y1)⊗ · · · ⊗ vec(Yn) (7.60)

holding for all Y1, . . . , Yn ∈ L(X ), one has that

V vec(X) ∈ (X ⊗ X )6n. (7.61)

3. X ∈ span
{
Y ⊗n : Y ∈ L(X )

}
.

Proof For each permutation π ∈ Sn, let

Uπ ∈ U
(
(X ⊗ X )⊗n

)
(7.62)

be the unitary operator defined by the equation

Uπ(w1 ⊗ · · · ⊗ wn) = wπ−1(1) ⊗ · · · ⊗ wπ−1(n) (7.63)

holding for all vectors w1, . . . , wn ∈ X ⊗ X . Each operator Uπ is analogous
to Wπ, as defined in (7.3), but with the space X replaced by X ⊗X . It holds
that

Uπ = V (Wπ ⊗Wπ)V ∗ (7.64)

for every π ∈ Sn, from which one may conclude that the first and second
statements are equivalent.

Theorem 7.5 implies that

V vec(X) ∈ (X ⊗ X )6n (7.65)
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if and only if

V vec(X) ∈ span
{
vec(Y )⊗n : Y ∈ L(X )

}
. (7.66)

The containment (7.66) is equivalent to

vec(X) ∈ span
{
vec
(
Y ⊗n

)
: Y ∈ L(X )

}
, (7.67)

which in turn is equivalent to

X ∈ span
{
Y ⊗n : Y ∈ L(X )

}
. (7.68)

The second and third statements are therefore equivalent.

Theorem 7.11 Let X be a complex Euclidean space and let n be a positive
integer. It holds that

L(X )6n = span
{
U⊗n : U ∈ U

(X )
}
. (7.69)

Proof Let Σ be the alphabet for which X = CΣ, and let

D = Diag(u) (7.70)

be a diagonal operator, for an arbitrary choice of u ∈ X . It holds that
u⊗n ∈ X6n, so by Theorem 7.5 one has that

u⊗n ∈ span
{
v⊗n : v ∈ TΣ}, (7.71)

for T =
{
α ∈ C : |α| = 1

}
denoting the set of complex units. It is therefore

possible to write
u⊗n =

∑

b∈Γ
βbv
⊗n
b (7.72)

for some choice of an alphabet Γ, vectors {vb : b ∈ Γ} ⊂ TΣ, and complex
numbers {βb : b ∈ Γ} ⊂ C. It follows that

D⊗n =
∑

b∈Γ
βbU

⊗n
b (7.73)

for Ub ∈ U(X ) being the unitary operator defined as

Ub = Diag(vb) (7.74)

for each b ∈ Γ.
Now, for an arbitrary operator A ∈ L(X ), one may write A = V DW

for V,W ∈ U(X ) being unitary operators and D ∈ L(X ) being a diagonal
operator, by Corollary 1.7 (to the singular value theorem). Invoking the
argument above, one may assume that (7.73) holds, and therefore

A⊗n =
∑

b∈Γ
βb(V UbW )⊗n, (7.75)
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for some choice of an alphabet Γ, complex numbers {βb : b ∈ Γ} ⊂ C,
and diagonal unitary operators {Ub : b ∈ Γ}. As V UbW is unitary for each
b ∈ Γ, one has

A⊗n ∈ span
{
U⊗n : U ∈ U(X )

}
, (7.76)

so by Proposition 7.10 it follows that

L(X )6n ⊆ span
{
U⊗n : U ∈ U(X )

}
. (7.77)

The reverse containment is immediate, so the theorem is proved.

Symmetric purifications of exchangeable density operators
A density operator ρ ∈ D(X⊗n) is exchangeable if and only if ρ ∈ L(X )6n,
which is equivalent to

ρ = WπρW
∗
π (7.78)

for every permutation π ∈ Sn. In operational terms, an exchangeable state
ρ of a compound register (X1, . . . ,Xn), for n identical registers X1, . . . ,Xn,
is one that does not change if the contents of these n registers are permuted
in an arbitrary way.

For every symmetric unit vector u ∈ X6n, one has that the pure state
uu∗ is exchangeable, and naturally any convex combination of such states
must be exchangeable as well. In general, this does not exhaust all possible
exchangeable states. For instance, the completely mixed state in D(X⊗n) is
exchangeable, but the image of the density operator corresponding to this
state is generally not contained within the symmetric subspace.

There is, nevertheless, an interesting relationship between exchangeable
states and symmetric pure states, which is that every exchangeable state can
be purified in such a way that its purification lies within a larger symmetric
subspace, in the sense described by the following theorem.

Theorem 7.12 Let Σ and Γ be alphabets with |Γ| ≥ |Σ| and let n be a
positive integer. Also let X1, . . . ,Xn be registers, each having classical state
set Σ, let Y1, . . . ,Yn be registers, each having classical state set Γ, and let
ρ ∈ D(X1 ⊗ · · · ⊗ Xn) be an exchangeable density operator. There exists a
unit vector

u ∈ (X1 ⊗ Y1) 6 · · ·6 (Xn ⊗ Yn) (7.79)

such that

(uu∗)[X1, . . . ,Xn] = ρ. (7.80)
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Proof Let A ∈ U(CΣ,CΓ) be an arbitrarily chosen isometry, which one may
regard as an element of U(Xk,Yk) for any choice of k ∈ {1, . . . , n}. Also let

V ∈ U
(
(X1 ⊗ · · · ⊗ Xn)⊗ (Y1 ⊗ · · · ⊗ Yn),

(X1 ⊗ Y1)⊗ · · · ⊗ (Xn ⊗ Yn)
) (7.81)

be the isometry defined by the equation

V vec(B1 ⊗ · · · ⊗Bn) = vec(B1)⊗ · · · ⊗ vec(Bn), (7.82)

holding for all choices of B1 ∈ L(Y1,X1), . . . , Bn ∈ L(Yn,Xn). Equivalently,
this isometry is defined by the equation

V ((x1 ⊗ · · · ⊗ xn)⊗ (y1 ⊗ · · · ⊗ yn))
= (x1 ⊗ y1)⊗ · · · ⊗ (xn ⊗ yn),

(7.83)

holding for all vectors x1 ∈ X1, . . . , xn ∈ Xn and y1 ∈ Y1, . . . , yn ∈ Yn.
Consider the vector

u = V vec
(√
ρ(A∗ ⊗ · · · ⊗A∗)) ∈ (X1 ⊗ Y1)⊗ · · · ⊗ (Xn ⊗ Yn). (7.84)

A calculation reveals that

(uu∗)[X1, . . . ,Xn] = ρ, (7.85)

and so it remains to prove that u is symmetric. Because ρ is exchangeable,
one has

(
Wπ
√
ρW ∗π

)2 = WπρW
∗
π = ρ (7.86)

for every permutation π ∈ Sn, and therefore

Wπ
√
ρW ∗π = √ρ (7.87)

by the uniqueness of the square root. By Proposition 7.10, it therefore holds
that

√
ρ ∈ span

{
Y ⊗n : Y ∈ L(CΣ)

}
. (7.88)

Consequently, one has

u ∈ span
{
V vec

((
Y A∗

)⊗n) : Y ∈ L(CΣ)
}
, (7.89)

and therefore
u ∈ span

{
vec
(
Y A∗

)⊗n : Y ∈ L(CΣ)
}
. (7.90)

From this containment it is evident that

u ∈ (X1 ⊗ Y1) 6 · · ·6 (Xn ⊗ Yn), (7.91)

which completes the proof.
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Von Neumann’s double commutant theorem
To establish further properties of the set L(X )6n, particularly ones relating
to the operator structure of its elements, it is convenient to make use of a
theorem known as von Neumann’s double commutant theorem. This theorem
is stated below, and its proof will make use of the following lemma.

Lemma 7.13 Let X be a complex Euclidean space, let V ⊆ X be a subspace
of X , and let A ∈ L(X ) be an operator. The following two statements are
equivalent:

1. It holds that both AV ⊆ V and A∗V ⊆ V.
2. It holds that [A,ΠV ] = 0.

Proof Assume first that statement 2 holds. If two operators commute, then
their adjoints must also commute, and so one has the following for every
vector v ∈ V:

Av = AΠVv = ΠVAv ∈ V,
A∗v = A∗ΠVv = ΠVA∗v ∈ V.

(7.92)

It has been proved that statement 2 implies statement 1.
Now assume statement 1 holds. For every v ∈ V, one has

ΠVAv = Av = AΠVv, (7.93)

by virtue of the fact that Av ∈ V. For every w ∈ X with w ⊥ V, it must
hold that

〈v,Aw〉 = 〈A∗v, w〉 = 0 (7.94)

for every v ∈ V, following from the assumption A∗v ∈ V, and therefore
Aw ⊥ V. Consequently,

ΠVAw = 0 = AΠVw. (7.95)

As every vector u ∈ X may be written as u = v+w for some choice of v ∈ V
and w ∈ X with w ⊥ V, equations (7.93) and (7.95) imply

ΠVAu = AΠVu (7.96)

for every vector u ∈ X , and therefore ΠVA = AΠV . It has been proved that
statement 1 implies statement 2, which completes the proof.

Theorem 7.14 (Von Neumann’s double commutant theorem) Let A be
a self-adjoint, unital subalgebra of L(X ), for X being a complex Euclidean
space. It holds that

comm(comm(A)) = A. (7.97)
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Proof It is immediate from the definition of the commutant that

A ⊆ comm(comm(A)), (7.98)

and so it remains to prove the reverse inclusion.
The key idea of the proof will be to consider the algebra L(X ⊗ X ), and

to make use of its relationships with L(X ). Define B ⊆ L(X ⊗ X ) as

B = {X ⊗ 1 : X ∈ A}, (7.99)

and let Σ be the alphabet for which X = CΣ. Every operator Y ∈ L(X ⊗X )
may be written as

Y =
∑

a,b∈Σ
Ya,b ⊗ Ea,b (7.100)

for a unique choice of operators {Ya,b : a, b ∈ Σ} ⊂ L(X ). The condition

Y (X ⊗ 1) = (X ⊗ 1)Y, (7.101)

for any operator X ∈ L(X ) and any operator Y having the form (7.100), is
equivalent to [Ya,b, X] = 0 for every choice of a, b ∈ Σ, and so it follows that

comm(B) =
{ ∑

a,b∈Σ
Ya,b ⊗ Ea,b :

{
Ya,b : a, b ∈ Σ

} ⊂ comm(A)
}
. (7.102)

For a given operator X ∈ comm(comm(A)), it is therefore evident that

X ⊗ 1 ∈ comm
(
comm

(B)). (7.103)

Now, define a subspace V ⊆ X ⊗ X as

V = {vec(X) : X ∈ A}, (7.104)

and let X ∈ A be chosen arbitrarily. It holds that

(X ⊗ 1)V ⊆ V, (7.105)

owing to the fact that A is an algebra. As A is self-adjoint, it follows that
X∗ ∈ A, and therefore

(X∗ ⊗ 1)V ⊆ V. (7.106)

Lemma 7.13 therefore implies that

[X ⊗ 1,ΠV ] = 0. (7.107)

As X ∈ A was chosen arbitrarily, it follows that ΠV ∈ comm(B).
Finally, let X ∈ comm(comm(A)) be chosen arbitrarily. As was argued

above, the inclusion (7.103) therefore holds, from which the commutation
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relation (7.107) follows. The reverse implication of Lemma 7.13 implies the
containment (7.105). In particular, given that the subalgebra A is unital,
one has vec(1) ∈ V, and therefore

vec(X) = (X ⊗ 1) vec(1) ∈ V, (7.108)

which implies X ∈ A. The containment

comm(comm(A)) ⊆ A (7.109)

has therefore been proved, which completes the proof.

Operator structure of the permutation-invariant operators
With von Neumann’s double commutant theorem in hand, one is prepared
to prove the following fundamental theorem, which concerns the operator
structure of the set L(X )6n.

Theorem 7.15 Let X be a complex Euclidean space, let n be a positive
integer, and let X ∈ L(X⊗n) be an operator. The following statements are
equivalent:

1. It holds that [X,Y ⊗n] = 0 for all Y ∈ L(X ).
2. It holds that [X,U⊗n] = 0 for all U ∈ U(X ).
3. It holds that

X =
∑

π∈Sn
u(π)Wπ (7.110)

for some choice of a vector u ∈ CSn.

Proof By Proposition 7.10 and Theorem 7.11, together with the bilinearity
of the Lie bracket, the first and second statements are equivalent to the
inclusion

X ∈ comm
(
L(X )6n). (7.111)

For the set A ⊆ L(X⊗n) defined as

A =
{∑

π∈Sn
u(π)Wπ : u ∈ CSn

}
, (7.112)

one has that the third statement is equivalent to the inclusion X ∈ A. To
prove the theorem, it therefore suffices to demonstrate that

A = comm
(
L(X )6n). (7.113)

For any operator Z ∈ L(X⊗n), it is evident from an inspection of (7.59)
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that Z ∈ L(X )6n if and only if [Z,Wπ] = 0 for each π ∈ Sn. Again using
the bilinearity of the Lie bracket, it follows that

L(X )6n = comm(A). (7.114)

Finally, one observes that the set A forms a self-adjoint, unital subalgebra
of L(X⊗n). By Theorem 7.14, one has

comm
(
L(X )6n) = comm(comm(A)) = A, (7.115)

which establishes the relation (7.113), and therefore completes the proof.

7.2 Unitarily invariant probability measures
Two probability measures having fundamental importance in the theory of
quantum information are introduced in the present section: the uniform
spherical measure, defined on the unit sphere S(X ), and the Haar measure,
defined on the set of unitary operators U(X ), for every complex Euclidean
space X . These measures are closely connected, and may both be defined in
simple and concrete terms based on the standard Gaussian measure on the
real line (q.v. Section 1.2.1).

7.2.1 Uniform spherical measure and Haar measure
Definitions and basic properties of the uniform spherical measure and Haar
measure are discussed below, starting with the uniform spherical measure.

Uniform spherical measure
Intuitively speaking, the uniform spherical measure provides a formalism
through which one may consider a probability distribution over vectors in
a complex Euclidean space that is uniform over the unit sphere. In more
precise terms, the uniform spherical measure is a probability measure µ,
defined on the Borel subsets of the unit sphere S(X ) of a complex Euclidean
space X , that is invariant under the action of every unitary operator:

µ(A) = µ(UA) (7.116)

for every A ∈ Borel(S(X )) and U ∈ U(X ).1 One concrete way of defining
such a measure is as follows.
1 Indeed, the measure µ is uniquely determined by these requirements. The fact that this is so

will be verified through the use of the Haar measure, which is introduced below.
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Definition 7.16 Let Σ be an alphabet, let {Xa : a ∈ Σ} ∪ {Ya : a ∈ Σ}
be a collection of independent and identically distributed standard normal
random variables, and let X = CΣ. Define a vector-valued random variable
Z, taking values in X , as

Z =
∑

a∈Σ
(Xa + iYa)ea. (7.117)

The uniform spherical measure µ on S(X ) is the Borel probability measure

µ : Borel(S(X ))→ [0, 1] (7.118)

defined as
µ(A) = Pr

(
αZ ∈ A for some α > 0

)
(7.119)

for every A ∈ Borel(S(X )).

The fact that the uniform spherical measure µ is a well-defined Borel
probability measure follows from three observations. First, one has that

{
x ∈ X : αx ∈ A for some α > 0

}
= cone(A)\{0} (7.120)

is a Borel subset of X for every Borel subset A of S(X ), which implies that
µ is a well-defined function. Second, if A and B are disjoint Borel subsets
of S(X ), then cone(A)\{0} and cone(B)\{0} are also disjoint, from which it
follows that µ is a measure. Finally, it holds that

µ(S(X )) = Pr(Z 6= 0) = 1, (7.121)

and therefore µ is a probability measure.
It is evident that this definition is independent of how one might choose

to order the elements of the alphabet Σ. For this reason, the fundamentally
interesting properties of the uniform spherical measure defined on S(X ) will
follow from the same properties of the uniform spherical measure on S(Cn).
In some cases, restricting one’s attention to complex Euclidean spaces of the
form Cn will offer conveniences, mostly concerning notational simplicity, that
will therefore cause no loss of generality.

The unitary invariance of the uniform spherical measure follows directly
from the rotational invariance of the standard Gaussian measure, as the
proof of the following proposition reveals.

Proposition 7.17 For every complex Euclidean space X , the uniform
spherical measure µ on S(X ) is unitarily invariant:

µ(UA) = µ(A) (7.122)

for every A ∈ Borel(S(X )) and U ∈ U(X ).
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Proof Assume that Σ is the alphabet for which X = CΣ, and let

{Xa : a ∈ Σ} ∪ {Ya : a ∈ Σ} (7.123)

be a collection of independent and identically distributed standard normal
random variables. Define vector-valued random variables X and Y , taking
values in RΣ, as

X =
∑

a∈Σ
Xaea and Y =

∑

a∈Σ
Yaea, (7.124)

so that the vector-valued random variable Z referred to in Definition 7.16
may be expressed as Z = X + iY . To prove the proposition, it suffices to
observe that Z and UZ are identically distributed for every unitary operator
U ∈ U(X ), for then one has that

µ
(
U−1A) = Pr

(
αUZ ∈ A for some α > 0

)

= Pr
(
αZ ∈ A for some α > 0

)
= µ

(A) (7.125)

for every Borel subset A of S(X ).
To verify that Z and UZ are identically distributed, for any choice of a

unitary operator U ∈ U(X ), note that
(
<(UZ)
=(UZ)

)
=
(
<(U) −=(U)
=(U) <(U)

)(
<(Z)
=(Z)

)

=
(
<(U) −=(U)
=(U) <(U)

)(
X

Y

)
,

(7.126)

where <(·) and =(·) denote the entry-wise real and imaginary parts of
operators and vectors, as a calculation reveals. The operator

(
<(U) −=(U)
=(U) <(U)

)
(7.127)

is an orthogonal operator, while the vector-valued random variable X⊕Y is
distributed with respect to the standard Gaussian measure on RΣ⊕RΣ, and
is therefore invariant under orthogonal transformations. It therefore follows
that

X ⊕ Y and <(UZ)⊕=(UZ) (7.128)

identically distributed, which implies that Z and UZ are also identically
distributed.
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Haar measure
Along similar lines to the uniform spherical measure, a unitarily invariant
Borel probability measure η, known as the Haar measure,2 may be defined
on the set of unitary operators U(X ) acting on given complex Euclidean
space X . More specifically, this measure is invariant with respect to both
left and right multiplication by every unitary operator:

η(UA) = η(A) = η(AU) (7.129)

for every choice of A ∈ Borel(U(X )) and U ∈ U(X ).

Definition 7.18 Let Σ be an alphabet, let X = CΣ, and let

{Xa,b : a, b ∈ Σ} ∪ {Ya,b : a, b ∈ Σ} (7.130)

be a collection of independent and identically distributed standard normal
random variables. Define an operator-valued random variable Z, taking
values in L(X ), as

Z =
∑

a,b∈Σ
(Xa,b + iYa,b)Ea,b. (7.131)

The Haar measure η on U(X ) is the Borel probability measure

η : Borel(U(X ))→ [0, 1] (7.132)

defined as
η(A) = Pr

(
PZ ∈ A for some P ∈ Pd(X )

)
(7.133)

for every A ∈ Borel(U(X )).

As the following theorem states, the Haar measure, as just defined, is
indeed a Borel probability measure.

Theorem 7.19 Let η : Borel(U(X )) → [0, 1] be as in Definition 7.18,
for any choice of a complex Euclidean space X . It holds that η is a Borel
probability measure.

Proof For every A ∈ Borel(U(X )), define a set R(A) ⊆ L(X ) as

R(A) =
{
QU : Q ∈ Pd(X ), U ∈ A}. (7.134)

For any operator X ∈ L(X ), one has that PX ∈ A for some P ∈ Pd(X ) if
and only ifX ∈ R(A). To prove that η is a Borel measure, it therefore suffices
2 The term Haar measure often refers to a more general notion, which is that of a measure

defined on a certain class of groups that is invariant under the action of the group on which it
is defined. The definition presented here is a restriction of this notion to the group of unitary
operators acting on a given complex Euclidean space.
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to prove that R(A) is a Borel subset of L(X ) for every A ∈ Borel(U(X )),
and that R(A) and R(B) are disjoint provided that A and B are disjoint.

The first of these requirements follows from the observation that the set
Pd(X )×A is a Borel subset of Pd(X )×U(X ), with respect to the product
topology on the Cartesian product of these sets, together with the fact that
operator multiplication is a continuous mapping.

For the second requirement, one observes that if

Q0U0 = Q1U1 (7.135)

for some choice of Q0, Q1 ∈ Pd(X ) and U0, U1 ∈ U(X ), then it must hold
that Q0 = Q1V for V being unitary. Therefore

Q2
0 = Q1V V

∗Q1 = Q2
1, (7.136)

which implies that Q0 = Q1 by the fact that positive semidefinite operators
have unique square roots. It therefore holds that U0 = U1. Consequently, if
R(A) ∩R(B) is nonempty, then the same is true of A ∩ B.

It remains to prove that η is a probability measure. Assume that Σ is the
alphabet for which X = CΣ, let

{Xa,b : a, b ∈ Σ} ∪ {Ya,b : a, b ∈ Σ} (7.137)

be a collection of independent and identically distributed standard normal
random variables, and define an operator-valued random variable

Z =
∑

a,b∈Σ
(Xa,b + iYa,b)Ea,b , (7.138)

as in Definition 7.18. It holds that PZ ∈ U(X ) for some positive definite
operator P ∈ Pd(X ) if and only if Z is nonsingular, and therefore

η(U(X )) = Pr
(
Det(Z) 6= 0

)
. (7.139)

An operator is singular if and only if its column vectors form a linearly
dependent set, and therefore Det(Z) = 0 if and only if there exists a symbol
b ∈ Σ such that

∑

a∈Σ
(Xa,b + iYa,b)ea ∈ span

{∑

a∈Σ
(Xa,c + iYa,c)ea : c ∈ Σ\{b}

}
. (7.140)

The subspace referred to in this equation is necessarily a proper subspace
of X , because its dimension is at most |Σ| − 1, and therefore the event
(7.140) occurs with probability zero. By the union bound, one has that
Det(Z) = 0 with probability zero, as is implied by Proposition 1.17, and
therefore η(U(X )) = 1.

7.2 Unitarily invariant probability measures 413

The following proposition establishes that the Haar measure is unitary
invariant, in the sense specified by (7.129).

Proposition 7.20 Let X be a complex Euclidean space. The Haar measure
η on U(X ) satisfies

η(UA) = η(A) = η(AU) (7.141)

for every A ∈ Borel(U(X )) and U ∈ U(X ).

Proof Assume that Σ is the alphabet for which X = CΣ, let

{Xa,b : a, b ∈ Σ} ∪ {Ya,b : a, b ∈ Σ} (7.142)

be a collection of independent and identically distributed standard normal
random variables, and let

Z =
∑

a,b∈Σ
(Xa,b + iYa,b)Ea,b, (7.143)

as in Definition 7.18.
Suppose that A is a Borel subset of U(X ) and U ∈ U(X ) is any unitary

operator. To prove the left unitary invariance of η, it suffices to prove that Z
and UZ are identically distributed, and to prove the right unitary invariance
of η, it suffices to prove that Z and ZU are identically distributed, for then
one has

η(UA) = Pr
(
U−1PZ ∈ A for some P ∈ Pd(X )

)

= Pr
((
U−1PU

)
Z ∈ A for some P ∈ Pd(X )

)
= η(A)

(7.144)

and
η(AU) = Pr

(
PZU−1 ∈ A for some P ∈ Pd(X )

)

= Pr
(
PZ ∈ A for some P ∈ Pd(X )

)
= η(A).

(7.145)

The fact that UZ, Z, and ZU are identically distributed follows, through
essentially the same argument as the one used to prove Proposition 7.17,
from the invariance of the standard Gaussian measure under orthogonal
transformations.

For every complex Euclidean space, one has that the Haar measure η on
U(X ) is the unique Borel probability measure that is both left and right
unitarily invariant. Indeed, any Borel probability measure on U(X ) that is
either left unitarily invariant or right unitarily invariant must necessarily be
equal to the Haar measure, as the following theorem reveals.
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Theorem 7.21 Let X be a complex Euclidean space and let

ν : Borel(U(X ))→ [0, 1] (7.146)

be a Borel probability measure that possesses either of the following two
properties:

1. Left unitary invariance: ν(UA) = ν(A) for all Borel subsets A ⊆ U(X )
and all unitary operators U ∈ U(X ).

2. Right unitary invariance: ν(AU) = ν(A) for all Borel subsets A ⊆ U(X )
and all unitary operators U ∈ U(X ).

It holds that ν is equal to the Haar measure η : Borel(U(X ))→ [0, 1].

Proof It will be assumed that ν is left unitarily invariant; the case in which
ν is right unitarily invariant is proved through a similar argument. Let A
be an arbitrary Borel subset of U(X ), and let f denote the characteristic
function of A:

f(U) =





1 if U ∈ A
0 if U 6∈ A

(7.147)

for every U ∈ U(X ). One has that

ν(A) =
∫
f(U) dν(U) =

∫
f(V U) dν(U) (7.148)

for every unitary operator V ∈ U(X ) by the left unitary invariance of ν.
Integrating over all unitary operators V with respect to the Haar measure
η yields

ν(A) =
∫∫

f(V U) dν(U) dη(V ) =
∫∫

f(V U) dη(V ) dν(U), (7.149)

where the change in the order of integration is made possible by Fubini’s
theorem. By the right unitary invariance of Haar measure, it follows that

ν(A) =
∫∫

f(V ) dη(V ) dν(U) =
∫
f(V ) dη(V ) = η(A). (7.150)

As A was chosen arbitrarily, it follows that ν = η, as required.

The Haar measure and uniform spherical measure are closely related, as
the following theorem indicates. The proof uses the same methodology as
the proof of the previous theorem.
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Theorem 7.22 Let X be a complex Euclidean space, let µ denote the
uniform spherical measure on S(X ), and let η denote the Haar measure on
U(X ). For every A ∈ Borel(S(X )) and x ∈ S(X ), it holds that

µ(A) = η
({
U ∈ U(X ) : Ux ∈ A}). (7.151)

Proof LetA be any Borel subset of S(X ) and let f denote the characteristic
function of A:

f(y) =





1 if y ∈ A
0 if y 6∈ A

(7.152)

for every y ∈ S(X ). It holds that

µ(A) =
∫
f(y) dµ(y) =

∫
f(Uy) dµ(y) (7.153)

for every U ∈ U(X ), by the unitary invariance of the uniform spherical
measure. Integrating over all U ∈ U(X ) with respect to the Haar measure
and changing the order of integration by means of Fubini’s theorem yields

µ(A) =
∫∫

f(Uy) dµ(y) dη(U) =
∫∫

f(Uy) dη(U) dµ(y). (7.154)

Now, for any fixed choice of unit vectors x, y ∈ S(X ), one may choose a
unitary operator V ∈ U(X ) for which it holds that V y = x. By the right
unitary invariance of the Haar measure, one has

∫
f(Uy) dη(U) =

∫
f(UV y) dη(U) =

∫
f(Ux) dη(U). (7.155)

Consequently,

µ(A) =
∫∫

f(Uy) dη(U) dµ(y) =
∫∫

f(Ux) dη(U) dµ(y)

=
∫
f(Ux) dη(U) = η

({
U ∈ U(X ) : Ux ∈ A}),

(7.156)

as required.

Noting that the proof of the previous theorem has not made use of any
properties of the measure µ aside from the fact that it is normalized and
unitarily invariant, one obtains the following corollary.

Corollary 7.23 Let X be a complex Euclidean space and let

ν : Borel(S(X ))→ [0, 1] (7.157)

be a Borel probability measure that is unitarily invariant: ν(UA) = ν(A)
for every Borel subset A ⊆ S(X ). It holds that ν is equal to the uniform
spherical measure µ : Borel(S(X ))→ [0, 1].
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Evaluating integrals by means of symmetries
Some integrals defined with respect to the uniform spherical measure or
Haar measure may be evaluated by considering the symmetries present in
those integrals. For example, for Σ being any alphabet and µ denoting the
uniform spherical measure on S(CΣ), one has that

∫
uu∗dµ(u) = 1

|Σ| . (7.158)

This is so because the operator represented by the integral is necessarily
positive semidefinite, has unit trace, and is invariant under conjugation by
every unitary operator; 1/|Σ| is the only operator having these properties.

The following lemma establishes a generalization of this fact, providing
an alternative description of the projection onto the symmetric subspace
defined in Section 7.1.1.

Lemma 7.24 Let X be a complex Euclidean space, let n be a positive
integer, and let µ denote the uniform spherical measure on S(X ). It holds
that

ΠX6n = dim(X6n)
∫ (

uu∗
)⊗ndµ(u). (7.159)

Proof Let

P = dim(X6n)
∫ (

uu∗
)⊗n dµ(u), (7.160)

and note first that

Tr(P ) = dim(X6n), (7.161)

as µ is a normalized measure.
Next, by the unitary invariance of the uniform spherical measure, one has

that [P,U⊗n] = 0 for every U ∈ U(X ). By Theorem 7.15, it follows that

P =
∑

π∈Sn
v(π)Wπ (7.162)

for some choice of a vector v ∈ CSn . Using the fact that u⊗n ∈ X6n for
every unit vector u ∈ CΣ, one necessarily has that

ΠX6nP = P, (7.163)
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which implies

P = 1
n!

∑

σ∈Sn
Wσ

∑

π∈Sn
v(π)Wπ = 1

n!
∑

π∈Sn

∑

σ∈Sn
v(σ−1π)Wπ

= 1
n!

∑

σ∈Sn
v(σ)

∑

π∈Sn
Wπ =

∑

σ∈Sn
v(σ)ΠX6n

(7.164)

by Proposition 7.1. By (7.161), one has
∑

σ∈Sn
v(σ) = 1, (7.165)

and therefore P = ΠX6n , as required.

The following example represents a continuation of Example 6.10. Two
channels that have a close connection to the classes of Werner states and
isotropic states are analyzed based on properties of their symmetries.

Example 7.25 As in Example 6.10, let Σ be an alphabet, let n = |Σ|, and
let X = CΣ, and recall the four projection operators3

∆0, ∆1, Π0, Π1 ∈ Proj(X ⊗ X ) (7.166)

defined in that example:

∆0 = 1
n

∑

a,b∈Σ
Ea,b ⊗ Ea,b, (7.167)

∆1 = 1⊗ 1− 1
n

∑

a,b∈Σ
Ea,b ⊗ Ea,b , (7.168)

Π0 = 1
21⊗ 1 + 1

2
∑

a,b∈Σ
Ea,b ⊗ Eb,a , (7.169)

Π1 = 1
21⊗ 1−

1
2
∑

a,b∈Σ
Ea,b ⊗ Eb,a . (7.170)

Equivalently, one may write

∆0 = 1
n

(T⊗ 1L(X ))(W ) , Π0 = 1
21⊗ 1 + 1

2W , (7.171)

∆1 = 1⊗ 1− 1
n

(T⊗ 1L(X ))(W ) , Π1 = 1
21⊗ 1−

1
2W , (7.172)

3 Using the notation introduced in Section 7.1.1, one may alternatively write Π0 = ΠX6X and
Π1 = ΠX7X . The notations Π0 and Π1 will be used within this example to maintain
consistency with Example 6.10.
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for T(X) = XT denoting the transpose mapping on L(X ) and

W =
∑

a,b∈Σ
Ea,b ⊗ Eb,a , (7.173)

which is the swap operator on X ⊗ X . States of the form

λ∆0 + (1− λ) ∆1
n2 − 1 and λ

Π0(n+1
2
) + (1− λ) Π1(n

2
) , (7.174)

for λ ∈ [0, 1], were introduced in Example 6.10 as isotropic states and Werner
states, respectively.

Now, consider the channel Ξ ∈ C(X ⊗ X ) defined as

Ξ(X) =
∫

(U ⊗ U)X(U ⊗ U)∗ dη(U) (7.175)

for all X ∈ L(X ⊗ X ), for η denoting the Haar measure on U(X ). By the
unitary invariance of Haar measure, one has that [Ξ(X), U ⊗ U ] = 0 for
every X ∈ L(X ⊗ X ) and U ∈ U(X ). By Theorem 7.15 it holds that

Ξ(X) ∈ span{1⊗ 1,W} = span{Π0,Π1}, (7.176)

and it must therefore hold that

Ξ(X) = α(X) Π0 + β(X) Π1 (7.177)

for α(X), β(X) ∈ C being complex numbers depending linearly on X. The
channel Ξ is self-adjoint and satisfies Ξ(1⊗ 1) = 1⊗ 1 and Ξ(W ) = W , so
that Ξ(Π0) = Π0 and Ξ(Π1) = Π1. The following two equations hold:

α(X) = 1
(n+1

2
)
〈
Π0,Ξ(X)

〉
= 1
(n+1

2
)
〈
Ξ(Π0), X

〉
= 1
(n+1

2
)
〈
Π0, X

〉

β(X) = 1(n
2
)〈Π1,Ξ(X)

〉
= 1(n

2
)〈Ξ(Π1), X

〉
= 1(n

2
)〈Π1, X

〉
.

(7.178)

It therefore follows that

Ξ(X) = 1
(n+1

2
)
〈
Π0, X

〉
Π0 + 1(n

2
)〈Π1, X

〉
Π1. (7.179)

It is evident from this expression that, on any density operator input, the
output of Ξ is a Werner state, and moreover every Werner state is fixed by
this channel. The channel Ξ is sometimes called a Werner twirling channel.

A different but closely related channel Λ ∈ C(X ⊗ X ) is defined as

Λ(X) =
∫ (

U ⊗ U)X(U ⊗ U)∗ dη(U) (7.180)

for all X ∈ L(X ⊗ X ), where η again denotes the Haar measure on U(X ).
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An alternate expression of this channel may be obtained by making use of
the analysis of the channel Ξ presented above. The first step of this process
is to observe that Λ may be obtained by composing the channel Ξ with the
partial transpose in the following way:

Λ = (1L(X ) ⊗ T) Ξ (1L(X ) ⊗ T). (7.181)

Then, using the identities

(1L(X ) ⊗ T)(Π0) = n+ 1
2 ∆0 + 1

2∆1,

(1L(X ) ⊗ T)(Π1) = −n− 1
2 ∆0 + 1

2∆1,

(7.182)

one finds that

Λ(X) = 〈∆0, X〉∆0 + 1
n2 − 1〈∆1, X〉∆1. (7.183)

On any density operator input, the output of the channel Λ is an isotropic
state, and moreover every isotropic state is fixed by Λ. The channel Λ is
sometimes called an isotropic twirling channel.

It is evident from the specification of the channels Ξ and Λ that one has
the following expressions, in which ΦU denotes the unitary channel defined
by ΦU (X) = UXU∗ for each X ∈ L(X ):

Ξ ∈ conv
{
ΦU ⊗ ΦU : U ∈ U(X )

}
,

Λ ∈ conv
{
ΦU ⊗ ΦU : U ∈ U(X )

}
.

(7.184)

It follows that Ξ and Λ are mixed-unitary channels, and LOCC channels as
well. Indeed, both channels can be implemented without communication—
local operations and shared randomness are sufficient.

Finally, for any choice of orthogonal unit vectors u, v ∈ X , the following
equalities may be observed:

〈
Π0, uu

∗ ⊗ vv∗〉 = 1
2 ,

〈
Π1, uu

∗ ⊗ vv∗〉= 1
2 ,

〈
Π0, uu

∗ ⊗ uu∗〉 = 1,
〈
Π1, uu

∗ ⊗ uu∗〉 = 0.
(7.185)

Therefore, for every choice of α ∈ [0, 1], one has

Ξ(uu∗ ⊗ (αuu∗ + (1− α)vv∗)) = 1 + α

2
Π0(n+1
2
) + 1− α

2
Π1(n
2
) . (7.186)

As Ξ is a separable channel and

uu∗ ⊗ (αuu∗ + (1− α)vv∗) ∈ SepD(X : X ) (7.187)
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is a separable state, for every α ∈ [0, 1], it follows that the state (7.186) is
also separable. Equivalently, the Werner state

λ
Π0(n+1
2
) + (1− λ) Π1(n

2
) (7.188)

is separable for all λ ∈ [1/2, 1]. The partial transpose of the state (7.188) is
2λ− 1
n

∆0 +
(
1− 2λ− 1

n

) ∆1
n2 − 1 . (7.189)

Assuming λ ∈ [1/2, 1], the state (7.188) is separable, and therefore its partial
transpose is also separable. It follows that the isotropic state

λ∆0 + (1− λ) ∆1
n2 − 1 (7.190)

is separable for all λ ∈ [0, 1/n].

7.2.2 Applications of unitarily invariant measures
There are many applications of integration with respect to the uniform
spherical measure and Haar measure in quantum information theory. Three
examples are presented below, and some additional examples involving the
phenomenon of measure concentration are presented in Section 7.3.2.

The quantum de Finetti theorem
Intuitively speaking, the quantum de Finetti theorem states that if the state
of a collection of identical registers is exchangeable, then the reduced state
of any comparatively small number of these registers must be close to a
convex combination of identical product states. This theorem will first be
stated and proved for symmetric pure states, and from this theorem a more
general statement for arbitrary exchangeable states may be derived using
Theorem 7.12.

Theorem 7.26 Let Σ be an alphabet, let n be a positive integer, and let
X1, . . . ,Xn be registers, each having classical state set Σ. Also let

v ∈ X1 6 · · ·6 Xn (7.191)

be a symmetric unit vector and let k ∈ {1, . . . , n}. There exists a state

τ ∈ conv
{

(uu∗)⊗k : u ∈ S(CΣ)} (7.192)

such that
∥∥(vv∗

)
[X1, . . . ,Xk]− τ

∥∥
1 ≤

4k
(|Σ| − 1

)

n+ 1 . (7.193)
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Proof It will be proved that the requirements of the theorem are satisfied
by the operator

τ =
(
n+ |Σ| − 1
|Σ| − 1

)∫
〈(uu∗)⊗n, vv∗〉(uu∗)⊗k dµ(u), (7.194)

for µ denoting the uniform spherical measure on S(CΣ). The fact that τ
is positive semidefinite is evident from its definition, and by Lemma 7.24,
together with the assumption v ∈ X1 6 · · ·6 Xn, one has that Tr(τ) = 1.

For the sake of establishing the bound (7.193), it is convenient to define

Nm =
(
m+ |Σ| − 1
|Σ| − 1

)
(7.195)

for every nonnegative integer m. The following bounds on the ratio between
Nn−k and Nn hold:

1 ≥ Nn−k
Nn

= n− k + |Σ| − 1
n+ |Σ| − 1 · · · n− k + 1

n+ 1

≥
(
n− k + 1
n+ 1

)|Σ|−1
≥ 1− k

(|Σ| − 1
)

n+ 1 .

(7.196)

For every unit vector u ∈ S(CΣ) and every positive integer m, define a
projection operator

∆m,u = (uu∗)⊗m, (7.197)

and also define an operator Pu ∈ Pos(X1 ⊗ · · · ⊗ Xk) as

Pu = TrXk+1⊗···⊗Xn
((
1X1⊗···⊗Xk ⊗∆n−k,u

)
vv∗

)
. (7.198)

By Lemma 7.24, together with the assumption v ∈ X1 6 · · · 6 Xn, one has
that

vv∗ = Nn−k

∫ (
1X1⊗···⊗Xk ⊗∆n−k,u

)
vv∗dµ(u), (7.199)

and therefore
(
vv∗

)
[X1, . . . ,Xk] = Nn−k

∫
Pu dµ(u). (7.200)

This density operator is to be compared with τ , which may be expressed as

τ = Nn

∫
∆k,uPu∆k,u dµ(u). (7.201)
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The primary goal of the remainder of the proof is to bound the trace norm
of the operator

1
Nn−k

(
vv∗

)
[X1, . . . ,Xk]−

1
Nn

τ =
∫ (

Pu −∆k,uPu∆k,u

)
dµ(u), (7.202)

as such a bound will lead directly to a bound on the trace norm of
(
vv∗

)
[X1, . . . ,Xk]− τ. (7.203)

The operator identity

A−BAB = A(1−B) + (1−B)A− (1−B)A(1−B), (7.204)

which holds for any two square operators A and B acting on a given space,
will be useful for this purpose. It holds that

∫
∆k,uPu dµ(u) =

∫
TrXk+1⊗···⊗Xn

(
∆n,uvv

∗
)

dµ(u)

= 1
Nn

(
vv∗

)
[X1, . . . ,Xk],

(7.205)

and therefore
∫

(1−∆k,u)Pu dµ(u) =
( 1
Nn−k

− 1
Nn

)(
vv∗

)
[X1, . . . ,Xk], (7.206)

which implies
∥∥∥∥
∫

(1−∆k,u)Pu dµ(u)
∥∥∥∥

1
=
( 1
Nn−k

− 1
Nn

)
. (7.207)

By similar reasoning, one finds that
∥∥∥∥
∫
Pu(1−∆k,u) dµ(u)

∥∥∥∥
1

=
( 1
Nn−k

− 1
Nn

)
. (7.208)

Moreover, one has
∥∥∥∥
∫

(1−∆k,u)Pu(1−∆k,u) dµ(u)
∥∥∥∥

1

= Tr
(∫

(1−∆k,u)Pu(1−∆k,u) dµ(u)
)

= Tr
(∫

(1−∆k,u)Pu dµ(u)
)

=
( 1
Nn−k

− 1
Nn

)
,

(7.209)

and therefore, by the triangle inequality together with the identity (7.204),
it follows that

∥∥∥∥
1

Nn−k

(
vv∗

)
[X1, . . . ,Xk]−

1
Nn

τ

∥∥∥∥
1
≤ 3

( 1
Nn−k

− 1
Nn

)
. (7.210)
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Having established a bound on the trace norm of the operator (7.202), the
theorem follows:

∥∥∥
(
vv∗

)
[X1, . . . ,Xk]− τ

∥∥∥
1

≤ Nn−k

∥∥∥∥
1

Nn−k

(
vv∗

)
[X1, . . . ,Xk]−

1
Nn

τ

∥∥∥∥
1

+Nn−k

∥∥∥∥
1
Nn

τ − 1
Nn−k

τ

∥∥∥∥
1

≤ 4
(

1− Nn−k
Nn

)

≤ 4k
(|Σ| − 1

)

n+ 1 ,

(7.211)

as required.

Corollary 7.27 (Quantum de Finetti theorem) Let Σ be an alphabet, let n
be a positive integer, and let X1, . . . ,Xn be registers sharing the same classical
state set Σ. For every exchangeable density operator ρ ∈ D(X1 ⊗ · · · ⊗ Xn)
and every positive integer k ∈ {1, . . . , n}, there exists a density operator

τ ∈ conv
{
σ⊗k : σ ∈ D

(
CΣ)} (7.212)

such that
∥∥ρ[X1, . . . ,Xk]− τ

∥∥
1 ≤

4k
(|Σ|2 − 1

)

n+ 1 . (7.213)

Proof Let Y1, . . . ,Yn be registers, all sharing the classical state set Σ. By
Theorem 7.12, there exists a symmetric unit vector

v ∈ (X1 ⊗ Y1) 6 · · ·6 (Xn ⊗ Yn), (7.214)

representing a pure state of the compound register ((X1,Y1), . . . , (Xn,Yn)),
with the property that

(vv∗)[X1, . . . ,Xn] = ρ. (7.215)

By Theorem 7.26, there exists a density operator

ξ ∈ conv
{
(uu∗)⊗k : u ∈ S(CΣ ⊗ CΣ)}, (7.216)

representing a state of the compound register ((X1,Y1), . . . , (Xk,Yk)), such
that

∥∥(vv∗
)
[(X1,Y1), . . . , (Xk,Yk)]− ξ

∥∥
1 ≤

4k
(|Σ|2 − 1

)

n+ 1 . (7.217)
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Taking τ = ξ[X1, . . . ,Xk], one has that

τ ∈ conv
{
σ⊗k : σ ∈ D

(
CΣ)}, (7.218)

and the required bound
∥∥ρ[X1, . . . ,Xk]− τ

∥∥
1 ≤

∥∥(vv∗
)
[(X1,Y1), . . . , (Xk,Yk)]− ξ

∥∥
1

≤ 4k
(|Σ|2 − 1

)

n+ 1
(7.219)

follows by the monotonicity of the trace norm under partial tracing.

Optimal cloning of pure quantum states
Let Σ be an alphabet, let n and m be positive integers with n ≤ m, and let
X1, . . . ,Xm be registers, all sharing the same classical state Σ. In the task of
cloning, one assumes that the state of (X1, . . . ,Xn) is given by

ρ⊗n ∈ D(X1 ⊗ · · · ⊗ Xn), (7.220)

for some choice of ρ ∈ D(CΣ), and the goal is to transform (X1, . . . ,Xn) into
(X1, . . . ,Xm) in such a way that the resulting state of this register is as close
as possible to

ρ⊗m ∈ D(X1 ⊗ · · · ⊗ Xm). (7.221)

One may consider the quality with which a given channel

Φ ∈ C(X1 ⊗ · · · ⊗ Xn,X1 ⊗ · · · ⊗ Xm) (7.222)

performs this task in a variety of specific ways. For example, one might
measure the closeness of Φ(ρn) to ρm with respect to the trace norm, some
other norm, or the fidelity function; and one might consider the average
closeness over some distribution on the possible choices of ρ, or consider the
worst case over all ρ or over some subset of possible choices for ρ. It is most
typical that one assumes ρ is a pure state—the mixed state case is more
complicated and has very different characteristics from the pure state case.

The specific variant of the cloning task that will be considered here is
that one aims to choose a channel of the form (7.222) so as to maximize the
minimum fidelity

α(Φ) = inf
u∈S(CΣ)

F
(
Φ
(
(uu∗)⊗n

)
, (uu∗)⊗m

)
(7.223)

over all pure states ρ = uu∗. The following theorem establishes an upper
bound on this quantity, and states that this bound is achieved for some
choice of a channel Φ.
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Theorem 7.28 (Werner) Let X be a complex Euclidean space and let n
and m be positive integers with n ≤ m. For every channel

Φ ∈ C
(X⊗n,X⊗m) (7.224)

it holds that

inf
u∈S(X )

〈
Φ
(
(uu∗)⊗n

)
, (uu∗)⊗m

〉 ≤ Nn

Nm
, (7.225)

where

Nk =
(
k + dim(X )− 1

dim(X )− 1

)
(7.226)

for each positive integer k. Moreover, there exists a channel Φ of the above
form for which equality is achieved in (7.225).

Remark In the case that n = 1 and m = 2, one has

N1
N2

= 2
dim(X ) + 1 , (7.227)

which is strictly less than 1 if dim(X ) ≥ 2. Theorem 7.28 therefore provides
a quantitative form of the no-cloning theorem, which states that it is not
possible to create a perfect copy of an unknown quantum state (aside from
the trivial case of one-dimensional systems).

Proof The infimum on the left-hand side of (7.225) can be no larger than
the average with respect to the uniform spherical measure on S(X ):

inf
u∈S(X )

〈
Φ
(
(uu∗)⊗n

)
, (uu∗)⊗m

〉

≤
∫ 〈

Φ
(
(uu∗)⊗n

)
, (uu∗)⊗m

〉
dµ(u).

(7.228)

As (uu∗)⊗n ≤ ΠX6n for every u ∈ S(X ), it follows that
∫ 〈

Φ
(
(uu∗)⊗n

)
, (uu∗)⊗m

〉
dµ(u) ≤

∫ 〈
Φ
(
ΠX6n

)
, (uu∗)⊗m

〉
dµ(u)

= 1
Nm

〈
Φ
(
ΠX6n

)
,ΠX6m

〉 ≤ 1
Nm

Tr
(
Φ
(
ΠX6n

))
= Nn

Nm
.

(7.229)

This establish the required bound (7.225).
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It remains to prove that there exists a channel

Φ ∈ C(X⊗n,X⊗m) (7.230)

for which equality is achieved in (7.225). Define

Φ(X) = Nn

Nm
ΠX6m

(
X ⊗ 1⊗(m−n)

X
)
ΠX6m +

〈
1⊗nX −ΠX6n , X

〉
σ (7.231)

for all X ∈ L(X⊗n), where σ ∈ D(X⊗m) is an arbitrary density operator. It
is evident that Φ is completely positive, and the fact that Φ preserves trace
follows from the observation

(
1⊗nL(X ) ⊗ Tr⊗(m−n)

X
)
(ΠX6m) = Nm

Nn
ΠX6n . (7.232)

A direct calculation reveals that
〈
(uu∗)⊗m,Φ

(
(uu∗)⊗n

)〉
= Nn

Nm
(7.233)

for every unit vector u ∈ S(X ), which completes the proof.

Example 7.29 The channel described in Example 2.33 is an optimal
cloning channel, achieving equality in (7.225) for the case X = C2, n = 1,
and m = 2.

Unital channels near the completely depolarizing channel
The final example of an application of unitarily invariant measures in the
theory of quantum information to be presented in this section demonstrates
that all unital channels sufficiently close to the completely depolarizing
channel must be mixed-unitary channels. The following lemma will be used
to demonstrate this fact.

Lemma 7.30 Let X be a complex Euclidean space having dimension n ≥ 2,
let η denote the Haar measure on U(X ), and let Ω ∈ C(X ) denote the
completely depolarizing channel defined with respect to the space X . The
map Ξ ∈ CP(X ⊗ X ) defined as

Ξ(X) =
∫
〈vec(U) vec(U)∗, X〉 vec(U) vec(U)∗ dη(U) (7.234)

for every X ∈ L(X ⊗ X ) is given by

Ξ = 1
n2 − 1

(
1L(X ) ⊗ 1L(X ) − Ω⊗ 1L(X ) − 1L(X ) ⊗ Ω + n2Ω⊗ Ω

)
. (7.235)

7.2 Unitarily invariant probability measures 427

Proof Let V ∈ U(X ⊗X ⊗X ⊗X ) be the permutation operator defined by
the equation

V vec(Y ⊗ Z) = vec(Y )⊗ vec(Z), (7.236)

holding for all Y,Z ∈ L(X ). Alternatively, this operator may be defined by
the equation

V (x1 ⊗ x2 ⊗ x3 ⊗ x4) = x1 ⊗ x3 ⊗ x2 ⊗ x4 (7.237)

holding for all x1, x2, x3, x4 ∈ X . As V is its own inverse, one has

V
(
vec(Y )⊗ vec(Z)

)
= vec(Y ⊗ Z) (7.238)

for all Y, Z ∈ L(X ). For every choice of maps Φ0,Φ1 ∈ T(X ), it holds that

V J(Φ0 ⊗ Φ1)V ∗ = J(Φ0)⊗ J(Φ1). (7.239)

Now, the Choi representation of Ξ is given by

J(Ξ) =
∫

vec(U) vec(U)∗ ⊗ vec
(
U
)

vec
(
U
)∗dη(U), (7.240)

and therefore

V J(Ξ)V ∗ =
∫

vec
(
U ⊗ U) vec

(
U ⊗ U)∗dη(U). (7.241)

This operator is the Choi representation of the isotropic twirling channel

Λ(X) =
∫ (

U ⊗ U)X(U ⊗ U)∗ dη(U) (7.242)

defined in Example 7.25. From the analysis presented in that example, it
follows that

V J(Ξ)V ∗ = 1
n2 J(1L(X ))⊗ J(1L(X ))

+ 1
n2 − 1

(
nJ(Ω)− 1

n
J(1L(X ))

)
⊗
(
nJ(Ω)− 1

n
J(1L(X ))

)
.

(7.243)

By expanding the expression (7.243) and making use of the identity (7.239),
one obtains (7.235), as required.

Theorem 7.31 Let X be a complex Euclidean space with dimension n ≥ 2,
let Ω ∈ C(X ) denote the completely depolarizing channel defined with respect
to the space X , and let Φ ∈ C(X ) be a unital channel. The channel

n2 − 2
n2 − 1Ω + 1

n2 − 1Φ (7.244)

is a mixed-unitary channel.
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Proof Let Ψ ∈ CP(X ) be the map defined as

Ψ(X) =
∫ 〈

vec(U) vec(U)∗, J(Φ)
〉
UXU∗ dη(U), (7.245)

for η being the Haar measure on U(X ). It holds that
∫

vec(U) vec(U)∗ dη(U) = 1
n
1X⊗X , (7.246)

and therefore
∫ 〈

vec(U) vec(U)∗, J(Φ)
〉

dη(U) = 1
n

Tr(J(Φ)) = 1. (7.247)

It follows that the mapping Ψ is a mixed-unitary channel.
By Lemma 7.30, one has J(Ψ) = Ξ(J(Φ)) for Ξ ∈ CP(X ⊗ X ) being

defined as

Ξ = 1
n2 − 1

(
1L(X ) ⊗ 1L(X ) − Ω⊗ 1L(X ) − 1L(X ) ⊗ Ω + n2Ω⊗ Ω

)
. (7.248)

By the assumption that Φ is a unital channel, one has

(Ω⊗ 1L(X ))(J(Φ)) = (1L(X ) ⊗ Ω)(J(Φ))

= (Ω⊗ Ω)(J(Φ)) = 1X ⊗ 1X
n

,
(7.249)

and therefore

J(Ψ) = 1
n2 − 1J(Φ) + n2 − 2

n(n2 − 1)1X ⊗ 1X . (7.250)

This is equivalent to Ψ being equal to (7.244), and therefore completes the
proof.

Corollary 7.32 Let X be a complex Euclidean space having dimension
n ≥ 2, let Ω ∈ C(X ) denote the completely depolarizing channel defined
with respect to the space X , and let Φ ∈ T(X ) be a Hermitian-preserving,
trace-preserving, and unital map satisfying

‖J(Ω)− J(Φ)‖ ≤ 1
n(n2 − 1) . (7.251)

It holds that Φ is a mixed-unitary channel.

Proof Define a map Ψ ∈ T(X ) as

Ψ = (n2 − 1)Φ− (n2 − 2)Ω. (7.252)
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It holds that Ψ is trace preserving and unital. Moreover, one has

J(Ψ) = (n2 − 1)(J(Φ)− J(Ω)) + J(Ω)

= (n2 − 1)(J(Φ)− J(Ω)) + 1
n
1X⊗X ,

(7.253)

which, by the assumptions of the corollary, implies that Ψ is completely
positive. By Theorem 7.31 it follows that

n2 − 2
n2 − 1Ω + 1

n2 − 1Ψ = Φ (7.254)

is a mixed-unitary channel, which completes the proof.

7.3 Measure concentration and it applications
The unitarily invariant measures introduced in the previous section exhibit
a phenomenon known as measure concentration.4 For the uniform spherical
measure µ defined on the unit sphere of a complex Euclidean space X , this
phenomenon is reflected by the fact that, for every Lipschitz continuous
function f : S(X ) → R, the subset of S(X ) on which f differs significantly
from its average value (or, alternatively, any of its median values) must
have relatively small measure. This phenomenon becomes more and more
pronounced as the dimension of X grows.

Measure concentration is particularly useful in the theory of quantum
information when used in the context of the probabilistic method. Various
objects of interest, such as channels possessing certain properties, may be
shown to exist by considering random choices of these object (typically based
on the uniform spherical measure or Haar measure), followed by an analysis
that demonstrates that the randomly chosen object possesses the property of
interest with a nonzero probability. This method has been used successfully
to demonstrate the existence of several interesting classes of objects for which
explicit constructions are not known.

The present section explains this methodology, with its primary goal being
to prove that the minimum output entropy of quantum channels is non-
additive. Toward this goal, concentration bounds are established for uniform
spherical measures, leading to an asymptotically strong form of a theorem
known as Dvoretzky’s theorem.

4 Measure concentration is not limited to the measures introduced in the previous section—it is
a more general phenomenon. For the purposes of this book, however, it will suffice to consider
measure concentration with respect to those particular measures.
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7.3.1 Lévy’s lemma and Dvoretzky’s theorem
This subsection establishes facts concerning the concentration of measure
phenomenon mentioned previously, for the measures defined in the previous
section. A selection of bounds will be presented, mainly targeted toward a
proof of Dvoretzky’s theorem, which concerns the existence of a relatively
large subspace V of a given complex Euclidean space X on which a given
Lipschitz function f : S(X ) → R does not deviate significantly from its
mean or median values with respect to the uniform spherical measure.

Concentration bounds for Gaussian measure
In order to prove concentration bounds for the uniform spherical measure,
with respect to a given complex Euclidean space X , it is helpful to begin
by proving an analogous result for the standard Gaussian measure on Rn.
Theorem 7.33, which is stated and proved below, establishes a result of this
form that serves as a starting point for the concentration bounds to follow.

In the statements of the theorems representing concentration bounds to
be presented below, including Theorem 7.33, it will be necessary to refer to
certain universal real number constants. Such constants will, as a general
convention, be denoted δ, δ1, δ2, etc., and must be chosen to be sufficiently
small for the various theorems to hold. Although the optimization of these
absolute constants should not be seen as being necessarily uninteresting or
unimportant, this goal will be considered as being secondary in this book.
Suitable values for these constants will be given in each case, but in some
cases these values have been selected to simplify expressions and proofs
rather than to optimize their values.

Theorem 7.33 There exists a positive real number δ1 > 0 for which
the following holds. For every choice of a positive integer n, independent
and identically distributed standard normal random variables X1, . . . , Xn, a
κ-Lipschitz function f : Rn → R, and a positive real number ε > 0, it holds
that

Pr
(
f(X1, . . . , Xn)− E(f(X1, . . . , Xn)) ≥ ε) ≤ exp

(
−δ1ε2

κ2

)
. (7.255)

Remark One may take δ1 = 2/π2.

The proof of Theorem 7.33 will make use of the two lemmas that follow.
The first lemma is a fairly standard smoothing argument that will allow for
basic multivariate calculus to be applied in the proof of the theorem.
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Lemma 7.34 Let n be a positive integer, let f : Rn → R be a κ-Lipschitz
function, and let ε > 0 be a positive real number. There exists a differentiable
κ-Lipschitz function g : Rn → R such that |f(x)−g(x)| ≤ ε for every x ∈ Rn.

Proof For every δ > 0, define a function gδ : Rn → R as

gδ(x) =
∫
f(x+ δz) dγn(z) (7.256)

for all x ∈ Rn, where γn denotes the standard Gaussian measure on Rn.
It will be proved that setting g = gδ for a suitable choice of δ satisfies the
requirements of the lemma.

First, by the assumption that f is κ-Lipschitz, it holds that

|f(x)− gδ(x)| ≤
∫
|f(x)− f(x+ δz)|dγn(z)

≤ δκ
∫
‖z‖ dγn(z) ≤ δκ√n

(7.257)

for all x ∈ Rn and δ > 0. The last inequality in (7.257) makes use of (1.279)
in Chapter 1. At this point, one may fix

δ = ε

κ
√
n

(7.258)

and g = gδ, so that |f(x)− g(x)| ≤ ε for every x ∈ Rn.
Next, it holds that g is κ-Lipschitz, as the following calculation shows:

|g(x)− g(y)| ≤
∫
|f(x+ δz)− f(y + δz)|dγn(z)

≤
∫
κ‖x− y‖ dγn(z) = κ‖x− y‖,

(7.259)

for every x, y ∈ Rn.
It remains to prove that g is differentiable. Using the definition of the

standard Gaussian measure, one may calculate that the gradient of g at an
arbitrary point x ∈ Rn is given by

∇g(x) = 1
δ

∫
f(x+ δz)z dγn(z). (7.260)

The fact that the integral on the right-hand side of (7.260) exists follows
from the inequality

∫ ∥∥f(x+ δz)z
∥∥dγn(z)

≤
∫ ∥∥f(x+ δz)z − f(x)z

∥∥dγn(z) +
∫ ∥∥f(x)z

∥∥dγn(z)

≤ κδ
∫
‖z‖2 dγn(z) + |f(x)|

∫
‖z‖ dγn(z) ≤ κδn+ |f(x)|√n.

(7.261)
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Moreover, it holds that ∇g(x) is a continuous function of x (and in fact is
Lipschitz continuous), as

∥∥∇g(x)−∇g(y)
∥∥ ≤ 1

δ

∫
|f(x+ δz)− f(y + δz)|‖z‖ dγn(z)

≤ κ

δ
‖x− y‖√n.

(7.262)

As ∇g(x) is a continuous function of x, it follows that g is differentiable,
which completes the proof.

The second lemma establishes that the random variable f(X1, . . . , Xn),
for independent and normally distributed random variables X1, . . . , Xn and
a differentiable κ-Lipschitz function f , does not deviate too much from an
independent copy of itself.

Lemma 7.35 Let n be a positive integer, let f : Rn → R be a differentiable
function satisfying ‖∇f(x)‖ ≤ κ for every x ∈ Rn, let X1, . . . , Xn and
Y1, . . . , Yn be independent and identically distributed standard normal
random variables, and define vector-valued random variables

X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). (7.263)

For every real number λ ∈ R, it holds that

E
(
exp(λf(X)− λf(Y ))

) ≤ exp
(
λ2π2κ2

8

)
. (7.264)

Proof First, define a function gx,y : R → R, for every choice of vectors
x, y ∈ Rn, as follows:

gx,y(θ) = f(sin(θ)x+ cos(θ)y). (7.265)

Applying the chain rule for differentiation, one finds that

g′x,y(θ) =
〈∇f(sin(θ)x+ cos(θ)y), cos(θ)x− sin(θ)y

〉
(7.266)

for every x, y ∈ Rn and θ ∈ R. By the fundamental theorem of calculus, it
therefore follows that

f(x)− f(y) = gx,y(π/2)− gx,y(0) =
∫ π

2

0
g′x,y(θ)dθ

=
∫ π

2

0

〈∇f(sin(θ)x+ cos(θ)y), cos(θ)x− sin(θ)y
〉

dθ.
(7.267)

Next, define a random variable Zθ, for each θ ∈ [0, π/2], as

Zθ =
〈∇f(sin(θ)X + cos(θ)Y ), cos(θ)X − sin(θ)Y

〉
. (7.268)
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By (7.267), it follows that

E
(
exp(λf(X)− λf(Y ))

)
= E

(
exp

(
λ

∫ π
2

0
Zθ dθ

))
. (7.269)

By Jensen’s inequality, one has

E
(

exp
(
λ

∫ π
2

0
Zθ dθ

))
≤ 2
π

∫ π
2

0
E
(

exp
(
πλ

2 Zθ

))
dθ. (7.270)

Finally, one arrives at a key step of the proof: the observation that each of
the random variables Zθ is identically distributed, as a consequence of the
invariance of Gaussian measure under orthogonal transformations. That is,
one has the following equality of vector-valued random variables:

(
sin(θ)X + cos(θ)Y
cos(θ)X − sin(θ)Y

)
=
(

sin(θ)1 cos(θ)1
cos(θ)1 − sin(θ)1

)(
X

Y

)
. (7.271)

As the distribution of (X,Y ) = (X1, . . . , Xn, Y1, . . . , Yn) is invariant under
orthogonal transformations, it follows that the distribution of Zθ does not
depend on θ. Consequently,

2
π

∫ π
2

0
E
(

exp
(
πλ

2 Zθ

))
dθ = E

(
exp

(
πλ

2 Z0

))
. (7.272)

This quantity can be evaluated using the Gaussian integral equation (1.268),
yielding

E
(

exp
(
πλ

2 Z0

))
= E

(
exp

(
π2λ2

8 ‖∇f(Y )‖2
))

. (7.273)

As it is to be assumed that ‖∇f(x)‖ ≤ κ for all x ∈ Rn, the required bound
is obtained as a result of (7.269), (7.270), (7.272), and (7.273).

Proof of Theorem 7.33 Let X be a vector-valued random variable, defined
as X = (X1, . . . , Xn), and let λ > 0 be a positive real number to be specified
shortly. By Markov’s inequality, one has

Pr
(
f(X)− E(f(X)) ≥ ε)

= Pr
(
exp

(
λf(X)− λE(f(X))

) ≥ exp(λε)
)

≤ exp(−λε) E
(
exp

(
λf(X)− λE(f(X))

))
.

(7.274)

By introducing a new random variable Y = (Y1, . . . , Yn), which is to be
independent and identically distributed to X, one finds that

E
(
exp

(
λf(X)− λE(f(X))

)) ≤ E
(
exp

(
λf(X)− λf(Y )

))
(7.275)
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by Jensen’s inequality. Combining the two previous inequalities yields

Pr
(
f(X)− E(f(X)) ≥ ε) ≤ exp(−λε) E

(
exp

(
λf(X)− λf(Y )

))
. (7.276)

Assume first that f is differentiable, so that ‖∇f(x)‖ ≤ κ for all x ∈ Rn
by the assumption that f is κ-Lipschitz. By Lemma 7.35, it follows that

exp(−λε) E
(
exp

(
λf(X)− λf(Y )

)) ≤ exp
(
−λε+ λ2π2κ2

8

)
. (7.277)

Setting λ = 4ε/(π2κ2), and combining (7.276) with (7.277), yields

Pr
(
f(X)− E(f(X)) ≥ ε) ≤ exp

(
− 2ε2

π2κ2

)
, (7.278)

which is the bound claimed in the statement of the theorem (for δ1 = 2/π2).
Finally, suppose that f is κ-Lipschitz, but not necessarily differentiable.

By Lemma 7.34, for every ζ ∈ (0, ε/2) there exists a differentiable κ-Lipschitz
function g : Rn → R satisfying |f(x) − g(x)| ≤ ζ for every x ∈ Rn, and
therefore

Pr
(
f(X)− E(f(X)) ≥ ε) ≤ Pr

(
g(X)− E(g(X)) ≥ ε− 2ζ

)
. (7.279)

Applying the above analysis to g in place of f therefore yields

Pr
(
f(X)− E(f(X)) ≥ ε) ≤ exp

(
−2(ε− 2ζ)2

π2κ2

)
. (7.280)

As this inequality holds for every ζ ∈ (0, ε/2), the theorem follows.

The following example illustrates the application of Theorem 7.33 to the
Euclidean norm. The analysis to be presented in this example is relevant to
the discussion of the uniform spherical measure to be discussed shortly.

Example 7.36 Let n be a positive integer and define f(x) = ‖x‖ for each
x ∈ Rn. It is an immediate consequence of the triangle inequality that f is
1-Lipschitz:

∣∣f(x)− f(y)
∣∣ =

∣∣‖x‖ − ‖y‖
∣∣ ≤ ‖x− y‖ (7.281)

for all x, y ∈ Rn. The mean value of f(X1, . . . , Xn), for X1, . . . , Xn being
independent and identically distributed standard normal random variables,
has the following closed-form expression (q.v. Section 1.2.2):

E
(
f(X1, . . . , Xn)

)
=
√

2Γ
(
n+1

2
)

Γ
(
n
2
) . (7.282)
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From this expression, an analysis reveals that

E
(
f(X1, . . . , Xn)

)
= υn

√
n, (7.283)

where υ1, υ2, υ3, . . . is a strictly increasing sequence that begins

υ1 =
√

2
π
, υ2 =

√
π

2 , υ3 =
√

8
3π , . . . (7.284)

and converges to 1 in the limit as n goes to infinity.
For any positive real number ε > 0, one may conclude the following two

bounds from Theorem 7.33:
Pr
(∥∥(X1, . . . , Xn)

∥∥ ≤ (νn − ε)
√
n
) ≤ exp

(−δ1ε
2n
)
,

Pr
(∥∥(X1, . . . , Xn)

∥∥ ≥ (νn + ε)
√
n
) ≤ exp

(−δ1ε
2n
)
.

(7.285)

Consequently, one has

Pr
(∣∣∥∥(X1, . . . , Xn)

∥∥− νn
√
n
∣∣ ≥ ε√n) ≤ 2 exp

(−δ1ε
2n
)
. (7.286)

This bound illustrates that the Euclidean norm of a Gaussian-random vector
x ∈ Rn is tightly concentrated around its mean value υn

√
n.

Concentration bounds for uniform spherical measure
The uniform spherical measure may be derived from the standard Gaussian
measure, as described in Section 7.2.1, so it is not unreasonable to expect
that Theorem 7.33 might lead to an analogous fact holding for the uniform
spherical measure. Indeed this is the case, as the theorems below establish.

The first theorem concerns the deviation of a Lipschitz random variable,
defined with respect to the uniform spherical measure, from its mean value.

Theorem 7.37 (Lévy’s lemma, mean value form) There exists a positive
real number δ2 > 0 for which the following holds. For every κ-Lipschitz
random variable X : S(X ) → R, distributed with respect to the uniform
spherical measure µ on S(X ) for a given complex Euclidean space X , and
every positive real number ε > 0, it holds that

Pr
(
X − E(X) ≥ ε) ≤ 2 exp

(
−δ2ε2n

κ2

)
,

Pr
(
X − E(X) ≤ −ε) ≤ 2 exp

(
−δ2ε2n

κ2

)
,

(7.287)

and

Pr
(|X − E(X)| ≥ ε) ≤ 3 exp

(
−δ2ε2n

κ2

)
, (7.288)

where n = dim(X ).
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Remark One may take δ2 = 1/(25π).
The proof of Lemma 7.37 will make use of the following lemma, which

provides a simple mechanism for extending a Lipschitz function defined on
the unit sphere of Cn to a Lipschitz function defined on all of R2n.

Lemma 7.38 Let n be a positive integer and let f : S(Cn) → R be a
κ-Lipschitz function that is neither strictly positive nor strictly negative.
Define a function g : R2n → R as

g(x⊕ y) =




‖x+ iy‖f

(
x+iy
‖x+iy‖

)
if x+ iy 6= 0

0 if x+ iy = 0
(7.289)

for all x, y ∈ Rn. It holds that g is a (3κ)-Lipschitz function.

Proof By the assumption that f is neither strictly positive nor strictly
negative, one has that for every unit vector u ∈ Cn, there must exist a unit
vector v ∈ Cn such that f(u)f(v) ≤ 0. This in turn implies

|f(u)| ≤ |f(u)− f(v)| ≤ κ‖u− v‖ ≤ 2κ, (7.290)

by the assumption that f is κ-Lipschitz.
Now suppose that x0, y0, x1, y1 ∈ Rn are vectors. If it is the case that

x0 + iy0 = 0 and x1 + iy1 = 0, then it is immediate that

|g(x0 ⊕ y0)− g(x1 ⊕ y1)| = 0. (7.291)

If it holds that x0 + iy0 6= 0 and x1 + iy1 = 0, then (7.290) implies

|g(x0⊕y0)−g(x1⊕y1)| = |g(x0⊕y0)| ≤ 2κ‖x0+iy0‖ = 2κ‖x0⊕y0‖. (7.292)

A similar bound holds for the case in which x0 + iy0 = 0 and x1 + iy1 6= 0.
Finally, suppose that x0 + iy0 and x1 + iy1 are both nonzero. Write

z0 = x0 + iy0 and z1 = x1 + iy1, (7.293)

and set

α0 = 1
‖z0‖

and α1 = 1
‖z1‖

. (7.294)

This implies that both α0z0 and α1z1 are unit vectors. There is no loss of
generality in assuming α0 ≤ α1; the case in which α1 ≤ α0 is handled in a
symmetric manner. By the triangle inequality, one has

|g(x0 ⊕ y0)− g(x1 ⊕ y1)| =
∣∣‖z0‖f(α0z0)− ‖z1‖f(α1z1)

∣∣
≤ |f(α0z0)|‖z0 − z1‖+ ‖z1‖|f(α0z0)− f(α1z1)|. (7.295)
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Using (7.290), one finds that the first term in the final expression of (7.295)
is bounded as follows:

|f(α0z0)|‖z0 − z1‖ ≤ 2κ‖z0 − z1‖ = 2κ‖x0 ⊕ y0 − x1 ⊕ y1‖. (7.296)

To bound the second term, it may first be noted that

‖z1‖|f(α0z0)− f(α1z1)| ≤ κ‖z1‖‖α0z0 − α1z1‖, (7.297)

again by the assumption that f is κ-Lipschitz. Given that 0 < α0 ≤ α1,
together with the fact that α0z0 and α1z1 are unit vectors, one finds that

‖α0z0 − α1z1‖ ≤ ‖α1z0 − α1z1‖ = ‖z0 − z1‖
‖z1‖

, (7.298)

and therefore

κ‖z1‖‖α0z0 − α1z1‖ ≤ κ‖z0 − z1‖ = κ‖x0 ⊕ y0 − x1 ⊕ y1‖. (7.299)

It follows that

|g(x0 ⊕ y0)− g(x1 ⊕ y1)| ≤ 3κ‖x0 ⊕ y0 − x1 ⊕ y1‖. (7.300)

It has therefore been established that g is (3κ)-Lipschitz, as required.

Proof of Theorem 7.37 The random variable X − E(X) has mean value
0, and is therefore neither strictly positive nor strictly negative. As X is
κ-Lipschitz, so too is X − E(X), and so it follows that

∣∣X − E(X)
∣∣ ≤ 2κ, (7.301)

as argued in the first paragraph of the proof of Lemma 7.38. The inequalities
(7.287) and (7.288) therefore hold trivially when ε > 2κ. For this reason it
will be assumed that ε ≤ 2κ for the remainder of the proof. It will also be
assumed that X = Cn, for n being an arbitrary positive integer, which will
simplify the notation used throughout the proof, and which causes no loss
of generality.

Define a function g : R2n → R as

g(y ⊕ z) =




‖y + iz‖

(
X
(

y+iz
‖y+iz‖

)
− E(X)

)
if y + iz 6= 0

0 if y + iz = 0
(7.302)

for all y, z ∈ Rn, which is a (3κ)-Lipschitz function by Lemma 7.38. Let
Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn) be vector-valued random variables,
for Y1, . . . , Yn and Z1, . . . , Zn being independent and identically distributed
standard normal random variables, and define a random variable

W = g(Y ⊕ Z). (7.303)
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As X−E(X) has mean value 0, it is evident that E(W ) = 0 as well. Finally,
by considering the definition of the uniform spherical measure, one finds
that

Pr(X − E(X) ≥ ε) = Pr
(
W ≥ ε‖Y + iZ‖). (7.304)

The probability (7.304) may be upper-bounded through the use of the
union bound:

Pr
(
X − E(X) ≥ ε) ≤ Pr

(
W ≥ ελ

√
2n
)

+ Pr
(
‖Y + iZ‖ ≤ λ

√
2n
)

(7.305)

for every choice of λ > 0. By Theorem 7.33 it holds that

Pr
(
W ≥ ελ

√
2n
)
≤ exp

(
−2δ1ε2λ2n

9κ2

)
, (7.306)

and, as established in Example 7.36, it holds that

Pr
(∥∥Y + iZ

∥∥ ≤ λ
√

2n
)
≤ exp

(
−2δ1(υ2n − λ)2n

)
. (7.307)

Setting

λ = 3κυ2n
3κ+ ε

(7.308)

yields

Pr
(
X ≥ E(X) + ε

) ≤ 2 exp
(
−2δ1ε2υ2

2nn

(3κ+ ε)2

)
≤ 2 exp

(
−δ1πε2n

50κ2

)
, (7.309)

where the second inequality makes use of the assumption ε ≤ 2κ, along
with the observation that υ2n ≥ υ2 =

√
π/2. As one may take δ1 = 2/π2 in

Theorem 7.33, the first inequality is therefore proved for δ2 = 1/(25π).
The second and third inequalities may be proved in essentially the same

manner. In particular, one has

Pr
(
X − E(X) ≤ −ε)

≤ Pr
(
W ≤ −ελ

√
2n
)

+ Pr
(∥∥Y + iZ

∥∥ ≤ λ
√

2n
) (7.310)

and
Pr
(|X − E(X)| ≥ ε)

≤ Pr
(
W ≥ ελ

√
2n
)

+ Pr
(
W ≤ −ελ

√
2n
)

+ Pr
(∥∥Y + iZ

∥∥ ≤ λ
√

2n
)
,

(7.311)

and again setting λ = 3κυ2n/(3κ+ ε) yields the required bounds.
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The second theorem on measure concentration for the uniform spherical
measure, stated and proved below, is similar in spirit to Theorem 7.37, but
it is concerned with the deviation of a Lipschitz random variable from its
median value—or, more generally, from any of its central values—rather than
its mean value. The next definition makes precise the notions of a median
value and a central value of a random variable, after which the theorem is
stated and proved.

Definition 7.39 Let X be a random variable and let β be a real number.
It is said that β is a median value of X if

Pr(X ≥ β) ≥ 1
2 and Pr(X ≤ β) ≥ 1

2 , (7.312)

and it is said that β is a central value of X if

Pr(X ≥ β) ≥ 1
4 and Pr(X ≤ β) ≥ 1

4 . (7.313)

Theorem 7.40 (Lévy’s lemma, central value form) There exists a positive
real number δ3 > 0 for which the following holds. For every complex
Euclidean space X , every κ-Lipschitz random variable

X : S(X )→ R, (7.314)

distributed with respect to the uniform spherical measure µ on S(X ), every
central value β of X, and every positive real number ε > 0, it holds that

Pr
(|X − β| ≥ ε) ≤ 8 exp

(
−δ3ε2n

κ2

)
, (7.315)

where n = dim(X ).

Remark One may take δ3 = 1/(100π).

Proof Let

ζ =
√

ln(8)κ2

δ2n
, (7.316)

for δ2 being any positive real number for which Theorem 7.37 holds. By that
theorem, one may conclude that the following two inequalities hold for every
positive real number α > 0:

Pr
(
X − E(X) ≥ ζ + α

) ≤ 2 exp
(
−δ2(ζ + α)2n

κ2

)
<

1
4 , (7.317)

Pr
(
X − E(X) ≤ −(ζ + α)

) ≤ 2 exp
(
−δ2(ζ + α)2n

κ2

)
<

1
4 . (7.318)
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From these inequalities, one concludes that |E(X)− β| ≤ ζ.
Now suppose that ε is a given positive real number. If it is the case that

ε ≥ 2ζ, then Theorem 7.37 implies
Pr
(|X − β| ≥ ε) ≤ Pr

(|X − E(X)| ≥ ε− ζ)

≤ Pr
(
|X − E(X)| ≥ ε

2
)
≤ 3 exp

(
−δ2ε2n

4κ2

)
.

(7.319)

On the other hand, if ε < 2ζ, then one has

exp
(
−δ2ε2n

4κ2

)
> exp

(
−δ2ζ2n

κ2

)
= 1

8 , (7.320)

so it must trivially hold that

Pr
(|X − β| ≥ ε) ≤ 8 exp

(
−δ2ε2n

4κ2

)
. (7.321)

The required bound (7.315) therefore holds in both cases, provided one takes
δ3 ≤ δ2/4. As Theorem 7.37 holds for δ2 = 1/(25π), the bound (7.315) holds
for δ3 = 1/(100π).

Dvoretzky’s theorem
Dvoretzky’s theorem, which plays a key role in the section following this
one, establishes that a Lipschitz random variable, defined with respect to
the uniform spherical measure for a given complex Euclidean space X , must
remain close to its central values everywhere on the unit sphere S(V), for
some choice of a subspace V ⊆ X having relatively large dimension. There
are, in fact, multiple variants and generalizations of Dvoretzky’s theorem;
the variant to be considered in this book is specific to the unitary invariant
measures defined previously in the present chapter, and is applicable to
phase-invariant functions, which are defined as follows.

Definition 7.41 Let f : S(X )→ R be a function, for a complex Euclidean
space X . The function f is said to be a phase-invariant function if it holds
that f(x) = f(eiθx) for all x ∈ S(X ) and θ ∈ R.

Theorem 7.42 (Dvoretzky’s theorem) There exists a positive real number
δ > 0 for which the following holds. Let X : S(X ) → R be a κ-Lipschitz,
phase-invariant random variable, distributed with respect to the uniform
spherical measure µ on S(X ) for a given complex Euclidean space X of
dimension n, let β be a central value of X, let ε > 0 and ζ > 0 be positive
real numbers, and let V ⊆ X be a subspace with

1 ≤ dim(V) ≤ δε2ζ2n

κ2 . (7.322)
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For each unit vector v ∈ V, define a random variable Yv : U(X ) → R,
distributed with respect to the Haar measure on U(X ), as

Yv(U) = X(Uv) (7.323)

for every U ∈ U(X ). It holds that

Pr
(|Yv − β| ≤ ε for every v ∈ S(V)

) ≥ 1− ζ. (7.324)

Remark One may take δ = 1/(160000π).
The proof of Theorem 7.42 will make use of the two lemmas that follow.

Lemma 7.43 Let X be a complex Euclidean space of dimension n ≥ 2 and
let f : S(X )→ R be a κ-Lipschitz, phase-invariant function. For every unit
vector u ∈ S(X ), define a random variable Xu : U(X )→ R, distributed with
respect to the Haar measure η on U(X ), as

Xu(U) = f(Uu) (7.325)

for all U ∈ U(X ). For any pair of linearly independent unit vectors u, v ∈ X
and every positive real number ε > 0, it holds that

Pr
(|Xu −Xv| ≥ ε

) ≤ 3 exp
(
−δ2ε2(n− 1)
κ2‖u− v‖2

)
, (7.326)

for any positive real number δ2 satisfying the requirements of Theorem 7.37.

Proof The lemma will first be proved in the special case in which 〈u, v〉 is
a nonnegative real number. First, define

λ = 1 + 〈u, v〉
2 , (7.327)

which satisfies 1/2 ≤ λ < 1 by the assumption that 〈u, v〉 is nonnegative
and u and v are linearly independent. Set

x = u+ v

2
√
λ

and y = u− v
2
√

1− λ, (7.328)

so that x and y are orthonormal unit vectors for which

u =
√
λx+

√
1− λy,

v =
√
λx−

√
1− λy.

(7.329)

Next, let Y be any complex Euclidean space having dimension n− 1 and
let V ∈ U(Y,X ) be any isometry for which x ⊥ im(V ). For every U ∈ U(X ),
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define a random variable YU : S(Y) → R, distributed with respect to the
uniform spherical measure µ on S(Y), as

YU (w) = f
(
U
(√

λx+
√

1− λV w
))
− f

(
U
(√

λx−
√

1− λV w
))

(7.330)

for every w ∈ S(Y). Using the triangle inequality, along with the fact that

‖u− v‖ = 2
√

1− λ, (7.331)

one may verify that each YU is (κ‖u−v‖)-Lipschitz and satisfies E(YU ) = 0.
By Lévy’s lemma (Theorem 7.37), it therefore holds that

Pr
(|YU | ≥ ε

) ≤ 3 exp
(
−δ2ε2(n− 1)
κ2‖u− v‖2

)
, (7.332)

for every U ∈ U(X ) and every ε > 0.
Finally, define a random variable Z : U(X )×S(Y)→ R, distributed with

respect to the product measure η × µ, as

Z(U,w) = YU (w) (7.333)

for all U ∈ U(X ) and w ∈ S(Y). Because the uniform spherical measure and
Haar measure are both unitary invariant, it follows that Z and Xu−Xv are
identically distributed. It therefore holds that

Pr
(|Xu −Xv| ≥ ε

)
= Pr

(|Z| ≥ ε)

=
∫

Pr
(|YU | ≥ ε

)
dη(U) ≤ 3 exp

(
−δ2ε2(n− 1)
κ2‖u− v‖2

)
,

(7.334)

which proves the lemma in the case that 〈u, v〉 is a nonnegative real number.
In the situation in which 〈u, v〉 is not a nonnegative real number, one may

choose α ∈ C with |α| = 1 so that 〈u, αv〉 is a nonnegative real number.
By the assumption that f is phase invariant, it holds that Xv = Xαv, and
therefore

Pr
(|Xu −Xv| ≥ ε

)
= Pr

(|Xu −Xαv| ≥ ε
)

≤ 3 exp
(
− δ2ε2(n− 1)
κ2‖u− αv‖2

)
,

(7.335)

by the analysis above. As it necessarily holds that ‖u − αv‖ ≤ ‖u − v‖, it
follows that

Pr
(|Xu −Xv| ≥ ε

) ≤ 3 exp
(
−δ2ε2(n− 1)
κ2‖u− v‖2

)
(7.336)

for every ε > 0, which completes the proof.
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The next lemma bounds the mean value of the maximum of a collection
of nonnegative random variables satisfying a property reminiscent of the
bounds obtained for the concentration results presented above.

Lemma 7.44 Let N ≥ 2 be a positive integer, let K and θ be positive real
numbers, and let Y1, . . . , YN be nonnegative random variables for which

Pr(Yk ≥ λ) ≤ K exp
(−θλ2) (7.337)

for every k ∈ {1, . . . , N} and every λ ≥ 0. It holds that

E
(
max{Y1, . . . , YN}

) ≤
√

ln(N)
θ

+ K√
2θ
. (7.338)

Proof As the random variables Y1, . . . , YN take only nonnegative values,
one may write

E
(
max{Y1, . . . , YN}

)
=
∫ ∞

0
Pr
(
max{Y1, . . . , YN} ≥ λ

)
dλ. (7.339)

Splitting the integral into two parts, and making use of the fact that the
probability of any event is at most 1, yields

E
(
max{Y1, . . . , YN}

)

≤
√

ln(N)
θ

+
∞∫

√
ln(N)
θ

Pr
(
max{Y1, . . . , YN} ≥ λ

)
dλ. (7.340)

By the union bound, together with the assumption (7.337) on Y1, . . . , YN ,
one has

∞∫

√
ln(N)
θ

Pr
(
max{Y1, . . . , YN} ≥ λ

)
dλ ≤ KN

∞∫

√
ln(N)
θ

exp(−θλ2) dλ. (7.341)

As ln(2) > 1/2, it holds that λ
√

2θ > 1 for every choice of λ satisfying

λ ≥
√

ln(N)
θ

, (7.342)

and therefore
∞∫

√
ln(N)
θ

exp(−θλ2) dλ ≤
∞∫

√
ln(N)
θ

λ
√

2θ exp(−θλ2) dλ = 1
N
√

2θ
. (7.343)

The required inequality now follows from (7.340), (7.341), and (7.343).
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Proof of Theorem 7.42 It will be proved that any choice of δ > 0 satisfying

δ ≤
( 8√

δ3
+ 64√

δ2

)−2
, (7.344)

for δ2 and δ3 being positive real numbers that satisfy the requirements of
Theorem 7.37 and Theorem 7.40, respectively, fulfills the requirements of
the theorem. Taking δ2 = 1/(25π) and δ3 = 1/(100π), one has that

δ = 1
160000π (7.345)

satisfies the requirement (7.344). The theorem is trivial in the case n = 1,
as the phase invariance of X implies that X is constant in this case, and for
this reason it will be assumed that n ≥ 2 for the remainder of the proof.

By Markov’s inequality, one has

Pr
(
sup

{|Yv − β| : v ∈ S(V)
} ≤ ε)

≥ 1− E
(
sup{|Yv − β| : v ∈ S(V)})

ε
,

(7.346)

so the theorem will follow from a demonstration that

E
(
sup{|Yv − β| : v ∈ S(V)}) ≤ ζε. (7.347)

Let m = dim(V), and for each nonnegative integer k ∈ N, let Nk be a
minimal (2−k+1)-net for S(V). It is evident that |N0| = 1, and for every
k ∈ N it holds that

|Nk| ≤
(
1 + 2k

)2m ≤ 4(k+1)m (7.348)

by Theorem 1.8. For each v ∈ S(V) and k ∈ N, fix zk(v) ∈ Nk to be any
element of the set Nk for which the distance to v is minimized, which implies
that

‖v − zk(v)‖ ≤ 2−k+1. (7.349)

One may observe that z0 = z0(v) is independent of v, as there is a single
element in the set N0, and also that

lim
k→∞

zk(v) = v (7.350)

for every v ∈ S(V).
Next, observe that

X(Uv) = X(Uz0) +
∞∑

k=0

(
X
(
Uzk+1(v)

)−X(Uzk(v)
))
, (7.351)

for every v ∈ S(V) and U ∈ U(X ); this fact may be verified by telescoping
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the sum and making use of (7.350), along with the continuity of X. It follows
that

Yv = Yz0 +
∞∑

k=0

(
Yzk+1(v) − Yzk(v)

)
(7.352)

for every v ∈ S(V). By the triangle inequality, one therefore has

sup
{|Yv − β| : v ∈ S(V)

}

≤ |Yz0 − β|+ sup
{ ∞∑

k=0

∣∣Yzk+1(v) − Yzk(v)
∣∣ : v ∈ S(V)

}
.

(7.353)

The expected value of the two terms on the right-hand side of this inequality
will be bounded separately.

The expected value of the first term |Yz0 − β| will be considered first.
The random variable Yz0 is identically distributed to X, so it follows by
Theorem 7.40 that

Pr
(|Yz0 − β| ≥ λ

)
= Pr

(|X − β| ≥ λ) ≤ 8 exp
(
−δ3λ2n

κ2

)
(7.354)

for every λ ≥ 0. This implies that

E
(|Yz0 − β|

)
=
∫ ∞

0
Pr
(|Yz0 − β| ≥ λ

)
dλ

≤ 8
∫ ∞

0
exp

(
−δ3λ2n

κ2

)
dλ = 4

√
πκ2

δ3n
<

8κ√
δ3n

.

(7.355)

It remains to bound the expected value of the second term on the right-
hand side of (7.353). It holds that

‖zk+1(v)− zk(v)‖ ≤ ‖zk+1(v)− v‖+ ‖v − zk(v)‖ < 2−k+2 (7.356)

for all v ∈ S(V) and all k ∈ N, and therefore

sup
{ ∞∑

k=0

∣∣Yzk+1(v) − Yzk(v)
∣∣ : v ∈ S(V)

}

≤
∞∑

k=0
max

{
|Yx − Yy| : (x, y) ∈Mk

} (7.357)

where

Mk =
{

(x, y) ∈ Nk+1 ×Nk, ‖x− y‖ < 2−k+2
}
. (7.358)
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By Lemma 7.43, it holds that

Pr
(∣∣Yx − Yy

∣∣ ≥ ε
)
≤ 3 exp

(
−δ2ε2(n− 1)
κ2‖x− y‖2

)
(7.359)

for every pair of linearly independent vectors x, y ∈ S(V), for δ2 being any
positive real number for which Theorem 7.37 holds. (By the assumption that
X is phase-invariant, one has Yx = Yy if x, y ∈ S(V) are linearly dependent.)
For each choice of k ∈ N, it therefore follows from Lemma 7.44 that

E
(
max

{
|Yx − Yy| : (x, y) ∈Mk

})
≤
√

ln(N)
θ

+ 3√
2θ

(7.360)

for

θ = 4kδ2(n− 1)
16κ2 and N = |Mk| < 16(k+2)m. (7.361)

The remainder of the proof consists of routine calculations showing that
the required bound is achieved. Using the bound

√
ln(N) ≤

√
log(N) < 2

√
(k + 2)m, (7.362)

summing over all k ∈ N, and making use of the summations
∞∑

k=0
2−k
√
k + 2 <

7
2 and

∞∑

k=0
2−k = 2, (7.363)

one concludes that
∞∑

k=0
E
(
max

{
|Yx − Yy| : (x, y) ∈Mk

})
<

64κ√
δ2

√
m

n
. (7.364)

By (7.353), (7.355), and (7.364), it follows that

E
(
sup

{|Yv − β| : v ∈ S(V)
})
<

(
8√
δ3

+ 64√
δ2

)
κ

√
m

n
. (7.365)

Under the assumption that

m ≤ δε2ζ2n

κ2 , (7.366)

for δ satisfying (7.344), it therefore holds that

E
(
sup

{|Yv − β| : v ∈ S(V)
})
< ζε, (7.367)

which completes the proof.
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7.3.2 Applications of measure concentration
Two applications of the results on measure concentration discussed in the
previous subsection will now be presented. The first is a demonstration that
most pure states of a pair of registers are highly entangled, and the second
is a proof that the minimum output entropy of channels is non-additive in
general. The two applications are related, with the second depending on the
first.

Most pure states are highly entangled
Suppose that X and Y are complex Euclidean spaces, and suppose further
that the dimensions n = dim(X ) and m = dim(Y) of these spaces satisfy
n ≤ m. For some choices of a unit vector u ∈ X ⊗ Y, it holds that

TrY(uu∗) = ω, (7.368)

for ω = 1/n denoting the completely mixed state with respect to X . Of
course, not every unit vector u ∈ X⊗Y satisfies this equation (unless n = 1);
but as n grows, the equation holds approximately for an increasingly large
portion of the set S(X ⊗ Y).

The following lemma establishes one specific fact along these lines, in
which an approximation with respect to the 2-norm distance between states
is considered. The proof makes use of Lévy’s lemma (Theorem 7.37), along
with calculations of integrals involving the uniform spherical measure.

Lemma 7.45 There exists a positive real number K0 with the following
property. For complex Euclidean spaces X and Y of dimensions n = dim(X )
and m = dim(Y), and for

X : S(X ⊗ Y)→ R (7.369)

being a random variable, distributed with respect to the uniform spherical
measure on S(X ⊗ Y) and defined as

X(u) =
∥∥TrY(uu∗)− ω

∥∥
2 (7.370)

for ω = 1/n, it holds that

Pr
(
X ≥ K0√

m

)
< 4−n. (7.371)

Proof It will be proved that the lemma holds for K0 =
√

12/δ2 + 1, for
δ2 being any positive real number satisfying the requirements of the mean
value form of Lévy’s lemma (Theorem 7.37).
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The random variable X may alternatively be defined as

X(vec(A)) =
∥∥AA∗ − ω

∥∥
2 (7.372)

for every operator A ∈ L(Y,X ) satisfying ‖A‖2 = 1. The triangle inequality
implies that

∣∣X(vec(A))−X(vec(B))
∣∣ ≤

∥∥AA∗ −BB∗
∥∥

2. (7.373)

Again using the triangle inequality, along with the fact that the 2-norm is
submultiplicative, one has

∥∥AA∗ −BB∗
∥∥

2 ≤
∥∥AA∗ −AB∗

∥∥
2 +

∥∥AB∗ −BB∗
∥∥

2
≤ (‖A‖2 + ‖B‖2

)‖A−B‖2 ≤ 2‖A−B‖2,
(7.374)

for all A,B ∈ L(Y,X ) with ‖A‖2 = ‖B‖2 = 1. It therefore holds that X is
2-Lipschitz.

Next, it will be proved that

E(X) ≤ 1√
m
. (7.375)

This bound follows from Jensen’s inequality,
(
E(X)

)2 ≤ E
(
X2), (7.376)

along with an evaluation of E(X2). To evaluate this expectation, observe
first that

∥∥TrY(uu∗)− ω
∥∥2

2 = Tr
((

TrY(uu∗)
)2)− 1

n
. (7.377)

For every vector u ∈ X ⊗ Y, it holds that

Tr
((

TrY(uu∗)
)2) =

〈
V, uu∗ ⊗ uu∗〉, (7.378)

for V ∈ L(X ⊗ Y ⊗ X ⊗ Y) being the operator defined as

V (x0 ⊗ y0 ⊗ x1 ⊗ y1) = x1 ⊗ y0 ⊗ x0 ⊗ y1 (7.379)

for all vectors x0, x1 ∈ X and y0, y1 ∈ Y. Equivalently, for Σ and Γ denoting
the alphabets for which X = CΣ and Y = CΓ, one may write

V =
∑

a,b∈Σ
c,d∈Γ

Ea,b ⊗ Ec,c ⊗ Eb,a ⊗ Ed,d. (7.380)
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Integrating with respect to the uniform spherical measure yields

E
(
X2) =

∫
〈V, uu∗ ⊗ uu∗〉 dµ(u)− 1

n

= 1
(nm+1

2
)
〈
V,Π(X⊗Y)6(X⊗Y)

〉− 1
n
.

(7.381)

A case analysis reveals that
〈
Ea,b ⊗ Ec,c ⊗ Eb,a ⊗ Ed,d,Π(X⊗Y)6(X⊗Y)

〉

=





1 if a = b and c = d
1
2 if (a = b and c 6= d) or (a 6= b and c = d)
0 if a 6= b and c 6= d.

(7.382)

Performing the required arithmetic yields

E
(
X2) = n+m

nm+ 1 −
1
n
<

1
m
, (7.383)

and therefore (7.375) has been established.
Finally, by the mean value form of Lévy’s lemma (Theorem 7.37), one has

Pr
(
X ≥ K0√

m

)
≤ 2 exp

(
−δ2(K0 − 1)2n

4

)
. (7.384)

For K0 =
√

12/δ2 + 1, one has

2 exp
(
−δ2(K0 − 1)2n

4

)
= 2 exp(−3n) < 4−n, (7.385)

which completes the proof.

If TrY(uu∗) is approximately equal to the completely mixed state ω, for
a given unit vector u ∈ X ⊗ Y, then it is reasonable to expect that the
entanglement entropy H

(
TrY(uu∗)

)
of the pure state represented by u will be

approximately equal to its maximum possible value log(dim(X )), depending
on the particular notions of approximate equality under consideration. The
following lemma establishes a lower bound on the von Neumann entropy that
allows a precise implication along these lines to be made when combined with
Lemma 7.45.

Lemma 7.46 Let X be a complex Euclidean space and let n = dim(X ).
For every density operator ρ ∈ D(X ) it holds that

H(ρ) ≥ log(n)− n

ln(2)
∥∥ρ− ω

∥∥2
2 , (7.386)

where ω = 1/n denotes the completely mixed state with respect to X .
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Proof It holds that ln(α) ≤ α− 1 for all α > 0, and therefore
n

ln(2)
∥∥ρ− ω

∥∥2
2 = nTr(ρ2)− 1

ln(2)
≥ log

(
nTr(ρ2)

)
= log(n) + log

(
Tr(ρ2)

)
.

(7.387)

The logarithm function is concave, and therefore one has

−H(p) =
∑

a∈Σ
p(a) log(p(a)) ≤ log

(∑

a∈Σ
p(a)2

)
(7.388)

for every alphabet Σ and every probability vector p ∈ P(Σ). Consequently,

−H(ρ) ≤ log
(
Tr
(
ρ2)), (7.389)

and therefore
n

ln(2)
∥∥ρ− ω

∥∥2
2 ≥ log(n)−H(ρ), (7.390)

which is equivalent to the required inequality.

As a consequence of Lemmas 7.45 and 7.46, it follows that most bipartite
pure states have an entanglement entropy that is close to this quantity’s
maximum possible value.

Theorem 7.47 There exists a positive real number K with the following
property. For every choice of complex Euclidean spaces X and Y, and for
X : S(X ⊗ Y) → R being a random variable, distributed with respect to the
uniform spherical measure on S(X ⊗ Y) and defined as

X(u) = H
(
TrY(uu∗)

)
(7.391)

for every u ∈ S(X ⊗ Y), it holds that

Pr
(
X ≤ log(n)− Kn

m

)
< 4−n, (7.392)

for n = dim(X ) and m = dim(Y).

Proof It will be proved that the theorem holds for K = K2
0/ ln(2), where

K0 is any positive real number that satisfies the requirements of Lemma 7.45.
Define a random variable Y : S(X ⊗ Y)→ R, distributed with respect to

the uniform spherical measure, as

Y (u) =
∥∥TrY(uu∗)− ω

∥∥
2 (7.393)

for every u ∈ S(X ⊗ Y). If a given unit vector u ∈ X ⊗ Y satisfies

Y (u) < K0√
m
, (7.394)
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then

X(u) > log(n)− n

ln(2)
K2

0
m

= log(n)− Kn

m
(7.395)

by Lemma 7.46. One therefore has that

Pr
(
X > log(n)− Kn

m

)
≥ Pr

(
Y <

K0√
m

)
> 1− 4−n (7.396)

by Lemma 7.45. This bound is equivalent to (7.392), which completes the
proof.

Counter-example to the additivity of minimum output entropy
The minimum output entropy of a channel is, as the following definition
states explicitly, the minimum value of the von Neumann entropy that can
be obtained by evaluating that channel on a quantum state input.

Definition 7.48 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean
spaces X and Y. The minimum output entropy of Φ is defined as

Hmin(Φ) = min
{
H(Φ(ρ)) : ρ ∈ D(X )

}
. (7.397)

It follows from the concavity of the von Neumann entropy function that
the minimum output entropy Hmin(Φ) of a given channel Φ ∈ C(X ,Y) is
achieved by a pure state:

Hmin(Φ) = min
{
H(Φ(uu∗)) : u ∈ S(X )

}
. (7.398)

It was a long-standing conjecture that the minimum output entropy is
additive with respect to tensor products of channels. The following theorem
demonstrates that this is, in fact, not the case.

Theorem 7.49 (Hastings) There exist complex Euclidean spaces X and
Y and channels Φ,Ψ ∈ C(X ,Y) such that

Hmin(Φ⊗Ψ) < Hmin(Φ) + Hmin(Ψ). (7.399)

A high-level overview of the proof of Theorem 7.49 is as follows. For each
choice of a positive integer n, one may consider complex Euclidean spaces
X , Y, and Z with

dim(X ) = n2, dim(Y) = n, and dim(Z) = n2. (7.400)

It will be proved, for a sufficiently large choice of n, that there exists an
isometry V ∈ U(X ,Y ⊗ Z) for which the channels Φ,Ψ ∈ C(X ,Y) defined
as

Φ(X) = TrZ
(
V XV ∗

)
and Ψ(X) = TrZ

(
V XV T) (7.401)
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for all X ∈ L(X ) yield the strict inequality (7.399). The existence of a
suitable isometry V is proved using the probabilistic method: for any fixed
isometry V0 ∈ U(X ,Y⊗Z), the set of all unitary operators U ∈ U(Y⊗Z) for
which the isometry V = UV0 possesses the required property will be shown
to have positive measure, with respect to the Haar measure on U(Y ⊗ Z).

The proof of Theorem 7.49 will make use of the lemmas that follow. The
first lemma provides an upper bound on the minimum output entropy of the
tensor product Φ⊗Ψ for two channels Φ and Ψ defined as in (7.401).

Lemma 7.50 Let n be a positive integer and let X , Y, and Z be complex
Euclidean spaces with dim(X ) = n2, dim(Y) = n, and dim(Z) = n2. Let
V ∈ U(X ,Y ⊗ Z) be an isometry, and define channels Φ,Ψ ∈ C(X ,Y) as

Φ(X) = TrZ
(
V XV ∗

)
and Ψ(X) = TrZ

(
V XV T) (7.402)

for all X ∈ L(X ). It holds that

Hmin
(
Φ⊗Ψ

) ≤ 2 log(n)− log(n)− 2
n

. (7.403)

Proof Define pure states τ ∈ D(X ⊗ X ) and σ ∈ D(Y ⊗ Y) as follows:

τ = vec(1X ) vec(1X )∗
n2 and σ = vec(1Y) vec(1Y)∗

n
. (7.404)

A calculation reveals that
〈
σ, (Φ⊗Ψ)(τ)

〉
= 1
n3
∥∥TrY(V V ∗)

∥∥2
2. (7.405)

In greater detail, supposing that Y = CΣ, one has
〈
σ, (Φ⊗Ψ)(τ)

〉

= 1
n

∑

a,b∈Σ

〈
V ∗
(
Ea,b ⊗ 1Z

)
V ⊗ V T(Ea,b ⊗ 1Z

)
V , τ

〉

= 1
n3

∑

a,b∈Σ
Tr
((
V ∗
(
Eb,a ⊗ 1Z

)
V
)(
V ∗
(
Ea,b ⊗ 1Z

)
V
))

= 1
n3
∥∥TrY(V V ∗)

∥∥2
2.

(7.406)

The operator TrY(V V ∗) is positive semidefinite, and has trace equal to
n2 and rank at most n2, so it follows that its 2-norm squared must be at
least n2. Consequently, one has

λ1
(
(Φ⊗Ψ)(τ)

) ≥ 〈σ, (Φ⊗Ψ)(τ)
〉 ≥ 1

n
. (7.407)
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Now, under the constraint that a given density operator ρ ∈ D(Y ⊗ Y)
has largest eigenvalue at least 1/n, it holds that the von Neumann entropy
H(ρ) is maximized when this largest eigenvalue is equal to 1/n and all other
eigenvalues are equal:

H(ρ) ≤
(
1− 1

n

)
log(n2 − 1) + H

( 1
n
, 1− 1

n

)
. (7.408)

Because ln(α) ≥ 1− 1/α for all positive α, one finds that

H(λ, 1− λ) ≤ −λ log(λ) + λ

ln(2) ≤ −λ log(λ) + 2λ (7.409)

for all λ ∈ [0, 1], and therefore

H(ρ) ≤ 2 log(n)− log(n)− 2
n

. (7.410)

As this inequality holds for ρ = (Φ⊗Ψ)(τ) the proof is complete.

The remaining lemmas required for the proof of Theorem 7.49 are used
to establish a lower bound on the quantity Hmin(Φ) + Hmin(Ψ), for some
choice of channels Φ and Ψ taking the form (7.401). The first lemma is
concerned with the modification of a random variable that is Lipschitz on a
compact subset of its domain, yielding one that is Lipschitz everywhere.

Lemma 7.51 Let X be a complex Euclidean space, let X : S(X ) → R
be a continuous random variable, distributed with respect to the uniform
spherical measure µ on S(X ), and let A ⊆ S(X ) be a compact subset of
S(X ) satisfying µ(A) ≥ 3/4. Let κ be a positive real number such that

|X(x)−X(y)| ≤ κ‖x− y‖ (7.411)

for all x, y ∈ A, and define a new random variable Y : S(X )→ R, distributed
with respect to µ, as

Y (x) = min
y∈A

(
X(y) + κ‖x− y‖) (7.412)

for all x ∈ S(X ). The following statements hold:
1. Y is κ-Lipschitz.
2. For every x ∈ A, one has that X(x) = Y (x).
3. Every median value of Y is a central value of X.

Proof The first statement holds regardless of the behavior of X on points
in A. Consider any two vectors x0, x1 ∈ S(X ), and let y0, y1 ∈ A satisfy

Y (x0) = X(y0) + κ‖x0 − y0‖ and Y (x1) = X(y1) + κ‖x1 − y1‖. (7.413)
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That is, y0 and y1 achieve the minimum values that define the function Y

on x0 and x1, respectively. It must therefore hold that

X(y0) + κ‖x0 − y0‖ ≤ X(y1) + κ‖x0 − y1‖, (7.414)

which implies

Y (x0)− Y (x1) ≤ κ‖x0 − y1‖ − κ‖x1 − y1‖ ≤ κ‖x0 − x1‖. (7.415)

The inequality
Y (x1)− Y (x0) ≤ κ‖x0 − x1‖ (7.416)

is proved through the same argument by exchanging the indices 0 and 1. It
therefore holds that

|Y (x0)− Y (x1)| ≤ κ‖x0 − x1‖, (7.417)

so Y is κ-Lipschitz.
Next, consider any vector x ∈ A. By the assumptions of the lemma, one

has
|X(x)−X(y)| ≤ κ‖x− y‖ (7.418)

for every y ∈ A, and therefore

Y (x)−X(x) = min
y∈A

(
X(y)−X(x) + κ‖x− y‖

)
≥ 0. (7.419)

On the other hand, because one may choose y = x when considering the
minimum, it holds that Y (x) ≤ X(x). It follows that X(x) = Y (x), which
establishes the second statement.

Finally, let α ∈ R be a median value of Y , so that

Pr(Y ≥ α) ≥ 1
2 and Pr(Y ≤ α) ≥ 1

2 . (7.420)

Define a random variable Z : S(X ) → [0, 1], again distributed with respect
to µ, as

Z(x) =





1 if x ∈ A
0 if x 6∈ A,

(7.421)

so that Pr(Z = 0) ≤ 1/4. By the union bound, one has

Pr(Y < α or Z = 0) ≤ 3
4 , (7.422)

and therefore

Pr(X ≥ α) ≥ Pr(Y ≥ α and Z = 1) ≥ 1
4 . (7.423)
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By similar reasoning,

Pr(X ≤ α) ≥ Pr(Y ≤ α and Z = 1) ≥ 1
4 . (7.424)

This implies that α is a central value of X, which completes the proof.

The next lemma is, in some sense, the heart of the proof of Theorem 7.49.
It establishes the existence of an isometry V ∈ U(X ,Y ⊗ Z) that may
be taken in the definition (7.401) of the channels Φ and Ψ to obtain the
inequality (7.399) for a sufficiently large value of n. It is proved through the
use of Dvoretzky’s theorem.

Lemma 7.52 There exists a real number K > 0 for which the following
statement holds. For every choice of a positive integer n, and for X , Y, and
Z being complex Euclidean spaces with

dim(X ) = n2, dim(Y) = n, and dim(Z) = n2, (7.425)

there exists an isometry V ∈ U(X ,Y ⊗ Z) such that
∥∥TrZ(V xx∗V ∗)− ω

∥∥
2 ≤

K

n
(7.426)

for every unit vector x ∈ S(X ), where ω = 1/n denotes the completely mixed
state with respect to Y.

Proof Let δ be a positive real number that satisfies the requirements of
Dvoretzky’s theorem (Theorem 7.42) and let K0 be a positive real number
satisfying the requirements of Lemma 7.45. It will be proved that the lemma
holds for

K = K0 + 6
√
K0 + 1
δ

+ 18
δ
. (7.427)

Assume, for the remainder of the proof, that a positive integer n and
complex Euclidean spaces X , Y, and Z satisfying (7.425) have been fixed.
Let V be an arbitrary subspace of Y ⊗Z having dimension n2. Throughout
the proof, µ will denote the uniform spherical measure on S(Y ⊗Z), and η

will denote the Haar measure on U(Y ⊗ Z).
The first step of the proof is the specification of a collection of random

variables; an analysis of these random variables follows their specification.
First, let

X,Y : S(Y ⊗ Z)→ R (7.428)

be random variables, distributed with respect to the uniform spherical
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measure µ and defined as follows:

X(u) =
√∥∥TrZ(uu∗)

∥∥ and Y (u) =
∥∥TrZ(uu∗)− ω

∥∥
2 (7.429)

for all u ∈ S(Y ⊗ Z). Next, let

K1 =
√
K0 + 1 + 3√

δ
and κ = 2K1√

n
, (7.430)

define a set

A =
{
u ∈ S(Y ⊗ Z) : X(u) ≤ K1√

n

}
, (7.431)

and define a random variable Z : S(Y ⊗ Z) → R, also distributed with
respect to the uniform spherical measure µ, as

Z(u) = min
v∈A

(
Y (v) + κ‖u− v‖) (7.432)

for every u ∈ S(Y ⊗ Z). It is evident from their specifications that X, Y ,
and Z are phase-invariant random variables. Finally, for each unit vector
v ∈ S(V), define random variables

Pv, Qv, Rv : U(Y ⊗ Z)→ R, (7.433)

distributed with respect to the Haar measure η on U(Y ⊗ Z), as

Pv(U) = X(Uv), Qv(U) = Y (Uv), and Rv(U) = Z(Uv), (7.434)

for every U ∈ U(Y ⊗ Z).
When analyzing the random variables that have just been defined, it is

helpful to begin with the observation that

X(vec(A)) = ‖A‖ and Y (vec(A)) =
∥∥AA∗ − ω

∥∥
2 (7.435)

for every operator A ∈ L(Z,Y) satisfying ‖A‖2 = 1. It is immediate from
the first of these expressions, along with the inequality ‖A‖ ≤ ‖A‖2, that
X is 1-Lipschitz. Also, given that

‖A‖2 =
∥∥AA∗

∥∥ ≤
∥∥AA∗ − ω

∥∥+ ‖ω‖ ≤
∥∥AA∗ − ω

∥∥
2 + 1

n
(7.436)

for every operator A ∈ L(Z,Y), one necessarily has that

X2 ≤ Y + 1
n
. (7.437)

By Lemma 7.45, one may therefore conclude that

Pr
(
X ≤

√
K0 + 1
n

)
≥ Pr

(
Y ≤ K0

n

)
>

3
4 . (7.438)
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Dvoretzky’s theorem (Theorem 7.42) will be applied twice in the proof,
with the first application concerning the random variables X and Pv for each
v ∈ S(V). By (7.438), it follows that every central value of X is at most

√
K0 + 1
n

. (7.439)

Setting

ε = 3√
δn

and ζ = 1
3 (7.440)

in Dvoretzky’s theorem yields

Pr
(
Pv ≤

K1√
n

for every v ∈ S(V)
)
≥ 2

3 , (7.441)

by virtue of the fact that dim(V) = δε2ζ2 dim(Y ⊗ Z).
The second application of Dvoretzky’s theorem concerns Z andRv for each

v ∈ S(V). Before applying Dvoretzky’s theorem, however, the implications
of Lemma 7.51 to the random variables Y and Z will be considered. First,
note that

µ(A) = Pr
(
X ≤ K1√

n

)
≥ Pr

(
X ≤

√
K0 + 1
n

)
>

3
4 . (7.442)

Second, for any choice of vectors u, v ∈ A, one may write u = vec(A) and
v = vec(B) for A,B ∈ L(Z,Y) satisfying ‖A‖2 = ‖B‖2 = 1, so that

‖A‖ = X(vec(A)) ≤ K1√
n

and ‖B‖ = X(vec(B)) ≤ K1√
n
. (7.443)

This implies that
∣∣Y (u)− Y (v)

∣∣ =
∣∣∣
∥∥AA∗ − ω

∥∥
2 −

∥∥BB∗ − ω
∥∥

2

∣∣∣

≤
∥∥AA∗ −BB∗

∥∥
2 ≤

(‖A‖+ ‖B‖)
∥∥A−B

∥∥
2 ≤ κ‖u− v‖.

(7.444)

It therefore follows from Lemma 7.51 that Z is κ-Lipschitz, Z and Y agree
everywhere on A, and every median value of Z is a central value of Y . By
(7.438), every central value of Y is at most K0/n, and therefore the same
upper bound applies to every median value of Z. Setting

ε = 3κ√
δn

and ζ = 1
3 (7.445)

and applying Dvoretzky’s theorem therefore yields

Pr
(
Rv ≤

K

n
for all v ∈ S(V)

)
≥ 2

3 , (7.446)
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by virtue of the fact that

dim(V) = δε2ζ2

κ2 dim(Y ⊗ Z). (7.447)

Finally, consider the random variables Y and Qv for each v ∈ S(V). For
every vector u ∈ S(Y ⊗ Z), one has either u ∈ A or u 6∈ A; and if it holds
that u ∈ A, then Y (u) = Z(u). Consequently, if it holds that Y (u) > K/n

for a given choice of u ∈ S(Y ⊗ Z), then it must hold that

Z(u) > K

n
or X(u) > K1√

n
(7.448)

(or both). By the union bound, one concludes that

Pr
(
Qv >

K

n
for some v ∈ S(V)

)

≤ Pr
(
Rv >

K

n
for some v ∈ S(V)

)

+ Pr
(
Pv >

K1√
n

for some v ∈ S(V)
)
.

(7.449)

By (7.441) and (7.446), it follows that

Pr
(
Qv ≤

K

n
for all v ∈ S(V)

)
≥ 1

3 > 0. (7.450)

By (7.450), one concludes that there exists a unitary operator U for which
Qv(U) ≤ K/n for all v ∈ S(V). Taking V0 ∈ U(X ,Y ⊗ Z) to be any linear
isometry for which im(V0) = V, one therefore has

∥∥TrZ
(
UV0xx

∗V ∗0 U
∗)− ω

∥∥
2 ≤

K

n
(7.451)

for every unit vector x ∈ S(X ). Taking V = UV0, the lemma is proved.

Finally, a proof of Theorem 7.49 is to be presented. The proof is made
quite straightforward through the use of Lemmas 7.50 and 7.52.

Proof of Theorem 7.49 Let K > 0 be a real number for which Lemma 7.52
holds, and choose n to be a positive integer satisfying

log(n) > 2K2

ln(2) + 2. (7.452)
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For X , Y, and Z being complex Euclidean spaces with dim(X ) = n2,
dim(Y) = n, and dim(Z) = n2, it follows (by Lemma 7.52) that there exists
an isometry V ∈ U(X ,Y ⊗ Z) such that

∥∥∥∥TrZ
(
V xx∗V ∗

)− 1Y
n

∥∥∥∥
2
≤ K

n
(7.453)

for every unit vector x ∈ S(X ). By Lemma 7.46, one therefore has that

H
(
TrZ(V xx∗V ∗)

) ≥ log(n)− K2

n ln(2) (7.454)

for every x ∈ S(X ). Replacing V by the entry-wise complex conjugate of V
results in the same bound:

H
(
TrZ

(
V xx∗V T)) ≥ log(n)− K2

n ln(2) (7.455)

for every x ∈ S(X ).
Now, define channels Φ,Ψ ∈ C(X ,Y) as

Φ(X) = TrZ
(
V XV ∗

)
and Ψ(X) = TrZ

(
V XV T) (7.456)

for all X ∈ L(X ). One has that

Hmin(Φ) = Hmin(Ψ) ≥ log(n)− K2

n ln(2) , (7.457)

and therefore

Hmin(Φ) + Hmin(Ψ) ≥ 2 log(n)− 2K2

n ln(2) . (7.458)

On the other hand, Lemma 7.50 implies that

Hmin(Φ⊗Ψ) ≤ 2 log(n)− log(n)− 2
n

. (7.459)

Consequently,

Hmin(Φ⊗Ψ)− (Hmin(Φ) + Hmin(Ψ)
)

= 2K2

n ln(2) −
log(n)− 2

n
< 0,

(7.460)

which completes the proof.
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7.4 Exercises
Exercise 7.1 For every positive integer n ≥ 2, define a unital channel
Φn ∈ C(Cn) as

Φn(X) = 1
n− 1 Tr(X)1n −

1
n− 1X

T (7.461)

for every X ∈ L(Cn), where 1n denotes the identity operator on Cn. Prove
that Φn is a mixed-unitary channel when n is even. (Observe that this
exercise is complementary to Exercise 4.2.)

Exercise 7.2 Let n and m be positive integers with n < m, and consider
the set U(Cn,Cm) of all isometries from Cn to Cm.

(a) Prove that there exists a Borel probability measure

ν : Borel
(
U(Cn,Cm)

)→ [0, 1] (7.462)

for which it holds that

ν(A) = ν(UAV ) (7.463)

for every choice of a Borel subset A ∈ Borel(U(Cn,Cm)) and unitary
operators U ∈ U(Cm) and V ∈ U(Cn).

(b) Prove that if

µ : Borel
(
U(Cn,Cm)

)→ [0, 1] (7.464)

is a Borel probability measure on U(Cn,Cm) satisfying

µ(A) = µ(UA) (7.465)

for every for every choice of a Borel subset A ∈ Borel(U(Cn,Cm)) and
a unitary operator U ∈ U(Cm), then it must hold that µ = ν, where ν
is the measure defined by a correct solution to part (a).

Exercise 7.3 Let X be a complex Euclidean space, let n = dim(X ), and
define a mapping Φ ∈ CP(X ) as

Φ(X) = n

∫ 〈
uu∗, X

〉
uu∗dµ(u) (7.466)

for all X ∈ L(X ), where µ denotes the uniform spherical measure on S(X ).
Give a simple, closed-form expression for Φ.
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Exercise 7.4 Let X be a complex Euclidean space, let n = dim(X ), and
define a channel Φ ∈ C(X ,X ⊗ X ) as

Φ(X) = n

∫ 〈
uu∗, X

〉
uu∗ ⊗ uu∗dµ(u) (7.467)

for all X ∈ L(X ), where µ denotes the uniform spherical measure on S(X ).
Give a closed-form expression for the minimum cloning fidelity

α(Φ) = inf
v∈S(X )

F
(
Φ(vv∗), vv∗ ⊗ vv∗) (7.468)

obtained through the use of Φ. (Observe that Φ is a sub-optimal cloning
channel, in the sense of Theorem 7.28, aside from the trivial case in which
dim(X ) = 1.)

Exercise 7.5 Prove that there exists a positive real number K with
the following property. For every positive integer n and every nonnegative
κ-Lipschitz random variable

X : S(Cn)→ [0,∞), (7.469)

distributed with respect to the uniform spherical measure on S(Cn), one has
that

E(X2)− E(X)2 ≤ Kκ2

n
. (7.470)

Exercise 7.6 Prove that there exist positive real numbers K, δ > 0 for
which the following statement holds. For every choice of a complex Euclidean
space X , a κ-Lipschitz nonnegative random variable

X : S(X )→ [0,∞), (7.471)

distributed with respect to the uniform spherical measure µ on S(X ), and
every positive real number ε > 0, it holds that

Pr
(∣∣∣X −

√
E(X2)

∣∣∣ ≥ ε
)
≤ K exp

(
−δε

2n

κ2

)
. (7.472)

The fact established by a correct solution to Exercise 7.5 is useful for proving
this result. (Observe that a correct solution to this problem establishes a
variant of Lévy’s lemma in which concentration occurs around the root-
mean-squared value of a nonnegative random variable, as opposed to its
mean or central values.)
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7.5 Bibliographic remarks
Permutation-invariant vectors and operators are commonly studied objects
in multilinear algebra, which is the subject of the books of Greub (1978) and
Marcus (1973, 1975), among others. These concepts and generalizations of
them are also relevant to the subject of representation theory, as explained
in the book of Goodman and Wallach (1998), for instance. Theorem 7.14 is
a finite-dimensional form of the double commutant theorem, also known as
the bicommutant theorem, proved by von Neumann (1930).

The existence of unitarily invariant measures on both the unit sphere
and the set of unitary operators in a complex Euclidean space is implied
by a much more general construction due to Haar (1933). Von Neumann
(1933) proved the uniqueness of the measures constructed by Haar, with
their two papers appearing consecutively in the same journal. This work
was further generalized by Weil (1979) and others. Due to the generality
of these notions, many books that include a discussion of Haar measure
do not consider the specialized definitions of uniform spherical measure or
Haar measure (for unitary operators in finite dimensions) of the sort that
has been presented in this chapter. Definitions of this type are, however,
fairly standard in random matrix theory. These definitions are rooted in
the work of Dyson (1962a,b,c) and Diaconis and Shahshahani (1987), and a
more broad overview of random matrix theory may be found in the book of
Mehta (2004).

The Werner twirling channel, defined in Example 7.25, was introduced
by Werner (1989) in the same paper, mentioned in the previous chapter,
that introduced the states now known as Werner states. Theorem 7.28 on
optimal cloning of pure states is also due to Werner (1998). The original
no-cloning theorem is generally attributed to Wootters and Zurek (1982)
and Deiks (1982), although an equivalent statement and proof appear in an
earlier paper of Park (1970). Although not published until 1983, a paper
of Wiesner (1983) proposing a scheme for unforgeable money based on
quantum information, relying implicitly on the assumption that quantum
states cannot be cloned, was allegedly written in the late 1960s.

Multiple versions of the quantum de Finetti theorem are known. These
theorems are so-named because they generalize theorems in combinatorics
and probability theory originally found in the work of de Finetti (1937). A
quantum information-theoretic variant of de Finetti’s eponymous theorem
was first proved by Hudson and Moody (1976) in 1976. Caves, Fuchs, and
Schack (2002) later gave a simpler proof of this theorem. Like the original
de Finetti theorem, this was a qualitative result regarding the behavior of
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an infinite number of identical systems. A finite quantum formulation of
de Finetti’s theorem, closer in spirit to classical results due to Diaconis and
Freedman (1980), was proved by König and Renner (2005). Theorems 7.12
and 7.26 and Corollary 7.27 were proved by Christandl, König, Mitchison,
and Renner (2007), who improved on the error bounds and generalized the
results obtained by König and Renner.

Theorem 7.31 and Corollary 7.32 are due to Watrous (2009a).
Readers interested in learning more about the phenomenon of measure

concentration are referred to the books of Ledoux (2001) and Milman and
Schechtman (1986). Theorems 7.37 and 7.40 are variants of a theorem due
to Lévy (1951). The proofs of these theorems appearing in this chapter have
mostly followed those in Appendix V of Milman and Schechtman’s book
(which are partially based on a technique due to Maurey and Pisier (1976)).
Multiple formulations of Dvoretzky’s theorem are known, with the original
having been proved by Dvoretzky around 1960 (Dvoretzky, 1961). Milman
(1971) gave a proof of Dvoretzky’s theorem in 1971 based on the measure
concentration phenomenon, which he was the first to explicitly identify.

To prove Theorem 7.49 on the non-additivity of the minimum output
entropy, a particularly sharp version of Dvoretzky’s theorem (as stated in
Theorem 7.42) is evidently required. The proof of this theorem, as well as its
application to Theorem 7.49, is due to Aubrun, Szarek, and Werner (2011).
The proof makes essential use of the chaining method of Talagrand (2006).

There are several known applications of the concentration of measure
phenomenon to quantum information theory, the first of which were due to
Hayden, Leung, Shor, and Winter (2004), Bennett, Hayden, Leung, Shor,
and Winter (2005), and Harrow, Hayden, and Leung (2004). Theorem 7.47
is a variant of a theorem due to Hayden, Leung, and Winter (2006).

Theorem 7.49 was proved by Hastings (2009), based in part on Hayden and
Winter’s disproof of the so-called maximal p-norm multiplicativity conjecture
shortly before (Hayden and Winter, 2008). As suggested above, the proof
of Theorem 7.49 that has been presented in this chapter is due to Aubrun,
Szarek, and Werner (2011). The implications of Hastings discovery to the
study of channel capacities is discussed in the next chapter.


