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Abstract: Several variants of nonlocal games have been considered in the study of quantum
entanglement and nonlocality. This paper concerns two of these variants, called quantum-
classical games and extended nonlocal games. We give a construction of an extended
nonlocal game from any quantum-classical game that allows one to translate certain facts
concerning quantum-classical games to extended nonlocal games. In particular, based on
work of Regev and Vidick, we conclude that there exist extended nonlocal games for
which no finite-dimensional entangled strategy can be optimal. While this conclusion is a
direct consequence of recent work of Slofstra, who proved a stronger, analogous result for
ordinary (non-extended) nonlocal games, the proof based on our construction is considerably
simpler, and the construction itself might potentially have other applications in the study of
entanglement and nonlocality.

1 Introduction

Various abstract notions of games have been considered in the study of entanglement and nonlocality
[6, 2, 8, 11, 14, 15, 3, 12, 17, 23, 7, 9, 20, 13]. For instance, in a nonlocal game, two cooperating players
(Alice and Bob) engage in an interaction with a third party (known as the referee) [6]. The referee
randomly chooses a pair of questions (x,y) according to a known distribution. Alice receives x, Bob
receives y, and without communicating with one another, Alice must respond with an answer a and Bob
with an answer b. The referee then evaluates a predicate P(a,b|x,y) to determine whether Alice and
Bob win or lose. It is a well-known consequence of earlier work in theoretical physics [1, 16, 5] that
entanglement shared between Alice and Bob can allow them to outperform all purely classical strategies
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for some nonlocal games. (Nonlocal games were also previously studied in theoretical computer science,
in [19] for instance, although generally not by this name and without deference to entanglement or
quantum information, but rather as an abstraction of one-round, two-player classical interactive proof
systems.)

In a nonlocal game, the referee is classical; it is only the players Alice and Bob that potentially
manipulate quantum information. Some generalizations of nonlocal games in which quantum information
is exchanged in some way between the players and the referee include ones studied in [3, 12, 17, 23,
9, 20, 13]. In this paper we consider two such generalizations: quantum-classical games and extended
nonlocal games.

1. Quantum-classical games. Quantum-classical games (or QC games for short) differ from nonlocal
games in that the referee begins the game by preparing a tripartite quantum state, then sends one part
of it to each player and keeps the third part for itself. (This step replaces the generation of a classical
question pair (x,y) in an ordinary nonlocal game.) The players respond with classical answers a and
b as before, and finally the referee determines whether the players win or lose by measuring its part
of the original quantum state it initially prepared. (This step replaces the evaluation of a predicate
P(a,b|x,y) in an ordinary nonlocal game.)

2. Extended nonlocal games. In an extended nonlocal game (or ENL game for short), Alice and Bob
first present the referee with a quantum system of a fixed size, initialized as Alice and Bob choose,
and possibly entangled with systems held by Alice and Bob. (This initialization step generalizes the
sharing of entanglement between Alice and Bob in an ordinary nonlocal game, allowing them to give
a part of this shared state to the referee.) The game then proceeds much like an ordinary nonlocal
game: the referee chooses a pair of (classical) questions (x,y) according to a known distribution,
sends x to Alice and y to Bob, and receives a classical answer a from Alice and b from Bob. Finally,
to determine whether or not Alice and Bob win, the referee performs a binary-valued measurement,
depending on x, y, a, and b, on the system initially sent to it by Alice and Bob. (This measurement
replaces the evaluation of the predicate P(a,b|x,y) in an ordinary nonlocal game.)

QC games, with slight variations from the class described above, were considered by Buscemi [3]
and Regev and Vidick [20]. ENL games, again with slight variations from the class described above,
were first considered by Fritz [12], who called them bipartite steering games. ENL games represent a
game-based formulation of the phenomenon of tripartite steering investigated in [4, 21]. (The clash in
nomenclature reflects one’s view of the referee either as a non-player in a game or as a participant in an
experiment.) ENL games were so-named and studied in [13], as a means to unify nonlocal games with the
monogamy-of-entanglement games introduced in [23]. We note that the restriction that the referee does
not measure the system provided to it by Alice and Bob prior to receiving their answers, as opposed to
allowing a measurement of this system to influence the referee’s questions, is inherited from these papers
(and reflects the usual formulation of the notion of steering). One could, of course, consider a variation of
this model that relaxes this condition, but we will not consider such a relaxation in this paper. Both QC
games and ENL games can also be generalized naturally to allow for additional players (Charlie, Diane,
Elaine, etc.), but we focus on the two-player case in the interest of simplicity.

Regev and Vidick [20] proved that certain QC games have the following peculiar property: if Alice
and Bob make use of an entangled state of two finite-dimensional quantum systems, initially shared
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between them, they can never achieve optimality: it is always possible for them to do better (meaning
that they win with a strictly larger probability) using some different shared entangled state on two larger
quantum systems. Thus, it is only in the limit, as the local dimensions of their shared entangled states
goes to infinity, that they can approach an optimal performance in these specific examples of games. A
similar result was established earlier for analogues of nonlocal games for which both the questions and
answers are quantum [17], and a recent breakthrough result of Slofstra [22] has established a similar
result for nonlocal games in which both the questions and answers are classical.

In this paper we describe a construction through which any QC game can be transformed into an
ENL game, in such a way that certain fundamental properties associated with entangled strategies for the
QC game (including, roughly speaking, the game’s maximum acceptance probability and the amount
of entanglement needed to approach this maximum acceptance probability) are inherited by the ENL
game. In particular, by applying this construction to the QC games identified by Regev and Vidick, we
obtain ENL games that cannot be played with optimality by Alice and Bob using an entangled state on
finite-dimensional systems. In the language of quantum steering, this yields a tripartite steering inequality
for which a maximal violation requires infinite-dimensional quantum systems. While Slofstra’s result
subsumes this result, insofar as nonlocal games are special cases of ENL games in which the referee’s
quantum system is a trivial one-dimensional system, our proof is considerably simpler. Moreover, this
ability to transform from quantum-classical games to extended nonlocal games might potentially find
utility in related settings.

2 Definitions

We begin with precise definitions of the two classes of games considered in this paper, which are QC
games and ENL games. In addition, we formalize the notions of entangled strategies for these games
along with their associated values, which represent the probabilities that the strategies lead to a win for
Alice and Bob.

The reader is assumed to be familiar with standard notions of quantum information, as described
in [18] and [25], for instance. We will generally follow the terminology and notational conventions of
[24]. For example, a register X is an abstract quantum system described by a finite-dimensional complex
Hilbert space X having a fixed standard basis {|1〉, . . . , |n〉} (for some positive integer n); the sets L(X),
Pos(X), D(X), and U(X) denote the set of all linear operators, positive semidefinite operators, density
operators, and unitary operators (respectively) acting on such a space X; we write X∗, X , and XT to refer
to the adjoint, entry-wise complex conjugate, and transpose of an operator X (with respect to the standard
basis in the case of the entry-wise complex conjugate and transpose); and 〈X ,Y 〉= Tr(X∗Y ) denotes the
Hilbert-Schmidt inner product of operators X and Y .

2.1 Extended nonlocal games

An extended nonlocal game (or ENL game) is specified by the following objects:

• A probability distribution π : X×Y → [0,1], for finite and nonempty sets X and Y .

• A collection of measurement operators {Pa,b,x,y : a ∈ A, b ∈ B, x ∈ X , y ∈ Y} ⊂ Pos(R), where A
and B are finite and nonempty sets and R is the space corresponding to a register R.
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From the referee’s perspective, such a game is played as follows:

1. Alice and Bob present the referee with the register R, which has been initialized in a state of Alice
and Bob’s choosing. (The register R might, for instance, be entangled with systems possessed by
Alice and Bob.)

2. The referee randomly generates a pair (x,y) ∈ X×Y according to the distribution π , and then sends
x to Alice and y to Bob. Alice responds with a ∈ A and Bob responds with b ∈ B.

3. The referee measures R with respect to the binary-valued measurement {Pa,b,x,y, 1−Pa,b,x,y}. The
outcome corresponding to the measurement operator Pa,b,x,y indicates that Alice and Bob win, while
the other measurement result indicates that they lose.

There are various classes of strategies that may be considered for Alice and Bob in an ENL game,
including unentangled strategies, entangled strategies (or standard quantum strategies), and commuting
measurement strategies [13]. (Additional classes of strategies, such as no-signaling strategies, can also be
defined.) In this paper we will only consider entangled strategies, in which Alice and Bob begin the game
in possession of finite-dimensional quantum systems that have been initialized as they choose. They may
then measure these systems in order to obtain answers to the referee’s questions.

To be more precise, an entangled strategy for an ENL game, specified by π : X×Y → [0,1] and
{Pa,b,x,y : a ∈ A, b ∈ B, x ∈ X , y ∈ Y} ⊂ Pos(R) as above, consists of these objects:

1. A state σ ∈ D(U⊗R⊗V), for U being the space corresponding to a register U held by Alice and V

being the space corresponding to a register V held by Bob. This state represents Alice and Bob’s
initialization of the triple (U,R,V) immediately before R is sent to the referee.

2. A measurement {Ax
a : a ∈ A} ⊂ Pos(U) for each x ∈ X , performed by Alice when she receives the

question x, and a measurement {By
b : b ∈ B} ⊂ Pos(V) for each y ∈ Y , performed by Bob when he

receives the question y.

When Alice and Bob utilize such a strategy, their winning probability p may be expressed as

p = ∑
(x,y)∈X×Y
(a,b)∈A×B

π(x,y)
〈
Ax

a⊗Pa,b,x,y⊗By
b,σ
〉
. (2.1)

The entangled value of an ENL game represents the supremum of the winning probabilities, taken
over all entangled strategies. If H is the name assigned to an ENL game having a specification as above,
then we write ω∗N(H) to denote the maximum winning probability taken over all entangled strategies for
which dim(U⊗V)≤ N, so that the entangled value of H is

ω
∗(H) = lim

N→∞
ω
∗
N(H). (2.2)

2.2 Quantum-classical games

A quantum-classical game (or QC game) is specified by the following objects:

• A state ρ ∈ D(X⊗S⊗Y) of a triple of registers (X,S,Y).
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• A collection of measurement operators {Qa,b : a ∈ A, b ∈ B} ⊂ Pos(S), for finite and nonempty
sets A and B.

From the referee’s perspective, such a game is played as follows:

1. The referee prepares (X,S,Y) in the state ρ , then sends X to Alice and Y to Bob.

2. Alice responds with a ∈ A and Bob responds with b ∈ B.

3. The referee measures S with respect to the binary-valued measurement {Qa,b, 1−Qa,b}. The
outcome corresponding to the measurement operator Qa,b indicates that Alice and Bob win, while
the other measurement result indicates that they lose.

Similar to ENL games, one may consider various classes of strategies for QC games. Again, we
will consider only entangled strategies, in which Alice and Bob begin the game in possession of finite-
dimensional quantum systems initialized as they choose. Formally speaking, an entangled strategy for a
QC game, specified by ρ ∈D(X⊗S⊗Y) and {Qa,b : a ∈ A, b ∈ B} ⊂ Pos(S) as above, consists of these
objects:

1. A state σ ∈ D(U⊗V), for U being the space corresponding to a register U held by Alice and V

being the space corresponding to a register V held by Bob.

2. A measurement {Aa : a∈A}⊂ Pos(U⊗X) for Alice, performed on the pair (U,X) after she receives
X from the referee, and a measurement {Bb : b ∈ B} ⊂ Pos(Y⊗V) for Bob, performed on the pair
(Y,V) after he receives Y from the referee.

The winning probability of such a strategy may be expressed as

p = ∑
(a,b)∈A×B

〈
Aa⊗Qa,b⊗Bb,W (σ ⊗ρ)W ∗

〉
, (2.3)

where W is the unitary operator that corresponds to the natural re-ordering of registers consistent with
each of the tensor product operators Aa⊗Qa,b⊗Bb (i.e., the permutation (U,V,X,S,Y) 7→ (U,X,S,Y,V)).

3 Construction and analysis

In this section we will describe a construction of an ENL game from any given QC game, and analyze the
relationship between the constructed ENL game and the original QC game.

3.1 Construction

Suppose that a QC game G, specified by a state ρ ∈ D(X⊗ S⊗Y) and a collection of measurement
operators {Qa,b : a ∈ A, b ∈ B} ⊂ Pos(S), is given. We construct an ENL game H as follows:

1. Let n = dim(X) and m = dim(Y), let

X =
{

1, . . . ,n2} and Y =
{

1, . . . ,m2}, (3.1)

and let π : X ×Y → [0,1] be the uniform probability distribution on these sets, so that π(x,y) =
n−2m−2 for every x ∈ X and y ∈ Y .
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2. Let R = (X,Y), define

ξ = TrS(ρ) and ξa,b = TrS
[(
1X⊗Qa,b⊗1Y

)
ρ
]

(3.2)

for each a ∈ A and b ∈ B, let{
U1, . . . ,Un2

}
⊂ U(X) and

{
V1, . . . ,Vm2

}
⊂ U(Y) (3.3)

be orthogonal bases of unitary operators (such as the discrete Weyl operators, described in [10] for
instance), and let

Pa,b,x,y = 1X⊗1Y− (Ux⊗Vy)(ξ
T−ξ

T
a,b)(Ux⊗Vy)

∗ (3.4)

for every a ∈ A, b ∈ B, x ∈ X , and y ∈ Y .

One may observe that Pa,b,x,y is indeed a measurement operator for each a ∈ A, b ∈ B, x ∈ X , and
y ∈ Y , meaning that 0 ≤ Pa,b,x,y ≤ 1X⊗1Y, by virtue of the fact that 0 ≤ ξa,b ≤ ξ ≤ 1 for every a ∈ A
and b ∈ B.

The basic intuition behind this construction is as follows. In the QC game G, the referee sends X
to Alice and Y to Bob, but in the ENL game H it is Alice and Bob that give X and Y to the referee.
To simulate, within the game H, the sort of transmission that occurs in G, it is natural to consider
teleportation—for if Alice provided the referee with the register X in a state maximally entangled with a
register of her own, and Bob did likewise with Y, then the referee could effectively teleport a copy of X to
Alice and a copy of Y to Bob. Now, in an ENL game, the referee cannot actually perform teleportation
in this way: the question pair (x,y) needs to be randomly generated, independent of the state of the
registers (X,Y). For this reason the game H is based on a form of post-selected teleportation, where x
and y are chosen randomly, and then later compared with hypothetical measurement results that would be
obtained if the referee were to perform teleportation. The details of the construction above result from a
combination of this idea together with algebraic simplifications.

3.2 Game values

It is not immediate that the construction above should necessarily translate the basic properties of the game
G to the game H; Alice and Bob are free to behave as they choose, which is not necessarily consistent
with the intuitive description of the game H based on teleportation suggested above. An analysis does,
however, reveal that the construction works as one would hope (and perhaps expect). In particular, we will
prove two bounds on the value of the ENL game H constructed from a QC game G as described above:

ω
∗
nmN(H)≥ 1− 1−ω∗N(G)

nm
and ω

∗
N(H)≤ 1− 1−ω∗nmN(G)

nm
, (3.5)

for every positive integer N. This implies that

ω
∗(H) = 1− 1−ω∗(G)

nm
. (3.6)

Moreover, H inherits the same limiting behavior of G with respect to entangled strategies, meaning that if
ω∗N(G)< ω∗(G) for all N ∈ N, then ω∗N(H)< ω∗(H) for all N ∈ N as well.
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We will begin with the first inequality in (3.5). Assume that an arbitrary strategy for Alice and
Bob in the game G is fixed: Alice and Bob make use of a shared entangled state σ ∈ D(U⊗V), where
dim(U⊗V)≤ N, and their measurements are given by

{Aa : a ∈ A} ⊂ Pos(U⊗X) and {Bb : b ∈ B} ⊂ Pos(Y⊗V), (3.7)

respectively. The winning probability of this strategy in the game G may be expressed as

p = ∑
(a,b)∈A×B

〈
Aa⊗Qa,b⊗Bb,W (σ ⊗ρ)W ∗

〉
, (3.8)

as was mentioned above, while the losing probability equals

q = ∑
(a,b)∈A×B

〈
Aa⊗ (1−Qa,b)⊗Bb,W (σ ⊗ρ)W ∗

〉
= 1− p. (3.9)

We adapt this strategy to obtain one for H as follows:

1. Alice will hold a register X′, representing a copy of X, and Bob will hold Y′, representing a copy
of Y. The initial state of the register pairs (X′,X) and (Y′,Y) are to be the canonical maximally
entangled states

|ψ〉= 1√
n

n

∑
j=1
| j〉| j〉 and |φ 〉= 1√

m

m

∑
k=1
|k〉|k〉, (3.10)

respectively, where n and m are the dimensions of the spaces corresponding to the registers X and Y.
In addition, Alice holds the register U and Bob holds the register V, with (U,V) being prepared in
the same shared entangled state σ that is used in the strategy for G.

2. Upon receiving the question x ∈ X from the referee, Alice performs the unitary operation Ux on
X′, then measures (U,X′) with respect to the measurement {Aa : a ∈ A} to obtain an answer a ∈ A.
Similarly, upon receiving y ∈Y from the referee, Bob performs Vy on Y′, then measures (Y′,V) with
respect to {Bb : b ∈ B} to obtain an answer b ∈ B.

The performance of this strategy can be analyzed by first ignoring the specific initialization of the
registers described in step 1, and defining a measurement {R0,R1} that determines, for an arbitrary
initialization of these registers, whether Alice and Bob win or lose by behaving as described in step 2. In
particular, the measurement {R0,R1} is defined on the register tuple (U,X′,X,Y,Y′,V), the measurement
operator R0 corresponds to a losing outcome, and R1 corresponding to a winning outcome. These operators
may be described as follows:

R0 =
1

n2m2 ∑
(x,y)∈X×Y
(a,b)∈A×B

(1U⊗UT
x )Aa(1U⊗Ux)⊗ (1X⊗Y−Pa,b,x,y)⊗ (V T

y ⊗1V)Bb(Vy⊗1V)

R1 =
1

n2m2 ∑
(x,y)∈X×Y
(a,b)∈A×B

(1U⊗UT
x )Aa(1U⊗Ux)⊗Pa,b,x,y⊗ (V T

y ⊗1V)Bb(Vy⊗1V) = 1−R0.

(3.11)
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Now we may consider the initialization of the registers described in step 1. For an arbitrary choice of
operators X ∈ L(U) and Y ∈ L(V) we have〈

R0,X⊗|ψ〉〈ψ |⊗ |φ 〉〈φ |⊗Y
〉
= ∑

(a,b)∈A×B

〈
Aa⊗ (ξ T−ξ

T
a,b)⊗Bb,X⊗|ψ〉〈ψ |⊗ |φ 〉〈φ |⊗Y

〉
, (3.12)

by virtue of the fact that
(
Ux⊗Ux

)
|ψ〉= |ψ〉 and

(
Vy⊗Vy

)
|φ 〉= |φ 〉 for every x ∈ X and y ∈ Y . Further

simplifying this expression, one obtains

∑
(a,b)∈A×B

〈
Aa⊗ (ξ T−ξ

T
a,b)⊗Bb,X⊗|ψ〉〈ψ |⊗ |φ 〉〈φ |⊗Y

〉
=

1
nm ∑

(a,b)∈A×B

〈
Aa⊗Bb,X⊗ (ξ −ξa,b)⊗Y

〉
=

1
nm ∑

(a,b)∈A×B

〈
Aa⊗ (1−Qa,b)⊗Bb,X⊗ρ⊗Y

〉
.

(3.13)

By expressing the initial state σ of (U,V) as σ = ∑i Xi⊗Yi and making use of the bilinearity of the above
expression in X and Y , one finds that the losing probability of Alice and Bob’s strategy for H is equal to
q/(nm), for q being the losing probability (3.9) for their original strategy for G.

Optimizing over all strategies for G that make use of an initial shared state having total dimension at
most N yields the required inequality

ω
∗
nmN(H)≥ 1− 1−ω∗N(G)

nm
. (3.14)

Next we will prove the second inequality in (3.5). Assume that an arbitrary strategy for Alice
and Bob in the ENL game H constructed from G is fixed: the strategy consists of an initial state
σ ∈D(U⊗(X⊗Y)⊗V) for the registers (U,(X,Y),V), where dim(U⊗V)≤N, along with measurements{

Ax
a : a ∈ A

}
⊂ Pos(U) and

{
By

b : b ∈ B
}
⊂ Pos(V) (3.15)

for Alice and Bob, respectively, for each x ∈ X and y ∈ Y . The winning probability of this strategy may
be expressed as

p =
1

n2m2 ∑
(x,y)∈X×Y
(a,b)∈A×B

〈
Ax

a⊗Pa,b,x,y⊗By
b,σ
〉

(3.16)

while the losing probability is

q =
1

n2m2 ∑
(x,y)∈X×Y
(a,b)∈A×B

〈
Ax

a⊗ (1−Pa,b,x,y)⊗By
b,σ
〉
= 1− p. (3.17)

We adapt this strategy to give one for G as follows:

1. Let X′ and Y′ represent copies of the registers X and Y. Alice and Bob will initially share the registers
(U,X′,Y′,V) initialized to the state σ , with Alice holding (U,X′) and Bob holding (Y′,V).
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2. Upon receiving X from the referee, Alice first measures the pair (X′,X) with respect to the basis{
(1⊗U∗x )|ψ〉 : x∈ X

}
. For whichever outcome x∈ X she obtains, she then measures U with respect

to the measurement {
Ax

a : a ∈ A
}
⊂ Pos(U) (3.18)

to obtain an outcome a ∈ A. Bob does likewise, first measuring (Y′,Y) with respect to the basis{
(1⊗V ∗y )|φ 〉 : y ∈ Y

}
, and then measuring V with respect to the measurement{

By
b : b ∈ B

}
⊂ Pos(V) (3.19)

for whichever outcome y ∈ Y is obtained.

Now let us consider the probability with which this strategy wins in G. The state of the registers
(U,X′,X,S,Y,Y′,V) immediately after the referee sends X to Alice and Y to Bob is given by

W (σ ⊗ρ)W ∗, (3.20)

where W is a unitary operator that corresponds to a permutation of registers:

(U,X′,Y′,V,X,S,Y) 7→ (U,X′,X,S,Y,Y′,V). (3.21)

We may define a measurement {R0,R1} on the register tuple (U,X′,X,S,Y,Y′,V) representing the
outcome of the game, with R0 corresponding to a losing outcome and R1 corresponding to a winning
outcome. We have

R0 = ∑
(x,y)∈X×Y
(a,b)∈A×B

Ax
a⊗ (1⊗U∗x )|ψ〉〈ψ |(1⊗Ux)⊗ (1−Qa,b)⊗ (V ∗y ⊗1)|φ 〉〈φ |(Vy⊗1)⊗By

b

R1 = ∑
(x,y)∈X×Y
(a,b)∈A×B

Ax
a⊗ (1⊗U∗x )|ψ〉〈ψ |(1⊗Ux)⊗Qa,b⊗ (V ∗y ⊗1)|φ 〉〈φ |(Vy⊗1)⊗By

b.
(3.22)

Simplifying expressions for the probability that Alice and Bob lose yields

〈
R0,W (σ ⊗ρ)W ∗

〉
=

1
nm ∑

(x,y)∈X×Y
(a,b)∈A×B

〈
Ax

a⊗ (1−Pa,b,x,y)⊗By
b,σ
〉
= nmq, (3.23)

for q being the losing probability (3.17) for their original strategy for H.
Optimizing over all strategies for H that make use of an initial shared state for which Alice and Bob’s

total dimension is at most N yields the inequality

ω
∗
N(H)≤ 1− 1−ω∗nmN(G)

nm
. (3.24)
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4 Discussion

As was mentioned in the introduction, Regev and Vidick [20] have identified examples of QC games for
which Alice and Bob can never achieve optimality by using a finite-dimensional entangled strategy. To be
more precise, they prove that there exists a QC game1 G (and in fact a family of such games) for which it
holds that ω∗N(G)< 1 for all N ∈ N, while ω∗(G) = 1. By applying our construction to any such game,
we obtain an ENL game H with the property that ω∗N(H)< 1 for all N ∈ N, while ω∗(H) = 1.

In greater detail, by taking the simplest known example of a QC game G with the property just
described, and applying our construction (along with minor simplifications), one obtains an ENL game as
follows:

1. Let X= Y= C3 and let U1, . . . ,U9 be the discrete Weyl operators acting on C3. Also define

|γ0〉=
1√
2
|0〉|0〉+ 1

2
|1〉|1〉+ 1

2
|2〉|2〉,

|γ1〉=
1√
2
|0〉|0〉− 1

2
|1〉|1〉− 1

2
|2〉|2〉.

(4.1)

2. Alice and Bob give a pair of registers (X,Y) to the referee, initialized as they choose. The referee
randomly chooses x,y ∈ {1, . . . ,9} uniformly and independently at random, then sends x to Alice
and y to Bob. Alice and Bob respond with binary values a,b ∈ {0,1}, respectively.

3. The referee computes c = a⊕b, then measures the pair (X,Y) with respect to the measurement{
1X⊗1Y− (Ux⊗Uy)|γc〉〈γc|(Ux⊗Uy)

∗, (Ux⊗Uy)|γc〉〈γc|(Ux⊗Uy)
∗}. (4.2)

The first outcome represents a win for Alice and Bob, and the second a loss. (Note that here we have
scaled the losing measurement operator by a factor of two in comparison to what is described in the
construction, which has the effect of doubling the losing probability for every strategy of Alice and
Bob.)

Assuming Alice and Bob initially entangle the pair (X,Y) with finite-dimensional registers of their own,
they can never win the game with certainty, but they can approach certainty by using increasingly large
systems.
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1Their games fall into a category of QC games that they call quantum XOR games, in which A = B = {0,1} and only the
parity a⊕b of Alice and Bob’s answers is relevant to the referee’s determination of whether they win or lose.
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