All entangled states are useful for channel discrimination
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We prove that every entangled state is useful as a resource for the problem of minimum-error
channel discrimination. More specifically, given a single copy of an arbitrary bipartite entangled
state, it holds that there is an instance of a quantum channel discrimination task for which this
state allows for a correct discrimination with strictly higher probability than every separable state.
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Despite its sometimes counter-intuitive properties, en-
tanglement has firmly been established as a fundamental
resource at the core of quantum information theory. Uni-
versal quantum computation is generally believed to be
impossible in its absence [1], and it plays a principal role
in quantum teleportation [2], superdense coding [3], and
the one-way model of quantum computation [4]. The
classification of entanglement into different types, de-
pending on its usefulness and properties as a resource, is
a major focus in the theory of quantum information. For
example, distillable entanglement [5] may be processed
by means of local operations and classical communication
into a nearly pure form that is suitable for high fidelity
quantum teleportation, while bound entanglement can-
not [6]. Other classifications of entangled states, such as
those that allow or do not allow superdense coding 7, 8],
and those from which private shared-randomness can be
extracted [9], have also been studied.

Although entanglement is known to be useful in several
quantum information-theoretic settings, there are very
few known results that establish the usefulness of every
entangled state, irrespective of the “quality” of its en-
tanglement and of the dimensionality of its underlying
systems. The only prior examples that we are aware of
involve a type of activation mechanism, where the use-
fulness of a given entangled state is based on the joint
properties of a composite system when it is paired with
another entangled state of a special type. For example,
in [10] it was proved that for any entangled state, there
exist another entangled state such that the fidelity of
conclusive teleportation [11] of the latter is enhanced by
the presence of the former. A different property holding
for all entangled states that has a similar character was
proved in [12].

In this Letter we demonstrate a new way in which ev-
ery entangled state is useful as a resource: for the task of
channel discrimination. In this task, two known discrete
physical processes (or channels) are fixed, and access to
one of them is made available—but it is not known which
one it is, and only a single application of the channel is
possible. The goal is to determine, with minimal proba-
bility of error, which of the two channels was given, as-

suming for simplicity that the two channels were equally
likely. The most general approach to solving an instance
of this problem is to prepare a (possibly entangled) bi-
partite quantum state, to apply the given channel to one
part of this state, and finally to measure the resulting
state by a POVM with two outcomes that correspond to
predictions of which channel was given.

It is well-known that entanglement is sometimes useful
for channel discrimination. This phenomenon seems to
have been identified first by Kitaev [13], who introduced
the diamond norm on super-operators to deal with pre-
cisely this phenomenon in the context of quantum error
correction and fault-tolerance [36]. Subsequent work [14—
24] by several researchers further illuminated the useful-
ness of entanglement in the problem of channel discrim-
ination and related tasks. In these works, the focus has
mainly been on identifying classes of channel pairs for
which some optimally chosen entangled state either does
or does not give an advantage over every possible sepa-
rable (or nonentangled) state.

In this Letter we reverse this question and suppose that
some arbitrary entangled state is given, and ask whether
the entanglement in this state is useful for channel dis-
crimination. We prove that every bipartite entangled
state indeed does provide an advantage for this task, in
that there necessarily exists an instance of a channel dis-
crimination problem for which the entangled state allows
for a correct discrimination with strictly higher probabil-
ity than every possible separable state. This holds even
for a single copy of the entangled state, regardless of its
dimensionality or the quality or type of its entanglement
(including, for instance, bound entangled states), and
does not require the presence of an auxiliary state that
it serves to activate. This fact is proved below after brief
discussions of notation, terminology, and background in-
formation on the problem of channel discrimination.

Notation and terminology. For a given (finite dimen-
sional) Hilbert space X, the set of linear operators taking
the form A : X — X is denoted by L (X). An operator
p € L(X) is a density operator, and represents a state,
if it is positive semidefinite (p > 0) and has unit trace



(Tr(p) = 1). The set of such density operators is denoted
D (X).

A state %P € D (X ® Z) of a bipartite system is said
to be separable if it takes the form

Usep:Zpiggc@)Uiz (1)
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for density operators {o%} and {o%} on the Hilbert
spaces X and Z, respectively, and otherwise is entan-
gled. The set of all separable states of the above form (1)
is denoted Sep(X : Z).

The trace norm of an operator A is defined as | Al =
Tr v AT A [37]. The trace distance between two states po
and p1 is ||po — p1 |-

Channels are particular elements of the set of linear
super-operators T (X,Y) = {®|® : L(X) — L())} that
map operators on a Hilbert space X into operators on
a (possibly different) Hilbert space ). A super-operator
® T (X,Y) is said to be:

e Hermiticity-preserving if ®[X] is Hermitian for ev-
ery Hermitian operator X; or equivalently if ®[X]T =
®[X 1] for every operator X;

o trace-preserving if Tr(®[X]) = Tr(X) for every oper-
ator X;

o trace-annihilating if Tr(®[X]) = 0 for every operator
X

e positive if ®[X] > 0 for every positive semidefinite
operator X > 0;

o completely positive if & @ 1,(z) is positive for every
Hilbert space Z, where 1,z) denotes the identity
super-operator on L (Z);

e a channel if it is both completely positive and trace-
preserving;

e an entanglement-breaking channel if it is a channel
that destroys all entanglement: (® ® 1y,z)) [pxz] €
Sep(Y : Z) for all states pxz.

A channel describes any physical process which preserves
probability, i.e., that happens with certainty.

The Choi-Jamotkowski representation [25, 26] of a
super-operator ® € T (X,)) is given by

J@) = Y elaEleli e LYeX),
1<ij<dx
where dy and {|1),...,|dx)} are the dimension and a

fixed orthonormal basis of X, respectively. The mapping
J:T(X,Y) — L(Y®X) is a linear bijection, which im-
plies that for every operator A € L (Y ® X) there exists a
unique super-operator ® € T (X, ) such that J(®) = A.
It holds that a super-operator ® € T (X,))) is:

e Hermiticity-preserving if and only if J(®)T = J(®)
27);

o trace-preserving if and only if Try(J(®)) = La;
o trace-annihilating if and only if Try (J(®)) = 0;
e completely positive if and only if J(®) > 0 [25, 26];

e an entanglement-breaking channel if and only if it is
a channel and J(®)/dx € Sep(Y ® X) [28].

State and channel discrimination. The task of channel
discrimination is naturally related to the well-studied
task of discriminating states [29]. Suppose we are given
one of two known states pg,p1 € D(X), and our goal
is to guess which one it is with minimal error proba-
bility. A guessing procedure for this task may be de-
scribed by a two-outcome POVM {Mjy, M1} C L(X),
Moy, M1 > 0, Mg+ My = 1x. The error probabil-
ity for such a measurement can be expressed as pp =
1/2(1 — 1/2Tx[(Mo — M1)(po — p1)]), and as quantum
states are not perfectly distinguishable in general, this
probability of error may be nonzero for every possible
measurement. By optimizing over all choices of the
measurement one reaches the minimum error probabil-
ity pp = 1/2(1 —1/2[lpo — p1lex) [38].

Now, suppose we want to discriminate two channels
Dy, Py € T (X,)) with minimal error probability, as dis-
cussed above. By “probing” whichever channel was given
with a state p € D (X)), we transform the problem into
one of discriminating between the states ®g[p] and @4 [p].
Thus, the relevant quantity becomes ||®o[p] — @1[p]]|tr,
and the minimal error will be achieved by choosing an
optimal input state that minimizes this quantity. In
this way we are led to consider the trace distance [39]
of two channels ||®g — @1/t = max, [|Po[p] — P1[p]||tx-
By the convexity of the trace norm, this maximum will
be achieved for some pure input state.

As mentioned previously, however, the reduction from
channel to state discrimination just described may not al-
ways be optimal, for it does not exploited the possibility
of feeding the channel with a subsystem of a larger cor-
related system, and then measuring the resulting output
joint system. More precisely, we may consider an input
state p € D (X ® Z), with Z the Hilbert space of an ar-
bitrary ancillary system, and compare the output states
(<I)z- ® ]]-L(Z)) [p], for i = 0,1. Thus, the ultimate quan-
tity relevant in minimal-error channel discrimination is
actually the diamond norm

[®o — @1]lo = Slil; [®o ® 1z,) — P1 ® Lz, e,

where Z,, denotes a Hilbert space with dimension n [40].

By definition, it holds that ||®g— P1ll6 > |Po — P1]ltrs
and if it is the case that [|®g — 1|6 > || Po — P1|tr, then
it is necessarily because of entanglement. This is due to
the fact that the correlations of separable states never



helps in the discrimination of channels, as we have

[(®0 ® Li(z)) [0°P] = (1 @ Li(z)) [0°P]]],,
< ZPin’o[Ug«] ® 0% — P1[oh] ® 0% |

> pill®olot] — Prlok]lle < (1o — D1l

for every separable state o*°P.

Proof of the main result. To establish our main result,
we will connect the characterization of entanglement in
terms of positive linear maps with its usefulness for chan-
nel discrimination. We will first prove two lemmas, the
first being a simplification of Lemma 1 in [30], followed
by the main theorem.

Lemma 1. A state p € D(X ® Z) is entangled if and
only if there exists a positive, trace-preserving super-
operator ® € T (X,)) such that

(e @1r(z)) [] £ 0. (2)
It suffices to take dim)y < dim Z + 1.

Proof. In [31] it was proved that a state p € D (X ® 2Z)
is entangled if and only if there exists a positive super—
operator © € T (X, Z) such that (Q ® 1p,(z))[p] # 0.
The main issue that must be addressed is that the super-
operator {2 may not, in general, be trace-preserving.
Let us define A(Q) = max, Tr(Q2[p]), where the max-
imum is over all density operators p € D (X), and con-
sider the normalized map Q = Q/A\(Q). By construction,
this super-operator satisfies Tr(X) > Tr(Q[X]) for all
X >0, and so the map Qrp eT (X Z @ C) defined as
Qrp[X ] = Q[X] + (Tr(X) — Tr(Q[X])) |0)(0], where |0) is
a normalized vector orthogonal to Z, is also positive and
satisfies (Qrp ® 1r(z))[p] # 0. Moreover Qrp is trace-
preserving, so that by taking & = QTP and Y =Z¢C
the proof is complete. O

Remark 1. Any positive and trace-preserving super-
operator ® that satisfies the condition (2) must neces-
sarily satisfy the following properties:

L (@@ 1nz))pllle = 1+23 5, o lril > 1, where r;
are the eigenvalues of (® ® 1y,z))[p];

2. ((I)®]]-L(Z)) [O’SEP] > 0, and ||(q) & ]]-L(Z))[O—]Htr =1
for every separable state o € Sep(X : Z).

Lemma 2. Let ® € T(X,)) be a Hermiticity preserv-
ing, trace-annihilating super-operator. Then there exist
channels ¥y, ¥; € T(X,Y) and a scalar cy > 0 such
that C@q) = \IIO — \Ill.

Proof. Given that ® is Hermiticity-preserving and trace-
annihilating, it holds that its Choi-Jamiotkowski repre-
sentation J(®) is Hermitian and satisfies Try J(®) = 0.

Let J(®) = Py — P, be a Jordan decomposition of J(®P)
(meaning that Py, Py > 0 and Tr(PyP;) = 0), and note
that Try Py = Try Pr = Q > 0. Take co = 1/]|Q||, so
that c@ < 1y. Next, consider any positive operator
&€ L(Y®X) such that Try Eyx = ]]-L(X) —co@ [41], and
let Wy, ¥y € T(X,)) be the unique super-operators for
which J(U;) = coP; + £ for i = 0,1. We have J(¥;) >0
and Try(J(¥;)) = co@Q + lpx) — co@Q = 1x, there-
fore Wy, Uy are channels. Moreover, J(¥o) — J(¥1) =
co(Py — P1) = ¢ J(P), therefore Uy — Uy = coP. O

Theorem 1. A state p € D (X ® Z) is entangled if and
only if there exist channels Uy, Uy € T (X,)) such that

[(Wo © 1(z)) [0] = (W1 @ Liiz)) [l > 190 = Wi -
It suffices to take dim) < dim Z + 2.

Proof. We have already argued that if p allows, for some
choice of channels ¥y, ¥y, a discrimination better than
the one corresponding to || ¥y — ¥yl|¢, then p must be
entangled. On the other hand, if p is entangled, then by
Lemma 1 there exists a positive, trace-preserving super-
operator ® € T (X, W) such that ||(® ® 1y,z))[p]ller =
L+23 ., «lril > 1, where r;’s are the eigenvalues
of (¢ ® 1r(z))[p]. Let us define a new map Pty €
T (X, W C) as Dpa[X] = ®[X]—Tr(X)|0)(0], where |0)
is a normalized vector orthogonal to WW. By construction,
Py is Hermiticity-preserving and trace-annihilating. By
Lemma 2, there exists a scalar ¢, such that ce,, Pra =
Uy — ¥y for two channels ¥y, U3 € T (X, W ¢ C).
Now, for a generic state 7 € D (X ® Z), one finds

1(To ® Lr(z)) [7] = (¥1 @ Li(z)) [7]ller

= Cora [|[(PTa ® T 2))[7][ 6

= oy [[(P @ L (2))[7] = [0)(0] @ Tra(7) [ 6x
Copy (1 + (2 @ Ly2))[7]]ltr)

= 2cqp, (1 + Z Itil),

2:1; <0

where t; are the eigenvalues of (® ® 1y,z))[r]. For every
separable state 7 = 0P € Sep(X : Z) we obtain

[(Wo ® 1y(z))[0°P] = (¥1 ® Ly (z))[0™P

so that | ¥y — Uy ||ty = 2¢@,, - Thus,

]Htr = 2cq”I‘Aa

1(Wo ® pz))[p] — (W1 @ Tpez))[plllee — (W0 — Wil

= 2Cqpps Z [ri] > 0. (3)

1:17; <0

According to Lemma 1 it is sufficient to have dim W <
dim Z + 1. Taking Y = W & C shows that it is sufficient
to have dim Y < dim Z 4+ 2, and completes the proof. [

In regard to the type of channels that allow entangled
states to give improved discrimination, one has the fol-
lowing interesting corollary.



Corollary 1. A state p € D(X ® Z) is entangled if
and only if there exist entanglement-breaking channels
Vo, Uy € T(X,)) such that

[(To ® 11(z)) o] = (¥1 @ Luz)) [o)]],, > W0 — Taler-

Proof. Generalizing the result of [21], we observe that if
an entangled state p € D (X ® Z) increases the distin-
guishability of two channels ¥g, ¥; € T (X,)), then it
also increases the distinguishability of two entanglement
breaking channels of the form = = p¥; + (1 — p)Q, for
1 =20,1. Here p € [0,1] and Q € T (X,)) is the totally
depolarizing channel Q[X] = (Tr(X)/dy)1y.

For sufficiently small p > 0, the channels Z are entan-
glement breaking, as their Choi-Jamiotkowski represen-
tations are separable by the existence of a ball of positive
radius containing only separable states around the max-
imally mixed state [32]. It holds that

1(E5 @ 1uz) 0] — (B} @ 1u(z)) ol],,
=pl|(¥o @ Lp(z))[p] — (V1 ® Lp(z))[p]ller

and ||Z) — ZV|ler = pl[¥o — ¥1]r, therefore the state p
enhances the distinguishability of these channels for all
choices of p > 0. |

Ezample. The steps in the proof of Theorem 1 are con-
structive. In particular, while the value of the en-
hancement in distinguishability depends on the partic-
ular state, the channels that are better distinguished by
means of the states depend exclusively on the map.

The most well-known example of a positive linear map
that detects entanglement is transposition T : L(X) 3
X — XT € L(X) with respect to some fixed basis of
X [31, 33]. For transposition one finds crp, = 2/(dx+1),

and channels ¥I 9T ¢ T(x,x © C), ¥ : X —
ﬁ((TrX)]l + X7, v . X — ﬁ((TrX)(]l +

20)(0]) + XT), with |0) a normalized vector orthogo-
nal to X. Thus, for any state p € D(X ® Z), we ob-
tain [ UF @ 1p(z)[p] — U1 @ Lz [plller — 95 — ¥ [lex =

ﬁN(p), with N(p) = w the negativity of
p (32, 34].

Conclusions. We have proved that any entangled state is
useful to distinguish some pair of channels strictly bet-
ter than what is possible by means of a separable state
in the minimum-error, single-shot scenario. This pair of
channels may be taken to be arbitrarily noisy and able to
destroy the entanglement of any arbitrary strongly entan-
gled state. One may consider this result as a physically
meaningful interpretation of the characterization of en-
tangled states by means of positive but not completely
positive linear maps [31].
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