On the Power of Quantum Finite State Automata

Attila Kondacs*

Computer Science Department
Eotvos Lorand University
Budapest, Hungary

Abstract

In this paper, we introduce 1-way and 2-way quan-
tum finite state automata (1qfa’s and 2qfa’s), which
are the quantum analogues of deterministic, nondeter-
ministic and probabilistic 1-way and 2-way finite state
automata.

We prove the following facts regarding 2qfa’s.

1. For any € > 0, there is a 2qfa M which recognizes
the non-regular language L = {a™b™ |m > 1} with
(one-sided) error bounded by €, and which halts in
linear time. Specifically, M accepts any string in
L with probability 1 and rejects any string not in L
with probability at least 1 — €.

2. For every regular language L, there is a reversible
(and hence quantum) 2-way finite state automaton
which recognizes L and which runs in linear time.

In fact, it is possible to define 2qfa’s which recognize
the non-context-free language {a™b™c™|m > 1}, based
on the same technique used for 1. Consequently, the
class of languages recognized by linear time, bounded
error 2qfa’s properly includes the regular languages.
Since it is known that 2-way deterministic, nondeter-
ministic and polynomial expected time, bounded error
probabilistic finite automata can recognize only regu-
lar languages, it follows that 2qfa’s are strictly more
powerful than these “classical” models.

In the case of 1-way automata, the situation is re-
versed. We prove that the class of languages recogniz-
able by bounded error 1qfa’s is properly contained in
the class of regular languages.

1 Introduction

There is a growing body of evidence which suggests
that computational machines whose behavior is gov-
erned by quantum physics may be considerably more

*E-mail: kondacs@cs.elte.hu.
TE-mail: watrous@cs.wisc.edu. Supported in part by NSF
grant CCR-95-10244.

John Watrous’

Computer Sciences Department
University of Wisconsin
Madison, Wisconsin 53706

powerful than their classical counterparts. Undoubt-
edly the most celebrated of these results are Peter
Shor’s factoring and discrete logarithm algorithms for
quantum computers [23, 24]. Other results include
Grover’s quantum searching algorithm [12] and var-
ious oracle results regarding the power of quantum
computers [1, 3, 4, 7, 25].

The above examples regard the power of univer-
sal quantum machines (e.g. quantum Turing machines
[1, 5], quantum circuits [6, 27], quantum cellular au-
tomata [8, 16, 17, 26]). In this paper, we define two
new, much more restricted quantum computational
models: 1-way and 2-way quantum finite state au-
tomata (1qgfa’s and 2gfa’s).

The main focus of this paper will be on 2qfa’s,
which are the quantum analogue of deterministic, non-
deterministic and probabilistic 2-way finite state au-
tomata (2dfa’s, 2nfa’s and 2pfa’s). While 2dfa’s and
2nfa’s are known to be equivalent in power to or-
dinary (1-way) deterministic automata [13, 20, 22],
it was shown by Freivalds in [11] that the non-
regular language {a™b™|m > 1} could be recog-
nized by a 2pfa with arbitrarily small error. How-
ever, the 2pfa’s for {a™b™|m > 1} defined by
Freivalds require exponential expected time, and it
was subsequently shown by Dwork and Stockmeyer
[9, 10] that any 2pfa recognizing a non-regular lan-
guage with bounded error probability must take ex-
ponential expected time on infinitely many inputs.
Thus, 2dfa’s, 2nfa’s and polynomial expected time,
bounded error 2pfa’s recognize exactly the regular
languages.

We show that 2qgfa’s are strictly more powerful than
2dfa’s, 2nfa’s and 2pfa’s in the sense that linear time,
bounded error 2qfa’s recognize a class of languages
which properly includes the regular languages. Specif-
ically, we prove:

1. For any € > 0, there is a 2qfa M which recognizes
the non-regular language L = {a™b™ | m > 1} with
(one-sided) error bounded by €, and which halts in

linear time. Specifically, M accepts any string in
L with probability 1 and rejects any string not in
L with probability at least 1 — e.

2. For every regular language L, there is a reversible
(and hence quantum) 2-way finite state automaton
which recognizes L and which runs in linear time.

We prove 1 by exhibiting a sequence of linear time
2gfa’s for {a™b™ | m > 1} which have error probability
approaching zero. We also note that the non-context-
free language {a™b™c™ | m > 1} can be recognized by
bounded error, linear time 2qfa’s, based on the same
technique. In order to prove 2, we apply a technique
from a recent result of Lange, McKenzie and Tapp [14]
regarding reversible simulation of deterministic Turing
machines to the finite automaton case. A corollary of
2 is that reversible 2-way finite state automata are
equivalent in power to (1-way or 2-way) deterministic
finite state automata. This is in contrast to the fact
that 1-way reversible finite state automata are known
to be less powerful than deterministic finite state au-
tomata [19].

In this paper, we also prove an elementary re-
sult regarding 1qfa’s; similar to 1-way reversible finite
state automata, 1qfa’s are strictly less powerful than
1-way deterministic, nondeterministic and probabilis-
tic finite state automata (1dfa’s, 1nfa’s and 1pfa’s).
The fact that bounded error 1gfa’s can only recognize
regular languages can be demonstrated by modifying
slightly a proof due to Rabin [21] for the analogous
result for probabilistic automata. In order to demon-
strate that the containment of the class of languages
recognized by bounded error 1qfa’s in the regular lan-
guages is proper, a simple example of a regular lan-
guage which evinces this given: we show that {a,b}*a
cannot be recognized by any bounded error 1gfa. In-
dependent of this paper, study of a slightly different
model of 1-way quantum finite state automata has re-
cently appeared in [18].

The remainder of this paper has the following or-
ganization. In Section 2, we define 2-way quantum
finite state automata, and in Section 3 we provide
a well-formedness criterion for 2qfa’s and discuss a
method by which well-formed 2qfa’s can be easily
specified. In Section 4, we present bounded error,
linear time 2qfa’s for the language {a™b™ |m > 1},
and in Section 5 we show that any regular language
can be recognized by a 2-way reversible (and hence
quantum) finite state automaton. Finally, we discuss
1-way quantum finite state automata in Section 6,
and conclude with mention of some open problems in
Section 7.

2 Definition of 2-way quantum finite
automata

A 2-way quantum finite state automaton (2qfa) con-
sists of a finite state control and a 2-way tape head
which scans a read-only input tape. Formally, a 2qfa
is specified by a 6-tuple M = (Q, X, 6, g0, Qucc, @rej),
where () is a finite set of states, ¥ is a finite input
alphabet, § is a transition function (described below),
go € @ is the initial state, and Qucc C @ and Qrej C @
are the sets of accepting states and rejecting states,
respectively. Elements of Q4. and Q,¢; are halting
states and elements of Qnon = Q\(Qace U Qrej) are
non-halting states. It is assumed that ¢y € (non and
Qace N Qrej = 0. In addition to the input symbols
3, there are two symbols ¢,$ ¢ ¥ which will be used
to mark the left and right ends of the input string,
respectively. Together with the input alphabet, these
symbols form the tape alphabet I' = X U {¢, $}.

Unlike the usual definition of 2-way automata, we
will assume that the tape of any 2qfa is circular in
the sense that if the machine is scanning the last tape
square and subsequently moves its tape head right (or
is scanning the first tape square and moves its tape
head left), the tape head will then be scanning the first
tape square (last tape square, respectively). This is
simply a convenient way to restrict 2qfa’s from moving
outside the boundaries of the input on the tape; the
alternative, which is restricting the movement of the
tape head for symbols ¢ and $§, introduces unnecessary
complications in the quantum case. The contents of
any tape can be described by a mapping = : Z,, — T,
n being the number of distinct tape squares on the
tape. Such a mapping will itself be referred to as a
tape, and n will be identified as the length of that tape
(also denoted |z|). For technical reasons, we will make
the further assumption that all tapes have length at
least 3.

The number of configurations of a 2qfa M on any
tape x of length n is precisely n|Q|, since there are n
possible locations for the tape head and |Q)| internal
states. For fixed M, we denote this set of configu-
rations by C,, and identify C, with @ x Z, in the
obvious way.

A superposition of M on a tape z of length n is any
norm 1 element of the finite-dimensional Hilbert space
H, = 2(Cy) (i.e. the space of mappings from C,, to C
with the usual inner product). We will use the Dirac
notation to express superpositions. For each ¢ € C,,,
|c> denotes the unit vector which takes value 1 at ¢ and
0 elsewhere; all other elements of H,, may be expressed
as linear combinations of these basis vectors. For a
superposition |w> = Zcecﬂ Qg |c>, . is the amplitude

associated with ¢ in superposition |1/1>
We are now ready to describe the transition func-
tion §. This is a mapping of the form

0:QxI'x@Q x{-1,0,1} - C,

and is to be interpreted as follows. For each ¢q,q' € @,
o €' and d € {-1,0,1}, d(q,0,q¢',d) represents the
amplitude with which a machine currently in state q
and scanning symbol ¢ will change state to ¢’ and
move its tape head in direction d. For any tape =,
d induces an operator Uj (called the time-evolution
operator of M on tape x) on H,| as follows.

U la.k) = > d(q, (k). ¢, d) |¢', k + d (mod |z]))
q',d

for each (g, k) € C|,), and is extended to all of H,| by
linearity. Thus, (Ug”)t ‘1/)) is the superposition which
would be obtained if M on tape x were placed in su-
perposition |w> and run (unobserved) for ¢ steps.

In order for a superposition to be valid, it must
be of unit norm. This restriction is inherent to the
quantum theory, and its necessity will be apparent
from the section below regarding observables. A ma-
chine which guarantees that any valid superposition
will evolve into another valid superposition is said to
be well-formed. Since each H, is finite-dimensional,
this corresponds to the time-evolution operator U for
each tape z being a unitary operator. Note that this
condition is quite restrictive. For example, arbitrary
2dfa’s which are not reversible (i.e. whose “yields” re-
lations are not one-to-one) will not directly correspond
to well-formed 2qfa’s. In Section 3, we provide a cri-
terion to determine whether or not a given 2qfa is
well-formed.

Observables

The time-evolution operator Uy specifies how a 2qfa
will evolve given tape x, assuming that the 2qfa is not
observed by an outside observer. We must assume,
however, that a machine has to be observed in order
for it to yield any information about its computation.
The information obtained by a particular sort of ob-
servation, as well as the effect of that observation on
the machine, is described by an observable.

An observable O for a 2qfa M is a decomposi-
tion of each Hilbert space H,, into subspaces: H, =
E, @ --- ® Ey, where the E; are pairwise orthogonal.
Corresponding to each j = 1,...,k will be some par-
ticular (distinct) outcome; if a 2qfa M on tape z is
in superposition ‘1/)) and is observed using observable
O, then one of these outcomes will result and M will
be modified in a certain way. Specifically, let |wj>

be the projection of ‘1/)) onto FE; for each j, so that
|1[)> = |w1> + -+ |1/Jk> Then the result of the obser-

vation is as follows.

1. The outcome observed is random, each outcome j
being seen with probability || |1[)j> ||2
2. Immediately after the observation, the machine

will “collapse” to the superposition m ‘1/13-),

where j corresponds to the particular outcome

which was observed.

An example of an observable is to let ¢q,...,¢; be
an enumeration of Cy,, and let E; = span { ‘cj>}. (The
outcome of the observation can be taken to be simply a
description of the corresponding configuration.) Now,
the probability of seeing a given configuration is the
absolute square of the amplitude associated with that
configuration, and upon observation the machine will
collapse to the superposition ‘c) for whichever config-
uration ¢ which was observed.

We will use a different observable, however, which
will correspond to determining not the entire config-
uration of a machine, but rather only whether that
machine is in an accepting, rejecting or non-halting
state. For fixed n, define Cyee = Quce X Zn, Crej =
Qrej X Ly and Cpop = Qnon X Ly, and let By =
span{ |c> ‘ cE Cacc}, Erej = span{ ‘c) ‘ cE C,«ej},
Epnon = span{ ‘c) | ¢ € Cyon}. Now, let O be the
observable corresponding to the decomposition H,, =
Esce @ Erej © Enon, where the outcome of any obser-
vation is “accept”, “reject” or “non-halting” accord-
ingly. For example, if the amplitude associated with
every halting configuration in some superposition is
0, then the result of an observation using observable
O will be “non-halting” with probability 1, and the
superposition will “collapse” to itself (i.e. will not be
altered by the observation).

Languages recognized by 2qfa’s

Finally, we can discuss the languages recognized by
2gfa’s. For a given input string w € X*, we define
a corresponding tape z,, which has length |w| + 2
and takes the form z,(0) = ¢, z,(Jw| + 1) = § and
Zy (1) = w; for 1 <4 < |w|. (The exceptional case is
when the input string is the empty string; in this case
the corresponding tape will take the form z(0) = ¢ and
x(1) = §, with #(2) defined arbitrarily.) Now, to say
that a 2qfa M is run on input w means that 1) the
tape of M is described by x,, 2) the computation
begins with M in superposition |q0,0>, and 3) after
each step, the machine is observed using observable O
defined in the previous paragraph. The computation
continues until the result of an observation is “accept”

or “reject”, at which time the computation halts. The
computation can now be treated in the same manner
as for a probabilistic machine: if input w results in
“accept” with probability greater than 1/2; then w is
an element of the language recognized by M, other-
wise it is not.

As in the probabilistic case, classes of languages
may be defined by placing restrictions on the 2qfa’s
which recognize them, such as running time, proba-
bility of error, etc. In this paper we are interested
in the class of languages which can be recognized by
polynomial time 2qfa’s with error probability bounded
away from 1/2.

3 Defining well-formed 2qfa’s

We will only be interested in 2qfa’s which are well-
formed, so it will be necessary to be able to determine
whether or not given machines satisfy this condition.
The following proposition, which is analogous to Bern-
stein and Vazirani’s criterion for well-formedness of
quantum Turing machines [1], allows us to do this.

Proposition 1 4 2Qfa M = (Q:Z76: qO:Qacc:Qre]’)
is well-formed if and only if for every choice of
o,01,09 €' and q1,q2 € Q the following hold.

TP Y I ¢1=¢q
1. E 5(qi,0,q',d)6(g2,0,q',d) =
o~ (Q1,0',q7) (ql,o,q7) {0 Q175Q2

2. Z(5((]1=017q,=1)6((]2702:(]’70)
+5(Q1701:ql:0) 5(‘12,(72:‘1/: 71)) =0

3. 25((11701:‘1/:1)5(112,(72:({:*1):0
ql

Proof. For each z, U is unitary if and only if the
vectors Uy q7k> for g € Q,k € 7Zj,| are orthonormal.
Condition 1 is equivalent to the statement that, for
every x, we have ||Ug” ‘q,k)” = 1 for each ¢ and k,
and U |q1,k> - Uy |q2,k> for ¢1 # g». Conditions 2
and 3 are equivalent to Uy’ ‘ql, ky — Uf ‘qz, k+ 1) and
Uy ‘ql, k) - Uy ‘Q2, k+ 2), respectively, for each z, qq,
g2 and k, with |z| > 5. For 3 < |z| < 4, conditions 2
and 3 are sufficient to show U§ ‘ql, ky — Uf ‘qz, k+1)
and Uy ‘ql,k> Uy |q2,k—|—2>. It is clear that
Uy ‘ql, k1> - Uy |q2,]C2> whenever k; and ks are more
than two squares away, since the tape head of a 2qfa
moves at most one square per step. Thus, the vectors
Uy ‘q,k), q € Q,k € Zy,| are orthonormal for every z
if and only if conditions 1, 2 and 3 are satisfied.]

Proposition 1 provides a relatively simple criterion
to determine whether a 2qgfa is or is not well-formed.
However, it will simplify matters to mention a method

by which well-formed machines can be more easily
specified. In essence, the method is to decompose the
transition function 4 into two parts: one for transform-
ing states and the other for moving the tape head.

Consider the Hilbert space £2(Q), where @ is the
set of internal states of a 2qfa M. Suppose that we
have a linear operator V, : £3(Q) — ¢2(Q) for each
o € I, and a function D : Q — {—1,0,1}. Define
transition function ¢ as

6(q,0’, ql7d) _ { (()q’ | Vu’ ‘ q> ggg:g ; 3 (1)

(Here, <q"Vg‘q> denotes the coefficient of |q’> in
V, ‘q)) We see from Proposition 1 that M is well-
formed if and only if

Tl AN/ _ 1 qa=¢q
Z<q’|Va|q1><q|Va|q2>—{0 0 £ @

q'

for each o € I'. Equivalently, M is well-formed when
every V, is unitary.

Example: a 2gfa for a*b*

To illustrate the above method, we will show how a
2qfa for the language a*b* can be defined. (Note that
it is not immediate that there is a well-formed 2qfa for
this language, as a “typical” 1dfa or 2dfa for a*b* will
likely not be reversible.)

Define M = (Q, X, 6, go, Qacc, @rej) as follows. Let
Q = {qO>Q1>Q2:QB>q4}: X = {a7b}7 Qacc = {q3} and
Qrej = {qs}. Define

Velwo) =la0), Valwo) =la), Vilw) =]|an),
Velm) = |a2), Valam)=a), Vila)=|w)
Ve |Q2> = |Q4>7 Va ‘Q2> = ‘Q4>, Vi |Q2> = |Q2>7
Velas) = las), Valas) = las), Vilas) = |as),
Velaa) =|a), Vala) =), Vilaa) =]|aa),
Vs ‘QO> = ‘Q1>= D(qo) = +1,

Vs o) =|a0), D(g)=-1,

Vs |g2) = |a3), Dl(g2) = +1

Vs |gs) = |a2), Dl(gs) =0,

Vs |qa) = |aa), D(qs) =0,

and define § as in (1). Each V, is unitary by inspec-
tion, so M is well-formed.

Consider first inputs not in a*b*. For example,
suppose that the input string is “abba”, so the cor-
responding tape z satisfies: z(0) = ¢, z(1) = a,
z(2) = b, ©(3) = b, x(4) = a, ©(5) = §. We have

the following sequence of superpositions when M is
run:

|q070> = ‘110:1> = |QO,2>
= ‘q171> = ‘Q2>2> = |Q2,3> = ‘Q2>4> = ‘Q4>4>

After each step except for the last, observation with
our observable O yields “non-halting” with certainty,
and after the last step the result of the observation
is “reject” with certainty (and thus, the input is re-
jected). Other inputs not in a*b* are rejected in a
similar manner.

For any input w € a*b*, the reader may verify that
the machine will enter superposition ‘Q3, |lw| + 1> after
|w| + 4 steps, and will not have previously been in a
halting state (and will therefore accept w).

Note that many values of V, ‘qj> define transitions
which are not encountered during a computation on
any input w. Here, we have defined these values arbi-
trarily in such a way that each V, is unitary. In gen-
eral, we need only specify those values which matter;
so long as these vectors are orthonormal, the remain-
ing values can always be assigned in arbitrary fashion
so that the resulting operator is unitary.

4 A 2qgfa for {a™b™ |m > 1}
In this section, we will show that for any error bound
€ > 0, there exists a 2gfa which accepts the non-
regular language L = {a™b™|m > 1} with error
bounded by € in linear time.

For each N, define My = (Q,X,9, g0, Qace, Qrej)
as follows. Let ¥ = {a, b},

Q = {QO=Q17QQ=(]37}
U{rjr|1<j<N,0<k<max(j,N—j+1)}
U{s;|[1<j< N},

Qacc = {SN} and Qrej = {113} U {Sj‘]- < 7 < N}
Let each V, take the values indicated in figure 1, and
extend each to be unitary on £5(Q) (for each o, the
vectors {V, |q>} are orthonormal by inspection). Also
define D as in figure 1, and let 4 be defined in the
manner described in Section 3.

Proposition 2 Let w € {a,b}*. For every positive
integer N, if w € {a™b™|m > 1} then My accepts
w with probability 1, and otherwise My rejects w with
probability at least 1 — 1/N. In either case My halts
after O(N|w|) steps with certainty.

Proof. The computation of each My consists of two
phases. The first phase rejects any input not of the
form a"bV for u,v > 1, and the second phase rejects,
with some probability, those inputs for which u # v.

The first phase is straightforward, similar to the ex-
ample in section 3. If the input is not of the indicated
form, a reject state is entered and the computation
ends. Otherwise, the second phase begins with the
machine in state ¢ with the tape head reading the
right end-marker.

At the start of the second phase, the computa-
tion branches into N paths, indicated by the states
1.0, ---,7N.0, €ach with amplitude 1/+/N. For each of
these paths, the tape head moves deterministically to
the left end-marker in the following way: along the jth
path, if the tape head reads the symbol a it remains
stationary for j steps and then moves left; if it reads
the symbol b it remains stationary for N — j + 1 steps
and then it moves left. Thus, on input a"b?, the tape
head requires precisely (j+1)u+ (N —j+2)v+1 steps
to move from the right to the left end-marker along the
jth path. Under the assumption that j # j', we have
G+Du+(N—j+2)v+1= '+ Du+(N—j'+2)v+1
if and only u = v, from which it follows that any two
distinct computation paths will reach the ¢ symbol at
the same time if and only if v = v (i.e. the input is of
the form a™b™).

Upon reaching the ¢ symbol, each computation
path again splits according to the quantum Fourier
transform, yielding either the single accepting state
sy or one of the rejecting states {s; |1 < j < N}.

Consider first the case that the input is of the form
a™b™. Since each of the N computation paths reaches
the ¢ symbol at the same time, we have that the super-
position of the machine immediately after performing
the quantum Fourier transform is

Hence, our observable yields the result accept with
probability 1.

Now suppose that the input is not of the form
a™b™. Each of the N computation paths reaches the
¢ symbol at a different time, and so there is no can-
cellation between the rejecting states. For each of the
N possible path lengths, the conditional probability
that an observation results in accept at the time cor-
responding to that path length is 1/, given that some
halting state was observed. It follows that the total
probability that an observation results in accept is also
1/N, and consequently the input is rejected with prob-
ability 1 — 1/N.

Each possible computation path clearly has length
O(N|w|). Since each path ends in a halting con-
figuration, My must halt after O(N|w]|) steps with
certainty. [|

Ve |110> = “IO>>
V:t |q1> = ‘Q3>7

Va ‘110> = ‘(IO>:
Va ‘Q1> = ‘Q2>=
Va ‘112> = “IB>:

Valrjo) = |rjj), 1<5 <N,
Valrje) = |rje-1), 1<k <j,1<j<N,

D(qo) = +1,
D(qi) = -1,
D(q2) = +1,
D(g3) =0,

Vi [rio) = o Sy exp (3E51) [s1), 1 <j < N,

V$ |q0> = |Q3>>
Vs |(J2> = \/Lﬁ Z;V:1 |Tj,0>=

Vi lao) = |au),

Vi la2) = |a2),

Vi|rio) =|rin—j1), 1<j <N,

Vilrig) = ik 1), 1SE<SN—j+1,1<j<N,

Figure 1: Specification of the transition function of My.

This method can be extended to show that non-
context-free languages can be recognized by bounded
error, linear time 2qfa’s as well.

Corollary 3 For each € > 0, there exists a 2qfa M
which recognizes the language {a™b™c™ |m > 1} with
one-sided error bounded by €, and which halts in linear
time.

Proof. [Sketch] For each N, a 2qfa M can be de-
fined which functions similarly to My above, except
that M runs in three phases rather than two: M first
checks to see that the input is of the form a®™bTcT,
then checks the last part of the string to see that it is
in {b™c™ | m > 1}, and finally checks the initial part of
the string to see that it is in {a™b™ | m > 1}. Details
will appear in the final version of this paper. [|

5 Reversible simulation of 1dfa’s

In this section, we use a technique from a recent re-
sult due to Lange, McKenzie and Tapp [14] regard-
ing space-efficient reversible simulation of determinis-
tic Turing machines to show that an arbitrary 1-way
deterministic finite automaton (1dfa) can be simulated
by a 2-way reversible finite automaton (2rfa) (which
we may simply define as a well-formed 2qfa whose
transition amplitudes may only take the values 0 and
1). Here, the construction is considerably simpler than
in the Turing machine case.

A 1dfa can be formally specified by a quintuple
A = (5,%,u,s0,F) in the familiar way (see [15],
for example). Given such an A, we define a 2qfa
M = (Q,%,9,q0,Qacc, Qrej) which will accept the
same language as A.

First, in order to allow M to behave correctly when
reading the ¢ and $ symbols, extend S and p to S’ and
i as follows (essentially converting A to an equivalent
2dfa). Let S" = SU{s{, Sacc: Srej }, where s3, sqcc and
srej are not elements of S, and define

u(s,o) se€S,oeX
S0 s=8p,0=¢
Sace seEF, o0=3%§
Srej SGS\F,U:$.

w(s o) =

For all other values, let i’ be undefined. Also define

L, = {s'eS|p'(so)=u(s0)},
Js7zr = {SIGS‘ M’(Slao):5}7

and fix some ordering of the set S’. Let maz and
min denote the maximum and minimum functions rel-
ative to this ordering, and for any subset T C S’
let succ(s,T') be the least element larger than s in T
(assuming there is such an element).

Now, we may define M. Let Q = S’ x {—1,+1},
and let ¢ = (s{,+1), Quee = {(Sace,+1)} and
Qrej = {(srej, +1)}. We will again use the technique
from Section 3 to define §. For each s € S’ and o0 € T

for which p'(s, o) is defined, let
V., ‘(s, +1)) =

{ |(succ(s,Isyg), 71)> s # max(Ils ;)
|(,u’(s7a), —|—1)> s = max(l,),

and for every s € S' and o € T let

‘(Sa+1)> Js,a = @

o (e, 1) = { oy

Note that each V, can be extended to be a permuta-
tion of { ‘q) | q € Q}7 inducing a unitary operator on
£5(Q). Define D((s,+1)) = +1, D((s,—1)) = —1 and
let § be defined as in (1).

Proposition 4 For any I1dfa A, let M be as defined
above. For any w € X*, if A accepts w then M accepts
w in O(|lw]) steps, and if A does not accept w, then
M rejects w in O(Jw|) steps.

Proof. Viewing A as a 2dfa which only moves its tape
head to the right, we have that the set of configura-
tions of A on any input w of length n is S’ X Z,,15. For
given A and w, let G be an undirected graph with set
of vertices S’ X Zyy2, and an edge between vertices
(s1,k) and (so,k + 1) if and only if p'(s1,wg) = s9
(i.e. G is an undirected graph representing the “yields”
relation of A on input w). Let Go be the connected
component of G which contains the initial configura-
tion (sj,0). There can be no cycles in Gg, and Gy
must contain exactly one vertex corresponding to a
halting state (Sqeec Or Syej). So, we may view Gq as
being a tree with the single halting configuration ver-
tex as the root and the leaves of the tree including the
vertex representing the initial configuration (as well as
possibly many other configurations which have no pre-
decessors). M simulates A on input w by traversing
G in a reversible manner.

The specific manner in which M performs this
traversal is now described. For each configuration
(s,k) of A, there correspond two configurations of
M: ((s,+1),k) and ((s,—1),k — 1), which are to
be interpreted as follows. When M is in configu-
ration ((s,+1),k), this indicates that the subtree of
Go rooted at vertex (s,k) has just been traversed,
and when M is in configuration ((s,—1),k — 1), the
subtree of Gg rooted at vertex (s,k) is now about
to be traversed. Consider figure 2. Here we have
Tswie = Tstw, = {81,..., 8} for each i = 1,...,1,
and we assume that s} < s, < < s ac-
cording to our ordering of S’'. Suppose that M

(s,k+1)

(s1.k) (55, k) (s1-1:K) (s1,k)

Figure 2: Vertex (s, k + 1) and its children.

is in configuration ((s;,+1),k) for ¢ < 1. Since
s; # max(ly ,,), the next configuration of M is
((SUCC(SLIS;,UUG):*]-)ak - 1) = ((Sg-{-l:*l):k - 1)
(And now the tree rooted at (sj,;,k) is about to be
traversed.) Now suppose that M is in configuration
((s}, +1),k). Since s; = max(Iy; ,,), the next configu-
ration will be ((u(s, wg), +1),k+1) = ((s,+1),k+1).
Hence, M enters configuration ((s, +1), k+ 1) only af-
ter each of the subtrees rooted at its children have
been traversed. Next, suppose that M is in config-
uration ((s,—1),k). The next configuration of M is
((min(Js,u,), —1),k—1) = ((s}, —1), k—1), and so the
subtree rooted at vertex (s}, k) is now to be traversed.
Finally, in the case that (s, k + 1) has no predecessors
(such as when k£ = 0 and s # s¢), we have Js ., =0,
and so the configuration of M which immediately fol-
lows ((s, —1), k) is ((s, +1), k+1). (The subtree rooted
at (s, k+1) consists of a single vertex in this case, and
hence has been traversed.)

By traversing G in this manner, M will eventually
enter one of the two configurations ((sgec, +1),0) or
((srej,+1),0), and consequently accepts or rejects ac-
cordingly. It is clear that M halts after O(Jw|) steps,
since there are O(|w|) configurations of M and no con-
figuration may be entered more than once before a
halting configuration is reached. (This is true of any
2rfa which eventually halts.) [|

Since any regular language can be recognized by some
1dfa, we have the following result.

Corollary 5 For any regular language L, there exists
a 2rfa which recognizes L.

6 1-way quantum finite automata

In this section, we will briefly discuss 1-way quan-
tum finite automata (1qfa’s). In contrast to the fact
that 2-way quantum finite automata are more pow-
erful than classical 2-way finite automata, 1qfa’s are
shown to be strictly less powerful than classical 1-way
finite automata.

In the interest of simplicity, we will define 1gfa’s to
be that subset of all 2qfa’s for which the tape head
may only move to the right, but with the added re-
striction that the computation may continue for only
|w| 42 steps on input w (hence each symbol, including
the two end-markers, is read exactly once). The end-
markers are not superfluous for 1gfa’s; the existence of
the left end-marker allows the model to simulate the
situation in which the result of an observation does
not necessarily correspond directly to a classical state
(i.e. the observable may correspond to any orthogonal
decomposition €2(Q) = Eqee @ Erej ® Enon), and the
existence of the right end-marker allows the model to
simulate the situation in which a second observable
may be used after the entire input has been read.

It is not difficult to show that for any well-formed
lgfa M = (Q, %, 6,40, Qace; @rej), there must be a uni-
tary operator V, acting on £»(Q), for each o € ', such
that

5(¢.0.4',d) :{ (' |Ve la) “r

This fact yields a means by which analysis of 1gfa’s is
simplified, which we will now discuss.

Define V = £»2(Q) x R x R. Elements of V will
represent total states of M as follows: a machine de-
scribed by (¢, Pace; Prej) € V has, thus far in its com-
putation, accepted with probability p,.., rejected with
probability p,e; and neither with probability ||¢]|3,
in which case the current superposition of internal
states is |1/)> (normalized). Let Pyee, Prej and Prop
be the projections of £,(Q) onto span{ |q> ‘ q€ Qacc},
span{|q) | ¢ € Qre; }, and span{|q) | ¢ € Qnon} re-
spectively. For each ¢ € I, the evolution of M as
symbol o is read can be described by an operator T,
on V, defined as follows.

Tcr : (1/):pacc:prej) =
(PnonVU¢:pacc + ||PaccVU¢||§7prej + ||PrejVU'(/)||§) .

Forz =010, € I'", define I, = T, ---Ty,,. So,
for example, if (¥, Pace;Prej) = Tews (‘q0> ,0,0), then
M accepts w with probability p,.., etc.

Define a norm on V as

1
||(¢7pacc:prej)|| = 5(”1,[)”2 + ‘pacc| + |prej|);

and let B = {v € V||jv|]| € 1}. Clearly, any v which
represents the state of a valid 1gfa must be in B. A
straightforward calculation reveals that there exists a
fixed constant ¢ such that ||T,v — T,v'|| < ¢|lv — v'||
for every v,v' € B and = € I'*. Furthermore, it can be

shown that if a set A C B satisfies the property that
there exists a & > 0 such that for all v,v" € A we have
[lv —2'|] > &, then there can be at most finitely many
elements in A.

Proposition 6 Let L be any language recognized by
a 1qfa with bounded error. Then L is reqular.

Proof. [Sketch] The proof is essentially the same as
the proof of Theorem 3 in [21], adjusted to the quan-
tum case.

Let M = (Q,%,6,q0,Qacc; @rej) be a lgfa which
recognizes L with probability of error bounded by
1/2 —e. Write w =, w' if, for all y € ¥*, we have
wy € L if and only if w'y € L. The relation =g, is
an equivalence relation, and partitions ¥* into finitely
many equivalence classes if and only if L is regular
[20].

Let W C ¥* be any set of strings which are pair-
wise inequivalent with respect to =;. In order to
prove the proposition, it suffices to show that W
must be finite. For w # w' € W, there must ex-
ists y € ¥* such that wy € L if and only if w'y & L.
Hence, for v = Tw(‘qg) ,0,0) and v = Ty (q0> ,0,0)
we have [[Tygv — Tygv'|| > 2¢, since M has error
probability bounded away from 1/2 by e. Conse-
quently, we have ||v — v'|| > 2¢/e, so that the set
{Tm (‘q0> ,0,0) | w € W} must be finite. From this
it follows that W must be finite as well. []

Finally, we note that the containment of the class
of languages recognized by 1qfa’s with bounded error
in the regular languages is proper. One rather simple
example of a regular language not recognizable by a
bounded error 1gfa is provided by the following propo-
sition.

Proposition 7 The language L = {a,b}*a cannot be
recognized by a 1qfa with bounded error.

Proof. Let M be a 1gfa that recognizes L. For each
T =010, €', write

wm = (Pnonvnn) e (Pnonvtn) |l]0>)

and let p = inf{||Y¢y|l| w € {a,b}*}. Since wa € L
and wb ¢ L for each w, we can conclude that if yu = 0,
then M does not recognize L with bounded error. So
assume p > 0. Let £ > 0, and choose w such that
lbeull < pi+ €. Tt follows that [[tbeuy | € [, o + &) for
every y € {a,b}*. In particular, for any nonnegative
integer 7 we have

| (Paon?s)? Gwal| € s+ 9). @)

The sequence {(Pmme)j 1/)¢wa} is a bounded se-
quence in a finite dimensional Hilbert space, and
must therefore have a limit point. Thus, there
must exist integers j > 0 and k£ > 1 such that
H(Pnonvb)] (¢¢wa - (Pnon‘/vb),c wc:wa) H < £ USiIlg
(2), it can be shown that this implies that there
is a fixed constant ¢’ (independent of &) such that
‘%wa — (PuonVy)* Yewa|| < €Y%, and from this it
follows that

| Tewas (|a0)0,0) — Tewas (|g0) . 0,0)]| < "€'/4,

for fixed ¢”. Since £ may be chosen arbitrarily small,
and since M must accept wa and reject wab®, M can-
not have error probability bounded away from 1/2. B

7 Open problems

A number of questions have been left open by this
paper. One interesting question is whether there are
languages recognizable by polynomial time, bounded
error 2qgfa’s but not by bounded error (exponential
time) 2pfa’s (or vice versa). Along similar lines, are
there languages recognized by exponential time 2qfa’s
but not polynomial time 2qfa’sI’ Various general-
izations of 2qfa’s, such as multi-head 2qfa’s, multi-
dimensional 2qgfa’s and 2qfa’s with more general types
of observables can be defined, as can quantum ana-
logues of other devices based on finite automata, such
as interactive proof systems with 2qfa verifiers. What
are the relations of these models to one another and
to their classical counterpartsl’

Acknowledgments

We would like to thank Eric Bach, Anne Condon,
Katalin Friedl, Mike Siff, and Gdbor Tardos for their
helpful comments and discussions.

References

[1] E. Bernstein and U. Vazirani. Quantum complex-
ity theory (preliminary abstract). In Proceedings
of the Twenty-Fifth Annual ACM Symposium on
Theory of Computing, pages 11 20, 1993.

[2] A. Berthiaume. Quantum computation. In Com-
plexity Theory Retrospective II. Springer-Verlag,
1997.

[3] A. Berthiaume and G. Brassard. The quantum
challenge to structural complexity theory. In Pro-
ceedings of the 7th Annual IEEE Conference on
Structure in Complezity, pages 132 137, 1992.

[4] G. Brassard and P. Hpyer. An exact quantum
polynomial-time algorithm for Simon’s problem.
Preprint. To appear in Proceedings of the Fifth
Israeli Symposium on Theory of Computing and
Systems (ISTCS’97), 1997.

[5] D. Deutsch. Quantum theory, the Church-Turing
principle and the universal quantum computer.
Proceedings of the Royal Society of London, A400:
97 117, 1985.

[6] D. Deutsch. Quantum computational networks.
Proceedings of the Royal Society of London, A425:
73 90, 1989.

[7] D. Deutsch and R. Jozsa. Rapid solutions of prob-
lems by quantum computation. Proceedings of the
Royal Society of London, A439: 553-558, 1992.

[8] C. Diirr, H. Lé Thanh and M. Santha. A decision
procedure for well-formed linear quantum cellular
automata. In Proceedings of the Thirteenth Sym-

posium on Theoretical Aspects of Computer Sci-
ence, pages 281-292, 1996.

[9] C. Dwork and L. Stockmeyer. On the power
of 2-way probabilistic finite state automata. In
Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, pages 480 485,
1989.

[10] C. Dwork and L. Stockmeyer. A time-complexity
gap for two-way probabilistic finite state au-
tomata. SIAM Journal of Computing, 19: 1011-
1023, 1990.

[11] R. Freivalds. Probabilistic two-way machines. In
Proceedings of the International Symposium on
Mathematical Foundations of Computer Science,
volume 188 of Lecture Notes in Computer Sci-
ence, pages 33-45. Springer-Verlag, 1981.

[12] L. Grover. A fast quantum mechanical algorithm
for database search. In Proceedings of the 28th
Annual ACM Symposium on the Theory of Com-
puting, pages 212 219, 1996.

[13] R. Ladner, R. Lipton and L. Stockmeyer. Al-
ternating pushdown and stack automata. SIAM
Journal on Computing, 13(1): 135-155, 1984.

[14] K. Lange, P. McKenzie and A. Tapp. Reversible
space equals deterministic space (extended ab-
stract). In Proceedings of the 12th IEEE Con-
ference on Computational Complexity, 1997. To
appear.

[15]

[16]

[17]

H. Lewis and C. Papadimitriou. Elements of the
Theory of Computation. Prentice-Hall, 1981.

S. Lloyd. A potentially realizable quantum com-
puter. Science, 261: 1569 1571, 1993.

N. Margolus. Quantum computation. Annals of
the New York Academy of Science, 480: 287 297,
1986.

C. Moore and J. Crutchfield. Quantum auto-
mata and quantum grammars. Santa Fe Institute
Working Paper 97-07-062, 1997.

J. Pin. On the languages accepted by finite re-
versible automata. In 14th International Collo-
quium on Automata, Languages and Program-
ming, volume 267 of Lecture Notes in Computer
Science, pages 237-249. Springer-Verlag, 1987.

M. Rabin and D. Scott. Finite automata and their
decision problems. IBM Journal of Research and
Development, 3: 114-125, 1959.

M. Rabin. Probabilistic automata. Information
and Control. 6: 230 245, 1963.

[22]

[23]

J. Shepherdson. The reduction of two-way au-
tomata to one-way automata. IBM Journal of Re-
search and Development, 3: 198 200, 1959.

P. Shor. Algorithms for quantum computation:
discrete logarithms and factoring. In 35th Annual

Symposium on Foundations of Computer Science,
pages 124-134, 1994.

P. Shor. Polynomial-time algorithms for prime
factorization and discrete logarithms on a quan-
tum computer. Preprint, 1996.

D. Simon. On the power of quantum computa-
tion. In 35th Annual Symposium on Foundations
of Computer Science, pages 116 123, 1994.

J. Watrous. On one-dimensional quantum cel-
lular automata. In 26th Annual Symposium on
Foundations of Computer Science, pages 528-
537, 1995.

A. Yao. Quantum circuit complexity. In 3/th An-
nual Symposium on Foundations of Computer

Science, pages 352 361, 1993.

