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A quantum channel is said to be a mized-unitary channel if it can be expressed as a
convex combination of unitary channels. We prove that, given the Choi representation of
a quantum channel ®, it is NP-hard with respect to polynomial-time Turing reductions to
determine whether or not ® is a mixed-unitary channel. This hardness result holds even
under the assumption that ® is not within an inverse-polynomial distance (in the dimension
of the space upon which ® acts) of the boundary of the mixed-unitary channels.

1 Introduction

In the theory of quantum information, quantum channels represent discrete-time changes in systems
that can, in an idealized sense, be realized by physical processes. Mathematically speaking, quan-
tum channels are represented by completely positive and trace-preserving linear maps of the form
¢ : L(C") — L(C™), where L(C™) is the set of linear maps, or operators, from C™ to itself, and like-
wise for L(C™). If the state of a system is represented by a density operator p € L(C™) prior to the
action represented by the channel ®, then its state after the channel acts is given by the density op-
erator ®(p) € L(C™). This paper focuses on channels for which n = m, which represent the common
situation in which a discrete-time change preserves the size of a physical system. (The sizes of the input
and output systems of a quantum channel are reflected by the dimensions of the underlying spaces C"
and C™.)

Unitary channels form one of the simplest categories of quantum channels. A unitary channel is
a channel of the form ® : L(C") — L(C™) that is given by ®(X) = UXU* for every X € L(C"),
for some fixed choice of a unitary operator U € L(C™). A mized-unitary channel is one that can be
expressed as a convex combination of unitary channels. Equivalently, a channel ® : L(C™) — L(C")
is mixed-unitary if there exists a positive integer N, a probability vector (pi,...,pn), and unitary
operators Uy,...,Uy € L(C™) such that

N

®(X) = ZpkUkXU;: (1)
k=1

for every operator X € L(C™). We let MU(C") denote the set of all such channels.

Mixed-unitary channels are important in quantum information theory for a number of reasons. They
provide a rich set of examples of channels, and exhibit many fundamental attributes and properties of
general quantum channels [Ros08]. At the same time, their relatively simple form can be beneficial in
analyses, as compared with general quantum channels. Mixed-unitary channels arise naturally in both
Hermitian operator formulations of majorization [AU82] and in a variety of cryptography situations
that concern the encryption of quantum states [AMTdWO00, HLSW04, AS04].

Quantum channels can be represented in different ways, but one common representation is the
Choi representation [Cho75]. The Choi representation of an arbitrary linear map @ : L(C") — L(C™)
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is defined as

J(@) = Y ®E;)®E,, (2)

1<i,5<n

where E; ; is the operator mapping the elementary unit vector e; to e; and all vectors orthogonal to
e; to 0. (Equivalently, with respect to the standard basis {e1,...,e,}, the operator E; ; is represented
by the matrix having a 1 in entry (4,j) and all other entries 0.)

We prove that it is NP-hard, with respect to polynomial-time Turing reductions, to determine
whether or not a given quantum channel is mixed-unitary. Specifically, we consider the problem in which
the input is the Choi representation J(®) € L(C™ @ C") of a quantum channel ® : L(C") — L(C"),
along with the unary representation 0™ of a positive integer m, and the task is to determine whether
or not ® is a mixed-unitary channel under the promise that J(®) is not within distance 1/m of
the boundary of the set of all Choi representations of mixed-unitary channels. That is, the promise
guarantees that the decision of whether or not ® is mixed-unitary is not “artificially hard” due to
issues relating to numerical precision. Our proof establishes that this problem is, in fact, strongly NP-
hard, meaning that it remains NP-hard even when the real and imaginary parts of all of the numbers
appearing in the Choi representation of the input channel are expressible as ratios of integers that are
bounded in absolute value by a polynomial in the length of the entire input.

The methodology behind our proof is reminiscent of known proofs of the NP-hardness of testing if
a given bipartite density operator p € L(C" ® C™) is separable [Gur03, Toa07, Ghal0, Yul6], meaning
that it can be represented as a convex combination of product states, which represent independence
between the two individual systems that define the bipartition in question. In particular, following
the strong NP-hardness proof of separability testing due to Gharibian [Ghal0], we make use of a
theorem due to Liu [Liu07] that establishes the existence of a polynomial-time Turing reduction from
the weak optimization problem to the weak membership problem in certain families of convex sets.
We note that our main result can, in fact, be closely linked with the problem of separability testing,
in the sense that testing if a channel is mixed-unitary may alternatively be formulated as a problem
concerning the expression of a bipartite density operator in a certain way. More specifically, the set
of all Choi representations of mixed-unitary channels, when normalized, is equivalent to the set of
bipartite quantum states that can be written as convex combinations of maximally entangled states.

The remainder of this paper is organized as follows. Section 2 summarized preliminary material
on computational complexity and quantum information theory that is required to understand this
paper, and formally defines the mized-unitary detection problem described above along with a different
problem, called unitary quadratic minimization, that plays an important role in the proof of our main
result. In Section 3 we prove that the NP-complete graph 3-coloring problem (3COL) reduces to
unitary quadratic minimization (UQM) through a polynomial-time mapping reduction, and in Section 4
we prove that unitary quadratic minimization reduces to mized-unitary detection (MUD) through a
polynomial-time Turing reduction. In symbols, these two sections establish the relations

3COL <P, UQM <P MUD, (3)

which implies the NP-hardness of testing if a channel is mixed-unitary. The paper concludes with
Section 5, which mentions a few open problems that relate to the main results of the paper.

2 Preliminaries

The main purpose of this section is to clarify some of the notation and conventions we use throughout
the paper, and to define two decision problems: one is the mized-unitary detection problem, whose
hardness is the primary focus of this paper, and the second is the wunitary quadratic minimization
problem, which serves as an intermediate problem through which an NP-complete problem (the graph
3-coloring problem) is reduced to the mized-unitary detection problem.




2.1 Computational complexity

We assume the reader is familiar with basic notions of computational complexity, such as polynomial-
time mapping reductions, polynomial-time Turing reductions, the concept of NP-completeness, and the
fact that the graph 3-coloring problem is NP-complete. This material is covered in several textbooks on
computational complexity, such as the book of Arora and Barak [AB09]. When we speak of polynomials
in this paper, we are referring only to resource bounds—so it should be understood that we are referring
more precisely to nonzero univariate polynomials having non-negative integer coefficients.

The decision problems we consider involve approximations of real number values and/or guarantees
on distances between real or complex vectors, and for this reason they are naturally stated as promise
problems [ESY84]. Formally speaking, a promise problem is a pair A = (Ayes, Ano) of disjoint sets
Ayes, Ano € X* of strings over an alphabet X. A hypothetical algorithm or protocol for A is required to
output “yes” (or 1) on input strings in Ay.s (which are called yes-inputs or yes-instances) and output
“no” (or 0) on input strings in Ay, (which are called no-inputs or no-instances). No constraints are
placed on an algorithm or protocol for A on strings outside of the set AyesUAp. In the promise problem
statements found below and later in the paper, we first list general assumptions on the form of the
input, which is understood to be a string encoding of one or more mathematical objects, followed by a
specification of which of these inputs are to be considered yes-instances and which are to be considered
no-instances.

In the problems considered in this paper, every complex number is assumed to be encoded as a
triple (x,y, z) that represents the number (x + iy)/z, where x and y are integers represented in signed
binary notation and z is a positive integer represented in binary notation. Real numbers are encoded
similarly, but where the imaginary part represented by ¥ is omitted. One exception is when positive
integers are explicitly stated to be represented in unary notation, which means that each positive
integer m is encoded as the string 0™. Real or complex vectors and matrices are encoded as complete
lists of their real or complex number entries (as opposed to compact representations of sparse matrices,
for instance).

For a given polynomial p, we may say that an instance of any of the problems discussed in this paper
is p-bounded if, for every real or complex number appearing in that problem instance (and encoded as
described above), the values z, y, and z are bounded in absolute value by p(n), for n being the length of
the entire instance being considered. A polynomial-time mapping reduction A <P B between promise
problems A and B will be called strong if, for every polynomial p there exists a polynomial ¢ such that
this property holds: for every p-bounded instance of Ayes or Ay, the reduction produces a g-bounded
instance of Byes or By, respectively. Along similar lines, a polynomial-time Turing reduction A <%, B
is strong if, for every polynomial p there exists a polynomial ¢ such that, on every p-bounded instance of
Ayes or Ay, the reduction only queries g-bounded instances of B, and accepts or rejects accordingly.
Finally, a problem is strongly NP-hard (with respect to either polynomial-time mapping or Turing
reductions) if it remains NP-hard even under the additional promise that every yes- or no-instance is
p-bounded, for some choice of a polynomial p.

2.2 Linear algebra and quantum information

Similar to computational complexity, we assume that the reader is familiar with basic notions of linear
algebra and quantum information. There is, in fact, little in the way of quantum information theory
that is required for an understanding of this paper, aside from the definition of quantum channels and
their Choi representations (which are described in Chapter 2 of [Wat18], for instance).

For n a positive integer, the vector space C" is defined in the usual way, an inner product on this

space is defined as
n

{u,0) = ulk)v(k) (4)

k=1




(conjugate linear in the first argument), and the Euclidean norm is given by

Jull = v/ (u, ). ()

The standard basis of C™ is the basis {e1,...,e,} of elementary unit vectors.

We write L(C™) to denote the set of linear operators (or mappings) from C” to itself, and associate
this set with the set of all n X n complex matrices, where the understanding is that the matrix is a
representation of the operator with respect to the standard basis. We already introduced the notation
E; ; in the previous section; the operator Ej; ; is the operator whose matrix representation has a 1 in
entry (4,7) and 0 in all other entries. The inner product of two operators A, B € L(C") is defined
as (A, B) = Tr(A*B), where A* is the adjoint of A (which, in terms of matrix representations, is
equivalent to the conjugate transpose of A). An operator A € L(C") is Hermitian if A = A*, and is
unitary if A*A = 1,,, where 1,, € L(C") is the identity operator acting on C™. The notations Herm(C™)
and U(C") refer to the sets of all Hermitian and unitary operators in L(C™), respectively.

We refer to three different norms of operators. The spectral norm of A is defined as

| Al = max{[|Au| : uwe C", |lul <1}, (6)

the 2-norm (or Frobenius norm) of A is defined as

||A||2 =V <A7A>v (7)

and the trace norm is defined as

Al =T (vVATA), (8)

where v/ A* A is the unique positive semidefinite operator whose square is A*A. These norms satisfy
JAJ| < | All2 < [[ Al for every A € L(C™).

The notion of quantum channels was also already introduced in the previous section. For the
purposes of this paper, it suffices to note that the property of complete positivity of a linear map
® : L(C™") — L(C") is equivalent to its Choi representation

J(@®) = Y ®FE,;)®E; (9)

1<i,j<n

being positive semidefinite. Similarly, the property that ® is Hermitian-preserving (which means that
®(X) € Herm(C") for every X € Herm(C"™)) is equivalent to J(®) being Hermitian. The property
that ® preserves trace is equivalent to

and the property that ® is unital (which means that ®(1,) = 1,,) is equivalent to
(]lL((C") ® TI") (J(@)) = 1, (11)

where 1, cny refers to the identity mapping from L(C") to itself.

2.3 Problem statements

Finally, we formally define the decision problems (stated as promise problems) that were referred to
in the introduction.




Definition 1. The unitary quadratic minimization (UQM) promise problem is as follows.

Input:  Operators Ay,..., Ar € L(C™) with ||A;]]2 <1 for each j € {1,...,k}, a real number «, and
the unary representation 0™ of a positive integer m.

Yes: There exists a unitary operator U € U(C™) such that

k
D AL U < a (12)
j=1
No: For every unitary operator U € U(C™) it is the case that
a 1
S 2 0k (13)
i=

Definition 2. The mized-unitary detection (MUD) promise problem is as follows.

Input: The Choi representation J(®) € Herm(C™ ® C") of a trace-preserving, unital, and Hermitian-
preserving map ¢ : L(C") — L(C") along with the unary representation 0™ of a positive

integer m.
Yes: Every trace-preserving, unital, Hermitian-preserving map ¥ : L(C") — L(C") that satisfies
1
J(U) - J(® — 14
l7(w) = J@]|, < — (14)
is a mixed-unitary channel.
No: Every trace-preserving, unital, Hermitian-preserving map ¥ : L(C") — L(C") that satisfies
1
J(U) - J(D — 15
l7w) = (@), < — (15)

it not a mixed-unitary channel.

Two brief remarks about the previous two definitions are in order. First, the fact that both problems
expect a unary representation of a positive integer m (as opposed to a binary representation, say) is a
standard mechanism in computational complexity that forces the value of m to be polynomially related
to its input size. If the integer m were instead to be input in binary notation, the value of m would
be exponential in its input length, and as a result the problems themselves would become harder in a
computational sense. As our main result is a hardness result, it is therefore a stronger result given the
assumption that m is input in unary notation.

Second, we note that in Definition 2 specifically, the maps ® and ¥ are assumed to range over
all trace-preserving, unital, and Hermitian-preserving maps rather than over all unital channels. We
have defined the mixed-unitary detection problem in this way so that it has a form that is standard
within the study of computational geometric problems [GLS88]: the input is a vector in a real vector
space, and the task is to determine if a ball of a certain radius either lies entirely within or is disjoint
from a set of interest. The computational difficulty of the problem would not change in a fundamental
way if ® were assumed to be a channel, given that this property can be tested efficiently. We do,
however, require that ¥ ranges over all trace-preserving, unital, and Hermitian-preserving maps in the
yes case, so as to properly reflect the property that every map in a ball of radius 1/m around ® is a
mixed-unitary channel.




3 Reduction from graph 3-coloring to unitary quadratic optimization

In this section we prove that the unitary quadratic minimization problem is NP-hard, via a polynomial-
time mapping reduction from the graph 3-coloring problem. Our reduction establishes that this problem
is, in fact, strongly NP-hard, as the operators A1, ..., Ay that are produced by our reduction from any
instance of graph 3-coloring have entries restricted to the set {0,1/2,1}.

3.1 The reduction
Let G = (V, E) be a graph with n vertices V = {1,...,n} and m edges

E={{a1,b1},... . {am,bm}}, (16)

where 1 < a; < b; < n for every j € {1,...,m}. Let N = n + m and consider the following two
collections of operators drawn from L(C™):

1. E; ; for every choice of 7,5 € {1,..., N} with i # j.

2. (Eaj,a]. + By, + En+j,n+j)/2 for every j € {1,...,m}.
(The factor of 1/2 in the second type of operator guarantees that each of the operators produced by
the reduction has 2-norm at most 1.) The total number of operators in these two collections is

k= (N?>~N)+m=(n+m)*—n. (17)

Let Ay, ..., A denote these operators taken in any reasonable ordering that allows for the computation
of these operators in polynomial time given the graph G. The instance of UQM produced by the
reduction is

(Al, AR, 0526”2) (18)

3.2 Analysis: yes-instances map to yes-instances

Assume first that G is 3-colorable, so that there exists a function ¢ : {1,...,n} — {0,1,2} with the
property that ¢(a) # ¢(b) whenever {a,b} € E. One may obtain a unitary operator U € U(C") such

that
k

> 4,0 =0 (19)

j=1

by taking U to be the diagonal operator whose diagonal entries are third-roots of unity as follows
(assuming w = exp(27i/3)):

1. For each a € {1,...,n}, let U(a,a) = w?(®,

2. For each j € {1,...,m}, let U(n+ j,n+j) = w% for ¢; € {0,1,2} being the unique color such
that c; & {(a;), (b))}

As U is diagonal, it is the case that <Ei,j, U> = 0 whenever i # j. For the j-th edge {a;,b;}, it is the
case that

1 . .
<(Eﬂjvaj + B b, + En+jvn+j)/27 U> = i(U(ajv aj) + U(bj, bj) + U(n +j,n +]))a (20)

which is zero because it is proportional to the sum of the three roots of unity 1 = w?, w!, and w?.




3.3 Analysis: no-instances map to no-instances
It remains to prove that if G is not 3-colorable, then for every unitary operator U one has

k

1
S AN DI 2 s (21)

j=1

This statement will be proved in the contrapositive form. To this end, assume hereafter that U is a
unitary operator, and for the operators Ai, ..., Ay produced from a given graph G by the reduction
described previously it is the case that

k
1
Z|<Aj’U>|2<n:5267n2' (22)

j=1

From this assumption we will recover a 3-coloring of the graph G. We will make use of the following
lemma, which is proved at the end of the present subsection, to do this.

Lemma 3. Suppose € € [0,1/6] and «, 5,7 € C satisfy the following conditions:
1. |a|a |ﬁ|7 |,YI € [1 — &, 1]
2. la+ B+ <Le.

For each angle 0 € {arg(a) — arg(p), arg(8) — arg(y), arg(y) — arg(«)}, interpreted as an element of
the set |0,2m), it is the case that

2 4
‘Gfg‘gfie or ‘Gfg‘gfie. (23)

We begin by observing that the diagonal entries of U must be close to 1 in absolute value. Specifi-
cally, for every j € {1,..., N} it is the case that

k
MU =D (B U ZA“U <, (24)

i#] i#]

and therefore
|U(.77.7)|> Vl_nzl_\/ﬁa (25)

as every column of U has unit norm. Next, observe that

1 . .
§\U(aj7aj)+U(bjabj)+U(n+J7n+J)|

) k 3 (26)
= §|<Ea]‘ﬂj + Eb; 5, + Entjintj U>} < <Z|<Ai’U>|2> <V
i=1
for every j € {1,...,m}. By Lemma 3, we conclude that for any two adjacent vertices a,b € {1,...,n}
of GG, the angle
0o = arg(Ula,a)) — arg(U(b, b)) (27)

satisfies

2
ea,b—g‘glzﬁ or b——’<12\[. (28)

Define sets Sy, S1, and Ss as

117 T T 5w Tm 37
S() = |:67 271') U |:0, :|, Sl = |:2, 6:|, and SQ = |:6, 2:| (29)




Because

120/ < % (30)
it follows from an iterative application of the argument above that, for any two connected (but not
necessarily adjacent) vertices a,b € {1,...,n} of G, exactly one of the following three inclusions holds:

Oap € [2m — 12n\/n,27) U [0,12n,/7] C Sy,

2w 2w
Oap € [3 — 12n./7, 3 + 12n\/77} C Sy, (31)

4 4
Ous € [; — 1207, % T 12n\/ﬁ} C Sy

A 3-coloring of G may therefore be obtained by repeating the following procedure for each connected
component H of G:

1. Choose an arbitrary vertex a € {1,...,n} of H (or, for concreteness, the lowest-numbered vertex
of H), and assign this vertex the color 0 (i.e., set ¢(a) = 0).

2. For each vertex b € {1,...,n} of H, assign b a color as follows:

(a) If 6, € So, then set p(b) = 0.

(b) If 64 € S1, then set p(b) = 1.

(c) If 6, € S, then set (b)) = 2.
As the angle 0, . = arg(U(b,b)) — arg(U(c, ¢)) must exceed the width 7/3 of each set Sy, S1, and Sa,
adjacent vertices cannot be assigned the same color, and therefore ¢ is a valid 3-coloring of G. This

completes the proof of the reduction from 3-coloring to UQM, aside from the proof of Lemma 3, which
follows.

Proof of Lemma 3. Tt suffices to prove the lemma for § = arg(a) — arg(f), as the bound follows for
the other two angles by symmetry.
Observe first that the triangle inequality implies

|l + 8] = ]| <, (32)
and therefore
1-2e<|a+p]<1+e. (33)
It is the case that
|+ B = |af* +B]7 + 2|8 cos(6), (34)
and therefore | B2 — Jof? — |82
o+ —|a|® —
cos(f) = . (35)
2|al|g]
A lower bound on cos(f) may be obtained as follows:
| + B 1(|a| |ﬂ|) (1-2e)? 2+¢ 1 5
cos(0) = ——— | +757) > - > —c = —. 36
O =gt "a\ig Tlal) 2T T2 2T %
Here we have used the observation that |al,|8| € [1 — €, 1] implies
ol | 16l 1
Pl c1-e)+ <2+e. 37
B e =0T T 0




An upper bound on cos(f) is given by

cos() = o + ﬂ';‘@"‘;f —15” <O i _22(1 <) < —% + 3. (38)

(Note that the numerator |a + 3|2 — |a|? — | 3|2 of the first fraction in (38) is necessarily non-positive,
which explains why the denominator of the second fraction is 2 and not 2(1 — €)?.)

Now, because cos(f) is non-positive, it cannot be that 6 € [0, 7/2) U (37/2, 2m). It therefore suffices
to consider the case that 6 € [r/2,37/2]. We will split this case into two sub-cases, 6 € [r/2, 7] and
0 € [m, 37w /2], which can be handled by symmetric arguments.

With this in mind, suppose that 6 € [r/2, 7], and observe that the cosine function is convex on the
interval [r/2, 7]. On this interval, the graph of the cosine function therefore lies above the tangent line
passing through the point (27/3,—1/2), which implies

+¢§(2;—9>. (39)

T o0< - <de (40)

Again using convexity, the graph of the cosine function on the interval [27/3, 7] lies below the line
segment whose endpoints are (27/3,—1/2) and (7, —1). If 6 € [27/3, 7|, then it follows that

1 3 27
< _~_ 2 (p_ =
cos() < 5 9r (0 3 ), (41)
and therefore by (36) we have
2
g2 <O g (42)

The same bound is, of course, trivial when 6 € [r/2,27/3]. It is therefore the case that
2
‘e—g‘ < 6e. (43)

A similar argument implies that if § € [7,37/2], then

‘074%‘ < 6e. (44)

which completes the proof. O

4 Reduction from unitary quadratic optimization to mixed-unitary detection

In this section we prove that there exists a polynomial-time Turing reduction from the unitary quadratic
minimization problem to the mized-unitary detection problem:

UQM < MUD. (45)

At the heart of this reduction is a general result due to Liu [Liu07] that establishes that there exists
a polynomial-time Turing reduction from the weak optimization problem to the weak membership
problem for certain convex sets and problem parameterizations. These problems and Liu’s reduction
(but not the specifics of the reduction itself or the proof that it is correct) are described in the first
subsection that follows, and the subsequent subsections connect these problems and Liu’s reduction to
the reduction (45).




4.1 Weak optimization, weak membership, and Liu’s reduction

In order to define the weak optimization and weak membership problems, and to explain Liu’s reduction
from weak optimization to weak membership, a couple of definitions will be required. The first definition
simply establishes some convenient notation.

Definition 4. Let N be a positive integer and let § > 0 be a non-negative real number. For every
vector z € RV the (closed) ball of radius § around z is defined as

By(x,0) = {y eRY : [ly — || <4}, (46)

and for every set A C R, one defines

zEA

The second definition is one for a polynomially bounded sequence of convex sets. Intuitively speaking,
one should view the sets in such a sequence as corresponding in some way to possible input lengths in
a computational problem. The term polynomially bounded refers to both a polynomial upper-bound
on the norm of every element in each set and to an inverse polynomial lower bound on the size of a
ball around 0 that is fully contained within each set.

Definition 5. Let Xy C RY be a compact, convex set for each positive integer N. The collection
{XK1, Ko, ...} is polynomially bounded if there exists a polynomial p with the property that

Bn(0,1/p(N)) €Ky and Ky C By(0,p(N)) (48)
for every positive integer V.

Remark 6. It is common that a somewhat more general definition is used in place of the one just
given, where the smaller ball that is contained in each Xy need not be centered around 0, and where it
is only the ratio of the radii of the two balls that needs to be polynomially bounded—but because the
simpler definition above is sufficient for our needs, we adopt it rather than the more general definition.

We are now ready to define the weak optimization and weak membership problems, which are
variants of standard problems in the analysis of geometric algorithms [GLS88]. Both are defined with
respect to a collection {X1,XKs,...} of compact, convex sets of the sort considered in the previous
definition. (The problem definitions themselves do not require these collections to be polynomially
bounded, but Liu’s result will require this assumption.)

Definition 7 (Weak membership and weak optimization). Let Xy C RY be a compact, convex set
for each positive integer N and let K = {K1, Ko, ...}

1. The weak membership promise problem WMEM(X) for X is as follows:
Input: A vector 2 € RV and the unary representation 0™ of a positive integer m.

Yes: By(z,1/m) C Ky.
No: By(z,1/m)NKy = 2.

2. The weak optimization promise problem WOPT(X) for X is as follows:

Input: A vector u € RY with ||u| <1, a real number 3, and the unary representation 0™ of
a positive integer m.

Yes: There exists a vector z € RY such that By (x,1/m) C Xy and (u,x) < B.
No: For every vector x € By(Kn,1/m) it is the case that (u,z) >+ 1/m.
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These problems are referred to as weak versions of membership testing and optimization because
the promises effectively make the problems easier than they might otherwise be. That is, in the case of
weak membership testing, any point within a distance 1/m of the boundary of the corresponding convex
set is viewed as a “don’t care” input, as is any input to the weak optimization problem for which the
objective value 3 is (informally speaking) neither “easily achievable” or “far from achievable.” Variants
of these problems in which m is input in binary rather than unary notation are also commonly referred
to as weak membership testing and weak optimization, but the inverse polynomial bound obtained by
taking m to be input in unary is an essential feature of Liu’s result and is required for our purposes.

Finally, we may now state the result due to Liu that forms the heart of the reduction from unitary
quadratic minimization to mized-unitary detection.

Theorem 8 (Liu). For every polynomially bounded collection KX = {X1,Ka,...} of compact, convex

sets, it is the case that
WOPT(X) <8, WMEM(X). (49)

Moreover, there exists a strong polynomial-time Turing reduction that establishes this relation.

Remark 9. Liu actually proved this theorem for a slightly more restricted version of WOPT(X) in
which the vector u must satisfy ||u]| = 1 rather than ||u|| < 1. The benefit of adopting the definition
with the inequality ||u|| < 1 rather than the equality ||« || = 1 is that it allows us to largely circumvent
precision issues that arise when taking square roots of rational numbers. Fortunately, Liu’s theorem
still holds for the less restricted variant of WOPT(X), as it has been defined above, as there exists a
strong polynomial-time mapping reduction from this problem to its more restricted variant, under the
assumption that there exists a polynomial p for which Xy C By (0,p(N)) for every positive integer N
(which, of course, is the case when X is polynomially bounded).

We will now argue that this is so. Consider a reduction that transforms a given instance (u,~y, 0")
of WOPT(X), where u € RY satisfies ||u| < 1, to an instance (v, d,0%™) of the equality-restricted
variant of WOPT(X), where v and § are as follows:

1. The vector v € RY is a unit vector satisfying

U 1
v — || < ——————. (50)
H [l H 4m(p(N) +1)
2. The number ¢ satisfies

ol 1 vy 1
— — << — —_— 51
Tul " am =05 Tuf T 2m (5)

In the case that (u,v,0™) is a yes-instance of WOPT(X), one has that there exists a vector x € RY
such that By (z,1/m) C Ky and (u, z) < . The same vector x trivially satisfies By (z,1/(4m)) C Ky,

as well as H ”
u u 5 x

v,r)y=( —,z)+(v——, )< — 4+ ————— <. 52

(v 2) <||u|| > < Tal > Tul T ImGp@™) 5 1) (52)

The instance (v, d,0*™) is therefore a yes-instance of the equality-restricted variant of WOPT(X).
In the case that (u,~,0™) is a no-instance of WOPT(X), every vector x € Bx(Ky,1/m) satisfies
(u,x) > v+ 1/m, and therefore also satisfies

=)o i)

R S )
Full ]l ~ Gmp(N) 1)

5 , (53)
25—

> .
- |ul] = 4m dm

Of course this is therefore true for all z € Byn(Ky,1/(4m)), so (v,d,0*™) is a no-instance of the
equality-restricted variant of WOPT(X).
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Given (u,7,0™), one can compute (v, d,0*™) in polynomial time by performing the required arith-
metic computations to inverse-polynomial accuracy. If it is the case that + and the entries of u are
given by ratios of integers that are bounded in absolute value by some polynomial in N, then the
numerators and denominators of § and the entries of v will also be polynomially bounded in absolute
value, and therefore this is a strong polynomial-time mapping reduction.

4.2 Full-dimensional real convex sets for mixed-unitary optimization

The weak optimization and weak membership problems are concerned with convex subsets of RY for
different choices of N, and the assumption that K = {K;,Xa, ...} is a polynomially bounded collection
of compact, convex sets implies that these sets are full-dimensional. On the other hand, the unitary
quadratic minimization and mixed-unitary detection problems are concerned with complex operators,
and moreover (as will shortly become clear), these problems are most naturally connected with affine
subspaces of vector spaces that do not have full dimension. In this section we consider a particular
family X = {&y,Xo,...} that will allow for a translation from wunitary quadratic minimization to
weak optimization and from weak membership to mized-unitary detection. It is also proved that X is
polynomially bounded, so that Liu’s reduction holds for this choice of XK.

To begin, for a given positive integer n > 2, consider the space of all n x n traceless Hermitian
operators, which is a real vector space of dimension n? — 1. We will require an orthogonal basis for
this space, and one reasonable choice for such a basis is given by the generalized Gell Mann operators.
Specifically, let Gy, . .., Gp2_1 denote the elements of Herm(C™) obtained by taking the natural ordering
suggested by the following list:

1. The first (%) of these operators are Ejj + Ey; for 1 <j < k < n.

2. The next (g) of these operators are il — il ; for 1 < j <k < n.
3. The last n — 1 of these operators are

k

Z E;j —kEri1 k41 (54)
j=1
fork=1,...,n—1.
It will be convenient later to make use of the observation that 1 < |G |2 < nforall j € {1,...,n*—1}.

Let us now define N = (n? —1)2, which is to be viewed hereafter as a function of whatever value of
n > 2 is under consideration. Let Hy, ..., Hy € Herm(C"®C") be the operators obtained by tensoring
together the operators Gy, ...,G,2_1 in all possible pairs:

H=G1®G, Hy=G1®G2, ..., HN=Gp2_1 R Gp2_;. (55)
The operators Hy, ..., Hy represent an orthogonal basis for the real vector space
V, ={X € Herm(C" @ C") : (Tr ® Ly,cn))(X) =0, (Lpcn) ® Tr)(X) = 0}. (56)

The relevance of this space is that the smallest real affine subspace of Herm(C™ ® C™) that contains
J(®) for every mixed-unitary channel of the form & : L(C™) — L(C™) is equal to

1,1,

V,, + (57)
n
Note that 1 < || H,||2 <n? < N for every j € {1,...,N}.
Next, consider the affine linear mapping ¢, : RN — Herm(C" ® C") given by
1,1,
on(x)=2(1)H; + -+ a(N)Hy + —. (58)
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This function is one-to-one, and as * € R ranges over all vectors, ¢, (z) ranges over the Choi
representations of all trace-preserving, unital, and Hermitian-preserving maps.
Finally, define

N={zeR" : p,(z) = J(®) for & € C(C") mixed-unitary}, (59)

define Ky = B (0,1) for each positive integer k that does not take the form (n? —1)? for an integer
n > 2, and let X = {K;,Ka,...}. The particular choice Kj = Bx(0,1) when k # (n? — 1)? for any
integer n > 2 is not really important—it is just a trivial choice of a set for each such dimension that will
allow the reduction to work. Each Xy is the preimage of the compact and convex set of mixed-unitary
channels under an affine linear map, from which it follows that Ky is also compact and convex. Of
course K, is trivially compact and convex when k # (n? — 1)? for every integer n > 2.

To prove that X is polynomially bounded, suppose first that # € KXy for N = (n? — 1)2, so that
on(z) = J(®) for @ : L(C™") — L(C") a mixed-unitary channel. Because ® is a channel, it is the case
that

1@ 12 < 17(®) ] = Tr(J(®)) = ns (60)

the inequality follows from the fact that || X ||o < || X ||; for all operators, the first equality follows from
the fact that J(®) is positive semidefinite whenever & is a channel, and the second equality follows from
the fact that ® must preserve trace. Because the operators Hy,..., Hy are orthogonal and traceless
(and therefore orthogonal to 1,, ® 1,,), we conclude that

N N

11(@)15 =D «()? H; 113+ E: )21 ;I3 + 1. (61)

j=1 j=1

H]l ® 1,

As ||Hj|j2 > 1 for every j € {1,..., N}, it follows that
N
MWSXI VIH; |3 = 17(@)]3 -1 <n* -1, (62)

and therefore ||z || < n. It has therefore been proved that X C By (0,n). Of course, when k # (n?—1)2
for every integer n > 2, it trivially holds that Xy C By (0,1).

To prove that there exists a ball with inverse polynomial radius within each set Xy, we will make
use of the following theorem, which was proved in [Wat09].

Theorem 10. Let n be a positive integer and let ® : L(C™) — L(C™) be a trace-preserving, unital,
and Hermitian-preserving map. If it is the case that

1,91, 1
J(®) — 63
@) - 22 te] <L (63)
then ® is a mized-unitary channel.
For an arbitrary choice of z € RY, the mapping ® given by J(®) = ¢, (x) satisfies
2 2
1,91, 1,1,
- -
n n 5
N (64)
= x(j) HHHm<#§: )2 =nt|z|
j=1
Therefore, if
1
<
\MHf7ﬁ(2_1y (65)




then

|- 23] < s %9
so @ is mixed-unitary by Theorem 10. As N? > n?(n? — 1), we conclude that
Bn(0,1/N?) C K. (67)
When k # (n? — 1)? for every integer n > 2, it trivially holds that By (0,1) € K.
In conclusion, for all positive integers k, it is the case that
Br(0,1/k%) € K € B(0, k%), (68)
and therefore X is polynomially bounded. By Theorem 8 it therefore follows that
WOPT(X) <f. WMEM(X) (69)
for this choice of XK.
4.3 From unitary quadratic minimization to weak optimization
In order to prove that UQM <% MUD, we will establish the following chain of reductions:
UQM <, WOPT(X) <b WMEM(X) <P, MUD. (70)

The Turing reduction has already been established in the previous subsection, and in the current
subsection we will prove that the first mapping reduction holds.
To this end, consider an arbitrary instance

(A1, ..., Ap, o, 0™) (71)

of UQM. We will first describe the instance of WOPT(X) to which each such instance of UQM maps,
and then we will argue the correctness of the reduction.

1. Define an operator P € Herm(C"™ ® C"), vectors w,v € RY and a real number v € R as follows:

k
P= Z vec(A;) vec(4;)",
j=1

2
- (72
YT RN
- Tr(P) 1
B knN2? * 2kmN?2’
(The vec mapping refers to the vectorization of an operator A € L(C™):
vec(A) = > Al flei @ ey, (73)

1<ij<n

which is equivalent to taking the rows of the matrix representation of A, transposing them to
obtain column vectors, and then stacking these column vectors on top of one another to form a
single vector.)
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2. Define u € RN as

. trunc(8kmnN3v(j)
u(j) = (8kmnN3 ) (74)
for each j € {1,..., N} and define
_ trunc(8kmN?v)
= Sk ()

(The truncation function is defined as trunc(d) = |#]| and trunc(—6) = —|6] for # > 0, so that
it always rounds toward zero.)

3. The output of the reduction is (u, 3,0") for r = 8kmn*N3.

It is evident that (u, 3,0") is polynomial-time computable from (Aq, ..., Ak, a,0™). Moreover, under
the assumption that « is upper-bounded by a polynomial, the number 5 and the entries of u can be
expressed as ratios of polynomially bounded integers. The reduction is therefore a strong polynomial-
time mapping reduction.

It remains to argue that if (A44,..., Ak, «,0™) is a yes-instance of UQM then (u,3,0") is a yes-
instance of WOPT(X), and if (A4,..., Ag,«,0™) is a no-instance of UQM then (u,,0") is a no-
instance of WOPT(X). First we note, by the assumption that || A;|l2 <1 for each j € {1,...,k}, that
Tr(P) < k. The norm of w may therefore be upper-bounded,

1
2

N 3 N 3
|w| = <Z|<P, Hj>|2> < <Z”P”%”Hj|2> < VEIN3 < kN?, (76)
=1 =1

which implies ||v]] < 1. As the entries of u are obtained from v by truncations, it is therefore clear that
Jul < 1.
Next, observe that

k
(P,vec(U) vec(U)*) = > _|(A;, U)[* (77)
j=1
for every unitary operator U € U(C™). It is evident that
@Eﬁ%?m)<P, J(®)) = Uer{ljl(%n)<P7 vec(U) vec(U)*), (78)

by virtue of the fact that the function J(®) — (P, J(®)) is linear, the unitary channels are the
extreme points of the set of mixed-unitary channels, and the Choi representation of a unitary channel
(X)) = UXU* is

J(®) = vec(U) vec(U)*. (79)
It is also the case that
Jélglcrfv<P’ Pn(r)) = %%I(lm)@, J(®@)) (80)

because @, (x) ranges over the set MU(C™) as = ranges over Ky. Finally, for any choice of a vector
x € RV, it is the case that

Tr(P
<P,<pn(as)> =z(1(P,H1)+---+x(N)(P,Hn) + 7(1 ) = (w,x) + - (81)
Altogether, this implies that
1 k s Ti(P)
:creanlCnN <v7 x> - W UEI%I(%") ;KAJ’ U>‘ - W (82)
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If (Ay,..., Ak, ,0™) is a yes-instance of UQM, then it follows that

e Tr(P) 1
i < — =~ — 83
i (0.2) S T T e 7T e (83)
while if (Ay,..., Ak, a,0™) is a no-instance of UQM, then
Tr(P 1 1
min (v, z) > —— x(P) | =+ . (84)

2e€X N kN2  knN2 ' kmNZ2 2kmN2

We now turn to the vector v and the real number 5, which may be viewed as approximations of v
and 7, respectively. In particular,

1
—v|| < JJu— < — 85
= ol < vl < g (85)
and 1
A< = 86
B < g2 (86)
We have already proved that ||z|| < n for every z € Ky, and this implies that
’(u x)y — (v x>}<; (87)
’ T 8km N2
for all z € K. We conclude that
i (uw) < B g i (u,a) > 0+ (5%)
sest =P T Ny e =0T N
depending on whether (A, ..., Ak, a,0™) is a yes- or no-instance of UQM, respectively.
Now, observe that for every z € X and ¢ € [0, 1], it is the case that
By((1-e),——" ) cx (89)
N "n(n2—-1)N ) — N
This is a consequence of Theorem 10, for if z € RY satisfies
ol € —— s (90)
“lh= n(n?2 —1)N’
then 1 1 1 1 1
n(z) = —— || < ||en(z) ———|| <N < —— 91
Jone) - 22222 | <o) - 2222 | < sl < s (o1)

so that ¢, (z) € MU(C"), and therefore (1—¢)p, (x)+ep,(z) is a convex combination of mixed-unitary
channels. In particular, for

© 7 SkmnN2
we have that )

Bn <(1—6)x, r) C Ky (93)
for every x € Kn. If (Ay,..., Ak, ,0™) is a yes-instance of UQM, then there must exist z € Ky so
that 1

<B-—.
(w,3) < - (94)
As
|<u, x) — {u, (1 — 6)x>| =el{u,z)| < en (95)
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it is the case that 1

l—e)z)<f— — .

(w, (L =)z} < B = g

This implies that (u, 3,07) is a yes-instance of WOPT(X).
Finally, if (Ay,..., Ak, @, 0™) is a no-instance of UQM, then

1

> -
(wz) 2 B+ 4kmN?2

(97)

for every x € K. For every x € Bn(Kn,1/r) we therefore have

1 1 1

_ > -
4kmN2 7"*5_~_8]cmN27

(u,z) > B+ (98)
where the first inequality makes use of the fact that ||u|| < 1. This implies that (u, 3,0") is a no-instance
of WOPT(X), and therefore completes the proof that UQM <? WOPT(X).

4.4  From weak membership to mixed-unitary detection

The remaining reduction in the chain (70) is the reduction WMEM(X) <P MUD, which we prove in
this subsection.

Before describing the reduction, it will be helpful to observe the following fact: if N = (n? — 1)?
for some integer n > 2, and 7,z € R are arbitrary vectors, then for the mappings ¥ and = defined
by J(¥) = ¢, (y) and J(Z) = p,(2), it is the case that

N
17(0) = JEIE =D _(y() — 22 IH; 13 = lly — =1, (99)

j=1

by virtue of the fact that || H,|2 > 1 for every j € {1,...,N}.

Now consider an arbitrary instance (x,0™) of WMEM(X). There are two cases to be considered,
the first of which is that 2 € RY for N = (n? — 1)?, where n > 2 is an integer. In this case, the first
step of the reduction is to compute a vector z € RY as follows:

2() = trunc(j:if\fx(j))- (100)

The vector z satisfies ||« — z|| < 1/(2m), and is such that every entry shares the same denominator
2mN. (This property will be needed to guarantee that the reduction is strong, and specifically to
avoid a situation in which a polynomial number of rational numbers, each of which has a polynomially
bounded denominator, have an exponentially large least common denominator.) The second and final
step of the reduction is to output the instance

(on(2),0°™) (101)

of MUD.

To prove that this reduction operates correctly for the case being considered, let ® and = be
the maps defined by J(®) = @,(x) and J(E) = ¢,(z), let ¥ be any unital, trace-preserving, and
Hermitian-preserving map that satisfies

[J(¥) = J(E)]2 < (102)

1
2m’
and let y € R be the unique vector satisfying J(¥) = ¢, (y). By (99) we have ||y — z|| < 1/(2m),
and therefore ||z — y|| < 1/m. If (z,0™) is a yes-instance of WMEM(X), we therefore have that
y € K, which implies that ¥ is a mixed-unitary channel, and hence (J(Z),0%™) = (¢, (2),0?™) is a
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yes-instance of MUD. Similarly, if (x,0™) is a no-instance of WMEM(X), we have that y ¢ X, which
implies that ¥ is not mixed-unitary, and hence (J(Z),0%™) = (p,(2),0*™) is a no-instance of MUD.

In the case that (x,0™) is an instance of WMEM(X) for which = € R* for k a positive integer that
is not of the form (n? — 1) for some choice of an integer n > 2, it is straightforward to decide whether
(2,0™) is a yes-input or no-input by simply computing the norm of x numerically to additive error
strictly less than 1/m, then comparing the result to 1. In case (x,0™) is a yes-instance of WMEM(X),
the reduction may output any fixed yes-instance of MUD, and if (z,0™) is a no-instance of WMEM(X),
then the reduction may output any fixed no-instance of MUD. It has therefore been been proved that
WMEM(X) <P, MUD, which completes the proof that UQM <. MUD.

5 Conclusion

We have proved that it is strongly NP-hard, with respect to polynomial-time Turing reductions, to
determine if a given quantum channel is mixed-unitary, promised that the given channel is not within
an inverse-polynomial distance to the boundary of the set of mixed-unitary channels. We conclude
with a couple of open problems relating to this result.

1. What is the computational difficulty of deciding if a given channel is mixed-unitary, given stronger
promises on the channel’s distance from the boundary of the set of mixed-unitary channels? For
example, one may consider the problem in which a given channel is promised either to be mixed-
unitary or to be at an inverse logarithmic (or even constant) distance from the boundary of the
mixed-unitary channels.

We note that these two examples are likely to be more sensitive to the specific choice of a
distance measure from the boundary of the mixed-unitary channels, in comparison to the inverse
polynomial distance case we have considered in this paper. A variety of distance measures between
channels, including the trace-norm, 2-norm, and spectral-norm distances between their Choi
representations, as well as the completely bounded trace norm (or diamond norm) distance
between channels, are all equivalent to one another within a polynomial factor, but not within a
logarithmic or constant factor.

2. As was suggested in the introduction, an operator X € L(C™ @ C") satisfies X = J(®) for a
mixed-unitary channel ® : L(C") — L(C") if and only if X = np for p being a bipartite quantum
state of two n-dimensional systems that can be expressed as a convex combination of maximally
entangled pure states:

N
p="> prukui, (103)
k=1
where u1,...,uy € C" ® C™ satisfy
(Tr ® Lp,eny) (ueuz) = 1y (104)

for each k € {1,..., N}. Our main result therefore establishes that it is NP-hard to determine
whether or not a given bipartite quantum state can be expressed as a convex combination of
maximally entangled pure states.

It is also NP-hard to determine whether or not a given bipartite quantum state can be expressed as
a convex combination of unentangled pure states (i.e., is a separable state) [Gur03, Ioa07, Ghal0,
Yul6], and it is interesting that these two extremes represent NP-hard decision problems. The
computational hardness of detecting membership in a variety of other convex sets of bipartite
(or multipartite) quantum states may also be considered.

3. Is the mized-unitary detection problem NP-hard with respect to polynomial-time mapping re-
ductions? We note that the analogous problem for separable states is also open.
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