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Abstract

This paper considers the following problem. Two mixed-

state quantum circuits Q0 and Q1 are given, and the goal

is to determine which of two possibilities holds: (i) Q0 and

Q1 act nearly identically on all possible quantum state in-

puts, or (ii) there exists some input state ρ that Q0 and

Q1 transform into almost perfectly distinguishable outputs.

This may be viewed as an abstraction of the problem that

asks, given two discrete quantum mechanical processes de-

scribed by sequences of local interactions, are the processes

effectively the same or are they different? We prove that this

promise problem is complete for the class QIP of problems

having quantum interactive proof systems, and is therefore

PSPACE-hard. This is in contrast to the fact that the analo-

gous problem for classical (probabilistic) circuits is in AM,

and for unitary quantum circuits is in QMA.

1. Introduction

Randomness is a fundamental concept in complexity the-

ory and cryptography that is sometimes under-emphasized

in the study quantum computing. In particular, the most

typically used quantum computational model is the unitary

quantum circuit model restricted to pure quantum states;

and although this model can simulate randomized compu-

tations, in some sense there is really no randomness at all

in a unitary circuit computation. Rather, in the framework

of quantum information, it is natural to view pure states and

unitary computations as being analogous to definite logi-

cal states and deterministic computations, with more gen-

eral types of states and non-unitary operations being possi-

ble. For instance, quantum states may be mixed as opposed

to pure, arising when a probability distribution over pure

states is considered, and operations such as measurements

and noise may be non-unitary but physically possible.

A variant of the quantum circuit model allowing mixed

states and non-unitary operations was studied by Aharonov,

Kitaev, and Nisan [1]. They showed that this more general

model is in fact equivalent in power to the unitary quan-

tum circuit model. The principle behind this equivalence

is the fact that arbitrary physically realizable quantum op-

erations, including irreversible deterministic computations,

random coin-flips, measurements, noise, and so on, can be

described by unitary operations acting on larger systems.

However, while the two quantum circuit models are equiva-

lent in computational power, it is a misconception that they

are identical, and that there is no loss of generality in re-

stricting one’s attention to fully reversible quantum com-

putational models in all settings. Indeed, in some settings

the equivalence of the models breaks down. For instance,

it is not known if unitary quantum computations can sim-

ulate classical randomized computations in bounded space.

For quantum finite automata the situation is more alarming,

for in this case unitarity imposes a restriction that provably

weakens the model over the usual deterministic (but irre-

versible) model [9, 10].

In this paper we consider the following problem concern-

ing the mixed-state quantum circuit model. Assume two

mixed-state quantum circuits Q0 and Q1, which agree on

the number of input qubits and on the number of output

qubits, are given. It is promised that one of the following

two possibilities holds: (i) the actions of Q0 and Q1 are al-

most identical given any state ρ of a system to which they

are applied, or (ii) the actions of Q0 and Q1 are very dif-

ferent for some choice of ρ. The goal of the problem is

to determine which of these possibilities holds. (A natu-

ral way to formalize the notions of “almost identical” and

“very different” is discussed in the next section.) This prob-

lem is phrased as a promise problem because it would be

artificially difficult if it were necessary to distinguish cases

when the difference between Q0 and Q1 is close to some

threshold. Even with such a promise, however, we show

that this problem is PSPACE-hard. More specifically, we

show that this problem is a complete promise problem for

the class QIP of problems possessing quantum interactive

proof systems. In contrast, the classical analogue of this



problem, to distinguish between two probabilistic boolean

circuits, is easily shown to be contained in the class AM,

while the variant of the problem where Q0 and Q1 are uni-

tary quantum circuits is contained in QMA [4].

The apparent difference in hardness of the above prob-

lems may arguably be attributed to the presence of both

randomness and quantum computation in the mixed-state

quantum circuits variant of the problem. Removing either

randomness (leaving a unitary model) or quantum compu-

tation (leaving a classical probabilistic model) results in a

reduction in complexity. This example underscores the dis-

tinction between unitary and mixed-state quantum models.

The above problem is also interesting for the much different

reason that it abstracts the following natural physical prob-

lem: given two physical processes, are they effectively the

same or are they different? Under the assumption that the

physical processes in question are described in terms of lo-

cal interactions among particles that can implement qubits

and simulate mixed-state quantum computations, it follows

that even to solve this problem approximately is PSPACE-

hard.

Finally, we are hopeful that the completeness of the

problem discussed in this paper may lead to new results on

the structural properties of the class QIP. It is known that

PSPACE ⊆ QIP ⊆ EXP,

but no strong evidence has yet been provided that suggests

either containment should be an equality or a proper con-

tainment [7].

The rest of this paper is organized as follows. In Sec-

tion 2 we discuss relevant background on mixed-state quan-

tum circuits and other aspects of quantum information, and

in Section 3 we state and discuss the definition of the com-

putational problem of distinguishing mixed-state quantum

circuits being considered. The main hardness result is

proved in Section 4. We conclude with Section 5, which

mentions some open questions relating to the topic of the

paper.

2. Preliminaries

2.1. Admissible operations and mixed-state quan-
tum circuits

We begin by discussing admissible quantum operations

together with the mixed-state quantum circuit model of

Aharonov, Kitaev, and Nisan [1]. For positive integers k
and l, consider the set of operations mapping k-qubit states

to l-qubit states that correspond to physically possible oper-

ations (in an idealized sense). Quantum information theory

gives a simple description of this set of operations, some-

times called the set of admissible operations. Specifically,
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Figure 1. The unitary operation U simulates

the admissible operation Φ.

an operation Φ from k qubits to l qubits is admissible if its

action on density matrices is linear, trace-preserving, and

completely positive. This means that if ρ is a density matrix

on k + m qubits for some arbitrary value of m, and Φ is

performed on the first k qubits of ρ, then the result

(Φ ⊗ Im)(ρ)

is a density matrix on l + m qubits. Here, and through-

out the paper, Im denotes the identity mapping on m-qubit

states. Examples of admissible operations include unitary

operations (which require that k = l), irreversible classi-

cal computations from k bits to l bits, and the operations of

adding qubits in some specified state and discarding qubits.

A quantum gate of type (k, l) is a gate that takes k qubits

as input and outputs l qubits, and corresponds to some ad-

missible operation. Mixed-state quantum circuits are cir-

cuits that consist of some finite collection of such gates

along with acyclic input/output relations among these gates.

A given mixed-state quantum circuit will have some number

n of input qubits and some numberm of output qubits. Us-

ing the same terminology for circuits as for gates, we may

say that a circuit is of type (n,m) when this is the case, and

more generally we say that an operation is of type (n,m) if

it maps n-qubit states to m-qubit states. Thus, a circuit Q
of type (n,m) specifies some admissible operation of type

(n,m), and when convenient we also let Q denote this ad-

missible operation.

A necessary and sufficient condition for an operation Φ
of type (k, l) to be admissible is that there exists a unitary

operation U acting on k + 2l qubits such that the following

holds. If the first k qubits are set to state ρ and the remaining

2l qubits are all initialized to the zero state, the operation U
is applied, and finally the last k + l qubits are discarded (or

traced out), the resulting state on the remaining l qubits is

Φ(ρ). This situation is illustrated in Figure 1. This fact is

generally attributed to Choi [3], and a proof may be found

in Kitaev, Shen, and Vyalyi [6]. This process may be ap-

plied to each gate in a given circuit Q, resulting in a unitary



circuit P that simulates Q in a sense similar to the situation

pictured in Figure 1. Under the assumption that each gate is

of constant size, the number of additional qubits required is

linear in the number of gates of Q.

For the remainder of this paper it will be assumed that all

mixed-state quantum circuits under consideration are com-

posed of gates from some reasonable finite set. In order to

avoid a discussion of what exactly is meant by “reasonable”,

let us for simplicity say that this means that if the gates are

expressed as linear mappings, then these mappings can be

written as matrices consisting of efficiently approximable

numbers. The point is to disallow difficult to compute in-

formation from being somehow incorporated into the action

of gates acting on a finite number of qubits. Assuming that

such a finite set of quantum gates has been fixed, a quantum

circuit may easily be described classically. It will not be

necessary to discuss a particular method of encoding quan-

tum circuits beyond stating the assumption that the encod-

ing is efficient, reasonable, and disallows compact descrip-

tions of large circuits. Given such a classical description of

a circuit Q, it is possible to compute in polynomial time a

description of a unitary quantum circuit P that simulates Q
in the sense described above.

A few additional requirements on the set of gates of

which mixed-state quantum circuits may be composed is

required for the hardness result proved in this paper. The

requirements are that (i) the set of gates is universal for

quantum computation, meaning that any constant-size uni-

tary operation can be efficiently approximated by circuits

composed of these gates, (ii) the set of gates includes the

gate of type (0, 1) that introduces a qubit initialized to the

state |0〉, and (iii) the set of gates includes the gate of type

(1, 0) that corresponds to discarding a qubit.

2.2. Distance measures for quantum states and ad-
missible operations

A notion of distance between admissible operations is re-

quired in order to study the problem of distinguishing quan-

tum circuits. The notion we will use, and which we claim

is the most natural with respect to the problem considered,

is given by a norm known as the diamond norm. Before

discussing the diamond norm, it will be helpful to discuss

the trace norm, which induces a distance measure between

density matrices that is analogous to the distance between

probability distributions induced by the 1-norm. Further

information on the trace norm and diamond norm may be

found in Kitaev, Shen, and Vyalyi [6].

For a given square matrix X , the trace norm of X , de-

noted ‖X‖tr, is defined to be the sum of the singular values

of X . In case X is Hermitian, ‖X‖tr is also equal to the

sum of the absolute value of the eigenvalues of X . Equiva-

lent expressions for the trace norm (for general X) include

‖X‖tr = tr
√
X†X and ‖X‖tr = max{| tr(XU)|}, where

the maximum is over all unitary U having the same dimen-

sions as X .

The quantity ‖ρ0 − ρ1‖tr for given density matrices ρ0

and ρ1 has the following operational interpretation. Given

any binary-valued measurement, let us say that the mea-

surement is correct in the event that, on input ρb, the out-

come of the measurement is b, and is incorrect when the

outcome is 1 − b. Assuming ρ0 and ρ1 are each given with

probability 1/2, the quantity ‖ρ0 − ρ1‖tr /2 represents the

maximum over all possible measurements that the measure-

ment is correct minus the probability the measurement is

incorrect. Thus, ‖ρ0 − ρ1‖tr = 2 implies that ρ0 and ρ1

are perfectly distinguishable by some measurement, while

‖ρ0 − ρ1‖tr = 1, for example, implies that the maximum

probability of correctness for any measurement given ρ0

and ρ1 uniformly is 3/4. Obviously ‖ρ0 − ρ1‖tr = 0 im-

plies ρ0 = ρ1, and so no measurement can do better than

random guessing in this case.

The trace norm may be extended to differences in admis-

sible operations in the following standard way: if Φ and Ψ
are admissible, then

‖Φ − Ψ‖tr
def
= max{‖Φ(X) − Ψ(X)‖tr : ‖X‖tr = 1}.

Unfortunately this norm has some unusual properties that

make it unsuitable for describing distances between admis-

sible operations. One problem is that the maximum may not

be achieved whenX is a density matrix. Another is that the

value of the norm may change if Φ and Ψ are tensored with

the identity operation on some number of qubits. For exam-

ple, one may construct admissible operations Φ and Ψ, both

of type (n, n) for some integer n, such that Φ(ρ) and Ψ(ρ)
are almost identical for all n-qubit states ρ, but for which

(Φ ⊗ In)(ξ) and (Ψ ⊗ In)(ξ) are perfectly distinguishable

for some choice of a 2n-qubit state ξ. Such examples imply

that the quantity ‖Φ − Ψ‖tr is not an operationally mean-

ingful notion of distance between Φ and Ψ.

With this in mind, one defines the diamond norm of the

difference Φ−Ψ, for Φ and Ψ admissible operations of type

(n,m), as follows:

‖Φ − Ψ‖⋄
def
= ‖Φ ⊗ In − Ψ ⊗ In‖tr

= max{‖(Φ ⊗ In)(X) − (Ψ ⊗ In)(X)‖tr}.

Here, the maximum is over all 22n × 22n matrices X with

‖X‖tr = 1. The diamond norm was first defined and stud-

ied by Kitaev [5]. The maximum in the above definition

always occurs for X a density matrix (and therefore for

X = |ψ〉〈ψ| for some unit vector |ψ〉 by a simple convexity

argument), and the quantity does not grow if the identity is

taken on more than n qubits. The second fact was already

known but the first is new. A more technical discussion of

these facts can be found below in Section 2.4.



The diamond norm gives a similar characterization of

the distinguishability of admissible operations that the trace

norm gives for states. Specifically, the diamond norm of the

difference between two admissible operations characterizes

the probability that the outputs of these two operations can

be distinguished, given that an input to the two operations

is chosen that maximizes the distinguishability of the out-

puts. This of course includes the possibility that the input

is a state of a larger system on which the operations act on

only part.

Another useful way to measure the similarity between

density matrices is given by the fidelity. Specifically, the

fidelity between density matrices ρ and ξ is defined as:

F (ρ, ξ)
def
=

∥

∥

∥

√
ρ
√

ξ
∥

∥

∥

tr
.

The fidelity is a measure of similarity that is related to but

different from the trace norm. Generally speaking, when

two states are close together they have large fidelity and

small trace norm, and when far apart have small fidelity and

large trace norm. The fidelity function is often easier to use

than the trace norm, partially due to the fact that it is mul-

tiplicative with respect to tensor products. For all density

matrices ρ and ξ, it holds that

1 − 1

2
‖ρ− ξ‖tr ≤ F (ρ, ξ) ≤

√

1 − 1

4
‖ρ− ξ‖2

tr.

2.3. Quantum interactive proof systems

Quantum interactive proof systems are interactive proof

systems in which the prover and verifier may exchange and

process quantum information [7, 14]. The class of problems

having quantum interactive proof systems is denoted QIP

and is known to satisfy PSPACE ⊆ QIP ⊆ EXP.

The main result of this paper, stated more formally in the

next section, establishes that the problem of distinguishing

mixed-state quantum circuits is QIP-complete. This will

be proved by first noting that a fairly straightforward quan-

tum interactive proof system exists for this problem, and

second by reducing a known QIP-complete problem called

the Close Images problem to the problem of distinguishing

quantum circuits.

Close Images. This problem is parameterized by constants

a, b ∈ [0, 1] with b < a. For such constants, define the

promise problem CIa,b as follows:

Input: Mixed state quantum circuits (Q0, Q1) of type

(n,m).

Yes: There exist n-qubit states ρ0 and ρ1 such that

F (Q0(ρ0), Q1(ρ1)) ≥ a.

No: For every choice of n-qubit states ρ0 and ρ1,

F (Q0(ρ0), Q1(ρ1)) ≤ b.

The “yes” instances of the problem are therefore circuits

whose images (sets of possible outputs) are close with re-

spect to fidelity, while the “no” instances are circuits whose

images are far apart. Completeness of this promise problem

for QIP holds for any constants a, b with 0 < b < a ≤ 1.

In essence, the Close Images problem is a fairly straight-

forward rephrasing of the problem that asks whether a given

three-message quantum interactive proof system can be

made to accept with high probability. The fact that the Close

Images problem is hard for QIP was observed in Ref. [7], al-

though the terminology used in that paper is somewhat dif-

ferent from ours and the fact was not stated explicitly. The

QIP-hardness of the problem does, however, follow imme-

diately from the proof of Theorem 9 in that paper. The fact

that this problem has a quantum interactive proof system is

simple (and is not required for our purposes).

2.4. More notation and technical facts concerning
distance measures

The proofs in the sections that follow will require more

precise notation than has been necessary thus far, as well

as a few key facts about the distance measures discussed

previously. It is convenient to include these things at this

point, but the reader uninterested in the technical details of

the proofs may safely skip the remainder of this section. For

the most part our notation is standard and consistent with

Kitaev, Shen, and Vyalyi [6], which may be consulted for

further background information.

Hilbert spaces will be denoted by scripted letters, such

as H, K, etc. It will always be the case in this paper that

Hilbert spaces are finite dimensional and have a standard

orthonormal basis that is in correspondence with the set of

binary strings of a given length. We write, for instance, H =
C(Σn) when the standard basis of H is in correspondence

with Σn, for Σ = {0, 1}. For given Hilbert spaces H and

K, L(H,K) denotes the set of linear mappings from H to

K, and L(H) is shorthand for L(H,H). The set D(H) con-

sists of all positive semidefinite operators on H having unit

trace (i.e., all density matrices over H). The set U(H,K)
consists of all linear mappings from H to K that preserve

the Euclidean norm. Equivalently, U †U = IH (the identity

operator on H). In case dim(H) = dim(K), U(H,K) con-

sists of those mappings that are unitary, and we write U(H)
as a shorthand for U(H,H). The set T(H,K) consists of

the linear mappings from L(H) to L(K). Admissible op-

erations are examples of such mappings, which in general

will be called transformations.

The partial trace is the admissible operation obtained by

taking the tensor product of the trace with the identity trans-

formation, and corresponds to discarding part of a quantum

system. One writes trH to denote this operation when the

trace is on the space H. If X ∈ L(H) is positive semidef-



inite and |ψ〉 ∈ H ⊗ K satisfies trK |ψ〉〈ψ| = X , then |ψ〉
is said to be a purification of X . Such a purification always

exists provided dim(K) ≥ rank(X).
Uhlmann’s Theorem states that the fidelity between two

density operators ρ and ξ is precisely the maximum of the

absolute value of the inner product of any purifications of ρ
and ξ:

F (ρ, ξ) = max{|〈φ|ψ〉| : |ψ〉, |φ〉 purify ρ, ξ}.

Based on this fact, we give a somewhat different character-

ization of the fidelity that is important to a proof appearing

later.

Lemma 2.1. Let ρ, ξ ∈ D(H). Then for arbitrary purifi-

cations |ψ〉, |φ〉 ∈ H ⊗K of ρ and ξ, respectively, we have

‖trH |ψ〉〈φ|‖tr = F (ρ, ξ).

Proof. Using one of the alternate characterizations of the

trace-norm together with Uhlmann’s Theorem and a well

known fact about the unitary equivalence of purifications of

a given state, we have

‖trH |ψ〉〈φ|‖tr = max
U∈U(K)

|tr (trH |ψ〉〈φ|)U |

= max
U∈U(K)

|tr |ψ〉〈φ|(IH ⊗ U)|

= max
U∈U(K)

|〈φ|(IH ⊗ U)|ψ〉|

= F (ρ, ξ)

as claimed.

We now give a more general definition for the diamond

norm, which is consistent with the definition given previ-

ously for differences of admissible transformations.

Definition 2.2. If Φ ∈ T(H,K) then

‖Φ‖⋄
def
=

∥

∥Φ ⊗ IL(G)

∥

∥

tr
,

where G is a Hilbert space with dim(G) = dim(H) and

IL(G) denotes the identity transformation on L(G).

The following theorem implies that increasing the dimen-

sion of G would give no increase in
∥

∥Φ ⊗ IL(G)

∥

∥

tr
.

Theorem 2.3 (Kitaev [5]). Let Φ ∈ T(H,K), and let F be

a space of arbitrary finite dimension. Then

∥

∥Φ ⊗ IL(F)

∥

∥

tr
≤ ‖Φ‖⋄ .

Finally, we require the following fact, which implies that

some density matrix (as opposed to some arbitrary operator

with unit trace norm) maximizes the trace norm in Defini-

tion 2.2 in case Φ is the difference of two completely posi-

tive transformations. In particular this holds when Φ is the

difference of two admissible operations.

Lemma 2.4. Let Φ0,Φ1 ∈ T(H,K) be completely positive

and let Φ = Φ0 − Φ1. Then there exists a Hilbert space F
and a unit vector |ψ〉 ∈ H ⊗ F such that

‖Φ‖⋄ =
∥

∥(Φ ⊗ IL(F))(|ψ〉〈ψ|)
∥

∥

tr
.

Proof. Let G be a Hilbert space with dimG = dimH. Then

‖Φ‖⋄ =
∥

∥Φ ⊗ IL(G)

∥

∥

tr

= max{
∥

∥(Φ ⊗ IL(G))(X)
∥

∥

tr
: ‖X‖tr = 1}.

Let X ∈ L(H ⊗ G) achieve this maximum, let A = C(Σ)
be a Hilbert space corresponding to a single qubit, and let

Y ∈ L(H⊗ G ⊗A) be defined as

Y =
1

2
X ⊗ |0〉〈1| + 1

2
X† ⊗ |1〉〈0|.

Note that ‖Y ‖tr = ‖X‖tr = 1 and Y = Y †.

The condition that Φ = Φ0 − Φ1 for Φ0 and Φ1 com-

pletely positive implies that Φ(X)† = Φ(X†) for every

X ∈ L(H). (In fact, the two conditions are equivalent.)

Defining F = G ⊗A, we therefore have
∥

∥(Φ ⊗ IL(F))(Y )
∥

∥

tr

=
1

2

∥

∥(Φ ⊗ IL(G))(X)
∥

∥

tr
+

1

2

∥

∥(Φ ⊗ IL(G))(X
†)

∥

∥

tr

=
1

2

∥

∥(Φ ⊗ IL(G))(X)
∥

∥

tr
+

1

2

∥

∥

∥

(

(Φ ⊗ IL(G))(X)
)†

∥

∥

∥

tr

=
∥

∥(Φ ⊗ IL(G))(X)
∥

∥

tr

= ‖Φ‖⋄ .
Because Y is Hermitian, we may write

Y =
∑

i

λi|ψi〉〈ψi|

for {|ψi〉} an orthonormal set of eigenvectors of Y with real

eigenvalues {λi}. As ‖Y ‖tr = 1, we have
∑

i |λi| = 1. By

the triangle inequality we have

∥

∥(Φ ⊗ IL(F))(Y )
∥

∥

tr

≤
∑

i

|λi |
∥

∥(Φ ⊗ IL(F))(|ψi〉〈ψi|)
∥

∥

tr
.

Because
∑

i |λi | = 1, it therefore follows that
∥

∥(Φ ⊗ IL(F))(|ψi〉〈ψi|)
∥

∥

tr
≥ ‖Φ‖⋄

for some i. Let |ψ〉 = |ψi〉 for some value of i for which

this inequality is satisfied.

By Theorem 2.3 we have
∥

∥(Φ ⊗ IL(F))(|ψ〉〈ψ|)
∥

∥

tr
≤ ‖Φ‖⋄

and therefore
∥

∥(Φ ⊗ IL(F))(|ψ〉〈ψ|)
∥

∥

tr
= ‖Φ‖⋄ as re-

quired.

Strangely, this fact does not hold in general for the trace

norm ‖Φ‖tr in place of the diamond norm [15].



3. Quantum circuit distinguishability

The problem of distinguishing the actions of two circuits

is an interesting problem from a complexity theoretic stand-

point. The problem of distinguishing two classical circuits

that do not make use of randomness is in NP, as one can

easily verify that two circuits have different outputs given

an input on which they differ. If the circuits use randomness

they can be distinguished in AM by a fairly straightforward

protocol. If we change the model to quantum circuits over

pure states, which capture the intuitive notion of determinis-

tic computation using quantum information, the complexity

of the circuit distinguishability problem is in QMA (which

is essentially a quantum version of NP) as shown by Janz-

ing, Wocjan, and Beth [4]. If we combine these models,

moving to mixed state quantum circuits, where non-unitary

operations such as measurement can add randomness, we

see what appears to be a significant increase in the complex-

ity of the problem. The definition of the problem follows.

Quantum Circuit Distinguishability. This problem is pa-

rameterized by constants a, b ∈ [0, 2] with b < a. For such

constants, define a promise problem QCDa,b as follows:

Input: Mixed-state quantum circuits (Q0, Q1), both of

the same type (n,m).

Yes: ‖Q0 −Q1‖⋄ ≥ a

No: ‖Q0 −Q1‖⋄ ≤ b

One may also consider the case where a and b are functions

depending on the input length, but this paper will focus on

the case where a and b are constant.

At first glance the Quantum Circuit Distinguishability

problem may appear to be similar to the Close Images prob-

lem of the previous section. However, a more careful con-

sideration reveals that there is no straightforward relation-

ship between these problems. It is our opinion that the QCD

problem is the more interesting problem, particularly be-

cause it abstracts the natural question of whether two physi-

cal processes induce similar actions on quantum systems.

In contrast, as stated previously, the CI problem may be

viewed as a fairly straightforward rephrasing of the prob-

lem that asks whether a given three-message quantum inter-

active proof system can be made to accept with high proba-

bility.

Theorem 3.1. QCDa,b ∈ QIP for any constants a and b
with 0 ≤ b < a ≤ 2.

The proof of this theorem uses a simple proof system based

on the “blind taste-test” idea that is frequently used in the

study of interactive proofs. A description of the protocol

follows.

Protocol 3.2 (Quantum Circuit Distinguishability). In-

put to both the prover P and the verifier V is (Q0, Q1),
where circuits Q0 and Q1 are assumed to both be of

type (n,m).

1. V receives from P an n-qubit quantum register X.

2. V selects i ∈ {0, 1} uniformly and applies circuit Qi to

X. The result is an m-qubit register Y, which V sends

to P .

3. V receives from P some j ∈ {0, 1}, accepts if i = j,
and rejects otherwise.

Proof of Theorem 3.1. We will show that the verifier de-

scribed in Protocol 3.2 admits a quantum interactive proof

system for QCDa,b with acceptance probability at least

1/2 + a/4 on yes instances and acceptance probability at

most 1/2+ b/4 on no instances. It suffices to prove that the

maximum probability with which a prover can cause the

verifier described in Protocol 3.2 to accept is

1

2
+

1

4
‖Q0 −Q1‖⋄ .

Let H be the Hilbert space corresponding to the input

qubits of Q0 and Q1, and let K be the Hilbert space corre-

sponding to the output qubits. By Lemma 2.4 there exists a

Hilbert space F and a unit vector |ψ〉 ∈ H ⊗ F such that

‖Q0 −Q1‖⋄
=

∥

∥(Q0 ⊗ IL(F))(|ψ〉〈ψ|) − (Q1 ⊗ IL(F))(|ψ〉〈ψ|)
∥

∥

tr
.

Fix such a |ψ〉 and define

ρ0 = (Q0 ⊗ IL(F))(|ψ〉〈ψ|),
ρ1 = (Q1 ⊗ IL(F))(|ψ〉〈ψ|).

Let Π0 and Π1 = I −Π0 be projection operators on K⊗F
that specify an optimal projective measurement for distin-

guishing ρ0 from ρ1. Such a measurement satisfies

tr Π0(ρ0 − ρ1) = tr Π1(ρ1 − ρ0) =
1

2
‖ρ0 − ρ1‖tr .

Now, a strategy for the prover that convinces the verifier

to accept with probability

1

2
+

1

4
‖Q0 −Q1‖⋄

is as follows. The prover prepares two registers (X,Z) in

state |ψ〉 and sends X to the verifier. Upon receiving Y from

the verifier, the prover measures (Y,Z) with the measure-

ment {Π0,Π1} and returns the result to the verifier. It is a

simple calculation to show that this measurement correctly

determines i with probability

1

2
+

1

4
‖ρ0 − ρ1‖tr =

1

2
+

1

4
‖Q0 −Q1‖⋄ .



The probability of acceptance attained by the above

prover strategy is optimal, which may be argued as follows.

Let ξ denote the mixed state of the register X together with

any private qubits of the prover, which we represent as a

register Z, immediately after the first message is sent. As

before, we let F denote the Hilbert space corresponding to

the prover’s private qubit register Z. The verifier applies ei-

ther Q0 or Q1, which causes the pair (Y,Z) to be in state

(Q0 ⊗ IL(F))(ξ) with probability 1/2 and (Q1 ⊗ IL(F))(ξ)
with probability 1/2. The register Y is sent to the prover.

The prover’s final message to the verifier is measured by

the verifier, resulting in a single bit. This process may be

viewed as a binary valued measurement of registers (Y,Z).
The probability that this measurement is correct is bounded

above by

1

2
+

1

4

∥

∥(Q0 ⊗ IL(F))(ξ) − (Q1 ⊗ IL(F))(ξ)
∥

∥

tr

≤ 1

2
+

1

4
‖Q0 −Q1‖⋄

as required.

Note that a simple variant of the protocol described

above gives an ordinary interactive proof system for the

classical probabilistic version of the Circuit Distinguisha-

bility problem. As the proof system uses a constant number

of messages, this demonstrates that the classical variant of

the problem is contained in AM.

4. QIP-hardness of QCD

In this section we prove that QCDa,b is hard, with re-

spect to Karp reductions, for the class QIP for any choice of

constants a and b with 0 < b < a < 2.

Theorem 4.1. QCD2−ε,ε is QIP-complete for every ε > 0.

This theorem is proved in two stages. First, the Close Im-

ages problem (for some appropriate choice of parameters) is

reduced to QCD1,1/4, implying QIP-hardness of QCD1,1/4.

Then, it is argued that QCD1,1/4 reduces to QCD2−ε,ε for

any constant ε > 0, which is sufficient to establish the main

result. In fact, QCD2−ε,ε remains QIP-hard even when ε is

not constant, but rather is an exponentially small function

of the input size.

4.1. Overview of proof

The input to the CI problem is a description of two cir-

cuits Q0 and Q1, both of type (n,m) for nonnegative in-

tegers n and m. The reduction will transform the descrip-

tion of these two circuits into a description of two circuits

(R0, R1) that form an input to the QCD problem.

As discussed in Section 2.1 we may convert Q0 and Q1

into unitary circuits P0 and P1, acting on n + k = m + l
qubits, that simulate Q0 and Q1. Here, k is the number

of initialized qubits introduced into the circuit and l is the

number of “garbage” qubits that are discarded at the end of

the simulation. The assumption that P0 and P1 act on the

same number of qubits can be made without loss of gener-

ality, as additional dummy qubits could be added to either

circuit as necessary. Given descriptions of P0 and P1 it is

possible to efficiently construct a unitary circuit P that acts

on one more qubit than P0 and P1, and uses this additional

qubit as a control to determine which of the two circuits P0

or P1 to perform. In other words, P (|0〉|ψ〉) = |0〉P0|ψ〉
and P (|1〉|ψ〉) = |1〉P1|ψ〉 for any |ψ〉.

Next, defineD(σ) = |0〉〈0|σ|0〉〈0|+ |1〉〈1|σ|1〉〈1|. This

is an admissible operation on a single qubit that represents

the process sometimes known as decoherence. Informally,

the qubit is measured in the standard basis and the result is

forgotten. If this gate is not included in the choice of basis

gates, it can easily be constructed from gates in any basis

satisfying the requirements discussed in Section 2.1.

Finally, let R0 and R1 be circuits constructed from P
andD as described in Figure 2. Here, the input qubits toR0

andR1 correspond to the input qubits ofQ0 orQ1, which P
simulates, as well as the control qubit of P . The remaining

k qubits are initialized to the zero state, which is required

for the correct functioning of P . The qubits that are out-

put by P include the control qubit, the m qubits represent-

ing the output of Q0 or Q1, and the l “garbage” qubits that

are traced out when simulating Q0 or Q1. The circuits R0

and R1, however, reverse the roles of the output qubits and

garbage qubits of P . Specifically, the garbage qubits of P
together with the control qubit are the output qubits of R0

and R1, while the qubits of P corresponding to the output

of Q0 or Q1 are traced out by R0 and R1. It is this rever-

sal that is the key to the reduction. The circuits R0 and R1

differ only in that R1 includes the decoherence gate on the

control qubit after P is performed while R0 does not.

When either of the circuitsR0 andR1 is given an input in

which the control qubit is in a superposition of state 0 and 1,

possibly entangled with the other input qubits, in effect both

of the circuits Q0 and Q1 are run. The idea of the reduction

is that if the outputs ofQ0 and Q1 are close on their respec-

tive inputs, then discarding these outputs will not destroy

the coherence of the control qubit when the circuits are run

in superposition. Thus, the outputs of R0 and R1 will differ

significantly because of the action of the decoherence gate.

If the outputs of Q0 and Q1 are distinguishable, however,

discarding the output qubits of Q0 and Q1 is tantamount to

decoherence of the control qubit, and so there is no signifi-

cant difference between R0 and R1 in this case because the

decoherence gate is effectively redundant.

Formalizing this argument and using suitable parameters
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Figure 2. Circuits output by the reduction.

allows us to conclude that QCD1,1/4 is QIP-hard. Extend-

ing hardness to QCD2−ε,ε can be accomplished by using a

variant of Sahai and Vadhan’s method of “polarizing” sam-

plable distributions [12] applied to admissible transforma-

tions.

4.2. Proof of Theorem 4.1

The previous section discusses the fact that QCD2−ε,ε is

QIP-hard for any constant ε > 0. This section contains a

more formal proof of this fact. As QCD2−ε,ε ∈ QIP, this

will imply Theorem 4.1.

Let Q0 and Q1 be mixed-state circuits of type (n,m),
and consider the circuit construction described in Sec-

tion 4.1. To be more precise, let H = C(Σn) denote

the space corresponding to the input qubits of Q0 and Q1

and let K = C(Σm) denote the space corresponding to

the output qubits of Q0 and Q1. As discussed in Sec-

tion 2.1, it is possible to efficiently construct unitary cir-

cuits P0 and P1, acting on n + k = m + l qubits for some

choice of k and l, that simulate Q0 and Q1. Specifically, if

E = C(Σk) and F = C(Σl), then P0 and P1 induce uni-

tary transformationsU0, U1 ∈ U(H⊗E ,K⊗F) satisfying

Qi(ρ) = trF Ui(ρ⊗ |0k〉〈0k|)U †
i for i = 0, 1.

Next, let A = C(Σ) be the space corresponding to a

single qubit, and define a unitary operator

U ∈ U(A⊗H⊗ E ,A⊗K ⊗F)

by the the equations

U(|0〉|ψ〉) = |0〉U0|ψ〉,
U(|1〉|ψ〉) = |1〉U1|ψ〉

for every |ψ〉 ∈ H ⊗ E . It is possible to construct a uni-

tary circuit P whose operation is described by U that has

size polynomial in the sizes of P0 and P1. Specifically,

this may be done by replacing each gate of P0 and P1 by

a similar gate that is appropriately controlled by the qubit

corresponding to the space A and running the two circuits

one after the other. The controlled gates are of constant size

and may either be implemented directly or approximated

with very high accuracy depending on the basis gates being

considered. See Nielsen and Chuang [11, section 4.3] for

further information on such constructions. We can assume

without loss of generality that P acts on exactly those qubits

P0 and P1 act on plus the control qubit; any ancillary qubits

required by P can be included in P0 and P1.

The circuitsR0 andR1 described in Figure 2 correspond

to admissible operations R0, R1 ∈ T(A ⊗H,A ⊗ F) that

can be defined more precisely as

R0(X) = trK
(

P
(

X ⊗ |0k〉〈0k|
))

,

R1(X) = (D ⊗ IL(F))
(

trK
(

P
(

X ⊗ |0k〉〈0k|
)))

for everyX ∈ L(A⊗H). The space K, which corresponds

to the output qubits of Q0 andQ1, is the space that is traced

out by R0 and R1, while the output qubits of R0 and R1

consist of the control qubit and the “garbage” qubits of P0

and P1, which correspond to F . Descriptions of these two

new circuits can be computed in polynomial time given de-

scriptions of Q0 and Q1.

The following lemma formalizes the intuition discussed

previously that R0 andR1 act very differently ifQ0 andQ1

can be made to have outputs that have high fidelity with one

another.

Lemma 4.2. For Q0, Q1, R0, and R1 as above, we have

‖R0 −R1‖⋄
= max {F (Q0(ρ0), Q1(ρ1)) : ρ0, ρ1 ∈ D(H)} .

Proof. Let ρ0, ρ1 ∈ D(H) be any two states. We will first

show that

‖R0 −R1‖⋄ ≥ F (Q0(ρ0), Q1(ρ1)).



DefineW0,W1 ∈ L(H,K⊗F) as Wi = Ui(IH⊗|0k〉) for

i = 0, 1, where Ui is the unitary operator corresponding to

circuit Pi. Each Wi is a unitary embedding that effectively

concatenates k ancillary qubits to a vector in H, and then

performsUi on the resulting vector. Let |ψ0〉, |ψ1〉 ∈ H⊗G
be any purifications of ρ0, ρ1, respectively, where G is any

Hilbert space large enough to admit such purifications. Let

|ψ〉 = 1√
2
|0〉|ψ0〉+ 1√

2
|1〉|ψ1〉 and consider the action ofR0

and R1 on |ψ〉〈ψ| (with the circuits acting trivially on the

space G). The circuits are identical aside from the decoher-

ence gate. Immediately after the circuit P is performed but

before the qubits corresponding to the space K are traced

out, the state obtained for both circuits will be |φ〉〈φ|, for

|φ〉 = 1√
2
|0〉|φ0〉+ 1√

2
|1〉|φ1〉, where |φ0〉 = (W0⊗IG)|ψ0〉

and |φ1〉 = (W1 ⊗ IG)|ψ1〉. The output of circuit R0 can

therefore be written as

1

2
trK (|0〉〈0| ⊗ |φ0〉〈φ0| + |0〉〈1| ⊗ |φ0〉〈φ1|

+ |1〉〈0| ⊗ |φ1〉〈φ0| + |1〉〈1| ⊗ |φ1〉〈φ1|)
while the output of circuit R1 is

1

2
trK (|0〉〈0| ⊗ |φ0〉〈φ0| + |1〉〈1| ⊗ |φ1〉〈φ1|) .

This is because the effect of the decoherence gate is to elim-

inate the cross-terms |0〉〈1|⊗|φ0〉〈φ1| and |1〉〈0|⊗|φ1〉〈φ0|.
As |φ0〉, |φ1〉 ∈ K ⊗F ⊗G are purifications of Q0(ρ0) and

Q1(ρ1), respectively, we may conclude by Theorem 2.3 and

Lemma 2.1 that

‖R0 −R1‖⋄
≥

∥

∥(R0 ⊗ IL(G))(|φ〉〈φ|) − (R1 ⊗ IL(G))(|φ〉〈φ|)
∥

∥

tr

=
1

2
‖|0〉〈1| ⊗ trK |φ0〉〈φ1| + |1〉〈0| ⊗ trK |φ1〉〈φ0|‖tr

= ‖trK |φ0〉〈φ1|‖tr

= F (Q0(ρ0), Q1(ρ1)).

Next, by Lemma 2.4 we have

‖R0 −R1‖⋄
=

∥

∥(R0 ⊗ IL(G))(|ψ〉〈ψ|) − (R1 ⊗ IL(G))(|ψ〉〈ψ|)
∥

∥

tr

for some Hilbert space G and unit vector |ψ〉 ∈ A⊗H⊗G.

As |ψ〉 is a unit vector we may write

|ψ〉 =
√
p |0〉|ψ0〉 +

√

1 − p |1〉|ψ1〉
for |ψ0〉, |ψ1〉 ∈ H ⊗ G unit vectors and p ∈ [0, 1]. Let

|φi〉 = (Wi ⊗ IG)|ψi〉 and ρi = trG |ψi〉〈ψi|, for i = 0, 1.

We have
∥

∥(R0 ⊗ IL(G))(|ψ〉〈ψ|) − (R1 ⊗ IL(G))(|ψ〉〈ψ|)
∥

∥

tr

= 2
√

p(1 − p) ‖trK |φ0〉〈φ1|‖tr

≤ F (Q0(ρ0), Q1(ρ1)).

This completes the proof of the lemma.

This lemma and the above construction imply that

CIa,b ≤p
m QCDa,b

for all a, b ∈ [0, 1] with b < a. As CI1,1/4 is a complete

promise problem for QIP and QCD1,1/4 is in QIP, we have

that QCD1,1/4 is QIP-complete.

Finally, we can extend the QIP-hardness of QCD1,1/4 to

instances of the Quantum Circuit Distinguishability prob-

lem with a much stronger promise. This fact is based on a

generalization of the “polarization” method developed by

Sahai and Vadhan [12] in the context of statistical zero-

knowledge.

Theorem 4.3. Let a, b ∈ (0, 2) satisfy 2b < a2. There ex-

ists a deterministic, polynomial-time procedure that, when

given as input (R0, R1, 1
n), where R0 and R1 are mixed-

state quantum circuits, outputs quantum circuits (S0, S1)
such that

1. ‖R0 −R1‖⋄ ≤ b ⇒ ‖S0 − S1‖⋄ < 2−n, and

2. ‖R0 −R1‖⋄ ≥ a ⇒ ‖S0 − S1‖⋄ > 2 − 2−n.

Sahai and Vadhan proved this theorem for polynomial-time

samplable distributions, and it was observed in Ref. [13]

that the theorem carries over to polynomial-time preparable

quantum states. In the present case we observe a further ex-

tension to admissible transformations. As one might hope,

there are no conceptual changes required for this extension.

The details that follow are included for the sake of com-

pleteness.

Lemma 4.4. If transformations Φ0,Φ1 ∈ T(H,K) satisfy

‖Φ0 − Φ1‖⋄ = ε, then

2 − 2e
−kε

2

8 <
∥

∥Φ⊗k
0 − Φ⊗k

1

∥

∥

⋄ ≤ kε.

Proof. Let F be a Hilbert space of dimension equal to that

of H, and let Y ∈ L(H⊗F) satisfy ‖Y ‖tr = 1 and

∥

∥(Φ0 ⊗ IL(F))(Y ) − (Φ1 ⊗ IL(F))(Y )
∥

∥

tr

= ‖Φ0 − Φ1‖⋄ = ε.

Then because
∥

∥Y ⊗k
∥

∥

tr
= 1 we have

∥

∥Φ⊗k
0 − Φ⊗k

1

∥

∥

⋄

≥
∥

∥

∥

(

(Φ0 ⊗ IL(F))(Y )
)⊗k −

(

(Φ1 ⊗ IL(F))(Y )
)⊗k

∥

∥

∥

tr

≥ 2 − 2e
−kε

2

8 .

The last inequality follows from the result for states analo-

gous to what is here being proved [13].



The second inequality will be proved by induction. The

base case k = 1 is true by assumption, so assume that k > 1

and define Ψi = Φ
⊗(k−1)
i for i ∈ {0, 1}. We have

∥

∥Φ⊗k
0 − Φ⊗k

1

∥

∥

⋄
= ‖Ψ0 ⊗ Φ0 − Ψ1 ⊗ Φ1‖⋄
= ‖Ψ0 ⊗ Φ0 − Ψ1 ⊗ Φ0 + Ψ1 ⊗ Φ0 − Ψ1 ⊗ Φ1‖⋄
≤ ‖(Ψ0 − Ψ1) ⊗ Φ0‖⋄ + ‖Ψ1 ⊗ (Φ0 − Φ1)‖⋄
= ‖Ψ0 − Ψ1‖⋄ ‖Φ0‖⋄ + ‖Ψ1‖⋄ ‖Φ0 − Φ1‖⋄ .

Because the diamond norm of any admissible transforma-

tion is one (see [1] for a proof), we obtain

‖Ψ0 − Ψ1‖⋄ ‖Φ0‖⋄ + ‖Ψ1‖⋄ ‖Φ0 − Φ1‖⋄
≤ (k − 1)ε+ ε = kε

as required.

Lemma 4.5. There is a deterministic polynomial-time pro-

cedure that, on input (Q0, Q1, 1
r), where Q0, Q1 are de-

scriptions of mixed-state quantum circuits, produces as out-

put descriptions of two quantum circuits, (R0, R1) satisfy-

ing

2 − 2 exp
(

− r
8
‖Q0 −Q1‖2

⋄

)

≤ ‖R0 −R1‖⋄ ≤ r ‖Q0 −Q1‖⋄ .
Proof. For i = 0, 1, construct Ri by placing r copies of the

circuit Qi in parallel. Then Ri = Q⊗r
i , and the bounds on

‖R0 −R1‖⋄ follow from Lemma 4.4.

Proposition 4.6. Let Φ0,Φ1 ∈ T(H,K) and Ψ0,Ψ1 ∈
T(F ,G). Define

Ξ0 =
1

2
Φ0 ⊗ Ψ0 +

1

2
Φ1 ⊗ Ψ1,

Ξ1 =
1

2
Φ0 ⊗ Ψ1 +

1

2
Φ0 ⊗ Ψ1.

Then ‖Ξ0 − Ξ1‖⋄ = 1
2 ‖Φ0 − Φ1‖⋄ · ‖Ψ0 − Ψ1‖⋄.

Proof. The diamond norm is multiplicative with respect to

tensor products [6], and thus

‖Ξ0 − Ξ1‖⋄ =

∥

∥

∥

∥

1

2
(Φ0 − Φ1) ⊗ (Ψ0 − Ψ1)

∥

∥

∥

∥

⋄

=
1

2
‖Φ0 − Φ1‖⋄ · ‖Ψ0 − Ψ1‖⋄

as required.

Lemma 4.7. There is a deterministic polynomial-time pro-

cedure that, on input (Q0, Q1, 1
r), where Q0, Q1 are de-

scriptions of mixed-state quantum circuits, produces as out-

put descriptions of two quantum circuits (R0, R1) satisfying

‖R0 −R1‖⋄ = 2

(‖Q0 −Q1‖⋄
2

)r

.

Proof. The circuit R0 performs a transformation defined as

R0 =
1

2r−1

∑

x1,...,xr∈{0,1}
x1+···+xr≡0 (mod2)

Qx1
⊗ · · · ⊗Qxr

while R1 performs a similar transformation defined as

R1 =
1

2r−1

∑

x1,...,xr∈{0,1}
x1+···+xr≡1 (mod2)

Qx1
⊗ · · · ⊗Qxr

.

These circuits are effectively running r copies of Q0 and/or

Q1 in parallel, with the choice of Q0 or Q1 determined uni-

formly at random subject to the constraint that R0 applies

an even number of copies of Q1 while R1 applies an odd

number. Such circuits may be constructed in time polyno-

mial in the sizes of Q0 and Q1. A proof by induction based

on Proposition 4.6 establishes that R0 and R1 have the re-

quired property.

Proof of Theorem 4.3. First, we apply the procedure given

by Lemma 4.5 to (Q0, Q1, 1
r), with

r =
⌈

log(16n)/ log(a2/(2b))
⌉

,

obtaining circuits (Q′
0, Q

′
1) satisfying

‖Q0 −Q1‖⋄ < b ⇒ ‖Q′
0 −Q′

1‖⋄ < 2(b/2)r,

‖Q0 −Q1‖⋄ > a ⇒ ‖Q′
0 −Q′

1‖⋄ > 2(a/2)r.

Next, we apply the procedure given by Lemma 4.7 to

(Q′
0, Q

′
1, 1

s), where s = ⌊(b/2)−r/4⌋, obtaining circuits

(Q′′
0 , Q

′′
1) satisfying

‖Q′′
0 −Q′′

1 ‖⋄ < 2(b/2)r(b/2)−r/4 = 1/2

if ‖Q0 −Q1‖⋄ < b and

‖Q′′
0 −Q′′

1 ‖⋄ > 2 − 2 exp(−s
2
(a/2)2r) ≥ 2 − 2e−2n+1

if ‖Q0 −Q1‖⋄ > a. Finally, we apply the construction

of Lemma 4.5 once more, this time to (Q′′
0 , Q

′′
1 , 1

t), where

t = ⌈(n+ 1)/2⌉, obtaining circuits (R0, R1) satisfying

‖R0 −R1‖⋄ < (1/2)(n+1)/2(1/2)(n−1)/2 = 2−n

if ‖Q0 −Q1‖⋄ < b and

‖R0 −R1‖⋄
> (2 − 2e−2n+1)⌈(n+1)/2⌉(1/2)⌈(n+1)/2⌉−1

≥ 2 − 2−n

if ‖Q0 −Q1‖⋄ > a. The circuits (R0, R1) have size

polynomial in r, s, t and the size of the original circuits

(Q0, Q1). Because r, s, t are bounded by polynomials in

n, the size of the constructed circuits is polynomial in the

size of the input.

Theorem 4.3 implies that QCD1,1/4 ≤p
m QCD2−ε,ε for

every ε > 0, which completes the proof of Theorem 4.1.



5. Conclusion

We have demonstrated that the problem of distinguishing

mixed-state quantum circuits is a complete promise prob-

lem for the class QIP, and is therefore hard for PSPACE.

We conclude with a few open questions suggested by this

fact.

• Does the QIP-completeness of the QCD problem shed

any light on properties of QIP? For instance, is QIP

closed under complementation? Is QCD ∈ PSPACE,

which would imply QIP = PSPACE?

• There are interesting questions and results relating to

implementations of quantum computers that deal with

unitary circuits with mixed-state inputs. (See, e.g.,

[2, 8].) Analogues of the QCD problem can be defined

for this setting. For example, one might consider uni-

tary circuits that act on some collection of inputs to-

gether with a collection of qubits in the totally mixed

state. How hard is the QCD problem in this context?

• As it is not known whether QIP = PSPACE, the QCD

problem is a candidate problem for QIP\PSPACE. Are

there any reasonable non-promise problem candidates

for problems in QIP but not in PSPACE?
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