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al quantum operations and 
lassi
al
ommuni
ation (or LOCC measurements for short) in the setting of quantum 
hannel dis
rimination.More pre
isely, we 
onsider dis
rimination pro
edures that attempt to identify an unknown 
hannel,
hosen uniformly from two known alternatives, that take the following form: (i) the input to theunknown 
hannel is prepared in a possibly entangled state with an an
illary system, (ii) the unknown
hannel is applied to the input system, and (iii) an LOCC measurement is performed on the outputand an
illary systems, resulting in a guess for whi
h of the two 
hannels was given. The restri
tionof the measurement in su
h a pro
edure to be an LOCC measurement is of interest be
ause itisolates the entanglement in the initial input/an
illary systems as a resour
e in the setting of 
hanneldis
rimination. We prove that there exist 
hannel dis
rimination problems for whi
h restri
tedpro
edures of this sort 
an be at either of the two extremes: they may be optimal within theset of all dis
rimination pro
edures (and simultaneously outperform all strategies that make nouse of entanglement), or they may be no better than unentangled strategies (and simultaneouslysub-optimal within the set of all dis
rimination pro
edures).PACS numbers: 03.67.Hk 03.67.Mn 03.65.Ud 03.67.BgI. INTRODUCTIONQuantum 
hannel dis
rimination is an interestingproblem in the theory of quantum information. In thisproblem, two known physi
al pro
esses (or 
hannels) are�xed, and a

ess to one of them is made available�butit is not known whi
h one it is. In the simplest s
enario,only a single appli
ation of the 
hannel is possible. Thegoal is to determine, with minimal probability of error,whi
h of the two 
hannels was given, assuming for sim-pli
ity that the two 
hannels were equally likely. Severalpapers, in
luding [1�15℄, have 
onsidered variants of thisproblem, both from an abstra
t point of view and a moreapplied one.The most general form of a dis
rimination pro
edurefor a 
hannel dis
rimination problem of the type de-s
ribed above has the following form: (i) the input tothe unknown 
hannel is prepared in a possibly entangledstate with an an
illary system, (ii) the unknown 
hannelis applied to the input system, and (iii) a measurement isperformed on the output and an
illary systems, resultingin a guess for whi
h of the two 
hannels was given. Theprimary purpose of this paper is to 
onsider the e�e
tof restri
ting the measurements in step (iii) to be LOCC(i.e., implementable using only lo
al operations and 
las-si
al 
ommuni
ation with respe
t to the output/an
illarysystem splitting).It is well-known that entanglement between the in-

put and an
illary systems is sometimes advantageous for
hannel dis
rimination, in the sense that it may allow fora stri
tly smaller probability of error to 
orre
tly iden-tify the given 
hannel in 
omparison to the 
ase wherethere is no entanglement (whi
h turns out to be equiv-alent to having no an
illary system whatsoever). Thisphenomenon seems to have been identi�ed �rst by Ki-taev [16℄, who introdu
ed the diamond norm on super-operators to deal with pre
isely this phenomenon. Morere
ent work, partially represented by the sour
es 
itedabove, has further illuminated the usefulness of entan-glement in the problem of 
hannel dis
rimination andrelated tasks.In [17℄ the question was reversed, by supposing thatsome arbitrary entangled state is given and askingwhether the entanglement in this state is useful for 
han-nel dis
rimination. It was proved that every bipartite en-tangled state indeed does provide an advantage for thistask: there ne
essarily exists an instan
e of a 
hannel dis-
rimination problem for whi
h the entangled state allowsfor a 
orre
t dis
rimination with stri
tly higher probabil-ity than every possible unentangled (or separable) state.One may therefore say that every entangled state is aresour
e for 
hannel dis
rimination. However, there isan obvious (potential) way that this result might be im-proved, whi
h is to prove that every entangled state re-mains useful in the setting of 
hannel dis
rimination evenwhen measurements are restri
ted to be LOCC as sug-



2gested above. This would have the e�e
t of isolatingthe entanglement in the input/an
illary systems as theprin
ipal use of entanglement in su
h a pro
edure, andtherefore as a more fundamentally important resour
e.We have not been able to determine whether or not su
ha result holds, and we 
onsider this to be one of the mainopen problems of interest asso
iated with this work.Restri
tions on operations are standard in entangle-ment theory [18℄, where they are introdu
ed both be
ausethey are physi
ally motivated (e.g., some initial entangle-ment between distant labs may be established by meansof opti
al �bers or �ying photons, but beyond this onlylo
al operations and 
lassi
al 
ommuni
ation may be fea-sible) and be
ause they make entanglement theory aninteresting resour
e theory, where the spe
i�
ally quan-tum properties of entanglement are emphasized. The ef-fe
t of restri
tions on the measurement on the abilityto dis
riminate�either ambiguously or unambiguously�between quantum states has also re
ently attra
ted mu
hattention. In parti
ular, the limits of LOCC dis
rimina-tion have been investigated in [19�34℄, for instan
e. Su
hlimits are at the base of the existen
e of hiding states [34�37℄, whi
h are orthogonal and therefore perfe
tly distin-guishable by global operations, but hardly distinguish-able by LOCC measurements. A systemati
 approa
hto investigating the relation between distinguishabilityof states under various restri
tions on measurements wasput forward in [38℄.In regard to the role of measurements and restri
tionson measurements in quantum 
hannel dis
rimination, thefo
us of past work has mainly been on the dis
riminationof bi- and multi-partite unitary operations. It has beenproved that with many uses of the unknown unitary, itis possible to perfe
tly dis
riminate between any set ofunitaries, as long as the parties 
an apply an LOCC pro-to
ol [39, 40℄. We stress that the unitaries a
ts glob-ally on the same parties on whi
h the restri
tions areimposed. The issue we 
onsider in this paper�the roleof restri
tions on the measurements in minimum-error
hannel dis
rimination�deals with 
on
epts similar tothose present in [39, 40℄, but with 
riti
al di�eren
es.Indeed, in our 
ase we 
onsider that (i) only one useof the unknown 
hannel is allowed, and we do not fo-
us on perfe
t dis
rimination; and (ii) the 
hannels�possibly unitaries�are applied only to the input, so theinput/an
illa evolution is lo
al. In parti
ular, in the 
aseof unitaries it is known that input/an
illa entanglementis useless for minimum-error 
hannel dis
rimination, sorestri
tions on the measurements that are based on in-put/an
illa lo
ality are uninteresting.The main 
ontribution of the present paper is the iden-ti�
ation of instan
es of 
hannel dis
rimination problemswhere pro
edures restri
ted to make LOCC measure-ments are at either of the two extremes: they may beoptimal within the set of all dis
rimination pro
eduresand simultaneously outperform all strategies that makeno use of entanglement, or they may be no better thanunentangled strategies and simultaneously sub-optimal

within the set of all dis
rimination pro
edures. Thesetwo possibilities are dis
ussed in Se
tions III and IV, re-spe
tively, whi
h follow Se
tion II that provides some def-initions that are useful for des
ribing the examples. Thepaper 
on
ludes with Se
tion V, whi
h dis
usses somefuture resear
h dire
tions relating to our work.II. DEFINITIONSThroughout this paper we will use notation and termi-nology that, for the most part, is standard in the theoryof quantum information. For the sake of 
larity let usstate expli
itly that we restri
t our attention to �nite-dimensional 
omplex Hilbert spa
es in this paper, and forany su
h spa
e X we write L (X ), Herm (X ), Pos (X ) andD (X ) to denote the sets of all linear operators, Hermitianoperators, positive semide�nite operators, and densityoperators on X , respe
tively. We also write Sep (X : Y)and PPT (X : Y) to denote the sets of all (unnormalized)separable and PPT (i.e., positive partial transpose) op-erators on a tensor produ
t spa
e X ⊗ Y. [45℄When we refer to a 
hannel we mean a 
ompletelypositive, tra
e-preserving linear mapping of the form
Φ : L (X ) → L (Y) . (1)Hereafter we will write T (X ,Y) to refer to the ve
torspa
e of all (not ne
essarily 
ompletely positive or tra
e-preserving) mappings of the form (1).As des
ribed in the introdu
tion, this paper 
on
ernsthe problem of 
hannel dis
rimination. The spe
i�
 typeof 
hannel dis
rimination problems we 
onsider are asfollows. Two 
hannels Φ0,Φ1 ∈ T (X ,Y) are �xed. Oneof the two 
hannels is sele
ted, uniformly at random, anda single evaluation of this (unknown) 
hannel is madeavailable. The goal is to determine whi
h of the two
hannels was sele
ted.A natural, but sometimes sub-optimal, strategy forsolving an instan
e of a 
hannel dis
rimination prob-lem is to 
hoose a quantum state ρ ∈ D (X ), to ap-ply the unknown 
hannel to ρ, and to measure the re-sulting state a

ording to a binary-valued measurement

{P0, P1} ⊂ Pos (Y). The measurement out
ome (0 or1) is then interpreted as the pro
edure's guess for whi
h
hannel was given. The probability that su
h a pro
edure
orre
tly identi�es the unknown 
hannel is given by
1

2
〈P0,Φ0(ρ)〉 +

1

2
〈P1,Φ1(ρ)〉

=
1

2
+

1

4
〈P0 − P1,Φ0(ρ) − Φ1(ρ)〉where the inner produ
t is the Hilbert-S
hmidt innerprodu
t: 〈X,Y 〉 = Tr(X∗Y ). Optimizing over all
hoi
es of ρ ∈ D (X ) and all binary-valued measurements

{P0, P1} on Y yields a 
orre
tness probability
1

2
+

1

4
‖Φ0 − Φ1‖NE ,



3where the norm ‖Φ‖NE is de�ned as
‖Φ‖NE = max

ρ∈D(X )
‖Φ(ρ)‖1for every Hermiti
ity-preserving[46℄ mapping Φ ∈T (X ,Y). This norm 
ould be extended to arbitrary(non-Hermiti
ity-preserving) mappings, but it is not ne
-essary for us to 
onsider su
h extensions in this paper.The subs
ript NE for this norm is short for �no entangle-ment,� whi
h refers to the fa
t that the dis
riminationpro
edure has not made use of the possibility that theinput system to the unknown 
hannel 
ould have beenentangled with an an
illary system.A more general type of dis
rimination strategy thatdoes make use of an an
illary system is as follows. Aquantum state ρ ∈ D (X ⊗ Z) (for an arbitrary 
hoi
e of

Z) is sele
ted, and the unknown 
hannel is applied to thepart of this state 
orresponding to X . A binary-valuedmeasurement {P0, P1} ⊂ Pos (Y ⊗ Z) is then applied tothe resulting state, and (as before) the out
ome is inter-preted as the pro
edure's guess for whi
h 
hannel wasgiven. The probability for su
h a pro
edure to 
orre
tlyidentify the unknown 
hannel is
1

2
+

1

4

〈

P0 − P1, (Φ0 ⊗ 1L(Z))(ρ) − (Φ1 ⊗ 1L(Z))(ρ)
〉

.(2)Optimizing over all 
hoi
es of ρ ∈ D (X ⊗ Z) and allbinary-valued measurements {P0, P1} on Y ⊗ Z, for any
hoi
e of Z having dimension at least that of X , resultsin the quantity
1

2
+

1

4
‖Φ0 − Φ1‖♦ ,where the diamond norm ‖·‖♦ is de�ned as

‖Φ‖♦ = max
ρ∈D(X⊗X )

∥

∥(Φ ⊗ 1L(X ))(ρ)
∥

∥

1
(3)for every Hermiti
ity-preserving mappings Φ ∈ T (X ,Y).(For general maps, the maximum is taken over all X ∈L (X ⊗ X ) with ‖X‖1 ≤ 1.)It is known that this more general sort of strategy 
angive a striking improvement in the probability to 
or-re
tly dis
riminate some pairs of 
hannels. It is the en-tanglement between the input and an
illary systems thatis responsible for this improvement, when it o

urs, be-
ause (as observed in [17℄) it holds that

max
ρ∈SepD(X :Z)

∥

∥(Φ ⊗ 1L(Z))(ρ)
∥

∥

1
= ‖Φ‖NEfor every 
hoi
e of Z, where SepD (X : Z) denotes the setof separable density operators on X ⊗Z. In other words,the an
illary system is useless for 
hannel dis
riminationunless it is entangled with the input system.With the 
onne
tion between 
hannel dis
riminationand the two norms de�ned above in mind, we de�ne anorm ‖Φ‖LOCC by 
onsidering a maximization of the ex-pression (2) over those 
hoi
es of P0 and P1 that represent

LOCC measurements, as opposed to general measure-ments. More pre
isely, for any Hermiti
ity-preservingmapping Φ ∈ T (X ,Y) we de�ne
‖Φ‖LOCC

= max
{P0,P1}

max
ρ∈D(X⊗Z)

〈

P0 − P1, (Φ ⊗ 1L(Z))(ρ)
〉

, (4)where the maximization is taken over all LOCCmeasurements[47℄ {P0, P1} on Y⊗Z, and where Z is anyspa
e having dimension at least that of X . We also de-�ne ‖Φ‖SEP and ‖Φ‖PPT similarly, where the maximiza-tion is over all separable or PPT binary-valued measure-ments, respe
tively.[48℄ In all of these 
ases, the result-ing norm is insensitive to the dimension of Z, providedit is at least that of X . This follows from the observa-tion that the maximum over ρ ∈ D (X ⊗ Z) for any ofthese norms is always a
hieved for a pure state (by asimple 
onvexity argument), and su
h a state must besupported on a subspa
e of Z having dimension at mostthat of X . Similar to ‖Φ‖NE, we do not 
on
ern our-selves with extensions of ‖Φ‖LOCC, ‖Φ‖SEP, or ‖Φ‖PPTto non-Hermiti
ity-preserving mappings Φ.It is 
lear that
‖Φ‖NE ≤ ‖Φ‖LOCC ≤ ‖Φ‖SEP ≤ ‖Φ‖PPT ≤ ‖Φ‖♦ (5)and the main 
ontribution of this paper is to provide ex-amples of 
hannels Φ0 and Φ1 for whi
h the mapping

Φ = Φ0 − Φ1 
auses various 
hoi
es of the inequalitiesin (5) to be
ome either equalities or stri
t inequalities.We are, in parti
ular, interested in the relationship be-tween ‖Φ0 − Φ1‖LOCC and the two norms ‖Φ0 − Φ1‖NEand ‖Φ0 − Φ1‖♦ for di�erent 
hoi
es of 
hannels Φ0 and
Φ1. This relationship addresses the question raised inthe introdu
tion, whi
h is whether entanglement betweenthe input and auxiliary systems remains a useful resour
efor 
hannel dis
rimination when entangled measurementsare disallowed. The two se
tions that follow show thatsometimes entanglement is still useful in this sense andsometimes it is not.Sin
e we fo
us on families of measurements de�nedwith respe
t to lo
ality, and the input states are alwaysoptimized, three operational minimum-error 
hannel dis-
rimination s
enarios 
orresponding to the three norms
‖ · ‖NE, ‖ · ‖♦ and ‖ · ‖LOCC 
an be depi
ted as in Figure1, Figure 2, and Figure 3, respe
tively. The 
hannels gofrom Ali
e to Bob, as in a 
ommuni
ation s
enario, butthe task is not that of transmitting a 
lassi
al or a quan-tum message from Ali
e to Bob having at disposal manyuses of the 
hannel. Rather, they want to dis
riminatebetween two possible 
hannels with minimum probabil-ity of error, having at their disposal only one use of the
hannel.In the NE norm 
ase, Ali
e feeds the 
hannels witha probe that is not 
orrelated with any other subsys-tems held by either herself or Bob, and Bob measuresthe output probe, guessing whi
h 
hannel was applied.In the diamond-norm 
ase, at the beginning Ali
e holds



4
FIG. 1: Operational s
enario for the NE norm. The unknown
hannel Φi goes from Ali
e to Bob, and it is not in the handsof either of them. Bob performs the �nal measurement. Inthis 
ase, Ali
e's input to the 
hannel is un
orrelated withany other system in the hands of Ali
e or Bob.the probe and Bob the an
illa, whi
h are in whateverneeded pre-distributed entangled state; Ali
e sends theprobe down the 
hannel, and Bob 
an jointly measure theoutput probe and the an
illa.[49℄ Finally, in the LOCC-
FIG. 2: Operational s
enario for the diamond norm. Ali
eand Bob share an initial�possibly entangled�probe/an
illastate whi
h is optimal for 
hannel dis
rimination. Ali
e sendsthe probe downs the 
hannel and Bobs pro
eeds to the mea-surement of the output probe/an
illa state.norm 
ase, we 
an imagine that Ali
e lo
ally 
reates anentangled probe/an
illa state, feeding the 
hannel withthe probe and keeping the an
illa. The measurement isthen performed by LOCC on the output probe held byBob and the an
illa held by Ali
e. We remark that this
FIG. 3: Operational s
enario for the LOCC norm. Ali
e
reate an entangled probe/an
illa state, keeps the an
illa,and sends the probe down the 
hannel. Ali
e and Bob
an then pro
eed to an LOCC measurement of the outputprobe/an
illa state.s
enario�where the unknown 
hannel Φi goes from Al-i
e to Bob, and it is not in the hands of either of them�
ould be thought as 
orresponding to a pra
ti
al situ-

ation like that of, e.g., an opti
al �ber underneath thesea. In parti
ular, the restri
tion to LOCC output mea-surement would be the result of the non-availability oflong-distan
e pre-established entanglement�or of someother quantum 
hannel to be used to send also the an
illafrom Ali
e to Bob.III. OPTIMAL DISCRIMINATIONPROCEDURES WITH LOCC MEASUREMENTSIn this se
tion we provide examples of 
hannels Φ0 and
Φ1 for whi
h

‖Φ0 − Φ1‖NE < ‖Φ0 − Φ1‖LOCC = ‖Φ0 − Φ1‖♦ . (6)Thus, entanglement between the input and an
illary sys-tems may still be useful for 
hannel dis
rimination whenthe measurement is LOCC�and indeed an LOCC mea-surement may even be optimal in this situation.The �rst 
olle
tion of examples we provide a
hievesa limited gap between the quantities ‖Φ0 − Φ1‖NE and
‖Φ0 − Φ1‖LOCC, but has the advantage of being simpleto des
ribe. The se
ond type of example a
hieves a largegap, but also requires that the output dimension of the
hannels be very large. The third example is spe
i�
allyfor input qubits, and while being similar to the se
ond
lass of examples, we in
lude it be
ause of its simpli
ity:on the one hand, it is possible to provide exa
t valuesfor the the various norms; on the other hand, it 
ould beexperimentally implemented.A. Examples based on �agged Kraus operatorsLet X = Cd for any desired 
hoi
e of d ≥ 2, and let
Y = Cn ⊗ X for n ≥ 1. Consider a 
hoi
e of 
hannels
Φ0,Φ1 ∈ T (X ,Y) de�ned as

Φa(ρ) =

n
∑

j=1

|j〉〈j| ⊗Aa,jρA
∗
a,j ,for some sele
tion of operators {Aa,j : a ∈ {0, 1}, 1 ≤

j ≤ n} ⊂ L (X ) satisfying
n

∑

j=1

A∗
0,jA0,j =

n
∑

j=1

A∗
1,jA1,j = 1X .A su�
ient 
ondition for Φ0 and Φ1 to be perfe
tlydistinguishable using an LOCC measurement dis
rim-ination pro
edure (i.e., ‖Φ0 − Φ1‖LOCC = 2) is that

〈A0,j , A1,j〉 = 0 for all j = 1, . . . , n. This observationfollows from the well-known theorem of [19℄ stating thatevery �xed pair of orthogonal pure states 
an be perfe
tlydistinguished by an LOCC measurement. In parti
ular,if the maximally entangled state
1√
d

d
∑

i=1

|i〉|i〉



5between the input and an an
illary system is sele
ted,then the resulting state produ
ed by Φa has the form
1

d

n
∑

j=1

|j〉〈j| ⊗ |ψa,j〉〈ψa,j |for ve
tors {|ψa,j〉} satisfying 〈ψ0,j |ψ1,j〉 = 〈A0,j , A1,k〉 =
0 for every 
hoi
e of j = 1, . . . , n. An LOCC measure-ment that �rst measures j, then implements the 
orre-sponding measurement of [19℄ to distinguish |ψ0,j〉 and
|ψ1,j〉 su

eeds in dis
riminating Φ0 and Φ1 without er-ror.On the other hand, it holds that
‖Φ0 − Φ1‖NE = max

ρ∈D(X )

n
∑

j=1

∥

∥A0,jρA
∗
0,j −A1,jρA

∗
1,j

∥

∥

1
.(7)So, to obtain examples of 
hannel pairs for whi
h (6)holds, it su�
es to sele
t a 
olle
tion of operators {Aa,j}so that1. 〈A0,j , A1,j〉 = 0 for ea
h j = 1, . . . , n, and2. the expression in (7) is smaller than 2.This may be a

omplished, for instan
e, by setting n =

d2−1, A0,j = 1/
√
n, and A1,j = Wj/

√
n, for j = 1, . . . , nand where W1, . . . ,Wn is any orthonormal 
olle
tion oftra
eless unitary operators, su
h as the non-identity dis-
rete Weyl (or generalized Pauli) operators. We thenhave

‖Φ0 − Φ1‖NE = max
|ψ〉

2

d2 − 1

d2−1
∑

j=1

√

1 − |〈ψ|Wj |ψ〉|2

≤ 2

√

d

d+ 1where the inequality is due to the 
on
avity of the squareroot (with equality if and only if Zauner's 
onje
ture [41,42℄ holds for dimension d), and we used the fa
t that
ρ+

∑d2−1
j=1 WjρW

∗
j = dTr(ρ)1XB. Examples based on random binary-valuedmeasurementsLet d be an even positive integer, let X = Cd and

Y = C2, and de�ne 
hannels Ψ0,Ψ1 ∈ T (X ,Y) as
Ψ0(ρ) = Tr(Π0ρ)|0〉〈0| + Tr(Π1ρ)|1〉〈1|
Ψ1(ρ) = Tr(Π1ρ)|0〉〈0| + Tr(Π0ρ)|1〉〈1|,where

Π0 =

d/2
∑

j=1

|j〉〈j| and Π1 =
d

∑

j=d/2+1

|j〉〈j|.

Now suppose that U1, . . . , UN ∈ U (X ) is a 
olle
-tion of unitary operators, and de�ne 
hannels Φ0,Φ1 ∈T (

X ,CN ⊗ Y
) as follows:

Φ0(ρ) =
1

N

N
∑

j=1

|j〉〈j| ⊗ Ψ0

(

UjρU
∗
j

)

Φ1(ρ) =
1

N

N
∑

j=1

|j〉〈j| ⊗ Ψ1

(

UjρU
∗
j

)

.A representation of the a
tion of the 
hannels is providedin Figure 4.
FIG. 4: Stru
ture of some exemplary pairs of 
hannels forwhi
h the LOCC norm is equal to the diamond norm, andstri
tly greater than the NE norm. Single lines indi
ate quan-tum systems or messages; double lines 
lassi
al ones. The
hannel 
hooses at random a unitary among a dis
rete set.An in
omplete proje
tive measurement in the 
omputationalbasis with two possible out
omes is then performed. The re-sult of the measurement is further �ipped or not, dependingon the 
hannel (on the value of i in the �gure). The outputof the 
hannel is 
lassi
al, meaning that it is diagonal in a�xed 
omputational basis: a register 
ontaining the index ofthe 
hosen unitary, and a bit 
ontaining the (possibly �ipped)result of the measurement. A full des
ription of the a
tion ofthe 
hannels 
an be found in the main text.For any 
hoi
e of unitary operators U1, . . . , UN , the
hannels Φ0 and Φ1 
an be perfe
tly distinguished by anLOCC dis
rimination pro
edure as follows.1. The given 
hannel Φa is evaluated on half of the 
anon-i
al maximally entangled state

|ψ〉 =
1√
d

d
∑

i=1

|i〉|i〉.Let us suppose that the resulting state is stored inthe registers A1, A2 and B, where the ve
tor spa
es
orresponding to these registers are given by CN , Y,and X , respe
tively; and where Ali
e holds A1 and A2,and Bob holds B.2. Ali
e measures A1 with respe
t to the standard basisand transmits the result to Bob. Upon re
eiving avalue j ∈ {1, . . . , N}, Bob applies the operation Uj to
B, where the 
omplex 
onjugation is taken with respe
tto the standard basis. The state of the pair (A2,B) atthis point is given by (Ψa ⊗ 1)(|ψ〉〈ψ|).3. Bob applies Ψ0 to B and measures the resulting qubitwith respe
t to the standard basis. Ali
e measures her



6qubit A2 with respe
t to the standard basis as well,and Ali
e and Bob 
ompare their measurements. Ifthey agree then a = 0 and otherwise a = 1.Thus, it holds that ‖Φ0 − Φ1‖LOCC = 2.Now we will argue that for some 
hoi
e of unitary op-erators U1, . . . , UN it holds that
‖Φ0 − Φ1‖NE =

√

2

πd
+O

(

1

d

)

.This is done by taking N to be large and sele
ting
U1, . . . , UN independently a

ording to the normalizedHaar measure on U (X ). It holds that

‖Φ0 − Φ1‖NE
= max

|ψ〉

2

N

N
∑

k=1

∣

∣

∣

∣

∣

∣

d/2
∑

j=1

|〈ψ|Uk|j〉|2 −
d

∑

j=d/2+1

|〈ψ|Uk|j〉|2
∣

∣

∣

∣

∣

∣

,(8)whi
h, in the limit of large N , approa
hes
2 max

|ψ〉

∫

∣

∣

∣

∣

∣

∣

d/2
∑

j=1

|〈ψ|Uj |j〉|2 −
d

∑

j=d/2+1

|〈ψ|Uj |j〉|2
∣

∣

∣

∣

∣

∣

dµ(U)for µ denoting the Haar measure on U (X ), normalized sothat µ(U (X )) = 1. A formula for this type of integral isgiven in Appendix B of [38℄, whi
h in this 
ase evaluatesto
1

d

d/2
∑

j=1

2−2j

(

2j

j

)

=

√

2

πd
+ O

(

1

d

)as 
laimed.C. Simple pairs of 
hannels with qubit inputConsider a spe
ial 
ase of the exemplary 
lass pre-sented in Se
tion III B, with qubit input dimension d =
2. In parti
ular, take the number of random unitaries
N = 2, with U1 = 1 and U2 = (σx + σz)/

√
2. Then Eq.(8) be
omes

‖Φ0 − Φ1‖NE = max
|ψ〉

∑

k=x,z

|〈ψ|σk|ψ〉| =
√

2where the maximum is realized by a pure state in the xzplane of the Blo
h sphere.This qubit-input example 
an also be 
omputed ex-a
tly for N = 3, with U1 = 1, U2 = (σx + σz)/
√

2 and
U3 = (σy+σz)/

√
2. Then one has ‖Φ0 − Φ1‖NE = 2/

√
3,with a slightly bigger gap between the LOCC and dia-mond norms, still both equal to 2, and the NE norm.

IV. SUB-OPTIMALITY OF LOCCMEASUREMENTSIn this se
tion we show that there are 
ases where re-stri
ting measurements to be LOCC in 
hannel dis
rimi-nation pro
edures eliminates the bene�ts of entanglementaltogether. That is, there exist 
hannels Φ0 and Φ1 forwhi
h
‖Φ0 − Φ1‖NE = ‖Φ0 − Φ1‖LOCC < ‖Φ0 − Φ1‖♦ (9)Three sets of examples are dis
ussed.A. Channels with one-qubit outputFor any pair of 
hannels whose outputs 
orrespond to asingle qubit, dis
rimination strategies using LOCC mea-surements 
an be no better than strategies that use noentanglement. This follows from the following theorem.Theorem 1. For any 
hoi
e of 
hannels Φ0,Φ1 ∈T (X ,Y) it holds that

‖Φ0 − Φ1‖SEP ≤ dim(Y)

2
‖Φ0 − Φ1‖NE .Proof. Let Φ = Φ0 − Φ1, and let Z = Cn for an ar-bitrary 
hoi
e of n ≥ 1. Also let ρ ∈ D (X ⊗ Z) be adensity operator and let {Q1 ⊗ R1, . . . , QN ⊗ RN} rep-resent an arbitrary produ
t measurement over Y ⊗Z, sothat Q1, . . . , QN ∈ Pos (Y) and R1, . . . , RN ∈ Pos (Z)satisfy

N
∑

j=1

Qj ⊗Rj = 1Y⊗Z .There is no loss of generality in assuming that ea
h op-erator Qj is a density operator, be
ause ea
h Rj 
an bere-s
aled appropriately.Now, given that we assume that Q1 . . . , QN are densityoperators, it holds that
N

∑

j=1

Rj = dim(Y)1Z .Our goal will be to establish an upper bound on the quan-tity
N

∑

j=1

∣

∣

〈

Qj ⊗Rj , (Φ ⊗ 1L(Z))(ρ)
〉
∣

∣ . (10)To this end let us write Xj = TrZ [(1Y ⊗Rj)ρ], so that
∣

∣

〈

Qj ⊗Rj , (Φ ⊗ 1L(Z))(ρ)
〉
∣

∣ = |〈Qj,Φ(Xj)〉|

≤ 1

2
‖Φ‖NE Tr(Xj)



7for ea
h j = 1, . . . , N , where the inequality follows fromthe observations that ea
h Φ(Xj) is tra
eless and that
Qj ≤ 1Y . It follows that

N
∑

j=1

∣

∣

〈

Qj ⊗Rj , (Φ ⊗ 1L(Z))(ρ)
〉
∣

∣

≤ 1

2
‖Φ‖NE N

∑

j=1

Tr(Xj) =
dim(Y)

2
‖Φ‖NE . (11)Finally, we note that the quantity ‖Φ‖SEP is given bythe supremum of the expression (10) over all 
hoi
es of nand all produ
t measurements {Q1⊗R1, . . . , QN⊗RN},whi
h 
ompletes the proof.Corollary 1. Suppose Φ0,Φ1 ∈ T (X ,Y) are 
hannelsfor dim(Y) = 2. Then ‖Φ‖NE = ‖Φ‖SEP.As there exist 
hannels Φ0 and Φ1 having single-qubitoutputs for whi
h ‖Φ0 − Φ1‖NE < ‖Φ0 − Φ1‖♦, we havethat (9) holds for these 
hannels.B. Werner-Holevo 
hannelsThe Werner-Holevo 
hannels Φ0 and Φ1 are de�ned forany dimension d ≥ 2 as

Φ0(X) =
1

d+ 1
(Tr(X)1 +XT) ,

Φ1(X) =
1

d− 1
(Tr(X)1−XT) ,where transposition is taken with respe
t to the standardbasis [43℄. It holds that

‖Φ0 − Φ1‖NE =
4

d+ 1
,whereas ‖Φ0 − Φ1‖♦ = 2; the 
hannels are almost indis-tinguishable for large d without the use of entanglement,but are perfe
tly distinguishable with entanglement.We will now prove that for this 
hoi
e of 
hannels,LOCC measurements render entanglement useless fortheir dis
rimination. Indeed, even PPT measurementshave this property:

‖Φ0 − Φ1‖LOCC = ‖Φ0 − Φ1‖PPT =
4

d+ 1
.To prove that this is so, it su�
es to prove that for everyspa
e Z with dim(Z) ≥ dim(X ), every unit ve
tor |ψ〉 ∈

X ⊗Z, and every PPT measurement {P0, P1} on Y ⊗Z,it holds that
〈

P0 − P1, ((Φ0 − Φ1) ⊗ 1L(Z))(|ψ〉〈ψ|)
〉

≤ 4

d+ 1
.Given that ((Φ0 − Φ1) ⊗ 1L(Z))(|ψ〉〈ψ|)(|ψ〉〈ψ|) is tra
e-less, and that P0 = 1−P1 for every 
hoi
e of a measure-ment {P0, P1}, it su�
es to prove

〈

P1, ((Φ1 − Φ0) ⊗ 1L(Z))(|ψ〉〈ψ|)
〉

≤ 2

d+ 1
(12)

for every unit ve
tor |ψ〉 and every PPT operator P1 sat-isfying 0 ≤ P1 ≤ 1. (It may be the 
ase that P0 = 1−P1fails to be PPT for some 
hoi
es of a PPT operator P1,but the above bound will hold nevertheless�we do notrequire the assumption that P0 is PPT to establish thebound.)To prove the bound (12), note �rst that any unit ve
tor
|ψ〉 ∈ X ⊗ Z may be written

|ψ〉 = (1X ⊗ A)

d
∑

j=1

|j〉|j〉for some 
hoi
e of a linear mapping A : X → Z satisfying
‖A‖2

def
=

√

〈A,A〉 = 1. Thus, for any mapping Φ ∈T (X ,Y) it holds that
(Φ ⊗ 1L(Z))(|ψ〉〈ψ|) = (1Y ⊗A)J(Φ)(1Y ⊗A)∗,where

J(Φ) =
∑

1≤j,k≤d

Φ(|j〉〈k|) ⊗ |j〉〈k|is the Choi-Jamioªkowski representation of Φ. For themapping Φ = Φ1 − Φ0, it holds that
J(Φ1 − Φ0) =

2

d− 1
R− 2

d+ 1
S,for R and S denoting the proje
tions onto the anti-symmetri
 and symmetri
 subspa
es of Y⊗X = Cd⊗Cd,respe
tively. Thus,

〈

P1, ((Φ1 − Φ0) ⊗ 1L(Z))(|ψ〉〈ψ|)
〉

=

〈

(1Y ⊗A∗)P1(1Y ⊗A),
2

d− 1
R− 2

d+ 1
S

〉

.It is not di�
ult to prove that 〈Q,R− S〉 ≤ 0 for everyPPT operator Q. Given that P1 is PPT, so too is theoperator (1Y ⊗A∗)P1(1Y ⊗A), and therefore
〈

(1Y ⊗A∗)P1(1Y ⊗A),
2

d− 1
R− 2

d+ 1
S

〉

≤ 4

d2 − 1
〈(1Y ⊗A∗)P1(1Y ⊗A), R〉

≤ 4

d2 − 1
〈1Y ⊗A∗A,R〉 .As A∗A is a density operator and TrY(R) = d−1

2 1Y , itfollows that
4

d2 − 1
〈1Y ⊗A∗A,R〉 =

2

d+ 1
,whi
h establishes the 
laimed bound (12).C. The 
hannels of [17℄Finally, we prove that 
hannels Ψ0 and Ψ1 
onstru
tedin Theorem 1 of [17℄ satisfy

‖Ψ0 − Ψ1‖NE = ‖Ψ0 − Ψ1‖SEP < ‖Ψ0 − Ψ1‖♦ .



8Channels 
onstru
ted in this way demonstrate that everyentangled state is useful for 
hannel dis
rimination, pro-vided that the �nal measurement is unrestri
ted�but bythe above relationship we see that the advantage is lostwhen the �nal measurements are restri
ted to be separa-ble.Let us �rst re
all that 
hannels Ψ0 and Ψ1 
onstru
tedin [17℄ satisfy Ψ0 − Ψ1 = αΦ for some α > 0 and Φ ∈T (X ,Y ⊕ C) being a mapping de�ned as
Φ(X) =

(

Ξ(X) 0
0 −Tr(X)

)for Ξ ∈ T (X ,Y) being positive (but not 
ompletely pos-itive) and tra
e-preserving. (The mapping Φ is there-fore tra
e-annihilating, whi
h is a ne
essary and su�
ient
ondition for the expression Ψ0 − Ψ1 = αΦ to hold for
hannels Ψ0 and Ψ1 and a s
alar α > 0.)Now, it is not di�
ult to see that ‖Φ‖SEP = ‖Ξ‖SEP+
1. Spe
i�
ally, the inequality ‖Φ‖SEP ≤ ‖Ξ‖SEP + 1 fol-lows from the triangle equality, while the reverse inequal-ity ‖Φ‖SEP ≥ ‖Ξ‖SEP + 1 is obtained by 
onsidering theseparable measurement {Q0, Q1} ⊂ Sep ((Y ⊕ C) : X )de�ned as

Q0 =

(

P0 0
0 0X

) and Q1 =

(

P1 0
0 1X

)for {P0, P1} ⊂ Sep (Y : X ) being an optimal separablemeasurement in the de�nition of ‖Ξ‖SEP.Now, for a generi
 state ρ ∈ D (X ⊗ Z), one �nds
∥

∥(Ξ ⊗ 1L(Z))(ρ)
∥

∥SEP
=

〈

P0 − P1, (Ξ ⊗ 1L(Z))(ρ)
〉

=
〈

(Ξ∗ ⊗ 1L(Z))(P0) − (Ξ∗ ⊗ 1L(Z))(P1), ρ
〉for some 
hoi
e of a separable measurement {P0, P1}.Given that Ξ is positive and tra
e-preserving we havethat the adjoint mapping Ξ∗ is positive and unital, andgiven that {P0, P1} is separable it therefore follows that

{(Ξ∗⊗1L(Z))(P0), (Ξ
∗⊗1L(Z))(P1)} is also a (separable)measurement. The value ‖(Ξ ⊗ 1L(Z))(ρ)‖SEP is there-fore equal to 1 (where the equality follows by 
hoosing thetrivial measurement P0 = 1 and P1 = 0, for instan
e).Consequently, we have that ‖Ψ0 − Ψ1‖SEP = 2α. Asis proved in [17℄, it holds that

2α = ‖Ψ0 − Ψ1‖NE < ‖Ψ0 − Ψ1‖♦ ,and so we have ‖Ψ0 − Ψ1‖NE = ‖Ψ0 − Ψ1‖SEP <
‖Ψ0 − Ψ1‖♦ as 
laimed.V. CONCLUSIONSWe have introdu
ed a new norm ‖·‖LOCC onHermiti
ity-preserving maps, representing a �weakened�version of the diamond norm. This norm is motivated by

an interest in the usefulness of entanglement for 
han-nel dis
rimination, and in parti
ular whether entangle-ment in the input/an
illary systems remains useful whenthe �nal measurement is implementable by lo
al opera-tions and 
lassi
al 
ommuni
ation alone. We providedexamples of pairs of 
hannels where input entanglementis useful only if general measurements are available, whilethere are other 
ases where the advantage of using inputentanglement is fully maintained in spite of the LOCCrestri
tion on measurements.In the 
ontext of bipartite state dis
rimination, onemay study the gap in the probability of error asso
iatedto dis
rimination proto
ols that are or are not restri
ted(e.g., to be LOCC) [38℄. This gap has been shown to de-pend on the total dimension of the underlying systems.In the present paper we showed two results that regarddimensions. One is that a restri
tion on the output mea-surement makes input entanglement useless if the outputdimension is too small (one qubit), and the se
ond is adimensional lower bound on the gap that 
an be a
hievedbetween the diamond norm and the LOCC norm, wherethe relevant dimension is in this 
ase the input one. Onemay 
onsider in more detail what is the role of the inputand output dimensions for the usefulness of entanglementwhen measurements are restri
ted.In [17℄ it was proved that, for any entangled state, thereexists an instan
e of a 
hannel dis
rimination problem forwhi
h the entangled state allows for a 
orre
t dis
rimina-tion with stri
tly higher probability than every possibleseparable state. The result was obtained by resorting tothe use of the fundamental 
hara
terization of entangle-ment in terms of linear maps [44℄. The a
tual 
onstru
-tion used in [17℄ 
ompletely fails when the output mea-surement is of the separable type. Indeed, in our viewthe main open problem 
on
erning 
hannel dis
rimina-tion with LOCC measurements is whether the results of[17℄ 
an be extended to LOCC-restri
ted measurements.While we know that there are entangled input states use-ful for 
hannel dis
rimination even with 
onstrained out-put measurements, the possibility is left open that someentangled states be
ome useless in this setting. If this isthe 
ase, it would be interesting to understand what kindof features make some states remain useful and some not.An issue that has been the fo
us of a large part ofthe literature on the role of entanglement in 
hannel dis-
rimination is the question of what 
hannels are betterdistinguished by the used of entanglement. Similarly, one
an ask what 
hannels that are better dis
riminated bythe use of an entangled an
illa are still (or are not anymore) better dis
riminated when we impose 
onstraintson the measurements. The results presented in this workshow that both situations o

ur. Is it possible to �ndlarge 
lasses of 
hannels for whi
h input entanglementstays or fails to stay a useful resour
e?
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