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We study the power of measurements implementable with local quantum operations and classical
communication (or LOCC measurements for short) in the setting of quantum channel discrimination.
More precisely, we consider discrimination procedures that attempt to identify an unknown channel,
chosen uniformly from two known alternatives, that take the following form: (i) the input to the
unknown channel is prepared in a possibly entangled state with an ancillary system, (ii) the unknown
channel is applied to the input system, and (iii) an LOCC measurement is performed on the output
and ancillary systems, resulting in a guess for which of the two channels was given. The restriction
of the measurement in such a procedure to be an LOCC measurement is of interest because it
isolates the entanglement in the initial input/ancillary systems as a resource in the setting of channel
discrimination. We prove that there exist channel discrimination problems for which restricted
procedures of this sort can be at either of the two extremes: they may be optimal within the
set of all discrimination procedures (and simultaneously outperform all strategies that make no
use of entanglement), or they may be no better than unentangled strategies (and simultaneously
sub-optimal within the set of all discrimination procedures).

PACS numbers: 03.67.Hk 03.67.Mn 03.65.Ud 03.67.Bg

I. INTRODUCTION

Quantum channel discrimination is an interesting
problem in the theory of quantum information. In this
problem, two known physical processes (or channels) are
fixed, and access to one of them is made available—but
it is not known which one it is. In the simplest scenario,
only a single application of the channel is possible. The
goal is to determine, with minimal probability of error,
which of the two channels was given, assuming for sim-
plicity that the two channels were equally likely. Several
papers, including [1-15], have considered variants of this
problem, both from an abstract point of view and a more
applied one.

The most general form of a discrimination procedure
for a channel discrimination problem of the type de-
scribed above has the following form: (i) the input to
the unknown channel is prepared in a possibly entangled
state with an ancillary system, (ii) the unknown channel
is applied to the input system, and (iii) a measurement is
performed on the output and ancillary systems, resulting
in a guess for which of the two channels was given. The
primary purpose of this paper is to consider the effect
of restricting the measurements in step (iii) to be LOCC
(i-e., implementable using only local operations and clas-
sical communication with respect to the output/ancillary
system splitting).

It is well-known that entanglement between the in-

put and ancillary systems is sometimes advantageous for
channel discrimination, in the sense that it may allow for
a strictly smaller probability of error to correctly iden-
tify the given channel in comparison to the case where
there is no entanglement (which turns out to be equiv-
alent to having no ancillary system whatsoever). This
phenomenon seems to have been identified first by Ki-
taev [16], who introduced the diamond norm on super-
operators to deal with precisely this phenomenon. More
recent work, partially represented by the sources cited
above, has further illuminated the usefulness of entan-
glement in the problem of channel discrimination and
related tasks.

In [17] the question was reversed, by supposing that
some arbitrary entangled state is given and asking
whether the entanglement in this state is useful for chan-
nel discrimination. It was proved that every bipartite en-
tangled state indeed does provide an advantage for this
task: there necessarily exists an instance of a channel dis-
crimination problem for which the entangled state allows
for a correct discrimination with strictly higher probabil-
ity than every possible unentangled (or separable) state.
One may therefore say that every entangled state is a
resource for channel discrimination. However, there is
an obvious (potential) way that this result might be im-
proved, which is to prove that every entangled state re-
mains useful in the setting of channel discrimination even
when measurements are restricted to be LOCC as sug-



gested above. This would have the effect of isolating
the entanglement in the input/ancillary systems as the
principal use of entanglement in such a procedure, and
therefore as a more fundamentally important resource.
We have not been able to determine whether or not such
a result holds, and we consider this to be one of the main
open problems of interest associated with this work.

Restrictions on operations are standard in entangle-
ment theory [18], where they are introduced both because
they are physically motivated (e.g., some initial entangle-
ment between distant labs may be established by means
of optical fibers or flying photons, but beyond this only
local operations and classical communication may be fea-
sible) and because they make entanglement theory an
interesting resource theory, where the specifically quan-
tum properties of entanglement are emphasized. The ef-
fect of restrictions on the measurement on the ability
to discriminate—either ambiguously or unambiguously—
between quantum states has also recently attracted much
attention. In particular, the limits of LOCC discrimina-
tion have been investigated in [19-34], for instance. Such
limits are at the base of the existence of hiding states [34—
37], which are orthogonal and therefore perfectly distin-
guishable by global operations, but hardly distinguish-
able by LOCC measurements. A systematic approach
to investigating the relation between distinguishability
of states under various restrictions on measurements was
put forward in [38].

In regard to the role of measurements and restrictions
on measurements in quantum channel discrimination, the
focus of past work has mainly been on the discrimination
of bi- and multi-partite unitary operations. It has been
proved that with many uses of the unknown unitary, it
is possible to perfectly discriminate between any set of
unitaries, as long as the parties can apply an LOCC pro-
tocol [39, 40]. We stress that the unitaries acts glob-
ally on the same parties on which the restrictions are
imposed. The issue we consider in this paper—the role
of restrictions on the measurements in minimum-error
channel discrimination—deals with concepts similar to
those present in [39, 40], but with critical differences.
Indeed, in our case we consider that (i) only one use
of the unknown channel is allowed, and we do not fo-
cus on perfect discrimination; and (ii) the channels—
possibly unitaries—are applied only to the input, so the
input/ancilla evolution is local. In particular, in the case
of unitaries it is known that input/ancilla entanglement
is useless for minimum-error channel discrimination, so
restrictions on the measurements that are based on in-
put/ancilla locality are uninteresting.

The main contribution of the present paper is the iden-
tification of instances of channel discrimination problems
where procedures restricted to make LOCC measure-
ments are at either of the two extremes: they may be
optimal within the set of all discrimination procedures
and simultaneously outperform all strategies that make
no use of entanglement, or they may be no better than
unentangled strategies and simultaneously sub-optimal

within the set of all discrimination procedures. These
two possibilities are discussed in Sections III and IV, re-
spectively, which follow Section II that provides some def-
initions that are useful for describing the examples. The
paper concludes with Section V, which discusses some
future research directions relating to our work.

II. DEFINITIONS

Throughout this paper we will use notation and termi-
nology that, for the most part, is standard in the theory
of quantum information. For the sake of clarity let us
state explicitly that we restrict our attention to finite-
dimensional complex Hilbert spaces in this paper, and for
any such space X we write L (X'), Herm (X), Pos (X) and
D (X) to denote the sets of all linear operators, Hermitian
operators, positive semidefinite operators, and density
operators on X, respectively. We also write Sep (X : ))
and PPT (X : ) to denote the sets of all (unnormalized)
separable and PPT (i.e., positive partial transpose) op-
erators on a tensor product space X ® Y. [45]

When we refer to a channel we mean a completely
positive, trace-preserving linear mapping of the form

LX) L), (1)

Hereafter we will write T (X,)) to refer to the vector
space of all (not necessarily completely positive or trace-
preserving) mappings of the form (1).

As described in the introduction, this paper concerns
the problem of channel discrimination. The specific type
of channel discrimination problems we consider are as
follows. Two channels g, ®; € T (X,)) are fixed. One
of the two channels is selected, uniformly at random, and
a single evaluation of this (unknown) channel is made
available. The goal is to determine which of the two
channels was selected.

A natural, but sometimes sub-optimal, strategy for
solving an instance of a channel discrimination prob-
lem is to choose a quantum state p € D (X), to ap-
ply the unknown channel to p, and to measure the re-
sulting state according to a binary-valued measurement
{Po, i1} C Pos(Y). The measurement outcome (0 or
1) is then interpreted as the procedure’s guess for which
channel was given. The probability that such a procedure
correctly identifies the unknown channel is given by

% (Py, ®0(p)) + % (Pr, ®1(p))
- % n i (Py = P1, ®o(p) — ®1(p))

where the inner product is the Hilbert-Schmidt inner
product: (X,Y) = Tr(X*Y). Optimizing over all
choices of p € D (X) and all binary-valued measurements
{Po, P1} on Y yields a correctness probability

1 1
5t 1 [®0 — ®1lxE »



where the norm || ®||yp is defined as
® = max ||®
Plhe = mas (20,

for every Hermiticity-preserving[46] mapping & €
T (X,Y). This norm could be extended to arbitrary
(non-Hermiticity-preserving) mappings, but it is not nec-
essary for us to consider such extensions in this paper.
The subscript NE for this norm is short for “no entangle-
ment,” which refers to the fact that the discrimination
procedure has not made use of the possibility that the
input system to the unknown channel could have been
entangled with an ancillary system.

A more general type of discrimination strategy that
does make use of an ancillary system is as follows. A
quantum state p € D (X ® Z) (for an arbitrary choice of
Z) is selected, and the unknown channel is applied to the
part of this state corresponding to X. A binary-valued
measurement { Py, P;} C Pos ()Y ® Z) is then applied to
the resulting state, and (as before) the outcome is inter-
preted as the procedure’s guess for which channel was
given. The probability for such a procedure to correctly
identify the unknown channel is

1 1
3+ 7P —= P (20 @ Tu(z)(p) — (81 @ Tuz))(p))
(2)
Optimizing over all choices of p € D (X ® Z) and all
binary-valued measurements { Py, P} on Y ® Z, for any
choice of Z having dimension at least that of X', results
in the quantity

1

1
—||®g — P
2—|—4|| 0 1l

where the diamond norm ||-||,, is defined as

H (¢® ]lL(X))(p)Hl (3)

max
pED(XQX)

@l =
for every Hermiticity-preserving mappings ® € T (X, )).
(For general maps, the maximum is taken over all X €
L (X ® X) with || X||; <1.)

It is known that this more general sort of strategy can
give a striking improvement in the probability to cor-
rectly discriminate some pairs of channels. It is the en-
tanglement between the input and ancillary systems that
is responsible for this improvement, when it occurs, be-
cause (as observed in [17]) it holds that

max H(<I>®]1L(z))(p)H1 = [|®xg

pESepD(X:Z)

for every choice of Z, where SepD (X : Z) denotes the set
of separable density operators on X ® Z. In other words,
the ancillary system is useless for channel discrimination
unless it is entangled with the input system.

With the connection between channel discrimination
and the two norms defined above in mind, we define a
norm || ®||; 5 by considering a maximization of the ex-
pression (2) over those choices of Py and P; that represent

LOCC measurements, as opposed to general measure-
ments. More precisely, for any Hermiticity-preserving
mapping ® € T (X,)) we define

1®llLoce

= Inax max

P, —P, dR1 ) 4
{Po,Pl}peD<X®z>< 0= P, ( L)), (4)

where the maximization is taken over all LOCC
measurements[47] { Py, P1} on Y ® Z, and where Z is any
space having dimension at least that of X. We also de-
fine || ®||gpp and || ®||ppy similarly, where the maximiza-
tion is over all separable or PPT binary-valued measure-
ments, respectively.[48] In all of these cases, the result-
ing norm is insensitive to the dimension of Z, provided
it is at least that of X. This follows from the observa-
tion that the maximum over p € D (X ® Z) for any of
these norms is always achieved for a pure state (by a
simple convexity argument), and such a state must be
supported on a subspace of Z having dimension at most
that of X. Similar to ||®|/yg, we do not concern our-
selves with extensions of || @/} occs @ llspps OF [P ||ppr
to non-Hermiticity-preserving mappings ®.
It is clear that

[®lxe < I®loce < 1®llser < [ @llppr < [[®]l, (5)

and the main contribution of this paper is to provide ex-
amples of channels &y and ®; for which the mapping
® = Py — P, causes various choices of the inequalities
in (5) to become either equalities or strict inequalities.
We are, in particular, interested in the relationship be-
tween ||®¢ — 1 l; oo and the two norms || — @1 ||yg
and ||®g — @1 ||, for different choices of channels ®¢ and
®,. This relationship addresses the question raised in
the introduction, which is whether entanglement between
the input and auxiliary systems remains a useful resource
for channel discrimination when entangled measurements
are disallowed. The two sections that follow show that
sometimes entanglement is still useful in this sense and
sometimes it is not.

Since we focus on families of measurements defined
with respect to locality, and the input states are always
optimized, three operational minimum-error channel dis-
crimination scenarios corresponding to the three norms
II-lIngs |- ]l and || - [[Loce can be depicted as in Figure
1, Figure 2, and Figure 3, respectively. The channels go
from Alice to Bob, as in a communication scenario, but
the task is not that of transmitting a classical or a quan-
tum message from Alice to Bob having at disposal many
uses of the channel. Rather, they want to discriminate
between two possible channels with minimum probabil-
ity of error, having at their disposal only one use of the
channel.

In the NE norm case, Alice feeds the channels with
a probe that is not correlated with any other subsys-
tems held by either herself or Bob, and Bob measures
the output probe, guessing which channel was applied.
In the diamond-norm case, at the beginning Alice holds
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FIG. 1: Operational scenario for the NE norm. The unknown
channel ®; goes from Alice to Bob, and it is not in the hands
of either of them. Bob performs the final measurement. In
this case, Alice’s input to the channel is uncorrelated with
any other system in the hands of Alice or Bob.

the probe and Bob the ancilla, which are in whatever
needed pre-distributed entangled state; Alice sends the
probe down the channel, and Bob can jointly measure the
output probe and the ancilla.[49] Finally, in the LOCC-

A

B

FIG. 2: Operational scenario for the diamond norm. Alice
and Bob share an initial—possibly entangled—probe/ancilla
state which is optimal for channel discrimination. Alice sends
the probe downs the channel and Bobs proceeds to the mea-
surement of the output probe/ancilla state.

norm case, we can imagine that Alice locally creates an
entangled probe/ancilla state, feeding the channel with
the probe and keeping the ancilla. The measurement is
then performed by LOCC on the output probe held by
Bob and the ancilla held by Alice. We remark that this

FIG. 3: Operational scenario for the LOCC norm. Alice
create an entangled probe/ancilla state, keeps the ancilla,
and sends the probe down the channel. Alice and Bob
can then proceed to an LOCC measurement of the output
probe/ancilla state.

scenario—where the unknown channel ®; goes from Al-
ice to Bob, and it is not in the hands of either of them—
could be thought as corresponding to a practical situ-

ation like that of, e.g., an optical fiber underneath the
sea. In particular, the restriction to LOCC output mea-
surement would be the result of the non-availability of
long-distance pre-established entanglement—or of some
other quantum channel to be used to send also the ancilla
from Alice to Bob.

III. OPTIMAL DISCRIMINATION
PROCEDURES WITH LOCC MEASUREMENTS

In this section we provide examples of channels &y and
®; for which

[@0 — P1llyg < [P0 — P1llLoce = [P0 — P1ll,, - (6)

Thus, entanglement between the input and ancillary sys-
tems may still be useful for channel discrimination when
the measurement is LOCC—and indeed an LOCC mea-
surement may even be optimal in this situation.

The first collection of examples we provide achieves
a limited gap between the quantities ||®o — @1 |yp and
[P0 — @11, 000, but has the advantage of being simple
to describe. The second type of example achieves a large
gap, but also requires that the output dimension of the
channels be very large. The third example is specifically
for input qubits, and while being similar to the second
class of examples, we include it because of its simplicity:
on the one hand, it is possible to provide exact values
for the the various norms; on the other hand, it could be
experimentally implemented.

A. Examples based on flagged Kraus operators

Let X = C? for any desired choice of d > 2, and let
Y =C"® X for n > 1. Consider a choice of channels
Dy, Py € T(X,)) defined as

Calp) = Y 15)i| ® AajpAL ;,
j=1

for some selection of operators {A,; : a € {0,1},1 <

j <n} CL(X) satisfying

ZA;;JAOJ ZA AL =1y
j=1

A sufficient condition for ®; and ®; to be perfectly
distinguishable using an LOCC measurement discrim-
ination procedure (i.e., || ®o — @i|lppcc = 2) is that
(Aoj, A1) = 0 for all j = .,n. This observation
follows from the well-known theorem of [19] stating that
every fixed pair of orthogonal pure states can be perfectly
distinguished by an LOCC measurement. In particular,
if the maximally entangled state

L

%\



between the input and an ancillary system is selected,
then the resulting state produced by ®, has the form

1 n
2D 1)1 @ [ta ) W
j=1

for vectors {|1q ;) } satisfying (1o j|11,;) = (Ao j, A1 k) =
0 for every choice of j = 1,...,n. An LOCC measure-
ment that first measures j, then implements the corre-
sponding measurement of [19] to distinguish [¢y ;) and
|¢1,;) succeeds in discriminating ®y and ®; without er-
ror.

On the other hand, it holds that

n

Z | Ao,jp A5 ; — AvgpAT |, -

j=1

[OT RN () = max
[®0 — @1|lxg e

7)
So, to obtain examples of channel pairs for which (6)
holds, it suffices to select a collection of operators {A, ;}
so that

1. (Ao, A1) =0foreach j=1,...,n, and

2. the expression in (7) is smaller than 2.

This may be accomplished, for instance, by setting n =
d2—1,A07j:]1/\/ﬁ,andA1,j: j/\/ﬁ,fOI‘j:L...,’n
and where W1y, ..., W, is any orthonormal collection of
traceless unitary operators, such as the non-identity dis-

crete Weyl (or generalized Pauli) operators. We then
have
9 d*—1
2
@0 — P1llng = max o pRVA R AT

[ d
<24 ——
- d+1

where the inequality is due to the concavity of the square
root (with equality if and only if Zauner’s conjecture [41,
42] holds for dimension d), and we used the fact that

2_
p+ I WipWy = dTr(p) Ly

B. Examples based on random binary-valued
measurements

Let d be an even positive integer, let X = C? and
Y = C?, and define channels ¥, ¥; € T (X,)) as

Wo(p) = Tr(Iop)[0)(0] + Tr (Il p)[1)(1]
W1 (p) = Tr(IL1 p)[0){0] + Tr(Ilop)[1) (1],
where
d/2 d

>l

j=d/2+1

Now suppose that Ui,...,Uny € U(X) is a collec-
tion of unitary operators, and define channels &y, ®; €
T (X,CN @) as follows:

B(p) = 3 2 )1 © Wo(UppU5)
@i(p) = 5 Y1) © W1 (U3pU7)

A representation of the action of the channels is provided
in Figure 4.

FIG. 4: Structure of some exemplary pairs of channels for
which the LOCC norm is equal to the diamond norm, and
strictly greater than the NE norm. Single lines indicate quan-
tum systems or messages; double lines classical ones. The
channel chooses at random a unitary among a discrete set.
An incomplete projective measurement in the computational
basis with two possible outcomes is then performed. The re-
sult of the measurement is further flipped or not, depending
on the channel (on the value of ¢ in the figure). The output
of the channel is classical, meaning that it is diagonal in a
fixed computational basis: a register containing the index of
the chosen unitary, and a bit containing the (possibly flipped)
result of the measurement. A full description of the action of
the channels can be found in the main text.

For any choice of unitary operators Uy, ...,Up, the
channels ®¢ and ®; can be perfectly distinguished by an
LOCC discrimination procedure as follows.

1. The given channel ®,, is evaluated on half of the canon-
ical maximally entangled state

1 &
[9) = 73 ; |3)]4).

Let us suppose that the resulting state is stored in
the registers A, A; and B, where the vector spaces
corresponding to these registers are given by CV, ),
and X, respectively; and where Alice holds A; and Ag,
and Bob holds B.

2. Alice measures A; with respect to the standard basis
and transmits the result to Bob. Upon receiving a
value j € {1,..., N}, Bob applies the operation U; to
B, where the complex conjugation is taken with respect
to the standard basis. The state of the pair (Ag, B) at
this point is given by (¥, ® 1)(|¢)(¥]).

3. Bob applies ¥ to B and measures the resulting qubit
with respect to the standard basis. Alice measures her



qubit A, with respect to the standard basis as well,
and Alice and Bob compare their measurements. If
they agree then ¢ = 0 and otherwise a = 1.

Thus, it holds that ||®¢ — ®1 || oac = 2-
Now we will argue that for some choice of unitary op-
erators Uy, ...,Uy it holds that

/2 1
dy— P =4/— = .
@0 1lne 7Td+0<d)

This is done by taking N to be large and selecting
Ui,..., Uy independently according to the normalized
Haar measure on U (X). It holds that

[0 — ®1lxg
g N |d/2 d
o2 )2
= max Z Z [{Y|Ukl5)|” — Z [{(|UKIN |
k=1 |j=1 j=d/2+1
(8)
which, in the limit of large IV, approaches
d/2 d
2 maX/ D@D = > [@lUl6) [F | dpU)
[4) — -
j=1 j=d/2+1

for p denoting the Haar measure on U (X'), normalized so
that u(U (X)) = 1. A formula for this type of integral is
given in Appendix B of [38], which in this case evaluates
to

d/2 .

1 9 (27 2 1
- 92-2j =4/ = -
d; <a) mﬁO(d)

as claimed.

C. Simple pairs of channels with qubit input

Consider a special case of the exemplary class pre-
sented in Section ITI B, with qubit input dimension d =
2. In particular, take the number of random unitaries
N =2, with U; = 1 and Us = (0, + 0.)/v/2. Then Eq.
(8) becomes

@0 = @1 [lyp, = max 7 [Wloklv)| = v2

k=x,z

where the maximum is realized by a pure state in the xz
plane of the Bloch sphere.

This qubit-input example can also be computed ex-
actly for N = 3, with U; = 1,Us = (0, + oz)/\/i and
Us = (0,+0)/v2. Then one has ||®g — &1 ||y = 2/V3,
with a slightly bigger gap between the LOCC and dia-
mond norms, still both equal to 2, and the NE norm.

IV. SUB-OPTIMALITY OF LOCC
MEASUREMENTS

In this section we show that there are cases where re-
stricting measurements to be LOCC in channel discrimi-
nation procedures eliminates the benefits of entanglement
altogether. That is, there exist channels ®; and ®; for
which

@0 = P1lxg = [P0 = PillLoce < 1Po = Pally (9)

Three sets of examples are discussed.

A. Channels with one-qubit output

For any pair of channels whose outputs correspond to a
single qubit, discrimination strategies using LOCC mea-
surements can be no better than strategies that use no
entanglement. This follows from the following theorem.

Theorem 1. For any choice of channels @y, &1 €
T (X,Y) it holds that

dim()

10— @1 flspp < —

@0 — 1 llng -

Proof. Let & = &y — &1, and let Z = C" for an ar-
bitrary choice of n > 1. Also let p € D(X ® Z) be a
density operator and let {Q1 ® Ry,...,Qn ® Rx} rep-
resent an arbitrary product measurement over ) ® Z, so
that @Q1,...,Qn € Pos()) and Ry,...,Ry € Pos(2)
satisfy

N
Y Qi®R;=1ygz.
=1

Jj=

There is no loss of generality in assuming that each op-
erator (); is a density operator, because each R; can be
re-scaled appropriately.

Now, given that we assume that Q1 ..., Qy are density
operators, it holds that

N
> R; =dim(V)lz.

j=1

Our goal will be to establish an upper bound on the quan-
tity

N

S Qi @ R (2@ 1yz)(0)]- (10)

j=1
To this end let us write X; = Trz[(1y ® R;)p|, so that

{Q; @ R;, (2 ® 11,2)(p))| = {Qj, ®(X;))|
@ [lnr Tr(X;)

A
N | —



for each j = 1,..., N, where the inequality follows from
the observations that each ®(X;) is traceless and that
Q; < 1y. It follows that

N
Z (Q; ® Ry, (2 © 11z))(p))|

j=1

1 al dim (Y
< 2 2l Yo Tr(x;) = 22
j=1

[®lxg - (11)

Finally, we note that the quantity ||®||qpp is given by
the supremum of the expression (10) over all choices of n
and all product measurements {Q1 ® Ry, ..., QN RN},
which completes the proof. O

Corollary 1. Suppose &y, P, € T(X,Y) are channels
for dim(Y) = 2. Then [|®|[yg = | ®[lspp-

As there exist channels ®g and ®; having single-qubit
outputs for which [|®g — @1 |y < [[®o — 1|, We have
that (9) holds for these channels.

B. Werner-Holevo channels

The Werner-Holevo channels @y and ®; are defined for
any dimension d > 2 as

Bo(X) = 7 (TH(O1+ X7),
D1(X) = -1 (Tr(X)1 - X7),

where transposition is taken with respect to the standard
basis [43]. Tt holds that

4
d+1’

whereas [|®g — ®1]|,, = 2; the channels are almost indis-
tinguishable for large d without the use of entanglement,
but are perfectly distinguishable with entanglement.

We will now prove that for this choice of channels,
LOCC measurements render entanglement useless for
their discrimination. Indeed, even PPT measurements
have this property:

@0 — ®1llyg =

4
d+1
To prove that this is so, it suffices to prove that for every
space Z with dim(Z) > dim(X), every unit vector |¢) €
X ® Z, and every PPT measurement {FPy, P1} on Y ® Z,
it holds that

[®0 — @1l oce = [[Po — P1llppr =

(Po— P, (@0 — 81) @ 1) (W) D) < 7o
Given that, (%0 — 1) & L)) (0 (e)([4) () s trace-

less, and that Py = 1 — P, for every choice of a measure-
ment { Py, P1 }, it suffices to prove

2

(Py, (@1 — ®o) @ Iy, (z))([9)(¥])) < i1 (12)

for every unit vector |¢) and every PPT operator P; sat-
isfying 0 < P; < 1. (It may be the case that Py =1 — P,
fails to be PPT for some choices of a PPT operator P,
but the above bound will hold nevertheless—we do not
require the assumption that Py is PPT to establish the
bound.)

To prove the bound (12), note first that any unit vector
|y € X ® Z may be written

d

) = (Mx ® A) D 17)l)

j=1

for some choice of a linear mapping A : X — Z satisfying

|All, = /(A,A) = 1. Thus, for any mapping ® €
T (X,Y) it holds that

(@@ 1rz) (V)W) = (1y @ A)J(2)(1y ® A),
where

J@)= Y (kD) @5k

1<j5,k<d

is the Choi-Jamiotkowski representation of ®. For the
mapping & = ®; — Py, it holds that

2 2

J((I)l - (I)()) = —R— ﬁs,

d—1

for R and S denoting the projections onto the anti-
symmetric and symmetric subspaces of Y@ X = C?® C¢,
respectively. Thus,

(Pr, (91 — @) @ L (2)) (|9) ()

2 2
=((1 AYP (1 A),—R— —— .
(ayoanye ), 2R 720s)

It is not difficult to prove that (Q, R — S) < 0 for every
PPT operator ). Given that P; is PPT, so too is the
operator (1y ® A*)P;(1y ® A), and therefore

2 2
1 AP (1 A),——R— ——
{1y amaye ), 2R 7208)

4

< 1 (Iy @ A")Pi(1y ® A), R)

< —10 A*A .
_d271<y® aR>

As A*A is a density operator and Try(R) = 4521y, it
follows that
4 2
— 1 A*AR) = ——
71y oA AR) =0,

which establishes the claimed bound (12).

C. The channels of [17]

Finally, we prove that channels ¥y and ¥; constructed
in Theorem 1 of [17] satisfy

o —V1llxyg = Yo — Villgpp < [Wo — W1l -



Channels constructed in this way demonstrate that every
entangled state is useful for channel discrimination, pro-
vided that the final measurement is unrestricted—but by
the above relationship we see that the advantage is lost
when the final measurements are restricted to be separa-
ble.

Let us first recall that channels Uy and ¥, constructed
in [17] satisfy Uy — Uy = a® for some o > 0 and & €
T (X,Y @ C) being a mapping defined as

o) = (550 )

for E € T (X,)Y) being positive (but not completely pos-
itive) and trace-preserving. (The mapping @ is there-
fore trace-annihilating, which is a necessary and sufficient
condition for the expression ¥y — ¥; = a® to hold for
channels ¥y and ¥; and a scalar « > 0.)

Now, it is not difficult to see that | ®|qpp = |Z|lspp +
1. Specifically, the inequality | ®||ggp < [|Z]|ggp + 1 fol-
lows from the triangle equality, while the reverse inequal-
ity |®|lsgp = [|ZEllsgp + 1 is obtained by considering the
separable measurement {Qo,Q1} C Sep (Y@ C): X)

defined as
(P O (PO
Qo= (0 0X> and Q1= (0 ]1X)
for {Po, Pi} C Sep (Y :X) being an optimal separable
measurement in the definition of ||Z||ggp.
Now, for a generic state p € D (X ® Z), one finds

H(E®]1L(Z))(p)HSEP
= (P — P1,(E@1z))(p))
= (E @ 1yz)(R) — (B* @ Iyz))(P1), p)

for some choice of a separable measurement {P, P;}.
Given that = is positive and trace-preserving we have
that the adjoint mapping =* is positive and unital, and
given that { Py, P1} is separable it therefore follows that
{E"@1Lz)(R), (B @11z))(P1)} is also a (separable)
measurement. The value [|(E ® 1z))(p)[/skp is there-
fore equal to 1 (where the equality follows by choosing the
trivial measurement Py = 1 and P; = 0, for instance).

Consequently, we have that ||¥g — ¥ ||gpp = 2. As
is proved in [17], it holds that

200 = [|[Wo — Vilyp < [Wo— Pilly,

and so we have ||[Ug— V4| =
[Wo — Wyl as claimed.

[Wo—Villggp <

V. CONCLUSIONS

We have introduced a new norm |-[| oo OR
Hermiticity-preserving maps, representing a “weakened”
version of the diamond norm. This norm is motivated by

an interest in the usefulness of entanglement for chan-
nel discrimination, and in particular whether entangle-
ment in the input/ancillary systems remains useful when
the final measurement is implementable by local opera-
tions and classical communication alone. We provided
examples of pairs of channels where input entanglement
is useful only if general measurements are available, while
there are other cases where the advantage of using input
entanglement is fully maintained in spite of the LOCC
restriction on measurements.

In the context of bipartite state discrimination, one
may study the gap in the probability of error associated
to discrimination protocols that are or are not restricted
(e.g., to be LOCC) [38]. This gap has been shown to de-
pend on the total dimension of the underlying systems.
In the present paper we showed two results that regard
dimensions. One is that a restriction on the output mea-
surement, makes input entanglement useless if the output
dimension is too small (one qubit), and the second is a
dimensional lower bound on the gap that can be achieved
between the diamond norm and the LOCC norm, where
the relevant dimension is in this case the input one. One
may consider in more detail what is the role of the input
and output dimensions for the usefulness of entanglement
when measurements are restricted.

In [17] it was proved that, for any entangled state, there
exists an instance of a channel discrimination problem for
which the entangled state allows for a correct discrimina-
tion with strictly higher probability than every possible
separable state. The result was obtained by resorting to
the use of the fundamental characterization of entangle-
ment in terms of linear maps [44]. The actual construc-
tion used in [17] completely fails when the output mea-
surement is of the separable type. Indeed, in our view
the main open problem concerning channel discrimina-
tion with LOCC measurements is whether the results of
[17] can be extended to LOCC-restricted measurements.
While we know that there are entangled input states use-
ful for channel discrimination even with constrained out-
put measurements, the possibility is left open that some
entangled states become useless in this setting. If this is
the case, it would be interesting to understand what kind
of features make some states remain useful and some not.

An issue that has been the focus of a large part of
the literature on the role of entanglement in channel dis-
crimination is the question of what channels are better
distinguished by the used of entanglement. Similarly, one
can ask what channels that are better discriminated by
the use of an entangled ancilla are still (or are not any
more) better discriminated when we impose constraints
on the measurements. The results presented in this work
show that both situations occur. Is it possible to find
large classes of channels for which input entanglement
stays or fails to stay a useful resource?
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