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Steering is the entanglement-based quantum effect that embodies the “spooky action at a dis-
tance” disliked by Einstein and scrutinized by Einstein, Podolsky, and Rosen. Here we provide a
necessary and sufficient characterization of steering, based on a quantum information processing
task: the discrimination of branches in a quantum evolution, which we dub subchannel discrimina-
tion. We prove that, for any bipartite steerable state, there are instances of the quantum subchannel
discrimination problem for which this state allows a correct discrimination with strictly higher
probability than in the absence of entanglement, even when measurements are restricted to local
measurements aided by one-way communication. On the other hand, unsteerable states are useless
in such conditions, even when entangled. We also prove that the above steering advantage can be
exactly quantified in terms of the steering robustness, which is a natural measure of the steerability
exhibited by the state.

PACS numbers: 03.67.Mn, 03.67.Bg, 03.65.Ud

Entanglement is a property of distributed quantum
systems that does not have a classical counterpart and
challenges our everyday-life intuition about the physi-
cal world [1]. It is also the key element in many quan-
tum information processing tasks [2]. The strongest fea-
ture exhibited by entangled systems is non-locality [3].
A weaker feature related to entanglement is steering :
roughly speaking, in quantum steering one party can in-
duce very different ensembles for the local state of the
other party, beyond what is possible based only on a con-
ceivable classical knowledge about the other party’s “hid-
den state” [4, 5]. Steering embodies the “spooky action at
a distance”—in the words of Einstein [6]—identified by
Schrödinger [7], scrutinized by Einstein, Podolsky, and
Rosen [8], and formally put on sound ground in [4, 5].
Not all entangled states are steerable, and not all steer-
able states exhibit nonlocality [4, 5], but states that ex-
hibit steering allow for the verification of their entangle-
ment in a semi-device independent way: there is no need
to trust the devices used by the steering party [4, 5, 9].
Besides its foundational interest, steering is interesting
in practice in bipartite tasks, like quantum key distribu-
tion (QKD) [10], where it is convenient or appropriate
to trust the devices of one of two parties, but not neces-
sarily of the other one. For example, by exploiting steer-
ing, key rates unachievable in a fully device-independent
approach [11] are possible, still assuming less about the
devices than in a standard QKD approach [12]. For these
reasons, steering has recently attracted significant in-
terest, both theoretically and experimentally [13–30],
mostly directed to the verification of steering. Nonethe-
less, an answer to the question “What is steering useful

for?” can arguably be considered limited [9, 12]. Further-
more, the quantification of steering has just started to be
addressed [24].

In this Letter we fully characterize and quantify steer-
ing in an operational way that mirrors the asymmetric
features of steering, and that breaks new ground in the
investigation of the usefulness of steering. We prove that
every steerable state is a resource in a quantum infor-
mation task that we dub subchannel discrimination, in
a practically relevant scenario where measurements can
only be performed locally. Subchannel discrimination is
the identification of which branch of a quantum evolu-
tion a quantum system undergoes (see Fig. 1). It is well
known that entanglement between a probe and an an-
cilla can help in discriminating different channels [31–44].
In [45] it was proven that every entangled state is useful
in some instance of the subchannel discrimination prob-
lem. Ref. [46] analyzed the question of whether such an
advantage is preserved when joint measurements on the
output probe and the ancilla are not possible. Here we
prove that, when only local measurements coordinated
by forward classical communication are possible, every
steerable state remains useful, while non-steerable en-
tangled states become useless. We further prove that this
usefulness, optimized over all instances of the subchannel
discrimination problem, is exactly equal to the robustness
of steering, a natural way of quantifying steering using
techniques similar to the ones used in [24], but based on
the notion of robustness [47–50].

Preliminaries: entanglement and steering.— We will
denote using a ˆ (hat) mathematical entities that are
“normalized.” So, for example, a positive semidefinite op-
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erator with unit trace is a (normalized) state ρ̂. An en-
semble E = {ρa}a for a state ρ̂ is a collection of substates
ρa ≤ ρ̂ such that

∑
a ρa = ρ̂. Each substate ρa is pro-

portional to a normalized state ρ̂a, ρa = paρ̂a, with
pa = Tr(ρa) the probability of ρ̂a in the ensemble. An as-
semblage A = {Ex}x = {ρa|x}a,x is a collection of ensem-
bles Ex for the same state ρ̂, one for each x, i.e.,

∑
a ρa|x =

ρ̂, for all x. For example, E = { 12 |0〉〈0|,
1
2 |1〉〈1|} and

E ′ = { 12 |+〉〈+|,
1
2 |−〉〈−|}, with |±〉 := (|0〉 ± |1〉)/

√
2,

are both ensembles for the maximally mixed state 11/2
of a qubit, and taken together they form an assemblage
A = {E , E ′} for 11/2. Along similar lines, a measurement
assemblage MA = {Ma|x}a,x is a collection of positive
operators Ma|x ≥ 0 satisfying

∑
aMa|x = 11 for each x,

which thus represents one positive-operator-valued mea-
sure (or POVM), describing a quantum measurement, for
each x. For a fixed bipartite state ρ̂AB , every measure-
ment assemblage on Alice leads to an assemblage on Bob
via

ρBa|x = TrA
(
MA
a|xρ̂AB

)
. (1)

On the other hand, every assemblage on Bob {σa|x}a,x
has a quantum realization (1) for some ρ̂AB satisfying
ρ̂B = TrA(ρ̂AB) =

∑
x σa|x =: σ̂B and for some measure-

ment assemblage [51].
An assemblage A = {ρa|x}a,x is unsteerable if

ρUS

a|x =
∑
λ

p(λ)p(a|x, λ)σ̂(λ) =
∑
λ

p(a|x, λ)σ(λ), (2)

for all a, x, for some probability distribution p(λ), condi-
tional probability distributions p(a|x, λ), and states σ̂(λ).
Here λ indicates a (hidden) classical random variable,
and we also introduced subnormalized states σ(λ) =
p(λ)σ̂(λ). We observe that every conditional probability
distribution p(a|x, λ) can be written as a convex combi-
nation of deterministic conditional probability distribu-
tions: p(a|x, λ) =

∑
ν p(ν|λ)D(a|x, ν), where D(a|x, ν) =

δa,fν(x) is a deterministic response function labeled by ν.
This means that, by a suitable relabeling,

ρUS

a|x =
∑
λ

D(a|x, λ)σ(λ) ∀a, x, (3)

where the summation is over labels of deterministic re-
sponse functions. We say that an assemblage {ρa|x}a,x is
steerable if it is not unsteerable.

A separable (or unentangled) state decomposes as
σ̂sep
AB =

∑
λ p(λ)σ̂A(λ) ⊗ σ̂B(λ), for σ̂A(λ), σ̂B(λ) local

states, λ a classical label, and p(λ) a probability distri-
bution [52]. A state is entangled if it is not separable. An
unsteerable assemblage can always be obtained via (1)
from the separable state ρAB =

∑
λ p(λ)|λ〉〈λ|A⊗ σ̂(λ)B ,

with Ma|x =
∑
µ p(a|x, µ)|µ〉〈µ|, and 〈µ|λ〉 = δµλ.

Most importantly, any separable state can only lead
to unsteerable assemblages, as, for a separable state,

ρ
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Λ̂

FIG. 1. A decomposition of a channel into subchannels can be
seen as a decomposition of a quantum evolution into branches
of the evolution. If {Λa}a is an instrument for Λ̂, then we can

imagine that the evolution ρ 7→ Λ̂[ρ] has branches ρ 7→ Λa[ρ],
where each branch takes place with probability Tr(Λa[ρ]). The

transformation described by the total channel Λ̂ can be seen
as the situation where the “which-branch” information is lost.
An example of subchannel discrimination problem is that of
distinguishing between the two quantum evolutions Λi[ρ] =

KiρK
†
i , i = 0, 1, with K0 = |0〉〈0| +

√
1− γ|1〉〈1| and K1 =√

γ|0〉〈1|, corresponding to the so-called amplitude damping

channel Λ̂ = Λ0 + Λ1 [2].

one has TrA(Ma|xσ
sep
AB) =

∑
λ p(λ)p(a|x, λ)σB(λ), with

p(a|x, λ) = TrA(Ma|xσA(λ)). It follows that entangle-
ment is a necessary condition for steerability, and, in
turn, a steerable assemblage is a clear signature of en-
tanglement. Interestingly, not all entangled states lead to
steerable assemblages by the action of appropriate local
measurement assemblages [4, 5]; we call steerable states
those that do, and unsteerable states those that do not.
There exist entangled states that are steerable by one
party but not the other (see, e.g., [22]). In this Letter,
when we refer to a state being steerable or unsteerable,
it is always to be assumed that Alice is the steering party.

Channel and subchannel identification.— A subchannel
Λ is a linear completely positive map that is trace non-
increasing: Tr(Λ[ρ]) ≤ Tr(ρ), for all states ρ. If a sub-
channel Λ is trace-preserving, Tr(Λ[ρ]) = Tr(ρ), for all
ρ, we use the ˆnotation and say that Λ̂ is a channel. An
instrument I = {Λa}a for a channel Λ̂ is a collection of
subchannels Λa such that Λ̂ =

∑
a Λa (see Figure 1). Ev-

ery instrument has a physical realization, where the index
a can be considered available to some party [2, 53, 54].

Fix an instrument {Λa}a for a channel Λ̂, and con-
sider a measurement {Qb}b on the output space of Λ̂. The
joint probability of Λa and Qb for input ρ is p(a, b) :=
Tr(QbΛa[ρ]) = p(b|a)p(a), where p(a) = Tr(Λa[ρ]) is the
probability of the subchannel Λa for the given input ρ
and p(b|a) = p(a, b)/p(a) is the conditional probability of
the outcome b given that the subchannel Λa took place.
The probability of correctly identifying which subchannel
was realized is

pcorr({Λa}a, {Qb}b, ρ) =
∑
a

Tr(QaΛa[ρ]). (4)

The archetypal case of subchannel discrimination is
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FIG. 2. Different strategies for subchannel discrimination. (a)
No entanglement is used: a probe, initially in the state ρ, un-
dergoes the quantum evolution Λ̂, with branches Λa, and is
later measured, with an outcome b for the measurement de-
scribed by the POVM {Qb}b, which is the guess for which
branch of the evolution actually took place. (b) The probe B
is potentially entangled with an ancilla A; the output probe
and the ancilla are jointly measured. (c) The probe is still
potentially entangled with an ancilla, but the final measure-
ment {Qb}b is restricted to local measurements on the output
probe and the ancilla, coordinated by one-way classical com-
munication (single lines represent quantum systems, double
lines classical information): the outcome x of the measure-
ment {Nx}x performed on the output probe is used to decide
which measurement {Mb|x}b to perform on the ancilla.

that of channel discrimination, where Λa = paΛ̂a, with
channels Λ̂a and probabilities pa. The problem often
considered is that of telling apart just two channels
Λ̂0 and Λ̂1, each given with probability p0 = p1 =
1/2. In this case the total (average) channel is simply
Λ̂ = 1

2 Λ̂0 + 1
2 Λ̂1. The best success probability in iden-

tifying subchannels {Λa}a with an input ρ is defined
as pcorr({Λa}a, ρ) := max{Qb}b pcorr({Λa}a, {Qb}b, ρ).
Optimizing also over the input state, one arrives at
pNE
corr({Λa}a) := maxρ pcorr({Λa}a, ρ), where the super-

script NE stands for “no entanglement” (see Fig. 2(a)).

Indeed, one may try to improve the success probability
by using an entangled input state ρAB of an input probe
B and an ancilla A. The guess about which subchannel
took place is based on a joint measurement of the out-
put probe and the ancilla (see Fig. 2(b)), with success
probability pcorr({ΛBa }a, {QABb }b, ρAB). In the latter ex-
pression we have explicitly indicated that the subchan-
nels act non-trivially only on B, while input state and
measurement pertain to AB. One can define the opti-
mal probability of success for a scheme that uses input
entanglement and global measurements: pEcorr({Λa}a) :=
maxρAB max{QABb }b pcorr({Λ

B
a }a, {QABb }b, ρAB). We say

that entanglement is useful in discriminating subchan-

nels {Λa}a if pEcorr({Λa}a) > pNE
corr({Λa}a). It is known

that there are instances of subchannel discrimination, al-
ready in the simple setting {Λa}a = { 12 Λ̂0,

1
2 Λ̂1}, where

pEcorr ≈ 1� pNE
corr ≈ 0 (see [46] and references therein).

In [45] it was proven that, for any entangled state ρAB ,
there exists a choice { 12 Λ̂0,

1
2 Λ̂1} such that

pcorr

({1

2
Λ̂0,

1

2
Λ̂1

}
, ρAB

)
> pNE

corr

({1

2
Λ̂0,

1

2
Λ̂1

})
,

i.e., that every entangled state is useful for the task of
(sub)channel discrimination. In this sense, every entan-
gled state, independently of how weakly entangled it is,
is a resource. Nonetheless, exploiting such a resource may
require arbitrary joint measurements on the output probe
and ancilla [46]. From a conceptual perspective, one may
want to limit measurements to those performed by local
operations and classical communication (LOCC), as this
makes the input entangled state the only non-local re-
source. This limitation can be justified also from a practi-
cal perspective: LOCC measurements are arguably easier
to implement, and might be the only feasible kind of mea-
surements, especially in a scenario where only weakly en-
tangled states can be produced. We do not know whether
every entangled state stays useful for subchannel discrim-
ination when measurements are restricted to be LOCC,
but we will see that, if the measurements are limited
to local operations and forward communication (one-way
LOCC), then only steerable states remain useful.

Steerability and subchannel identification by means
of restricted measurements.— A Bob-to-Alice one-way
LOCC measurement MB→A = {QB→Aa }a has the struc-
ture QB→Aa =

∑
xM

A
a|x ⊗ N

B
x , where {NB

x }x is a mea-

surement on B and {MA
a|x}a,x is a measurement as-

semblage on A. The optimal probability of success in
the discrimination of the instrument IB = {ΛBa }a by
means of the input state ρAB and one-way LOCC mea-
surements from B to A (see Fig. 2(c)) is given by
pB→Acorr (I, ρAB) := maxMB→A pcorr(IB ,MB→A, ρAB). We
say that ρAB is useful in this restricted-measurement sce-
nario if pB→Acorr (I, ρAB) > pNE

corr(I) for some instrument I
[55]. Using (1), we find that

pcorr(IB ,MB→A, ρAB) =
∑
a,x

TrB(Λ†Ba [NB
x ]ρa|x), (5)

where Λ†a denotes the dual map to Λa, which may be
defined via Tr(XΛa[Y ]) = Tr(Λ†a[X]Y ), ∀X,Y . If the as-
semblage A = {ρa|x}a,x appearing in (5) is unsteerable,
then we can achieve an equal or better performance us-
ing an uncorrelated probe in the best input state σ̂(λ)
among the ones appearing in Eq. (2). Thus, if ρAB is un-
steerable, then it is useless for subchannel discrimination
with one-way measurements. This applies also to entan-
gled states that are unsteerable, which are nonetheless
useful in channel discrimination with arbitrary measure-
ments [45].
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We will now prove that every steerable state is useful
in subchannel discrimination with one-way LOCC mea-
surements. To state our result in full detail we need to
introduce the steering robustness of ρAB ,

RA→Bsteer (ρAB) := sup
MA

R(A), (6)

where the supremum is over all measurement assemblages
MA = {Ma|x}a,x on A, R(A) is the steering robustness
of the assemblage A, defined as the minimum value of
t ≥ 0 for which there exists an assemblage {τa|x} for
which {(ρa|x + t τa|x)/(1 + t)}a,x is unsteerable, and A
is obtained from ρAB with the measurement assemblage
MA on A (see Eq. (1)). The steering robustness of A,
which is nonzero if and only if A is steerable, is a measure
of the minimal “noise” needed to destroy the steerability
of the assemblage A, with noise intended as the mixing
with an arbitrary assemblage {τa|x}a,x. We prove the fol-
lowing.

Theorem 1. Every steerable state is useful in one-way
subchannel discrimination. More precisely, it holds

sup
I

pB→Acorr (I, ρAB)

pNE
corr(I)

= RA→Bsteer (ρAB) + 1, (7)

where the supremum is over all instruments I.

Proof. Details of the proof appear in [56]; a summary is
as follows. Using the definitions above, one checks that

pcorr(IB ,MB→A, ρAB) ≤ (1 +RA→Bsteer (ρAB))pNE
corr(I),

for any MB→A and any I. It remains to prove that the
bound can be approximated arbitrarily well by construct-
ing appropriate instances of the subchannel discrimina-
tion problem. To do this, we will need that the steering
robustness R(A) of any assemblage A = {ρa|x}a,x can be
calculated via semidefinite programming (SDP) [57]. In
particular, R(A) + 1 is equal to the optimal value of the
SDP optimization problem

maximize
∑
a,x

Tr(Fa|xρa|x) (8a)

subject to
∑
a,x

D(a|x, λ)Fa|x ≤ 11 ∀λ (8b)

Fa|x ≥ 0 ∀a, x, (8c)

where each λ labels a deterministic response function.
Now, let MA = {Ma|x}a,x be a measurement assem-

blage on A, and A the resulting assemblage on B. Let
Fa|x be optimal, so that

∑
a,x Tr(Fa|xρa|x) = 1 + R(A).

Define linear maps Λa via their duals, as

Λ†a = Λ†a ◦ΠX ∀a, (9)

Λ†a [|x〉〈x|] = αFa|x ∀a, x. (10)

Here ◦ is composition, and ΠX indicates the projector
onto an orthonormal basis {|x〉}, x = 1, . . . , |X|, where
|X| is the number of settings in the measurement assem-
blage MA. The constant α > 0 will be chosen soon. By
the conditions (8c), (9), and (10), each Λ†a is completely
positive, and therefore so is each Λa; these maps act as
Λa[ρ] = α

∑
x Tr(Fa|xρ)|x〉〈x|, and are subchannels as

long as
∑
a Λ†a[11] =

∑
a,x Λ†a[|x〉〈x|] = α

∑
a,x Fa|x ≤ 11,

a condition that can be satisfied for α = ‖
∑
a,x Fa|x‖−1∞ ,

with ‖ · ‖∞ the operator norm.
Finally, we introduce N additional subchannels

Λa[ρ] = 1
N Tr((11 −

∑
a Λ†a[11])ρ)σ̂a, for a = |A| +

1, . . . , |A| + N , where |A| indicates the original num-
ber of outcomes for POVMs in MA, and σ̂a are ar-
bitrary states in a two-dimensional space orthogonal
to span{|x〉 |x = 1, . . . , |X|}. In totality, the sub-
channels {Λa} define an instrument I for the trace-

preserving channel Λ̂ =
∑|A|+N
a=1 Λa, and one can in-

corporate the measurement assemblage MA into a one-
way LOCC strategy MB→A such that α(1 + R(A)) ≤
pcorr(IB ,MB→A, ρAB) ≤ α(1+R(A))+ 2

N . On the other
hand, condition (8b) implies α ≤ pNE

corr(I) ≤ α + 2
N , so

pcorr(IB ,MB→A, ρAB)/pNE
corr(I) ≥ 1+R(A)

1+2/(αN) . The claim

follows by taking N to be arbitrarily large.

Conclusions.— We have proven that the steerable
states are precisely the states useful for the task of
subchannel discrimination with feed-forward local mea-
surements. This answers a question left open by [46]
about the characterization of a large class of entan-
gled states that remain useful for (sub)channel discrim-
ination with local measurements. Most importantly, it
provides a full operational characterization—and proof
of usefulness—of steering in terms of a fundamental
task, subchannel discrimination, in a setting—that of re-
stricted measurements—very relevant from the practical
point of view. The construction in the proof of Theorem 1
proves that, for any measurement assemblage MA on A
such that the corresponding A exhibit steering with ro-
bustness R(A) > 0, there exist instances of the subchan-
nel discrimination problem with restricted measurements
where the use of the steerable state ensures a probability
of success approximately (1 + R(A))-fold higher than in
the case where no entanglement is used. Thus, the robust-
nesses R(A) and RA→Bsteer (ρAB) have operational meanings
not only in terms of the resilience of steerability versus
noise, but also in applicable terms. Also, they constitute
semi-device-independent lower bounds

R(A) ≤ RA→Bsteer (ρAB) ≤ Rg(ρAB) (11)

on the generalized robustness of entanglement Rg(ρAB),
which is the minimum t ≥ 0 for which there exists some
state τ so that (ρAB + t τAB)/(1 + t) is separable. That
(11) holds is immediate, given that a separable state
only leads to unsteerable assemblages. Notice that Rg
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is an entanglement measure with operational interpreta-
tions itself [58, 59]. We believe that the quantification
of steerability we have introduced is more fine-grained
than the approach of [24], while preserving the compu-
tational efficiency derived from the use of semidefinite
programming. For example, while the so-called steering
weight of [24] is such that all pure entangled states, how-
ever weekly entangled, are deemed maximally steerable,
because of (11) we know that weakly entangled pure
states have small steering robustness [49]. On the other
hand, maximally entangled states ψ+

d for large local di-
mension d do have large steering robustness. Indeed, we
prove [56] that, if d is some power of a prime number,
then RA→Bsteer (ψ+

d ) ≥
√
d− 2.

Many questions remain open for further investiga-
tion: a closed formula for the steerability robustness of
pure (maximally entangled) states; whether the result
of Theorem 1 can be strengthened to prove that ev-
ery steerable state is useful for channel—rather than
general subchannel—discrimination with restricted mea-
surements; whether general LOCC (rather than one-way
LOCC) measurements can restore the usefulness of all
entangled states for (sub)channel discrimination.
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ROBUSTNESS AS SEMIDEFINITE PROGRAM

Inspired by the work of Pusey [1] and Skrzypczyk et
al. [2], we prove that calculating the steering robustness
R(A) of an assemblage A = {ρa|x}a,x falls under the
umbrella of semidefinite programming (SDP) [3].

The steering robustness of A is defined as

R(A) := min

{
t ≥ 0

∣∣∣∣ {ρa|x + t τa|x

1 + t

}
a,x

unsteerable,

{τa|x} an assemblage

}
, (1)

and therefore corresponds to the minimum nonnegative
t such that

ρa|x = (1 + t)σUS

a|x − tτa|x, ∀a, x,

with {σUS

a|x}a,x an unsteerable assemblage and {τa|x}a,x
an arbitrary assemblage. Notice that, because {ρa|x}a,x
and {σUS

a|x}a,x are assemblages,

τa|x =
(1 + t)σUS

a|x − ρa|x
t

also defines an assemblage, provided that

(1 + t)σUS

a|x ≥ ρa|x, ∀a, x. (2)

As {σUS

a|x}a,x is unsteerable,

σUS

a|x =
∑
λ

D(a|x, λ)σ(λ) ∀a, x, (3)

we can rewrite Eq. (2) as the condition

(1 + t)
∑
λ

D(a|x, λ)σλ ≥ ρa|x, ∀a, x,

where each σλ is a subnormalized state, and the sum is
over all the deterministic strategies to output a given x.
Considering that the factor (1 + t) can be absorbed into
each operator σλ (so that they are generally unnormal-
ized, rather subnormalized), one realizes that R(A) + 1

can be characterized as the solution to the following op-
timization problem:

minimize
∑
λ

Tr(σλ)

subject to
∑
λ

D(a|x, λ)σλ ≥ ρa|x ∀a, x

σλ ≥ 0 ∀λ

(4)

This is an example of SDP optimization problem [3]. For
our purposes, the primal problem of an SDP is an opti-
mization problem cast as

minimize 〈C,X〉
subject to Φ[X] ≥ B

X ≥ 0,

where:

• 〈C,X〉 is the objective function;

• B and C are given Hermitian matrices;

• X is the matrix variable on which to optimize;

• 〈X,Y 〉 := Tr(X†Y ) is the Hilbert-Schmidt inner
product;

• Φ is a given Hermiticity-preserving linear map.

The dual problem provides a lower bound to the objective
function of the primal problem. The dual problem is given
by

maximize 〈B, Y 〉
subject to Φ†[Y ] ≤ C

Y ≥ 0,

where Φ† is the dual of Φ with respect to the Hilbert-
Schmidt inner product, and Y is another matrix variable.

One says that strong duality holds when the optimal
values of the primal and dual problems coincide. Strong
duality holds in many cases, and in particular under the
Slater conditions that (i) the primal and dual problems
are both feasible, and moreover the primal problem is
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strictly feasible, meaning that there is a positive definite
X > 0 such that Φ[X] > B, or (ii) the primal and dual
problems are both feasible, and moreover the dual prob-
lem is strictly feasible, meaning that there is a Y > 0
such that Φ†[Y ] < C. In case (i), not only do the primal
and dual values coincide, but there must exist Yopt that
achieves the optimal value for the dual problem; and sim-
ilarly, in the case (ii), there must exist Xopt that achieves
the optimal value in the primal problem.

In our case, C = 11, B = diag(ρa|x)a,x, and

Φ[X] = diag

(∑
λ

D(a|x, λ)Xλ

)
a,x

,

where diag(·)a,x indicates a block-diagonal matrix whose
diagonal blocks are labeled by a, x, and the Xλ operators
are the diagonal blocks of X, labeled by λ. Thus, we have

Φ†[Y ] = diag

(∑
a,x

D(a|x, λ)Ya|x

)
λ

,

and the dual of the primal problem (4) reads

maximize
∑
a,x

Tr(Fa|xρa|x) (5a)

subject to
∑
a,x

D(a|x, λ)Fa|x ≤ 11 ∀λ (5b)

Fa|x ≥ 0 ∀a, x, (5c)

It is easy to verify that both Slater conditions hold
in our case. For instance, one can take σλ = 211 for

all λ, and Fa|x = 11
|X|+1 for all a, x, with |X| being

the number of possible values for x. Thus, there exist
Fa|x = F opt

a|x satisfying the constraints of Eq. (5) and

such that
∑
a,x Tr(Fa|xρa|x) = 1 +R(A).

We remark that the optimal Fa|x can always be chosen
to saturate (5b). That is, there is a deterministic strategy
D(a|x, λ) and a normalized pure state |φ〉 such that∑

a,x

D(a|x, λ)〈φ|Fa|x|φ〉 = 〈φ|11|φ〉 = 1 (6)

This is because otherwise it is always possible to increase
(in operator sense) some Fa|x’s, still maintaining the op-
timal value for the objective function (which is operator
monotone in the Fa|x’s).

DETAILS OF THE PROOF OF THEOREM 1

The claimed upper bound,

pcorr(IB ,MB→A, ρAB) ≤ (1 +RA→Bsteer (ρAB))pNE
corr(I),

can be proved using

pcorr(IB ,MB→A, ρAB) =
∑
a,x

TrB(Λ†Ba [NB
x ]ρa|x), (7)

and the definitions

RA→Bsteer (ρAB) := sup
MA

R(A), (8)

and (1):

pcorr(IB ,MB→A, ρAB) =
∑
a,x

TrB(Λ†Ba [NB
x ]ρa|x)

≤ (1 +R(A))
∑
a,x

TrB(Λ†Ba [NB
x ]σUS

a|x)

−R(A)
∑
a,x

TrB(Λ†Ba [NB
x ]τUS

a|x)

≤ (1 +R(A))pNE
corr(I) ≤ (1 +RA→Bsteer (ρAB))pNE

corr(I).

On the other hand, suppose that MA = {Ma|x}a,x,
where a = 1, . . . , |A| and x = 1, . . . , |X|, is a measure-
ment assemblage on A such that the corresponding as-
semblage A = {ρa|x = TrA(MA

a|xρAB)}a,x is steerable.

Let Fa|x ≥ 0 be the operators optimal for (5), such that∑
a,x Tr(Fa|xρa|x) = 1+R(A). In the proof of Theorem 1

of the main text we defined subchannels Λa that act as

Λa[ρ] ={
α
∑|X|
x=1 Tr(ρFa|x)|x〉〈x| 1 ≤ a ≤ |A|

1
N Tr((11−

∑|A|
a=1 Λ†a[11])ρ)σ̂a |A|+ 1 ≤ a ≤ |A|+N,

(9)

where α = ‖
∑
a,x Fa|x‖−1∞ > 0, and the σ̂a,

a = |A| + 1, . . . , |A| + N , are arbitrary (normalized)
states in a two-dimensional subspace orthogonal to
span{|x〉 |x = 1, . . . , |X|}. It is immediate to check

that Tr
(∑|A|+N

a=1 Λa[ρ]
)

= Tr(ρ) (by construction), so

I = {Λa}a=1,...,|A|+N is an instrument for the channel∑|A|+N
a=1 Λa.
Let σAB be an arbitrary bipartite state on AB, and

let MAB→A = {Qa}B→Aa be an arbitrary one-way mea-
surement from B to A, i.e., QB→Aa =

∑
yM

′A
a|y ⊗ N

′B
y ,

to guess which subchannel was actually realized. Notice
that y in the latter expression potentially varies in an
arbitrary range, different from the range {1, . . . , |X|} for
the parameter x of the fixed measurement assemblage
MA. Nonetheless we observe that Λa = Π′X ◦ Λa for
a = 1, . . . , |A|+N , where ◦ is composition, and

Π′X [τ ] =

|X|∑
x=1

|x〉〈x|τ |x〉〈x|+ Π⊥τΠ⊥,

with Π⊥ the projector onto the two-dimensional space
orthogonal to span{|x〉 |x = 1, . . . , |X|} that supports
the arbitrary qubits states σ̂a, a = |A| + 1, . . . , |A| + N .
Also,

ΛBa [σAB ] =
1

N

σA − |A|∑
a′=1

TrB(ΛBa′ [σAB ])

⊗ σ̂Ba ,
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for a = |A|+ 1, . . . , |A|+N . This implies that, for what-
ever input σAB , the optimal QB→Aa can be chosen to have
the form

QB→Aa

=

{∑|X|
x=1M

′A
a|x ⊗ |x〉〈x|

B 1 ≤ a ≤ |A|
11A ⊗NB

a , |A|+ 1 ≤ a ≤ |A|+N,

(10)

with Π⊥NaΠ⊥ = Na, for |A| + 1 ≤ a ≤ |A| + N , a
POVM on the orthogonal qubit space. Omitting a de-
tailed and straightforward proof of this, we instead pro-
vide the following intuition: For the subchannels (9), the
best local measurement on the output probe is one that
first of all discriminates between the space span{|x〉 |x =
1, . . . , |X|} and the orthogonal qubit space. If the probe
is found in the space span{|x〉 |x = 1, . . . , |X|}, the probe
is then measured in the basis {|x〉 |x = 1, . . . , |X|} and
the result if forwarded to decide which measurement to
perform on the ancilla: this is optimal because, in this
subspace, the output probe is already dephased in the
basis {|x〉 |x = 1, . . . , |X|}. If the probe is instead found
in the orthogonal qubit space, there is no information
to be gained from the ancilla, since, for the state of the
probe to have support in the orthogonal qubit space, the
probe must have been discarded and prepared in one of
the random qubit states σ̂a. So, in this case, the ancilla is
necessarily decorrelated and its state independent of the
specific Λa, a = |A|+ 1, . . . , |A|+N , that has been real-
ized; thus the optimal guess about said Λa can be made
as soon as the output probe is measured.

Then, for an optimal MB→A = {QB→Aa }a of the form
(10), we find in general

pcorr(IB ,MB→A, σAB)

=

|A|+N∑
a=1

Tr(QB→Aa ΛBa [σAB ])

=

|A|∑
a=1

Tr(QB→Aa ΛBa [σAB ]) +

|A|+N∑
a=|A|+1

Tr(QB→Aa ΛBa [σAB ])

=

|A|∑
a=1

|X|∑
x=1

Tr(M ′Aa|x ⊗ |x〉〈x|BΛBa [σAB ])

+

1−
|A|∑
a=1

Tr(ΛBa [σAB ])

 1

N

|A|+N∑
a=|A|+1

Tr(Naσ̂a)

=

|A|∑
a=1

|X|∑
x=1

Tr(Λ†a[|x〉〈x|]σa|x)

+

1−
|A|∑
a=1

Tr(ΛBa [σAB ])

 1

N

|A|+N∑
a=|A|+1

Tr(Naσ̂a),

with σa|x = TrA(M ′a|xσAB). By construction it holds that

Λ†a[|x〉〈x|] = αFa|x for 1 ≤ a ≤ |A| and 1 ≤ x ≤ |X|,

therefore

pcorr(IB ,MB→A, ρAB)

= α

|A|∑
a=1

|X|∑
x=1

Tr(Fa|xσa|x)

+

1−
|A|∑
a=1

Tr(ΛBa [σAB ])

 1

N

|A|+N∑
a=|A|+1

Tr(Naσ̂a)

≤ α
|A|∑
a=1

|X|∑
x=1

Tr(Fa|xσa|x) +
2

N
.

(11)
In the last line we used1−

|A|∑
a=1

Tr(ΛBa [σAB ])

 ≤ 1

and

1

N

|A|+N∑
a=|A|+1

Tr(Naσ̂a) ≤ 1

N
Tr

 |A|+N∑
a=|A|+1

Na


≤ 1

N
Tr(Π⊥) =

2

N
. (12)

It is clear that if σAB = ρAB and M ′a|x = Ma|x in (10),
so that σa|x = ρa|x, then we have

1 +R(A) ≤ pcorr(IB ,MB→A, ρAB) ≤ 1 +R(A) +
2

N
.

It remains to prove that

α ≤ pNE
corr(I) ≤ α+

2

N
. (13)

This is readily verified by considering that (5b) can be
saturated, as argued at the end of the previous section
(see (6)), for an optimal solution of the SDP problem. So
we have that for some deterministic D(a|x, λ) and some
uncorrelated input state |φ〉 to the channel,

1 =

|A|∑
a=1

|X|∑
x=1

D(a|x, λ)〈φ|Fa|x|φ〉

=
1

α

|A|∑
a=1

|X|∑
x=1

D(a|x, λ)〈φ|Λ†a[|x〉〈x|]|φ〉

=
1

α

|A|∑
a=1

Tr

 ∑
x:D(a|x,λ)=1

|x〉〈x|

Λa[|φ〉〈φ|]


=

1

α

|A|∑
a=1

Tr (M ′′aΛa[|φ〉〈φ|]) ,

having defined M ′′a :=
∑
x:D(a|x,λ)=1 |x〉〈x|. Considering

also the subchannels Λa, a = |A| + 1, . . . , |A| + N , and
bounding their contribution to the probability of success
as in (11), we arrive at (13).
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ON THE SCALING OF THE STEERABILITY OF
MAXIMALLY ENTANGLED STATES

We have argued that RA→Bsteer (ρAB) ≤ Rg(ρAB), where
Rg(ρAB) is the generalized entanglement robustness

Rg(ρAB) = min
{
t ≥ 0

∣∣∣ ρAB + t τAB
1 + t

separable, τ a state
}
.

Indeed, let τAB be optimal for the generalized entangle-
ment robustness, i.e., suppose

σAB =
ρAB +Rg(ρAB)τAB

1 +Rg(ρAB)

is separable. Then σa|x = TrA(Ma|xσAB) is unsteerable
for any measurement assemblage {Ma|x}a,x, proving that
Rg(ρAB) is an upper bound to RA→Bsteer (ρAB) (see Eq. (8)).
This means that, if a state is weakly entangled with re-
spect to Rg, it is also weakly steerable with respect to
RA→Bsteer . In [4] it was proven that, for any bipartite pure
state

|ψ〉AB =
∑
i

√
pi|i〉A|i〉B ,

here in its Schmidt decomposition, the generalized entan-
glement robustness is equal to

Rg(|ψ〉〈ψ|AB) =

(∑
i

√
pi

)2

− 1 = 2N (|ψ〉〈ψ|AB),

where N is the negativity of entanglement [5]. In partic-
ular, then, for a maximally entangled state in dimension
d× d, |ψ+

d 〉AB = 1√
d

∑d
i=1 |i〉A|i〉B , one has

RA→Bsteer (ψ+
d,AB) ≤ Rg(ψ+

d,AB) = d− 1,

having used the notation ψ+
d,AB = |ψ+

d 〉〈ψ
+
d |AB .

We conclude by providing a lower bound on
RA→Bsteer (ψ+

d,AB) for d a power of a prime number. We will
use techniques similar to the ones used in the examples
of [6].

Fix d to be the power of a prime number. Then we
know that there there are d+ 1 mutually unbiased bases,
i.e., d+ 1 orthonormal sets {|ψa|x〉}a=1,...,d, one for each
x = 1, . . . , d+ 1, such that [7]

|〈ψa|x|ψb|y〉| =

{
δa,b x = y
1√
d

x 6= y

We will consider a measurement assemblage {Ma|x =

|ψa|x〉〈ψa|x|}a,x. Suppose ρAB = ψ+
d,AB . We have

ρBa|x = TrA(MA
a|xψ

+
d,AB) =

1

d
|ψ∗a|x〉〈ψ

∗
a|x|

Here |ψ∗a|x〉 indicates orthonormal vectors whose coeffi-

cients in the local basis {|i〉B} are the complex conjugate

of the coefficients of |ψa|x〉 in the local basis {|i〉A}. Thus,
the bases {|ψ∗a|x〉}a=1,...,d are still mutually unbiased.

We want to lower bound the steering robustness of
{ρBa|x}a,x, which in turn will give us a lower bound on

RA→Bsteer (ψ+
d,AB). To do this, we use a specific choice for

the Fa|x’s in (5). We choose Fa|x = β|ψ∗a|x〉〈ψ
∗
a|x|, where

β > 0 will be fixed to satisfy (5b) (condition (5c) is sat-
isfied for any β ≥ 0), i.e.,∥∥∥∥∥∑

a,x

D(a|x, λ)Fa|x

∥∥∥∥∥
∞

≤ 1

for all deterministic D(a|x, λ). With our choice of Fa|x,
this can be achieved by taking

β ≤

(
max
λ

∥∥∥∥∥∑
x

|ψ∗fλ(x)|x〉〈ψ
∗
fλ(x)|x|

∥∥∥∥∥
∞

)−1
(14)

the maximum being over all functions fλ : {1, . . . , d +
1} → {1, . . . , d}, labeled by λ. To estimate the right hand
side of (14), we will use the fact [8] that, for

|γ〉CD =

d+1∑
x=1

|ψ∗fλ(x)|x〉C |x〉D,

where {|x〉}x=1....,d+1 is an orthonormal basis, the spec-
trum of

TrD(|γ〉〈γ|CD) =
∑
x

|ψ∗fλ(x)|x〉〈ψ
∗
fλ(x)|x|.

is the same as the spectrum of

TrC(|γ〉〈γ|CD) =
∑
x,y

〈ψ∗fλ(x)|x|ψ
∗
fλ(y)|y〉|y〉〈x|

=
∑
x

|x〉〈x|+ 1√
d

∑
x 6=y

eiφx,y |y〉〈x|

=

(
1− 1√

d

)
11 +

1√
d

∑
x,y

eiφx,y |y〉〈x|

where φx,y are real numbers representing phases. Thus,
we have∥∥∥∥∥∑

x

|ψ∗fλ(x)|x〉〈ψ
∗
fλ(x)|x|

∥∥∥∥∥
∞

=

∥∥∥∥∥∑
x,y

〈ψ∗fλ(x)|x|ψ
∗
fλ(y)|y〉|y〉〈x|

∥∥∥∥∥
∞

≤
(

1− 1√
d

)
+

1√
d

∥∥∥∥∥∑
x,y

eiφx,y |y〉〈x|

∥∥∥∥∥
∞

≤
(

1− 1√
d

)
+

1√
d

∥∥∥∥∥∑
x,y

eiφx,y |y〉〈x|

∥∥∥∥∥
2

=

(
1− 1√

d

)
+

1√
d

(d+ 1)

= 1 +
√
d.
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Since this estimate is independent of λ, we can take β =
1/(
√
d+ 1). Hence, we conclude that, for d the power of

a prime number,

RA→Bsteer (ψ+
d,AB)

≥ R
({

1

d
|ψ∗a|x〉〈ψ

∗
a|x|
})

≥
∑
a,x

Tr

((
1

d
|ψ∗a|x〉〈ψ

∗
a|x|
)(

1√
d+ 1

|ψ∗a|x〉〈ψ
∗
a|x|
))
− 1

=
1

d(
√
d+ 1)

(d(d+ 1))− 1

=
√
d

√
d− 1√
d+ 1

≥
√
d− 2.

(15)
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