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Abstract: We show that any number of parties can coherently exchange any one pure
quantum state for another, without communication, given prior shared entanglement. Two
applications of this fact to the study of multi-prover quantum interactive proof systems are
given. First, we prove that there exists a one-round two-prover quantum interactive proof
system for which no finite amount of shared entanglement allows the provers to implement
an optimal strategy. More specifically, for every fixed input string, there exists a sequence of
strategies for the provers, with each strategy requiring more entanglement than the last, for
which the probability for the provers to convince the verifier to accept approaches one. It is
not possible, however, for the provers to convince the verifier to accept with certainty with a
finite amount of shared entanglement. The second application is a simple proof that multi-
prover quantum interactive proofs can be transformed to have near-perfect completeness by
the addition of one round of communication.

1 Introduction

The idea that entanglement may be used as a resource is central to the theory of quantum communica-
tion and cryptography. Well-known examples include teleportation [7] and the super-dense coding of
both classical and quantum data [9, 10, 24]. In cryptography, entanglement is used not only in some
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implementations of quantum key distribution [20], but also as a mathematical tool in security proofs
[32, 34] of quantum key-distribution protocols not based on entanglement (such as [6]). In these settings
it may be said that the relationship between entanglement and other resources (in particular quantum
communication, classical communication, and private shared randomness) is reasonably well-understood
[8, 19].

There are, on the other hand, settings of interest where the properties of entanglement as a resource
are poorly understood. One example can be found in quantum communication complexity, wherein
it is not known if prior shared entanglement ever provides for more than a constant factor decrease
in the number of qubits of communication required to solve a communication problem of the most
standard form [11, 38]. A second example, which is the main focus of this paper, concerns the power of
entanglement in the multi-prover interactive proof system model, which has been studied in several papers
[13, 14, 15, 25, 27, 29, 31, 37]. Bell inequalities [4, 12], and many of the open problems concerning them
[23], have a close connection to this model (although not necessarily to our main results).

Multi-prover interactive proof systems, which were first defined by Ben-Or, Goldwasser, Kilian, and
Wigderson [5], involve interactions between a verifier and two or more provers. The verifier is always
assumed to be efficiently implementable, while the provers are typically permitted to have arbitrary
complexity. The verifier and provers each receive a copy of some input string x, and then engage in an
interaction based on this string. During this interaction the verifier communicates privately with each of
the provers, possibly over the course of many rounds of communication, but the provers are forbidden
from communicating directly with one another. The provers may, however, agree on a joint strategy
before the interaction begins. The provers act in collaboration to convince the verifier that the input string
x is a yes-input to some fixed problem, and therefore should be accepted. The provers are not, however,
considered to be trustworthy, and so the verifier must be defined in such a way that it rejects strings that
are no-inputs to the problem being considered. These two conditions—that the provers can convince
the verifier to accept yes-inputs but cannot convince the verifier to accept no-inputs—are called the
completeness and soundness conditions, respectively, and are analogous to the notions in mathematical
logic that share these names. In contrast to the notion of a mathematical proof, however, one typically
requires only that the completeness and soundness conditions for interactive proof systems hold with
high probability (for every fixed yes or no input string).

In the quantum setting, the verifier and the provers are allowed to use quantum computers and
exchange quantum messages. The provers may also share initial entanglement, to be used as part of their
strategy during the interaction. In general, shared entanglement increases the provers’ power: they can
use it to potentially solve harder problems, but they also have greater power through which they might
violate soundness conditions. Intermediate models have also been studied, where some but not all of the
local processing, the interaction, and the correlation between the provers are quantum.

Many known facts and techniques about classical multi-prover interactive proof systems become
invalid within the quantum model. The following points illustrate the effect of this change on our current
state of knowledge.

• When the provers are not allowed to share prior entanglement, it is known that the class of promise
problems that have multi-prover interactive proof systems is precisely NEXP, the class of problems
that can be solved nondeterministically in exponential time. This holds for both quantum and
classical verifiers and provers [2, 31].
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• It is not known if every promise problem having a multi-prover interactive proof systems in which
the provers initially share entanglement, including the cases of both classical and quantum verifiers,
is computable; and it was only very recently shown by Ito and Vidick [25] that multi-prover
quantum interactive proof systems are no less powerful than multi-prover classical interactive
proofs.

One basic question about multi-prover interactive proofs with entangled provers has remained
unanswered, and is closely related to the lack of good upper bounds on their power: For a given verifier
and input string, how much entanglement is needed for the provers to play optimally? To obtain an upper
bound on the expressive power of multi-prover interactive proofs with entangled provers, one approach is
to seek a general bound: a limit on the amount of entanglement, as a function of the verifier’s description
and the given input, needed for the provers to play optimally.

Our first main result partially explains the difficulty in answering the above question: we prove that
there exist two-prover quantum interactive proof systems for which no finite amount of entanglement
allows for an optimal strategy on any fixed input. In other words, there are interactive proofs such that,
no matter what entangled state the provers choose on a given input, it would always be possible for
them to do strictly better with more entanglement. There is, therefore, no strict upper bound of the form
discussed above. This fact has an obvious but important implication: to obtain upper bounds on the power
of multi-prover quantum interactive proofs via an upper bound on the entanglement required, one must
consider close-to-optimal strategies instead of optimal ones.

Our second main result concerns methods to achieve perfect completeness of quantum interactive
proof systems while retaining small soundness error. In the single-prover case, an efficient transformation
for doing this exists that is both simple and easy to analyze [30]. In the multi-prover setting, an analogous
result was obtained by Kempe, Kobayashi, Matsumoto, and Vidick [28] based on a more complicated
transformation and analysis. This more complicated transformation was designed to handle the locality
constraints imposed on multiple provers. It turns out, however, that this complicated procedure is not
needed after all, provided one is willing to make a small sacrifice. We prove that the simple single-prover
technique can be applied in the multi-prover case to yield a proof system with near-perfect completeness:
honest provers are able to convince the verifier to accept yes-inputs with any probability smaller than 1
that they desire—but they might never reach probability 1 using finite resources.

The two main results just discussed are connected by the notion of coherent state exchange. This
notion, which is closely related to that of quantum state embezzlement [18], is the subject of the section
following this one. The first main result is then proved in Section 3, while the second is proved in
Section 4. The paper concludes with Section 5. Throughout the paper we assume the reader is familiar
with quantum computing and with basic aspects of classical and quantum interactive proof systems. Our
notation and terminology are consistent with other papers on these topics.

Remarks on recent related work

An initial version of this paper was posted to arXiv.org in April 2008, and the present version does not
differ significantly from the initial version in content. Since the posting of this initial version, several
interesting papers studying entanglement in two-player games have appeared. In addition to [25] that
was already mentioned, along with a recent follow-up paper by Vidick [36], the papers [16] and [33] are
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particularly relevant to this one. A class of games called rank one quantum games, which generalizes
the main type of game we consider in this paper, is defined and studied in [16], and many interesting
results about this class are proved. The main technique we use in this paper has found applications to a
somewhat different class of games, called quantum XOR games, which are defined and studied in [33].

2 Coherent state exchange

Suppose that m players wish to transform a shared state |φ〉 into a different state |ψ〉. Also suppose that
we require this task to be completed (1) without communication and (2) by a coherent process (meaning
that it can be applied in a way that preserves superpositions). We refer to this task as coherent state
exchange.

In the absence of additional resources, it is not possible in general to perform this task when m≥ 2.
In particular, given that the players cannot create entanglement out of thin air, the task is easily seen to be
impossible when the target state |ψ〉 has more entanglement than the initial state |φ〉. However, if we
consider the situation in which the players initially share an auxiliary quantum state, and we allow this
state to be perturbed slightly by the process, then the above impossibility argument based on entanglement
is no longer valid—and, as we will show, the task indeed becomes possible. We note that the coherence
condition requires that a process of this sort must leave the auxiliary quantum state nearly unchanged,
in essence using it as a catalyst. The players cannot, for instance, simply swap the input state |φ〉 with
an initially shared copy of |ψ〉 without losing coherence. Note also that the coherence condition makes
the exchange in both directions equally difficult, independent of whether entanglement is increased or
decreased in the process.

Definition 2.1 (Coherent state exchange). Consider m players P1, . . . ,Pm, and suppose that player Pi

holds a quantum system whose associated Hilbert space is denoted Ri, for each i ∈ {1, . . . ,m}. Let
|φ〉 , |ψ〉 ∈R1⊗·· ·⊗Rm be two chosen pure states. Coherent state exchange of |φ〉 to |ψ〉 with error ε is
defined as a process that transforms any state of the form

α |0m〉 |γ〉+β |1m〉 |φ〉

into a state ρ whose fidelity with
α |0m〉 |γ〉+β |1m〉 |ψ〉

is at least 1− ε . In the above states, the first m qubits represent control qubits, with one held by each
player, and |γ〉 represents an arbitrary state in R1⊗·· ·⊗Rm. The players can share an initially entangled
state, but cannot communicate.

In the above definition, the spaces Ri and R j need not have equal dimension for i 6= j.

Lemma 2.2. Let P1, . . . ,Pm and |φ〉 , |ψ〉 ∈ R1⊗·· ·⊗Rm be as in Definition 2.1. Suppose each player Pi

holds an additional quantum system whose associated Hilbert space is denoted Xi, and let X1⊗·· ·⊗Xm

be referred to as the auxiliary space. If there is a state |E〉 in the auxiliary space, along with m unitary
operators Ui ∈ L(Ri⊗Xi), such that

|〈ψ|〈E|U1⊗·· ·⊗Um |φ〉|E〉| ≥ 1− ε,

then coherent state exchange with error ε is possible.
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Proof. Starting from the initial state (
α |0m〉 |γ〉+β |1m〉 |φ〉

)
|E〉 ,

each party Pi performs the operation |0〉〈0|⊗ I+ |1〉〈1|⊗Ui on their control qubit, system, and portion of
the auxiliary space. The parties now share the state

|ζ 〉= α |0m〉 |γ〉 |E〉+β |1m〉(U1⊗·· ·⊗Um) |φ〉 |E〉 .

Let ρ be the state obtained by taking the partial trace over the auxiliary space. It holds that

F(ρ,α |0m〉 |γ〉+β |1m〉 |ψ〉)≥ F
(
|ζ 〉 ,α |0m〉 |γ〉 |E〉+β |1m〉 |ψ〉 |E〉

)
= |α |2 + |β |2 |〈ψ|〈E|U1⊗·· ·⊗Um |φ〉|E〉| ≥ 1− ε,

as required.

For the bipartite case (m = 2), one method for coherent state exchange with arbitrarily small error can
be obtained through the use of van Dam and Hayden’s quantum state embezzlement [18]. In quantum state
embezzlement, two parties (Alice and Bob) transform a state |µN〉 into one that approximates |µN〉 |φ〉.
Here, |φ〉 is an arbitrary entangled state known to both Alice and Bob, and {|µN〉} is a special family
of states defined so that the approximation can be made arbitrarily accurate as N increases. Thus, Alice
and Bob “embezzle” |φ〉 from |µN〉, leaving little trace of their crime. The transformation described is
coherent and requires no communication, and can therefore be done twice (once in reverse) to achieve
coherent state exchange. It relies, however, on a representation of two-party pure quantum states that no
longer exists for m-party states when m≥ 3. Here, we show that coherent state exchange of any two pure
states with arbitrarily small error for any number of parties is always possible.

Coherent exchange of orthogonal states

For simplicity, we first describe a procedure for the coherent exchange of orthogonal states |φ〉 and |ψ〉.
Modifications that extend to any |φ〉 and |ψ〉 are discussed in the subsection following this one.

Let N be a positive integer, which will determine the accuracy of the coherent exchange of |φ〉 into
|ψ〉. By Lemma 2.2, it suffices to find a state |EN〉 on an auxiliary space X1⊗ ·· ·⊗Xm and unitary
operators Ui ∈ L(Ri⊗Xi) such that

|〈ψ|〈EN |U1⊗·· ·⊗Um |φ〉|EN〉| ≥ 1− εN ,

where εN vanishes as N goes to infinity.
For each player Pi, the auxiliary space Xi will correspond to N + 1 identical registers labeled

X1
i , . . . ,X

N+1
i , where each register has an associated Hilbert space that is isomorphic to Ri. We take the

initial state of the registers (X1
1, . . . ,X

1
m), . . . ,(X

N+1
1 , . . . ,XN+1

m ) to be

|EN〉=
1√
N

N

∑
k=1
|φ〉⊗k |ψ〉⊗(N−k+1) , (2.1)
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representing the entanglement initially shared by P1, . . . ,Pm. The state to be exchanged resides in the
registers (X0

1, . . . ,X
0
m).

The procedure that transforms |φ〉 into |ψ〉 is simple: each player Pi cyclically shifts the contents of
the registers X0

i , . . . ,X
N+1
i by applying a unitary operation Ui defined by the action

|x0〉 |x1〉 · · · |xN+1〉 7→ |xN+1〉 |x0〉 · · · |xN〉

on standard basis states.
Let us now consider the properties of the above procedure. It is clear that after the cyclic shift, the

registers (X1
0, . . . ,X

m
0 ) will contain a perfect copy of |ψ〉, and the remaining registers will contain the state

|E ′N〉=
1√
N

N

∑
k=1
|φ〉⊗(k+1) |ψ〉⊗(N−k) . (2.2)

Thus, the procedure transforms |φ〉 |EN〉 into |ψ〉 |E ′N〉, and

|〈ψ|〈EN |U1⊗·· ·⊗Um |φ〉|EN〉|= 〈EN |E ′N〉= 1− 1
N
.

So, by Lemma 2.2, coherent state exchange is achieved with error εN = 1/N.
The fidelity between |EN〉 and |E ′N〉 can be improved1 if an alternative choice of the state |EN〉 is made

in (2.1). In particular, if the amplitude of the k-th term |φ〉⊗k |ψ〉⊗(N−k+1) is changed from 1/
√

N to

ak =

√
2

N +1
sin
(

πk
N +1

)
,

a lower bound of

〈EN |E ′N〉=
N

∑
k=2

ak−1ak ≥ 1− π2

2N2

on the fidelity is obtained.

Coherent exchange of non-orthogonal states

Here we briefly discuss two methods for performing coherent state exchange for non-orthogonal states
|φ〉 and |ψ〉. For the first method, one may take any state |η〉 ∈ R1⊗·· ·⊗Rm that is orthogonal to both
|φ〉 and |ψ〉, and perform two state exchanges: first from |φ〉 and |η〉 and then from |η〉 to |ψ〉. The
auxiliary state naturally takes the form |EN〉 |FN〉, where |EN〉 is used to transform |φ〉 to |η〉 and |FN〉 is
used to transform |η〉 to |ψ〉. Aside from this change, no new analysis is required. This method works
whenever dim(R1⊗·· ·⊗Rm)≥ 3 which is immediate provided that m≥ 2 and that each Ri is non-trivial.

Another method is as follows. Suppose 〈φ |ψ〉= aeiθ for a > 0, and define |ψ̃〉= e−iθ |ψ〉. It is easy
to coherently exchange |ψ̃〉 for |ψ〉 by letting one player induce a global phase (which translates into a
phase shift on a control qubit if the process is performed in superposition). Thus, it remains to exchange

1This improvement was communicated to us by Aram Harrow, who attributes the idea to Peter Shor.
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|φ〉 for |ψ̃〉. If a = 1 there is nothing to do, while if a < 1 the procedure for orthogonal states can be
applied with little modification. The players share the state

|EN〉=
1√
N1

N

∑
k=1
|φ〉⊗k |ψ̃〉⊗(N−k+1) ,

which is identical to (2.1) except for a different normalization. It is easily verified that N ≤ N1 ≤ N2, and
more explicitly we have

N1 =
1+a
1−a

N−2a
1−aN

(1−a)2 .

Now

|E ′N〉=
1√
N1

N

∑
k=1
|φ〉⊗k+1 |ψ̃〉⊗(N−k)

and

〈EN |E ′N〉= 1− 1−aN

N1
≤ 1− 1

N
.

Thus the accuracy is no worse than in the orthogonal case.

Further connections to embezzlement and other work

As mentioned earlier, in the case m = 2 one may use quantum state embezzlement twice to implement
coherent state exchange. The family of states {|µN〉} defined in [18] also has the added property of being
universal, or independent of the state |φ〉 to be embezzled. We note that it is possible to use our method
to give universal embezzling families for all m. To define a universal embezzling family for any fixed
m, we may consider an ε-net of states {|ψ〉} in Nm dimensions (for ε = 1/N, say), take |φ〉= |0m〉, and
define the embezzling state for each N to be the tensor product of all the states |EN〉 ranging over the
ε-net. The embezzlement of a particular state is then performed in the most straightforward way. Unlike
the families of van Dam and Hayden for the case m = 2, our method is highly inefficient, but nevertheless
establishes that universal embezzling families exist for all m.

A notion related to coherent state exchange, known as catalytic transformation of pure states, was
considered by Jonathan and Plenio [26]. In particular, they considered the situation in which two parties
transform one pure state to another (by local operations and classical communication) using a catalyst—or
a state that assists but is left unchanged by the process. Coherent state exchange and embezzlement do
almost exactly this, allowing approximations in the target state and the regenerated catalyst, and without
the exchange of classical information and preserving coherence.

3 Finite entanglement is suboptimal

The purpose of this section is to prove the first main result of the paper, which is that there exist two-prover
quantum interactive proof systems for which no finite amount of entanglement allows for an optimal
strategy. It suffices to consider cooperative quantum games, defined as the class of two-prover quantum
interactive proof systems having no dependence on the input x. In particular, we consider such games
with only one round of communication.
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|ψ〉

Alice Bob

ρ

S T

R

A B

Figure 1: An illustration of a two-player, one-round cooperative quantum game.

Definition 3.1 (Two-player, one-round cooperative quantum game). Let R,S,T,A,B be finite-dimensional
quantum registers, let ρ be a quantum state of the registers (R,S,T), and let M be a binary measurement
on the registers (R,A,B).

1. The referee prepares (R,S,T) in the state ρ , and then sends S to Alice and T to Bob.

2. Alice and Bob transform the registers S and T sent to them however they choose, resulting in
registers A and B that are sent back to the referee.

3. The referee applies the binary measurement M on the registers (R,A,B). The outcome 1 means
that Alice and Bob win, while the outcome 0 means that they lose.

The usual restrictions for provers in a quantum interactive proof system apply to Alice and Bob: they are
not permitted to communicate once the game begins, but may agree on a strategy beforehand. Such a
strategy may include the sharing of an entangled state |ψ〉 of their own choosing, which they may use
when transforming the registers sent to them via local quantum operations. Alice’s most general strategy
is to apply a quantum channel to S together with her share of the entangled state, outputting A. A general
strategy for Bob may be described in a similar way. The complexity of the referee, which corresponds to
the verifier in an interactive proof system, is ignored given that we no longer consider an input string.

We note that two-player, one-round cooperative quantum games represent a generalization of the non-
local games model of [14], where now the referee can send, receive, and process quantum information.
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Description of the game

We now specify the two-player one-round cooperative quantum game of interest, using the same notation
as in Definition 3.1. Choose S and T to be qutrit registers, and R, A and B to be single-qubit registers.
The referee initializes the registers (R,S,T) to the state

1√
2
|0〉 |00〉+ 1√

2
|1〉 |φ〉

where

|φ〉= 1√
2
|11〉+ 1√

2
|22〉 ,

and sends S and T to Alice and Bob, who return A and B to the referee. The triple (R,A,B) is measured
with respect to the projective measurement {Π0,Π1}, where Π0 = I − |γ〉〈γ| and Π1 = |γ〉〈γ|, for
|γ〉= (|000〉+ |111〉)/

√
2.

The intuition behind this game is as follows. Alice and Bob are presented with two possibilities,
in superposition: they receive either the unentangled state |00〉 or the entangled state |φ〉. Their goal
is essentially to do nothing to |00〉 and to convert |φ〉 to |11〉, for they want the referee to hold the
state |γ〉 when the final measurement is made. These transformations must be done coherently, without
measurements or residual evidence of which of the two transformations |00〉 7→ |00〉 or |φ〉 7→ |11〉 was
performed, for otherwise the final state of the referee will not have a large overlap with |γ〉.

The required transformation will be possible using coherent state exchange, with a winning probability
approaching 1. It will be shown, however, that it is never possible for Alice and Bob to win with certainty,
provided they initially share a finite entangled state.

Strategies that win with probability approaching 1

We now present a family of strategies for Alice and Bob that win with probability approaching 1. In the
above game, Alice receives S from the referee and returns A; and likewise for Bob with registers T and B.
Alice will begin with the qubit A initialized to |0〉, and Bob begins with B initialized to |0〉 as well. Let U
be a unitary operation, acting on a pair consisting of a qutrit and a qubit, with the following behavior:

U : |0〉 |0〉 7→ |0〉 |0〉 , U : |1〉 |0〉 7→ |1〉 |1〉 , and U : |2〉 |0〉 7→ |2〉 |1〉 .

Upon receiving S, Alice applies U to (S,A), and Bob does likewise to (T,B) after receiving T. This
leaves the 5-tuple (R,A,B,S,T) in the state

1√
2
|000〉 |00〉+ 1√

2
|111〉 |φ〉 .

The coherent state exchange of |φ〉 to |00〉 with error 1/N can now be done as described in Section 2.
Sending A and B to the referee gives Alice and Bob a winning probability at least 1−1/N.
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Impossibility to win with certainty

Now we will prove that Alice and Bob cannot win with certainty regardless of the strategy they employ.
Without loss of generality, it may be assumed that Alice and Bob initially share a pure entangled state
|ψ〉 ∈ XA⊗XB, where the spaces XA and XB have the same dimension d. When Alice and Bob receive S
and T from the referee, the state of the entire system is given by

1√
2
|0〉 |00〉 |ψ〉+ 1√

2
|1〉 |φ〉 |ψ〉 .

General operations performed by Alice and Bob at this point can be described by linear isometries
through the use of the usual Stinespring representation of quantum channels. These isometries take the
form A : S⊗XA→A⊗YA for Alice and B : T⊗XB→B⊗YB for Bob, where S,T,A,B are the spaces
associated with the registers S, T, A, and B, and the spaces YA and YB are arbitrary. The state of the
system immediately before the referee measures is therefore

1√
2
|0〉(A⊗B) |00〉 |ψ〉+ 1√

2
|1〉(A⊗B) |φ〉 |ψ〉 .

By defining operators A0,A1 ∈ L(S⊗XA,YA) and B0,B1 ∈ L(T⊗XB,YB) as

A0 = (〈0|⊗ I)A, A1 = (〈1|⊗ I)A, B0 = (〈0|⊗ I)B, B1 = (〈1|⊗ I)B,

we may express the probability that Alice and Bob win as∥∥∥∥1
2
(A0⊗B0) |00〉 |ψ〉+ 1

2
(A1⊗B1) |φ〉 |ψ〉

∥∥∥∥2

≤ 1
2
+

1
2

∣∣〈φ | 〈ψ| A∗1A0⊗B∗1B0 |00〉 |ψ〉
∣∣.

We have that ‖A∗1A0‖ ≤ 1 and ‖B∗1B0‖ ≤ 1, and therefore it is possible to express both A∗1A0 and B∗1B0
as convex combinations of unitary operators. By convexity, the winning probability pwin is upper-bounded
as

pwin ≤
1
2
+

1
2
|〈φ | 〈ψ|U⊗V |00〉 |ψ〉| (3.1)

for some choice of unitary operators U and V . (As a side remark, we note that the optimal U,V in
(3.1) can be derived from Lemma 1 of [35]. The inequality (3.1) can then be attained by choosing
A = |0〉〈0|⊗ I + |1〉〈1|⊗U and B = |0〉〈0|⊗ I + |1〉〈1|⊗V .)

Notice that |φ〉 |ψ〉 has more entanglement than (U⊗V ) |00〉 |ψ〉 so the states cannot be equal, and
therefore the success probability cannot be 1. A quantitative bound may be proved as follows. Let ρ and
ξ be the reduced density matrices on Alice’s side for the above states,

ρ = TrB⊗YB (|φ〉〈φ |⊗ |ψ〉〈ψ|) and ξ = TrB⊗YB U (|00〉〈00|⊗ |ψ〉〈ψ|)U∗.

If we first apply the monotonicity of the fidelity under partial tracing, and then the Fuchs-van de Graaf
inequalities [22] relating the fidelity and the trace distance between two states, we obtain the bound

|〈φ | 〈ψ|U⊗V |00〉 |ψ〉| ≤ F(ρ,ξ )≤
√

1−∆2 ,
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where ∆ = 1
2 ‖ρ−ξ ‖1 is the trace distance between ρ and ξ . Using (3.1),

1− pwin ≥
1
2
(1−|〈φ | 〈ψ|U⊗V |00〉 |ψ〉|)≥ 1

2

(
1−
√

1−∆2
)
≥ ∆2

4
.

The trace distance can be bounded along similar lines to what is done in [18]. The von Neumann
entropies of ρ and ξ , denoted by S(ρ) and S(ξ ), differ by 1. By the Fannes-Audenaert inequality [21, 1],
it holds that

1 = S(ρ)−S(ξ )≤ ∆ log(3d)+H(∆), (3.2)

for H(·) denoting the binary entropy function. If it were the case that ∆ < 1/(4log(3d)), then because
the binary entropy function is increasing on the interval (0,1/2) it would follow that

∆ log(3d)+H(∆)<
1
4
+H

( 1
4log(3)

)
≈ 0.88 < 1,

in contradiction with (3.2). It follows that

∆≥ 1
4log(3d)

,

and thus

pwin ≤ 1− 1
64log2(3d)

.

The error probability therefore decreases at most quadratically in the number of qubits that Alice and Bob
initially share. (We note that the bound can be improved through a more fine-grained analysis. The bound
is saturated, up to a change of constant factors, by the alternative choice of |EN〉 described in Section 2.)

Consequences for entanglement assisted local quantum channels

For fixed spaces S, T, A, and B, a quantum channel Φ : L(S⊗T)→L(A⊗B) is an entanglement assisted
local quantum channel if it can be realized as illustrated in Figure 2; or more precisely, if there exists
some choice of finite dimensional spaces XA and XB, a density operator ρ ∈ D(XA⊗XB), and quantum
channels ΨA : L(S⊗XA)→ L(A) and ΨB : L(T⊗XB)→ L(B) such that Φ(ξ ) = (ΨA⊗ΨB)(ρ ⊗ ξ )
for all ξ ∈ L(S⊗T). Channels of this type are also known as localizable channels [3]. In addition to
having an obvious relevance to two-prover quantum interactive proof systems, this is an interesting and
fundamental class of quantum channels in its own right.

An unfortunate fact that follows from the analysis of the game presented above is the following. When
S and T have dimension at least 3 and A and B have dimension at least 2, the set of entanglement-assisted
local quantum channels Φ : L(S⊗T)→ L(A⊗B) is not a closed set: the sequence of entanglement-
assisted local quantum channels induced by the strategies described above converges to a valid quantum
channel that is not an entanglement-assisted local quantum channel. It remains open whether the set of
entanglement-assisted local quantum channels Φ : L(S⊗T)→ L(A⊗B) is a closed set when S and T

are 2-dimensional.
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ΨA

ΨB

ξ

ρ

Φ(ξ )

S

T

XA

XB

A

B

Φ

Figure 2: An entanglement-assisted local quantum channel Φ. An input state ξ ∈D(S⊗T) is transformed
into the output state Φ(ξ ) by means of local quantum channels ΨA and ΨB, along with a shared entangled
state ρ ∈ D(XA⊗XB).

Another connection with prior work

We wish to point out one further connection between the above result and some existing work. In the
exact catalytic transformation setting of Jonathan and Plenio [26], Daftuar and Klimesh [17] proved the
following fact: the dimension of the catalyst required to transform one state to another, when this is
possible, cannot be bounded by any function of the dimension of those states. Although this fact does not
have a direct implication to the cooperative quantum games model, and is incomparable to our result as
far as we can see, there is a similarity in spirit between the results that is worthy of note.

4 Near-perfect completeness

Kempe, Kobayashi, Matsumoto, and Vidick [28] proved that multi-prover quantum interactive proof
systems can be efficiently transformed to have perfect completeness, while retaining small soundness
error. An analogous fact was previously shown to hold for single-prover quantum interactive proof
systems [30], but the two proofs are quite different. The proof in [30] for the single-prover case is very
simple while the proof in [28] for the multi-prover case is rather complicated. In this section we show
that the use of coherent state exchange allows the simple proof for the single-prover setting to be applied
in the multi-prover setting.

There is, however, one small caveat: whereas Kempe, Kobayashi, Matsumoto, and Vidick achieve
truly perfect completeness (in as far as quantum operations can ever be implemented perfectly), we must
settle for near-perfect completeness: similar to the game from the previous section, honest provers will
be able to convince the verifier to accept yes-inputs with any probability smaller than 1 that they desire,
but the probability may not in actuality be 1. For most intents and purposes, though, we believe that this
behavior can reasonably be viewed as representing perfect completeness.
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Suppose that a verifier V interacts with m provers P1, . . . ,Pm for r rounds, and suppose the com-
pleteness and soundness probabilities for this verifier are given by c and s, respectively (which may
be functions of the input length). Specifically, for the promise problem A = (Ayes,Ano) of interest, the
following conditions hold:

1. Completeness. The verifier is convinced to accept every yes-input x ∈ Ayes with probability at least
c(|x|) by the provers’ strategy.

2. Soundness. The verifier cannot be convinced to accept any no-input x ∈ Ano with probability
exceeding s(|x|), regardless of the provers’ strategy.

As usual and without loss of generality, we may “purify” a given proof system so that the verifier V and
provers P1, . . . ,Pm are described by unitary operations and the provers’ initial shared entanglement is
pure. We also make two simple assumptions on the proof system and the completeness probability c(|x|).
First, we assume that it is possible for the provers to convince the verifier to accept every string x ∈ Ayes
with probability exactly c(|x|). This can be achieved, for example, by appending an extra bit to the last
message of the first prover and having the verifier reject when this bit is 1. Second, we assume that the
value c(|x|) is such that the verifier can efficiently implement the rotation

|0〉 7→
√

1− c(|x|) |0〉−
√

c(|x|) |1〉 , |1〉 7→
√

c(|x|) |0〉+
√

1− c(|x|) |1〉

without error. (We also assume reversible computations incur no error.)
Now, assume that an input string x ∈ Ayes ∪Ano has been fixed. (As x is now fixed, we will not

explicitly refer to x or |x| when discussing quantities depending on x.) Let p denote the probability that
the verifier accepts. Given the purity assumption of the proof system, this means that the final state of the
entire system at the end of the interaction may be expressed as√

1− p |0〉 |φ0〉+
√

p |1〉 |φ1〉 ,

where the first qubit in this expression represents the verifier’s output qubit. The remaining part of the
state, represented by |φ0〉 and |φ1〉, corresponds to the state of every other register in the proof system,
shared in some arbitrary way among the verifier and provers. For simplicity we will assume that |φ0〉
and |φ1〉 are orthogonal, which at most requires that the verifier makes a pseudo-copy of the output qubit
(meaning that it XORs the output qubit onto a new qubit initialized to the |0〉 state) as its last action.

To transform the proof system to one with near-perfect completeness, one additional round of
communication is added to the end of the protocol. To describe what happens in this additional round of
communication, let us write A to denote the verifier’s output qubit, V to denote the register comprising all
of the verifier’s memory aside from the output qubit, and P1, . . . ,Pm to denote registers representing the
provers’ memories, all corresponding to the final state of the original protocol.

To start the additional round of communication, the verifier prepares m additional single-qubit
registers A1, . . . ,Am as pseudo-copies of A, so that the state of the system becomes√

1− p |0〉 |0m〉 |φ0〉+
√

p |1〉 |1m〉 |φ1〉 .

The verifier then sends V to the first prover P1 (which is an arbitrary choice, but one that all provers are
aware of), and sends each register Ai to prover Pi.
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Upon receiving these registers from the verifier, the provers perform the following actions. First,
using the registers (A1, . . . ,Am) as control qubits, the provers perform coherent state exchange: when each
register Ai contains 0, nothing happens; and when each register Ai contains 1, the state |φ1〉 is exchanged
for |φ0〉. The resulting state of the entire system is√

1− p |0〉 |0m〉 |φ0〉 |EN〉+
√

p |1〉 |1m〉 |φ0〉 |E ′N〉 ,

where

|EN〉=
1√
N

N

∑
k=1
|φ0〉⊗k |φ1〉⊗(N−k+1)

is an additional shared entangled state the provers use for this purpose, and |E ′N〉 is defined in the same
way as in Section 2. The number N is the provers’ choice for an accuracy parameter, which we assume to
be as large as they wish. Once this is done, the provers return the registers A1, . . . ,Am to the verifier.

The final step is that the verifier measures the registers (A,A1, . . . ,Am) with respect to a basis
containing the state

√
1− c |0〉 |0m〉+

√
c |1〉 |1m〉, accepting if the output matches this state. (This is

possible given our assumptions on c.) In the case that x ∈ Ayes the provers may take p = c, and so the
acceptance probability is ∥∥(1− c) |EN〉+ c |E ′N〉

∥∥2 ≥ 1− 2
N
.

This is arbitrarily close to 1, given that the provers may take any value for N. In the case that x ∈ Ano we
have p≤ s, from which it is routine to show that the acceptance probability is at most(√

s
√

c+
√

1− s
√

1− c
)2
≤ 1− (c− s)2

(where the inequality follows from the arithmetic-geometric mean inequality).

5 Conclusion

We have discussed two applications of coherent state exchange to the study of multi-prover quantum
interactive proof systems.

The first application demonstrates that provers in a multi-prover quantum interactive proof system
may not always have an optimal strategy when limited to finite entanglement. We view that the primary
importance of this fact is that it will serve to better focus efforts on proving bounds on the amount of
entanglement needed for close-to-optimal provers in multi-prover quantum interactive proofs—for such
bounds can only exist in general for close-to-optimal and not optimal success probability.

The second application is a simple proof that multi-prover quantum interactive proof systems can be
efficiently transformed to have near-perfect completeness by adding one round of communication. There
is a trade-off between this proof and the proof of Kempe, Kobayashi, Matsumoto, and Vidick [28], which
is that it is considerably simpler but cannot be said to achieve absolutely perfect completeness.

Two other applications of coherent state exchange have also been mentioned. First, we have proved
that the collection of entanglement-assisted local quantum channels on systems of dimension 3 and higher
is not a closed set. Second, we have proved that universal embezzling families exist for any number of
parties.
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We will conclude with a couple of open problems. First, our universal embezzling families for
three or more parties appear to be highly inefficient. Do there exist constructions that offer a significant
improvement in efficiency? Second, as alluded to above, it is interesting to consider near-optimal
strategies for multiple provers, and it is unclear how much entanglement is needed in such cases. More
specifically, consider all possible two-player cooperative quantum games of the type defined in Section 3
with fixed dimensions for R, S, T, A, and B, and fix a constant ε > 0. It would be interesting to find a
uniform upper bound of the size of the auxiliary entangled state such that, for each game, an approximate
strategy exists whose winning probability is ε-close to the optimal value.
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