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Abstract

We present an analysis of Wiesner’s quantum money scheme, as well as some natural gen-
eralizations of it, based on semidefinite programming. For Wiesner’s original scheme, it is
determined that the optimal probability for a counterfeiter to create two copies of a bank note
from one, where both copies pass the bank’s test for validity, is (3/4)" for n being the number
of qubits used for each note. Generalizations in which other ensembles of states are substituted
for the one considered by Wiesner are also discussed, including a scheme recently proposed by
Pastawski, Yao, Jiang, Lukin, and Cirac, as well as schemes based on higher dimensional quan-
tum systems. In addition, we introduce a variant of Wiesner’s quantum money in which the
verification protocol for bank notes involves only classical communication with the bank. We
show that the optimal probability with which a counterfeiter can succeed in two independent

verification attempts, given access to a single valid n-qubit bank note, is (3/4 + 1/2/8)". We
also analyze extensions of this variant to higher-dimensional schemes.

1 Introduction

Wiesner’s protocol for quantum money [Wie83] was a formative idea in quantum information
processing. In this protocol, a bank generates a bank note composed of n qubits: each qubit is
initialized to a state chosen uniformly at random from the set {|0),|1),|+),|—)}, and this choice
of states is kept secret by the bank. The bank can later check the authenticity of a given note
by performing a measurement on each of its qubits, in accordance with its secret record of their
original states. (Each bank note is labeled with a unique serial number, so that all of the bank
notes in circulation may be treated independently.) The security of Wiesner’s scheme rests on the
principle that quantum states cannot be cloned—that is, a malicious attacker, given access to a
tixed supply of authentic bank notes, cannot generate a larger quantity of valid bank notes than
those to which he was initially given access.

Although Wiesner’s scheme was introduced almost three decades ago, to the best of our
knowledge no rigorous analysis with explicit bounds on the security of the scheme exists in
the literature. The intuition that the scheme’s security follows from the no-cloning principle
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appears in [LSP98], and quantitatively one should be able to obtain exponential security guar-
antees from results such as proofs of the security of the BB84 quantum key exchange proto-
col [BB84,/SP00, May01] or of uncloneable encryption [Got02]. In this paper we prove tight bounds
on the security of Wiesner’s quantum money scheme, through a simple and easily extended argu-
ment based on semidefinite programming.

We consider the specific situation in which a counterfeiter, given access to a single authentic
bank note, attempts to create two bank notes having the same serial number that independently
pass the bank’s test for validity. We will call such attacks simple counterfeiting attacks. Our first
main result is the following.

Theorem 1. The optimal simple counterfeiting attack against Wiesner’s quantum money scheme has suc-
cess probability exactly (3/4)", where n is the number of qubits in each bank note.

Other types of attacks are not analyzed in this paper, but we must note their existence! For in-
stance, a counterfeiter may attempt to create or copy bank notes through multiple interactions
with the bank. One simple example of such an attack does not require counterfeiters to possess
any bank notes to start with: by substituting one of two qubits of a Bell state for each qubit of a
bank note, a counterfeiter can succeed in passing the bank’s test for validity with probability 27",
and then conditioned on having succeeded the counterfeiter will be guaranteed to hold a second
valid bank noteE] One would therefore expect that the bank would charge a small fee for testing
validity, for otherwise counterfeiters have a very small but positive incentive to attack the proto-
col. Generally speaking, an analysis of attacks of this nature would seem to require a limit on the
number of verification attempts permitted, or the specification of a utility function that weighs the
potential gain from counterfeiting against the costs for multiple verifications. We expect that the
semidefinite programming method used to prove Theorem [I{would be useful for analyzing such
attacks, but we leave this as a problem for interested readers to consider.

We also consider simple counterfeiting strategies against quantum money schemes that gen-
eralize Wiesner’s original scheme. These are the schemes obtained by varying the set of possible
states that a quantum bank note may store, as well as the underlying probabilities for those states.
We show that there is a scheme based on the repetition of a 4-state single-qubit scheme (i.e., having
the same structure as Wiesner’s) for which the optimal simple counterfeiting attack has success
probability (2/3)", which is optimal among all schemes of that form. Furthermore, we show that
any money scheme based on the use of d-dimensional bank notes is subject to a simple counter-
feiting attack with success probability at least 2/ (d + 1), and we describe a scheme for which this
is the best one can do.

One drawback of Wiesner’s money scheme is that, not only does it involve communicating
with a centralized bank in order to establish the authenticity of a given bank noteﬂ but it also re-
quires quantum communication: bills have to be sent to the bank for verification. Gavinsky [Gav11]]
recently introduced an alternative scheme in which bills can be authenticated using only classical
communication with the bank.

We consider the following procedure for classical verification of an n-qubit bank note, con-
structed as in Wiesner’s scheme. The bank sends the user a random challenge ¢ € {0,1}". An

1Wiesner [Wie83] in fact arrived at a similar bound, but through a not-so-rigorous argument!

2Lutomirski [Lutl0] considered a related scenario where the bank kindly provides counterfeiters with access to a
bank note’s post-measurement qubits, regardless of whether validity was established. He proved that O(#) verification
attempts are sufficient to break the protocol in this setting.

3There has also been work in recent years on creating quantum money schemes that do not require any com-
munication with the bank in order to verify a bank note, but this is only possible under computational assump-
tions [FGH™10, [LAF™10,[Aar09].



honest user should measure the i-th qubit in the computational basis if ¢; = 0, or in the Hadamard
basis if c; = 1, and send the measurement outcomes b € {0,1}" to the bank. The bank vali-
dates the bank note if and only if whenever ¢; corresponded to the basis in which qubit i was
encoded, b; describes the correct outcome. (A similar scheme was independently introduced re-
cently in [PY]J"11].) In this setting, a simple counterfeiting attack is one in which a counterfeiter tries
to succeed in two independent authentications with the bank, given access to a single valid bank
note. Our second main result is the following.

Theorem 2. For the classical-verification analogue of Wiesner’s quantum money scheme, the optimal sim-
ple counterfeiting attack has success probability exactly (3/4+ /2/8)", for n being the number of qubits
in each bank note.

As for Theorem (I} our proof of Theorem [2| follows from the use of semidefinite programming
techniques. In addition we show that, contrary to the quantum-verification setting, Wiesner’s
scheme is optimal as long as one considers only qubits: either changing the bases used to encode
each qubit or increasing the number of possible bases will not improve the scheme’s security
against simple counterfeiting attacks. We also consider a natural generalization of this scheme to
bank notes made of d-dimensional qudits, and prove that the optimal simple counterfeiting attack
against it has success probability exactly (3/4 + 1/ (4v/d))".

Related work. The no-cloning theorem [WZ82] states that there is no perfect quantum cloning
machine. This impossibility result relies on two assumptions: that we are trying to clone all pos-
sible states (of a given dimension), and that we are trying to do so perfectly. Relaxing either or
both assumptions opens the way for a fruitful exploration of the possibility of approximate cloning
machines. Most work in this area focuses on obtaining universal cloners—required to work for all
possible input states—but that may not be perfect.

To quantify the quality of a cloner one has to settle on a figure of merit. Two main figures
have been considered: the minimum (or, alternately, the average) overlap between one of the two
output clones with the input state, or the joint overlap of both output clones with a tensor product
of the input state with itselfﬁ Buzek and Hillery [BH96|] determined the optimal universal qubit
cloner in the first case, while Werner [Wer98] solved the general problem with respect to the second
figure of merit.

In the setting of quantum money, however, the first assumption is also relaxed: a counterfeiter
only needs to be successful in cloning the specific states that are used to create the bank notes.
Work in this direction includes that of Brufs et al. [BCDMO0], who determined the optimal cloner
for the states used in Wiesner’s original money scheme, and for the first figure of merit discussed
above. While in this work we consider the second figure of merit, which is the one appropriate to
the context of quantum money, our results can easily be extended to the first.

We use a semidefinite programming formulation of the problem, in which one can numer-
ically determine the success probability of an optimal cloner, given any desired possible set of
input states and underlying distribution. The connection between cloning of quantum states and
semidefinite programming was observed by Audenaert and De Moor [ADMO02], and has been
used in the study of cloning by other researchers. (See, for instance, the survey of Cerf and
FiuraSek [CFO6].) The formulation that we use is closely related to one used in [MW11], and
can also be seen as a special case of a semidefinite programming framework for more general
quantum strategies developed in [GW07].

4In both cases, the specific distance measure used can also be varied. For instance, the trace distance and the Hilbert-
Schmidt distance on density matrices have been considered.



Recent work of Pastawski et al. [PY]"11] contains an analysis of a 6-state variant of Wiesner’s
money scheme, obtaining a tight bound of (2/3)" on optimal simple counterfeiting attacks. In
addition, they show that the scheme can be made error-tolerant—the bank will accept a bank
note as long as say 99% of the qubit measurements are correct, allowing for the money state to be
slightly perturbed and still undergo a successful authenticationE] They also consider a classical-
verification variant of the scheme that is similar to (but somewhat less efficient than) the one we
propose, obtaining exponential security guarantees.

Other works consider more general counterfeiting attacks than we do, and develop techniques
that may be useful to extend our own results. In particular, Aaronson and Christiano [?] reduce
security against general m — m + 1 cloners (given m copies of a bank note, produce m + 1 quan-
tum states that will be simultaneously accepted by the bank’s verification procedure) to security
against simple counterfeiting attacks of the type we consider (attackers on their “mini-schemes”).
Pastawski et al. [PY]"11] show that auxiliary access to the bank’s verification procedure does not
help, provided the only information returned by the bank is a single bit, indicating success or fail-
ure. Indeed, intuitively this situation may be reduced to one in which the cloner has no access
to such a verification oracle simply by guessing: because most attempts in verification will result
in failure (otherwise we would already have a successful cloner), the bits returned do not contain
much information.

Organization of the paper. We start with some preliminaries on quantum information theory
and semidefinite programming in Section 2] Section 3| contains our results on Wiesner’s quantum
money scheme and generalizations, while Section[#describes our results on schemes with classical
verification procedure.

2 Preliminaries

We assume the reader is familiar with the basics of quantum information theory, and suggest
Nielsen and Chuang [NCO00] to those who are not. The purpose of this section is to summarize
some of the notation and basic concepts we make use of, and to highlight a couple of concepts
that may be less familiar to some readers. The lecture notes [Watl1l] may be helpful to readers
interested in further details on these topics.

2.1 Basic notation, states, measurements and channels

For any finite-dimensional complex Hilbert space X we write L (X) to denote the set of linear
operators acting on X', Herm (X') to denote the set of Hermitian operators acting on X, Pos (X') to
denote the set of positive semidefinite operators acting on X', Pd (X') to denote the set of positive
definite operators acting on X, and D (X) to denote the set of density operators acting on X. For
Hermitian operators A, B € Herm (X) the notations A > B and B < A indicate that A — B is
positive semidefinite, and the notations A > B and B < A indicate that A — B is positive definite.

Given operators A,B € L (X'), one defines the inner product between A and B as (A, B) =
Tr(A*B). For Hermitian operators A, B € Herm (X') it holds that (A, B) is a real number and
satisfies (A, B) = (B, A). For every choice of finite-dimensional complex Hilbert spaces X and
Y, and for a given linear mapping of the form ® : L (X) — L ()), there is a unique mapping

5Our analysis can also be extended to this setting; see Section 3.4|for more details.



®* : L(Y) — L(X) (known as the adjoint of ®) that satisfies (Y, (X)) = (P*(Y), X) for all
XelL(X)andY € L(Y).

A register is a hypothetical device that stores quantum information. Associated with a register
X is a finite-dimensional complex Hilbert space X, and each quantum state of X is described by
a density operator p € D (X'). Qubits are registers for which dim(X') = 2. A measurement of X
is described by a set of positive semidefinite operators {P, : a € X} C Pos(X'), indexed by a
finite non-empty set of measurement outcomes %, and satisfying the constraint ),y P, = 1y (the
identity operator on &X). If such a measurement is performed on X while it is in the state p, each
outcome a € X is obtained with probability (P,,p). A quantum channel is a completely positive
and trace-preserving linear mapping of the form & : L (X') — L ()) that describes a hypothetical
physical process that transforms each state p of a register X into the state ®(p) of another register
Y. The identity channel that does nothing to a register X is denoted 1y ().

2.2 Linear mappings on spaces of operators

Suppose dim(&X') = d and assume that a fixed orthonormal basis {|1),...,|d)} of X has been
selected. With respect to this basis, one defines the Choi-Jamiotkowski operator J(®) € L (Y ® &)
of a linear mapping ® : L (X') — L () as

J(@) =} (i) (i) @ i) (jl.
1<ij<d
The mapping ] is a linear bijection from the space of mappings of the form ® : L (X) — L (}) to
L (Y ® X). It is well-known that ® is completely positive if and only if J(®) € Pos (Y ® X'), and
that @ is trace-preserving if and only if Try (J(®)) = 1y [Cho75, Jam72]. It is also well-known,
and easy to verify, that

(plo(y) (¥ ¢) = (p@ P J(®) [p2 ) (1)

for any choice of vectors |¢) € X and |¢) € Y, with complex conjugation taken with respect to
the standard basis.

2.3 Semidefinite programming

Semidefinite programming is a topic that has found several interesting applications within quan-
tum computing and quantum information theory in recent years. Here, we provide just a brief
summary of semidefinite programming that is focused on the narrow aspects of it that we use.
More comprehensive discussions can be found in [VB96,[Lov03, dK02, BV04], for instance.

A semidefinite program is a triple (®, A, B), where

1. ®:L (&) — L()Y)is a Hermiticity-preserving linear mapping, and
2. A € Herm (X') and B € Herm ()) are Hermitian operators,

for some choice of finite-dimensional complex Hilbert spaces X and ). We associate with the
triple (¥, A, B) two optimization problems, called the primal and dual problems, as follows:

Primal problem Dual problem
maximize: (A, X) minimize: (B,Y)
subject to: ®(X) = B, subject to: ®*(Y) > A,
X € Pos (X). Y € Herm ()).



The optimal primal value of this semidefinite program is

a =sup{(A4,X) : X € Pos(X), ®(X) = B},
and the optimal dual value is

B =inf{(B,Y) : Y € Herm ()), ®*(Y) > A}.

(It is to be understood that the supremum over an empty set is —co and the infimum over an
empty set is co, so « and B are well-defined values in R U {—c0,00}. In this paper, however, we
will only consider semidefinite programs for which « and g are finite.)

It always holds that « < B, which is a fact known as weak duality. The condition « = 8, which
is known as strong duality, does not hold for every semidefinite program, but there are simple
conditions known under which it does hold. The following theorem provides one such condition
(that has both a primal and dual form).

Theorem 3 (Slater’s theorem for semidefinite programs). Let (O, A, B) be a semidefinite program and
let o and B be its optimal primal and dual values.

1. If B is finite and there exists a positive definite operator X € Pd (X') for which ®(X) = B, then &« =
and there exists an operator Y € Herm (Y) such that ®*(Y) > A and (B,Y) = B.

2. If wis finite and there exists a Hermitian operator Y € Herm (Y) for which ®*(Y) > A, then a« =
and there exists a positive semidefinite operator X € Pos (X') such that ®(X) = Band (A, X) = «.

In words, the first item of this theorem states that if the dual problem is feasible and the primal
problem is strictly feasible, then strong duality holds and the optimal dual solution is achievable.
The second item is similar, with the roles of the primal and dual problems reversed.

3 Wiesner’s quantum money and simple generalizations

Wiesner’s quantum money scheme, and straightforward generalizations of it, may be modeled
in the following way. An ensemble of pure quantum states £ = {(pi, |¢x)) : k=1,...,N} is
fixed, and assumed to be known to all (including any would-be counterfeiters). When preparing
a bank note, the bank randomly selects a key k € {1,..., N} with probability pi. The bank note’s
quantum system is initialized to the state |¢), and the note is labeled by a unique serial number.
The bank records the serial number along with the secret key k.

When an individual wishes to verify a bank note, she brings it to the bank. The bank looks
up the key k and measures the note’s quantum state with respect to the projective measurement
{IT,1 —IT}, for IT = |4¢p;) (k|- The measurement outcome associated with IT causes the bank note
to be declared valid, while the outcome associated with 1 —IT causes the bank note to be declared
invalid.

A simple counterfeiting attack against a scheme of the form just described attempts to create
two copies of a bank note from one, and is considered to be successful if both copies indepen-
dently pass the bank’s verification procedure. We take the original bank note’s quantum state to
be stored in a register X having associated Hilbert space X. The registers storing the quantum
states corresponding to the two copies of the bank note produced by a would-be counterfeiter will
be called Y and Z. The Hilbert spaces ) and Z associated with these registers are taken to be
isomorphic to X, but will retain distinct names for the sake of our analysis.



Mathematically speaking, a simple counterfeiting attack is described by a quantum channel ®
transforming X to (Y, Z), taking the state p € D (X) to the state ®(p) € D ()Y ® Z). In order to be
physically realizable, at least in an idealized sense, the channel ® must correspond to a completely
positive and trace preserving linear mapping of the form ® : L (X¥) — L () ® Z). Conditioned on
the bank having chosen the key k, the probability of success for an attack described by ® is given
by (P @ Pr| (| ¢x) (Prl) [Pk @ ). Averaging over the possible choices of k, the overall success
probability of a counterfeiting attack is

N
kZpk (e @ P (| 9r) (Pe]) [9re @ i) - (2)
=1

3.1 An SDP formulation of simple counterfeiting attacks

We now describe how the optimal success probability of a counterfeiting strategy, which is rep-
resented by the supremum of the probability (2) over all valid channels ® : L(X) — L(Y ® Z),
may be represented by a semidefinite program. A similar semidefinite programming formulation
may be found in [ADMO02, (CF06, MW11], for instance.

The formulation makes use of the Choi-Jamiotkowski representation J(®) of a given channel
®, as described in Section 2| Combining the characterization of all such representations that cor-
respond to quantum channels given there together with and the expression (2), it is not hard
to see that the optimal success probability of any simple counterfeiting strategy is given by the
following semidefinite program:

Primal problem Dual problem
maximize: (Q, X) minimize: Tr(Y)
subject to: Trygz(X) =1y subject to: 1ygz®Y > Q
X€ePos(Y®ZRX) Y € Herm (X))

where

N
Q=Y Pk |tk ® Ve @ i) (Pr © P © P -
k=1

(The dual problem is obtained from the primal problem in a routine way, as described in Section[2])

Because the primal and dual problems are both strictly feasible (as follows by taking X and Y
to be appropriately chosen multiples of the identity, for example), it follows from Theorem [3|that
the optimal values for the primal and dual problems are always equal, and are both achieved by
feasible choices for X and Y.

3.2 Analysis of Wiesner’s original scheme (single-qubit case)

To analyze Wiesner’s original quantum money scheme, we begin by considering the single-qubit
(or n = 1) case. The analysis of the scheme for arbitrary values of n will follow from known results
concerning product properties of semidefinite programs, as is described later in Section [3.4]

In the single-qubit case, Wiesner’s quantum money scheme corresponds to the ensemble

e {(30) (o) (o) (o)}



which yields the operator

Q = 7 (1000) (000] + [111) (111] [ 4++ +) (+ ++] + |- — =) {~ =)

in the semidefinite programming formulation described above. We claim that the optimal value of
the semidefinite program in this case is equal to 3/4. To prove this claim, it is sufficient to exhibit
explicit primal and dual feasible solutions achieving the value 3/4. For the primal problem, the
value 3/4 is obtained by the solution X = J(®), for ® being the channel

D(p) = AopAj + A1pA7,
where

1

Ag= — and Al =
0 /712 1

N
O~ L O

_ O O W
O R VR O
W o o

For the dual problem, the value 3/4 is obtained by the solution Y = 21y, whose feasibility may
be verified by computing || Q| = 3/8.
3.3 Optimal single-qubit schemes

It is natural to ask if the security of Wiesner’s original scheme can be improved through the selec-
tion of a different ensemble £ in place of the one considered in the previous section. The answer
is “yes,” as follows from our analysis of Wiesner’s original scheme together with the results of
[PY]JT11], wherein the authors consider the ensemble

&= {100, G 1), G 1+ (6 1= (3 2530) . (3 230 |

The operator Q that one obtains is given by

1
Q= rank (1) <1L(y) Iz ® T) (IT) (©)

~ rank
for Il being the projection onto the symmetric subspace of Y ® Z ® X and T being the transposi-
tion mapping with respect to the standard basis of X'.
The optimal value of the corresponding semidefinite program is 2/3. Indeed, a primal feasible
solution achieving the value 2/3 is given by X = J(®) for ® being the channel

D(p) = AgpAj + A1pA7,

where
2 0 00
1 01 1 1 0
AO = % O 1 and A1 = % 1 0
0 0 0 2

(This channel is the optimal qubit cloner of Buzek and Hillery [BH96]. ) A dual feasible solution
achieving the bound 2/3 is given by Y = 11y (with this solution’s feasibility following from a
calculation of || Q|| = 1/3).



It is interesting to note that the same bound 2/3 can be obtained by a four-state ensemble

e={L1m), (& 1w), & lw), (L W)},

where {|71),...|t)} are any four states forming a single qubit SIC-POVM [RBKSC04]. The oper-
ator Q corresponding to any such ensemble is identical to the one (3) from the six-state ensemble
above, and therefore yields the same optimal value for the semidefinite program.

The schemes just mentioned are the best possible single qubit schemes. To see this, one may
simply consider the performance of ® (i.e., the BuZzek-Hillery cloner), for which it follows by a
direct calculation that

eyl o(lv) (v o) =

for every state |). This shows that the optimal primal value, and therefore the optimal counter-
feiting probability, is always at least 2/3.

3.4 Parallel repetitions of generalized Wiesner schemes

Wiesner’s original scheme may be viewed as the n-fold parallel repetition of a scheme wherein the
spaces X', ), and Z each represent a single qubit, and where the initial state of each bank note is a
state chosen uniformly from the set {|0),|1),|+),|—)}. That is, the preparation and verification
of each n-qubit bank note is, from the bank’s perspective, equivalent to the independent preparation
and verification of n single-qubit bank notes; and a successful counterfeiting attack is equivalent
to a successful counterfeiting attack against all n of the single-qubit notes. The value of n plays the
role of a security parameter, given that it becomes increasingly hard to successfully counterfeit n
single-qubit bank notes in a row, without failure, as n grows large.

Now, there is nothing that forces a counterfeiter to attempt to counterfeit an n-qubit bank note
by treating each of its n qubits independently. However, it is easily concluded from the semidefi-
nite programming formulation above that a counterfeiter gains no advantage whatsoever by cor-
relating multiple qubits during an attack. This, in fact, is true for arbitrary choices of the ensemble
£, as follows from a general result of Mittal and Szegedy [MS07] regarding product properties of
some semidefinite programs. (In our case, this property follows from the fact that the operator Q
defining the objective function in the primal problem is always positive semidefinite.)

In greater detail, let us consider the n-fold repetition of a scheme, in which a single repetition
of the scheme gives rise to a semidefinite program determined by Q € Pos (Y ® Z ® X). Let us
write &}, J;, and Z; to denote copies of the spaces X, ), and Z that represent the j-th repetition
of the scheme, for j = 1,...,n,and let us write ¥*" = X1 ® -- - @ X, V" = V1 ® - - - ® Yy, and
ZO" = Z1® -+ - ® Z,. The semidefinite program that describes the optimal simple counterfeiting
attack probability for the n-fold repetition is as follows:

Primal problem Dual problem
maximize: (W,(Q®")Wy, X) minimize: Tr(Y)
subject to: Tryeng zen (X) = Lyen subject to: Nyengzen @Y > Wr(Q¥" )WL
X € Pos (V" @ Z9" @ X°") Y € Herm (X*")

In this semidefinite program, WV, is a unitary operator representing a permutation of Hilbert
spaces:

W1 ®2z10x1) @+ @ (Yn @20 @ X))
=@ Q)@ (Z1® - ®zy) (X1 @ @ X)),



for all choices of |x;) € &}, |y;) € Vj,and |z;) € Zj,forj=1,...,n.

If the optimal value of the semidefinite program is « in the single-repetition case, then the
optimal value of the semidefinite program for the n-fold repetition case is necessarily a”. This
may be proved by considering the primal and dual solutions X = Wr(X; ® --- ® X,,)W} and
Y=Y1® - -®Y,, for Xy,..., X, being optimal primal solutions and Y3, . . ., Y, being optimal dual
solutions for the single-repetition semidefinite program. The values obtained by these solutions
are both a”. Primal feasibility of X is straightforward, while dual feasibility of Y follows from the
fact that A > B > 0 implies A®" > B®" for all positive semidefinite A and B.

3.5 Threshold results

One may also consider noise-tolerant variants of Wiesner’s scheme, as was done in [PY]T11]. In
the setting discussed in the previous subsection where n repetitions of a particular scheme are
performed, we may suppose that the bank’s verification procedure declares a bank note valid
whenever at least t out of n repetitions succeed, for some choice of t < 1, as opposed to requiring
that all n repetitions succeed.

One might hope that a similar analysis to the one in the previous subsection will lead to an
optimal counterfeiting probability of

) (”) (1w (4)

t<jen \J

for such a scheme, for a being the optimal counterfeiting probability for a single repetition. This
is the probability of successful counterfeiting when each repetition is attacked independently. In
general, however, this bound may not be correct: the main result of [MW11] demonstrates a re-
lated setting in which an analogous bound does not hold, and explains the obstacle to obtaining
such a bound in general. However, for some schemes, including Wiesner’s original scheme and
all of the other specific schemes (including the classical verification ones in Section discussed
in this paper, this bound will be correct. Letting d = dim X, the specific assumptions that we
require to obtain the bound () are that

N 1
L Pl (] = g1 (5)
=1

and that Y = %1y is an optimal dual solution to the single-repetition semidefinite program (from
which it follows || Q| = %).

To prove that these requirements are sufficient, let us introduce the following notation. We will
write Q; in place of Q to denote the operator that specifies the semidefinite program representing
a successful counterfeiting attack, and we will also define

N
Qo = kZPk (lyoz — [¥x @ ¥i) (Y @ Pi|) @ 1) (Y|,
=1

which has a complementary relationship to Qj; it represents a failure to counterfeit in a given
repetition. The semidefinite program describing the optimal counterfeiting probability for the n-
fold repetition scheme, where successes in t repetitions are required for a validation, is then as
follows:

10



Primal problem Dual problem

maximize: (W,RW;, X) minimize: Tr(Y)
subject to: Tryeng zeon(X) = Lyen subject to: Lyengzen @ Y > W, RW
X € Pos (V" @ Z¥" @ X%") Y € Herm (X®")
where
R: Z Qﬂ1®”'®Qﬂn'
ay,...,a,€{0,1}
et ap >t

To prove that the optimal value of this semidefinite program is given by the expression (),
it suffices to exhibit primal and dual feasible solutions achieving this value. As for the standard
n-fold repetition case described in the previous subsection, it holds that X = W, (X; ® - - - X, )W
is a primal feasible solution that achieves the desired value, where again Xj, ..., X, are optimal
primal solutions to the single-repetition semidefinite program. (This solution simply corresponds
to an attacker operating independently and optimally in each repetition.) For the dual problem,
we take

Y = |R|| Lyon,

which is clearly dual-feasible. The condition (5) implies that Qy = %13;@ zox — Q1, and a consid-
eration of spectral decompositions of the commuting operators Qg and Q; reveals that

HRH=;7 Y <’]l> i(1— )™,

t<j<n

which establishes the required bound.

3.6 Optimal schemes in higher dimensions

We have observed that the best single-qubit variant of Wiesner’s quantum money scheme has an
optimal counterfeiting probability of 2/3, and we know that the n-fold parallel repetition of this
scheme has an optimal counterfeiting probability of (2/3)". Thus, bank notes storing a quantum
state of dimension d = 2" can have an optimal counterfeiting probability of (2/3)". It is natural to
ask whether one can do better, using a scheme that is not given by the n-fold parallel repetition of
a single qubit scheme.

The answer is that there are better schemes (provided n > 1). More generally, for every d rep-
resenting the dimension of the state stored by a quantum bank note, there exist schemes whose
optimal counterfeiting probability is equal to 2/(d + 1), which is the best that is possible: Werner’s
quantum cloning map [Wer98] will always succeed in counterfeiting any quantum bank note of di-
mension d with probability 2/ (d + 1). The following proposition shows that there exists a scheme
that matches this bound in all dimensions d.

Proposition 4. Let £ = {py, | i)} be any ensemble of d-dimensional states for which the operator

N
Q=Y 1k|tx @Y @ Pi) (Pr ® P ® Py
k=1

is given by
1

rank(IT) (HL(Cd) DDy (o) ® T) (IT), 6)

Q=

11



where T is the transposition mapping with respect to the standard basis of C* and 11 is the orthogonal
projector on the symmetric subspace of C* @ C% ® C?. Then no simple counterfeiting strategy can succeed
against the money scheme derived from € with probability more than 2/(d + 1).

Before proving the proposition, we note that any ensemble £ obtained from a complex pro-
jective (3,3)-design (also known as a quantum 3-design [AE07]) satisfies (6), and thus leads to
an optimal d-dimensional money scheme. This also suggests that one might obtain more effi-
cient schemes (i.e., involving less possible states for each part of the note) with security properties
similar to the ones described here if approximate designs are considered instead.

Proof of Proposition[4 Because we are looking for an upper bound on the maximum counterfeit-
ing probability, it suffices to construct a good feasible solution Y to the dual SDP described in
Section We will choose Y = ||Q||1x, which is a feasible dual solution with corresponding
objective value Tr(Y) = d||Q||. We indicate how results from [EW0I] may be used to show that
Q|| =2/(d(d+ 1)), proving the proposition.

The operator Q commutes with all operators of the form U ® U ® U, where U is any unitary
acting on C“. In Section VI.A of [EWOI] it is shown that any such operator can be written as a linear
combination of six conveniently chosen Hermitian operators S, S_, So, S1, S, S3 (for a definition
see Egs. (25a)—(25f) of [EWO01]). For our operator Q we obtain the decomposition

1 1 d+2
Q= rank(IT) <§S+ * T(SO + Sl))' @

where

g _1+v. 1
T2 2(d +1)

(X+ XV +VX+VXV),

So+51 = %(X—FXV—#VX%—VXV),
+1
V is the operator that permutes the first two registers on which Q acts, and X the partial transpose
of the operator permuting the last two registers. Moreover, as shown in [EW01], S; and Sy are
mutually orthogonal projections, SoS1 = 5159 = S1, 5+S1 = 515+ = 0, and S% = Sy. Hence, the
decomposition (7) shows that the operator norm of Q satisfies

1 d+2 2

lQll = rank(IT) 3  d(d+1)’

as rank(IT) = (dgz). O

4 Money schemes with classical verification

In this section we introduce a natural variant of Wiesner’s scheme, as well as higher-dimensional
generalizations of it, in which the verification is done through classical communication with the
bank. To distinguish the corresponding bank notes from the ones discussed in the previous sec-
tion, we will call them ticketsE]

6 As we will see, successful verification of a ticket necessarily entails its destruction. This is unavoidable, as shown
in [Gavll]. To avoid this issue one may concatenate many tickets together to create a single bill, that will be able to go
through as many verification attempts as it contains tickets.
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4.1 Description of quantum tickets

A quantum ticket is defined in the same way as a bank note: it is a quantum state |, ), where k
is a secret key kept by the bank, together with a unique serial number. We consider schemes in
which the classical verification procedure has the following simple form. The user first identifies
herself to the bank by announcing her ticket’s serial number. The bank then sends her a classical
“challenge” ¢ € C chosen uniformly at random, where C is some fixed finite set. Depending on c,
an honest user will perform a measurement I'l, = {I1%},c 4 on her ticket, and report the outcome a
to the bank. The bank then looks up the secret key k associated with the user’s ticket, and accepts
a if and only if the triple (a, ¢, k) falls in a fixed, publicly known set S of valid triplesﬂ

A simple counterfeiting attack against such a scheme will attempt to use just one quantum
ticket in order to successfully answer two independent challenges from the bank. Such a counter-
feiter may be modeled by a collection of POVMSs A,¢, = { A¢'& }a,a,, and its success probability is

N
1 aa
Z Pk CJ2 Z Z <1;’Jk| Aciczz |l/)k> 7 (8)
k=1 | | €12 (ay,a):
(ﬂl,Cl,k)Es
(u2,c2,k)€S

which is the “classical-verification” analogue of (). By letting registers Y and Z contain the an-
swers a7 and a, respectively, and X contain the counterfeiter’s input (the state |¢;) and the two
challenges cj, ¢2), the problem of maximizing (8)) over all possible counterfeiting strategies can be
cast as a semidefinite program of the same form as the one introduced in Section with the
corresponding operator Q defined as

N
szzpkmlp): S Jan) Ja2) len ca i) @] (2] (c1, can ]
=1

€1,€2 (al,az):
(ﬂl,Cl,k) GS
(llz,Cz,k)ES

Since Q is diagonal on the first 4 registers, without loss of generality an optimal solution X to the
primal problem will be correspondingly block-diagonal,

X = Y |ayapc,0) (ag,a,01,00] @ X022,
a1,42,€1,€2

and the SDP constraints are immediately seen to exactly enforce that {X¢!¢?}4,4, is @ POVM for
every (c1,¢2).

We note that the problem faced by the counterfeiter can be cast as a special instance of the more
general state discrimination problem. Indeed, the counterfeiter’s goal is to distinguish between the
following: for every pair of possible answers (a1, a;), there is a mixed state corresponding to the
mixture over all states |c1) |c2) |'F) that for which (a1, a2) would be a valid answer. (Each state is
weighted proportionally to the probability of the pair (cj, c2) of being chosen as challenges by the
bank, and of |'¥x) being chosen as a bank note.) As such, the fact that the optimal counterfeiting
strategy can be cast as a semidefinite program follows from similar formulations for the general
state discrimination problem (as the ones considered in e.g. [EMVO03])).

"For instance, the bank could accept all “plausible” answers, i.e., all a such that (¢;| 1% |¢¢) > 0. This condition
ensures that honest users are always accepted.
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4.2 Analysis of a simple class of qudit schemes

We further restrict our attention to a natural class of extensions of the classical-verification variant
of Wiesner’s scheme described in the introduction. The schemes we consider are parametrized by
a dimension d and two fixed bases { ‘€8> S, 62_1> } and { ‘e(l)> S, 33171> } of Cd Each scheme
is defined as the n-fold parallel repetition of a basic scheme in which N = 24, the states |(;s))
are the ‘ef> fort € {0,...,d —1} and b € {0,1}, the random challenge is a bit c € {0,1}, and the
valid answers are a = t if b = ¢, and any a if b # c. Valid answers may be provided by an honest
user who measures his ticket in the basis corresponding to c. By writing out the corresponding
operator Q and constructing a feasible solution to the dual SDP, we show the following lemma,
from which Theorem |2 follows directly.

Lemma 5. For every simple counterfeiting attack against the n-qudit classical-verification scheme described

above, the success probability is at most (3 + %)n, where ¢ = maxg |(€2e} ) ‘2 is the effective overlap.lﬂ
If d = 2, there is always a counterfeiting strategy that achieves this bound.

Proof. We first analyze simple counterfeiting attacks against the basic single-qudit scheme. Note
that if both challenges from the bank are identical, the counterfeiter can answer both correctly
with probability 1 by making the appropriate measurement on his qubit.

By symmetry, it suffices to consider the case where the first challenge is c; = 0 and the second
is co = 1. In this case the operator Q becomes

1 d—1
Q=55 L I5) (sly@[6) {tlz® (|ed) (0] + lef (e )
s,t=0
Fors,t € {0,...,d =1}, let Vi, = |32> <@g’/—\g + ‘e}> <€} ‘X- As Q is block-diagonal, the dual SDP is
minimize: Tr (Y)

subject to: Y > %Vs,t (for all s, t) 9)

Y € Herm (Cd> .
Vi is a rank-2 Hermitian matrix whose eigenvalues are 1+ |(¢?[e})|. Hence, ¥ = Hif lisa
feasible solution to the dual problem with objective value (1 + /c)/2, leading to an upper bound
on the best counterfeiting strategy with overall success probability at most 3/4 + \/c/4.

To finish the proof of the upper bound it suffices to note that the SDP has the same parallel
repetition property as was described in Section 3.4}

Finally, we show the “moreover” part of the claim. Relabeling the vectors if necessary, assume
[(ed]ed)| = v/c. Let |ug) be the eigenvector of Vyo with largest eigenvalue 1+ /¢, and |u;) the
eigenvector with smallest eigenvalue. Using the observation that | (e9]e])| = 1/c, it may be checked
that

X =10,0) (0,0 @ [uo) (uo| +[1,1) (1, 1] @ |u1) (u1]

is a feasible solution to the primal SDP corresponding to (9) (as expressed in Section with
objective value (1 + /c)/2, proving that the optimum of (9) is exactly (1+ +/c) /2. O

8 It is easy to see that increasing the number of bases will only result in weaker security: indeed, the more the bases
the less likely it is that the bank’s randomly chosen challenge will match the basis used to encode each qudit.

9For any two bases of C¢, ¢ > 1/d, and this is achieved for a pair of mutually unbiased bases. This quantity also
arises naturally in the study of uncertainty relations (see e.g. [TR11]]), of which our result may be seen as giving a special
form.
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4.3 A matching lower bound

Let d be a fixed dimension. We introduce a quantum ticket scheme for which the upper bound
derived in the previous section is tight. For d = 2 our scheme recovers the one that is derived
from Wiesner’s original quantum money. Let X; and Z; be the generalized Pauli matrices, acting
as

Xg: i) = |i+1 modd) and  Z;: |i) — &']i),

where w = ¢%7/?, Let F be the quantum Fourier transform over Z,,
1 y
F:li) = —=) ]|j),
T

|ef) } be the basis defined by |e) = (X;)"|0) = |¢), and {|e} )}
)=F ‘et> = (Z4)'F |0) for every t. Then
1
0,1
esler)| = |(s|F|t)| = —=
[(leh] = |6l = -

for every s, t: the corresponding overlap is ¢ = 1/d. Lemma [5 shows that the optimal cloner
achieves success at most 3/4 + 1/(4+/d). The following lemma states a matching lower bound.

and note that X; = FZ,F'. Let {
the Fourier-transformed basis |ef

Lemma 6. There is a cloner for the n-qudit ticket scheme described above which successfully answers both
challenges with success probability (3 + 4\17)77.

Proof We describe a cloner that acts independently on each qudit, succeeding with probability
3+ 1 f on each qudltl Let

y) = (2+2/vd)"?(j0) + F|0)),

and for every (s, t) let P; ; be the rank 1 projector on the unit vector X5Z/ |). As a consequence of
Schur’s lemma, Y, 3P = 1, so that {P;;/d} isa POVM.

The cloner proceeds as follows: if the challenge is either 00 or 11, he measures in the corre-
sponding basis and sends the resulting outcome as answer to both challenges. In this case he is
always correct. In case the challenge is either 01 or 10, he measures the ticket using the POVM
{P;;/d}, and uses s as answer to the challenge “0” and t as answer to the challenge “1”. Because
the two challenges are distinct, only one of them corresponds to the actual basis in which the ticket
was encoded. Without loss of generality assume this is the “0” basis, so that the ticketis |e)) = |s).
The probability that the cloner obtains the correct outcome s is

LT (Buls) () = 3 | (sl X324 )

:g;|<0|Zf1|lP>|

because, for every ¢, it holds that (0| Z, = w' (0|. To conclude, it suffices to compute

[(Olp)|* = (0[F|0)[* = %(Hi).

00
22/\F‘| Vd

O]

0The analysis is very similar to one that was done in [VW1I], in a different context but for essentially the same
problem.
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