Lecture 4

Regularization of the smoothed
max-relative entropy

In this lecture we will prove an important theorem concerning the smoothed max-
relative entropy, which is that by regularizing the smoothed max-relative entropy
we obtain the ordinary quantum relative entropy:

£ Xn Xn
111’1’1 DmaX (IO HU )

n—s00 n

= D(p||o) (4.1)

for all density operators p,c € D(X) and all € € (0, 1). For the sake of clarity, recall
that we define the smoothed max-relative entropy with respect to trace-distance
smoothing:

Di . (ollo) = inf Dpax(¢|le 4.2
(pllr) =, inf Do(0) 4

where

Be(p) = {C €D(X) : 3o -2l <e}. (4.3)

Bibliographic remarks

Lemma 4.4, which in some sense is the engine that drives the proof we will discuss,
is due to Bjelakovi¢ and Siegmund-Schultze (arXiv:quant-ph/0307170), who used
it to prove the so-called quantum Stein lemma, and through it obtained an alternative
proof of the monotonicity of quantum relative entropy.

The more direct route from Bjelakovi¢ and Siegmund-Schultze’s lemma to the
regularization (4.1) to be followed in this lecture appears in the following as-of-yet
unpublished manuscript:

Shitikanth Kashyap, Ashwin Nayak, and Michael Saks. Asymptotic equiparti-
tion for quantum relative entropy revisited. Manuscript, 2014.
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4.1 Strong typicality

The general notion of typicality is fundamentally important in information theory,
and there is a sense in which it goes hand-in-hand with the concept of entropy. We
will begin the lecture with a brief and directed summary of strong typicality, which
is a particular formulation of typicality that is convenient for the proof.

First let us introduce some notation. Supposing that X is an alphabet, for every
string a; - - -a, € X" and symbol a € ¥, we write

N(alay---a,) =|{ke{1,...,n} : ay = a}

, (4.4)

which is simply the number of times the symbol a occurs in the string a; - - - a,.
With respect to that notation, strong typicality is defined as follows.

Definition 4.1. Let X be an alphabet, let p € P(X) be a probability vector, let n be
a positive integer, and let § > 0 be a positive real number. A string a; - - -a, € 2" is
d-strongly typical with respect to p if

N(a|ay---ap)

L p(a)| < pla)s 45)

for every a € X. The set of all -strongly typical strings of length n with respect
to p is denoted S, 5(p).

What the definition expresses is that the proportion of each symbol in a strongly
typical string is approximately what one would expect if the individual symbols
were chosen independently at random according to the probability vector p. No-
tice that because it is the quantity p(a)d, as opposed to ¢, that appears on the right-
hand side of the inequality in the definition, we have that the error tolerance for the
frequency with which each symbol appears shrinks proportionately as the proba-
bility for that symbol to appear shrinks—and if p(a) = 0 for some a € L, then a
strongly typical string cannot include the symbol a at all.

Next we will prove two basic facts concerning the notion of strong typicality.
The two facts are stated as the lemmas that follow.

Lemma 4.2. Let X be an alphabet, let p € P(X) be a probability vector, let n be a positive
integer, and let 6 > 0 be a positive real number. It is the case that

Y. plar)-plan) >1-2 Y exp(—2n6*p(a)?). (4.6)
0 S0 (p) it
pla
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Proof. Suppose first that a € X is fixed, and consider the probability that a string
ay - --ay € X", where each symbol is selected independently at random according
to the probability vector p, satisfies

N(al|ay---ay)
n

—p(a)| > p(a)éd. (4.7)

To upper-bound this probability, one may define Xj, ..., X, to be independent and
identically distributed random variables, taking value 1 with probability p(a) and
value 0 otherwise, so that the probability of the event (4.7) is equal to

Pr(‘ Lt + Xn

—p(a)

n

> p(a)d). (4.8)
If it is the case that p(a) > 0, then Hoeffding’s inequality implies that

([t

> p(a)&) < 2exp(—2n6°p(a)?), (4.9)

while it is the case that
Pr (' Lt t An

—p(a)

n

> p(a)5) =0 (4.10)

in case p(a) = 0. The lemma follows from the union bound. O

Lemma 4.3. Let X be an alphabet, let p € P(X) be a probability vector, let n be a positive
integer, let 6 > 0 be a positive real number, let ay - - - a, € Sy, 5(p) be a §-strongly typical
string with respect to p, and let ¢ : X — [0, 00) be a nonnegative real-valued function.
The following inequality is satisfied:

(P(al) +o +¢<an) o Z p(a)¢(a)

n

<5y pa)p(a). (4.11)

acex

aex

Proof. The inequality (4.11) follows from the definition of strong typicality together
with the triangle inequality:

n

|(P(a1) + +(P(a”) . Z p(a)cp(a)

acy
=X (N(”‘”;”'””)—pw))ﬂa) (412)
< | MR )| gfa) <5 T plajoa),
as required. O
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4.2 Lemmas

Next we will prove two lemmas that are needed for the proof of the main theo-
rem to which this lecture is devoted. The first of these lemmas is the one due to
Bjelakovi¢ and Siegmund-Schultze mentioned at the start of the lecture.

Lemma 4.4. Let p,0 € D(X) be density operators for which im(p) C im(c) and let
0 > 0 be a positive real number. There exist positive real numbers K and y such that, for
every positive integer n, there exists a projection operator 11, acting on X®" satisfying
[I1,,0%"] =0,
(I1,, p®") > 1 — Kexp(—pun), (4.13)
and
2(1+5)nTr(plog((7))Hn < Hn0'®n1—[n < 2(1—(5)nTr(plog(0))Hn. (4.14)

Proof. By considering a spectral decomposition of o, one may select an alphabet %,
an orthonormal set {x, : 2 € £} C X, and a probability vector ¢ € P(X) such that

=Y q(a)x.x; (4.15)

and g(a) > 0 for all a € X. Define a new probability vector p € P(X) as

p(a) = x;px, (4.16)

for every a € X. The fact that p is indeed a probability vector follows from the
assumption that p is a density operator with im(p) C im(o).

Real numbers K and y satisfying the requirements of the lemma may now be
selected as follows:

K = 2|supp(p)],

H= 262 min{p(a)z aex, pla) > 0}. 4.17)

Toward a verification that K and yu satisfying the requirements of the lemma, let

I, = Z xalle R ® xanx;"n, (4.18)
ay-+an€Sy,6(p)
where S, 5(p) denotes the set of d-strongly typical sequences with respect to the
probability vector p, for every positive integer n. The condition [IT,, c*"] = 0 is
immediate, while the bound

(I, ")y = Y. plar)---p(an)

a1--an €S, 5(p)

>1-2 Y exp(—2n6°p(a)*) > 1— Kexp(—un)
plm=0

(4.19)
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follows directly from Lemma 4.2.
It remains to prove the inequalities in (4.14). As

1,01, = Yoo glar) - qan)xex; @ @ xq, x5, (4.20)
ay--an€S,,5(p)

these inequalities are equivalent to

— (1= 0)nTe(plog(0)) < — kzl log(q(ay)) < —(1+6)nTr(plog(c))  (421)

for every aj---a, € S,s(p). By taking ¢(a) = —log(gq(a)) for every a € X in
Lemma 4.3, so that
Y p(a)¢(a) = —Tr(plog(c)), (4.22)
acx.
the inequalities (4.21) are obtained, which completes the proof. O

The next lemma is just a technical fact concerning the inner-product of a prod-
uct of projection operators with a density operator.

Lemma 4.5. Let p € D(X) be a density operator, let € > 0 be a positive real number, and
let TT and A be projection operators on X that satisfy (I1,p) > 1 —eand (A, p) > 1 —¢.
It is the case that

(ATIA, p) > 1 — 6. (4.23)

Proof. Notice that the inequality in (4.23) is trivially satisfied when e > 1/6. It may
therefore be assumed that ¢ < 1/6 for the remainder of the proof.
Observe first that

(ATIA, p) = Te([1ApATT) = [[1A V2 > |y TIAVE) > = [(ATLp) P, (429
where the inequality is by the Cauchy-Schwarz inequality. Next, by the identity
1=(1-A)(1—-1II)+A+TII—AI], (4.25)
one sees that
(AL p) = (A, p) + (L, p) =1+ ((1 — A)(1 —T1), p), (4.26)
and by the triangle inequality,

[(ALL p)| = [(A, p) + (ILp) — 1+ (1 — A)(1 — 1), p)|

(4.27)
> (A, p) + (T, p) — 1| — [{((1 — A) (1 —T1), p)|.
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By the assumption that ¢ < 1/6, which implies that 1 — 2¢ is nonnegative, one
immediately observes the inequality

(A, p) + (1L p) —1[ =1 —2e. (4.28)
By the Cauchy-Schwarz inequality, we have
(1= a)(1 =T1),0)] = [{((1 = TT)\/p, (1 = A) /)]
< ([ =10y, ]| (1 = 8)vpll, = /(1 —TLp)y/ (1 —A,p) <&

It follows that

(4.29)

[(AILp)| > 1 —3e. (4.30)

Again using the assumption ¢ < 1/6, so that 1 — 3¢ is nonnegative, we see that
(ATIA, p) > (1—3e)* > 1—6¢, (4.31)
as required. O

Remark 4.6. If A commutes with p, then the bound established by the previous
lemma can be improved to
(ATIA, p) > 1 — 2e. (4.32)

To see that this is so, note that
p—ApA = (1—A)p(1—A), (4.33)
and therefore
(ALIA, p) = (I1, p) + (IL, ApA — p) = (ILp) — (IL (1 = A)p(1 — A)). (434
Because (1 — A)p(1 — A) is positive semidefinite and I'T < 1, it follows that
(ATIA, p) = (TLp) = Tr((1 — A)p(1 — A)) = (ILp) — (1 —A,p) > 1—2e. (4.35)

Remark 4.7. The proof of the lemma above can be extended to the assumptions
(IL,p) >1—¢eand (A, p) > 1 — 0 to obtain
2

(ALIA, p) > (1 P \/e_(s) (4.36)

We’'re also going to make use of Winter’s gentle measurement lemma, which is
a very useful and well-known fact.
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Lemma 4.8 (Winter’s gentle measurement lemma). Let X be a complex Euclidean
space, let p € D(X) be a density operator, and let P € Pos(X) be a positive semidefinite
operator satisfying P < 1 and (P, p) > 0. This inequality is satisfied:

F(p%f) > \/(P,p). (4.37)

Proof. Observe that for any two positive semidefinite operators Q and R, it is nec-
essarily the case that F(R, QRQ) = (R, Q). Indeed,

v/ VRQRQVR = \/ (VRQVR)? = VRQVR, (4.38)

and therefore
F(R,QRQ) = Tr< vVROQRQVR ) = Tr(\/EQ\/E) = (R, Q). (4.39)

By this formula, along with the square root scaling of the fidelity function, one
finds that

VPovP) 1 _ (VP,p)
F<p, o >_ <P’p>F(p,\/ﬁp\/ﬁ>_ T (4.40)

Finally, under the assumption 0 < P < 1, it is the case that VP > P, and
therefore (v/P,p) > (P, p), from which the lemma follows. O

Remark 4.9. We will actually only need the lemma for P being a projection opera-
tor, in which case v/P = P, and so the lemma holds with equality in (4.37).

4.3 Main theorem

Now we’re ready for the main theorem and its proof. Here it is.

Theorem 4.10. Let p, 0 € D(X) be density operators. For every € € (0,1), the following
equality holds.
i Dfnax (p®nHU®n>
n—oo n

— D(pllo). (8.41)

Proof. Let us first consider the case that im(p) € im(c). In this case the right-hand
side of (4.41) is infinite, and so we must prove the same for the left-hand side.
This follows from the fact that D5, (0" ||c®") is infinite for all but finitely many
positive integers n. Indeed, let A be the projection onto im(c), so that ¢ = AcA
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and (A, p) < 1. Now, for a given choice of 1, one has that if ¢, € D(X*®") satisfies
im(¢&,) C im(c®"), then

(&, p2") = F(E, A" 0= A" < \/Tr(A®np®nA®n) — <A,p>%, (4.42)

and therefore ,
316 =%l = 1- (A0 (449

by one of the Fuchs—van de Graaf inequalities. The right-hand side of this inequal-
ity must exceed ¢ for all but finitely many positive integers n, by the fact that
(A, p) < 1.1t follows that for all but finitely many positive integers n, there are
no elements of B, (p®") whose images are contained in im(c®"), which implies for
any such n that D, (0“"||c®") = oo.

For the remainder of the proof it will be assumed that im(p) C im(c). Let
6 > 0 be chosen arbitrarily, and for each positive integer n, let I'l,, be the projection
whose existence is guaranteed by Lemma 4.4 for p, 7, §, and n, and also let A, be
the projection whose existence is guaranteed by Lemma 4.4, again for p, §, and n,
but where ¢ is replaced by p. Thus, we have [I1,,c®"| = 0 and [A,, p®"] = 0, and
the following inequalities are satisfied:

2(1+5)nTr(plog(U))Hn < Hn0.®n1—[n < 2(1—(5)nTr(plog(0))Hn/ (4.44)
2~ (1+0)nHp) A < Ap® Ay < 2~ (1=d)nH(p)p (4.45)
(Ay, ") > 1 — Kexp(—un), (4.46)

(IT,,, 0®™) > 1 — Kexp(—pun), (4.47)

where K and y are positive constants independent of .
It will first be proved that

s Xn Xn
lim sup Dinax ('0 HU )

n—00 n

< D(p|o). (4.48)

The projection operator A, commutes with p®", and therefore

by Remark 4.6. It is therefore the case that (A, p®"), (IT,, p°"), and (A, I1,A,, p“™)
are all positive for all but finitely many 7, and we will restrict our attention to those
n for which these values are all positive.
Define a density operator
LA AT,

Cn = AnTLiA, por) (4.50)
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for all values of n under consideration. We will begin by proving a bound on the
trace distance between &, and p®". To this end, observe that

e =071, < 38—l + 51w =0 @s1)

for AnP®nAn
Ty = Tan, 7o’ (4.52)

and notice that I, 11,
Cn = T, o) (4.53)

By Winter’s gentle measurement lemma and one of the Fuchs—van de Graaf in-
equalities, we find that

1 1| IT,7,I1,
- _ - = — < 4/1—{I1 4.54
2”6” Ti’l”l ZH <Hn,Tn> Ti’l . — < n/Tn>/ ( 5 )
and because (AT, A ®n>
o nllnODy, 0 ®
<Hn, Tn> = <An/,0®n> > <AanAn;P n>, (4.55)
we obtain
1
SIen =l < \/1 — (AaTT,A,, 1) < \/2Kexp(—]/m). (4.56)

Along similar (although simpler) lines, we find that

%Hrn — 0%, < /1= (An,p®7) < \/Kexp(—pun). (4.57)

These upper bounds are decreasing to 0 (exponentially quickly, as it happens), and
therefore

1
Slen—p" <& (4.58)
or equivalently &, € B¢(p®"), implying
Diax (0%"]|0®") < Dinax (§u | c®"), (4.59)

for all but finitely many n. Let us further restrict our attention to these values of n.
Next, we will use the inequalities (4.44) and (4.45) to obtain an upper-bound on
Dmax (gfn ||(T®”). First, by (4.45), together with A, < 1 and H% = I1,, we find that

HnAnp(X)nAan < —(1=d)n H(p)HHAan < 2—(1—5)nH(p)Hn. (4.60)
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Second, by (4.44), together with the fact that [I1,, c®"] = 0, we have

1, < 2—(1+(5)nTr(plog(tf))HnU@an < 2—(1+5)nTr(plog((7))0.®n. (4.61)

Combining (4.60) and (4.61), we obtain

I1,A,0%" AT, < 2" D(pl|o)+on(H(p)=Tr(plog(0))) yen (4.62)

Accounting for the normalization of ¢, and making use of (4.49), we find that

Drmax (&n|lo™") < nD(plle) + én(H(p) — Tr(plog(c)))

4.63
—log(1 — 2K exp(—un)). (469)
At this point we may conclude that
DE ®n Xn
lm sup Dnax(? - I7) < Do) + 5(H(p) ~ Te(olog(@)), 6
n—o00

and as J was an arbitrarily chosen positive real number, we obtain the required
inequality (4.48).
Now we will prove the reverse inequality

£ Xn Xn
lim inf Dinax ('0 HU )
n—roo n

> D(p||o). (4.65)

Let 6 > 0 again be chosen arbitrarily. For every positive integer it is the case that

(%", T AT, ) = (A, TT,0®"1,) < 20-0nTlplog(@) (A, TT,) (4.66)
by (4.44), as well as
(B, ) < 20FOMHO (A, pEn A, T, ) < 20000 Hip) (4.67)

by (4.45). It therefore follows that the operator

7, = 2" Dlelle)—én(H(p)~Tr(plog(7)))TT A, TT,, (4.68)

is positive semidefinite and satisfies (¢®",Z,) < 1. By an inspection of the dual
form of Optimization Problem 3.2, the conic program for the exponential of the
smoothed max-relative entropy, we conclude that

Dinax (0"[|e") = nD(p||o) — on(H(p) — Tr(plog(r)))

inf log(IL,AnILy, Cn).
* el BT 80

(4.69)
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For every &, € B(p®") we have, by virtue of the fact that p®" — ¢, is traceless and
0 S HnAan S ]1, that

(T BuTT, 0™ — &) < [0 — |, <& (4.70)

and therefore

<HnAan/ €n> = <HnAan/P®n> + <HnAan/ gn - P®n>

4.71)
>1—6Kexp(—un) —¢

by Lemma 4.5. Consequently,

Dinax (0"[|e") = nD(p||o) — on(H(p) — Tr(plog(r)))

+log(1 — 6Kexp(—un) —¢). @)

Given the assumption ¢ € (0,1), one concludes that log(1 — 6K exp(—pun) — ¢)
converges to a constant value as n goes to infinity. It follows that

£ (271 Xn
liminf Dimax ('0 Ha )
n—r00 n

> D(pllo) — 6(H(p) ~ Tr(plog(0)).  (473)

Once again, as 6 was an arbitrarily chosen positive real number, the required in-
equality (4.65) follows. O

Remark 4.11. An alternative way to argue the closeness of &, to p®" is to use a
different known equality concerning the fidelity function, which is that

F(AA*,BB*) = || A*B|| (4.74)

for any choice of operators A,B € L(X,Y). (This fact is closely connected with
Uhlmann’s theorem, and can be found as Lemma 3.21 in my book Theory of Quan-
tum Information.) In the present case, we obtain

FHAP®nAH,p®n :H p®HAH p®n
( nn niin ) \/ n ﬂ\/ .
Tr< p®nAan\/ p®n) ‘ = <AanAn,p®n>,

where the last equality makes use of [A,, p®"] = 0. A suitable bound on the trace
distance between ¢, and p®” is obtained through the Fuchs-van de Graaf inequal-
ities.

(4.75)
>
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And we will conclude with two corollaries.

It is not important that ¢ is a density operator in Theorem 4.10—it is true for
arbitrary positive semidefinite models. The only part of the proof that depends on
the scaling of ¢ occurs in the proof of Lemma 4.4, where g € P(X) implies that
¢$(a) = —log(g(a)) is nonnegative. Although it would not be difficult to modify
this portion of the proof slightly to handle arbitrary positive semidefinite models,
it is perhaps simpler to observe it as a fairly straightforward corollary of Theo-
rem 4.10.

Corollary 4.12. If p is a density operator and Q is any nonzero positive semidefinite
operator, we have
L Dh (077 0°7)

n—oo n

~ D(p]Q). (476)

Proof. Leto = Q/ Tr(Q). Then

Dfnax (P®nHQ®n) — D?nax (p®nH Tr(Q)”0-®n)

= Diax (0" || ") — nlog(Tr(Q))

SO
- Dhax (07"[1Q%") _ - Dhnax (0°"[|*")
lim - = lim - — log(Tr(Q))
= D(pllo) —log(Tr(Q))
=D(pllQ),
as required. ]

The second and final corollary is quite spectacular. Of course it is well-known,
and we proved it in CS 766/QIC 820, but now we have a completely different
alternative proof.

Corollary 4.13 (Monotonicity of quantum relative entropy). Let p,c € D(X) be
density operators and let ® € C(X,Y) be a channel, for complex Euclidean spaces X
and Y. It is the case that D(®(p)||P(c)) < D(p||o).

Proof. Observe first that the smoothed max-relative entropy is monotonic:
Dinax (P()[®(¢)) < _inf Dmax(P(Z)[[®(0))
geBe(p)

< inf Dmax(&||o) = Diax(plle
S (¢lle) (plle)

(4.77)
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by the monotonicity of the max-relative entropy. Therefore,

D(@(p)[@(0)) = fim max(PE@)[|P(@)7")

n—oo n
o D (@) [ (051)
o n—oo n

< 1iy Pmax (07"
n—oo n

= D(pllo),

as required.

45
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