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powerful than their classical counterparts. Undoubt-edly the most celebrated of these results are PeterShor's factoring and discrete logarithm algorithms forquantum computers [23, 24]. Other results includeGrover's quantum searching algorithm [12] and var-ious oracle results regarding the power of quantumcomputers [1, 3, 4, 7, 25].The above examples regard the power of univer-sal quantum machines (e.g. quantum Turing machines[1, 5], quantum circuits [6, 27], quantum cellular au-tomata [8, 16, 17, 26]). In this paper, we de�ne twonew, much more restricted quantum computationalmodels: 1-way and 2-way quantum �nite state au-tomata (1qfa's and 2qfa's).The main focus of this paper will be on 2qfa's,which are the quantum analogue of deterministic, non-deterministic and probabilistic 2-way �nite state au-tomata (2dfa's, 2nfa's and 2pfa's). While 2dfa's and2nfa's are known to be equivalent in power to or-dinary (1-way) deterministic automata [13, 20, 22],it was shown by Freivalds in [11] that the non-regular language fambmjm � 1g could be recog-nized by a 2pfa with arbitrarily small error. How-ever, the 2pfa's for fambm jm � 1g de�ned byFreivalds require exponential expected time, and itwas subsequently shown by Dwork and Stockmeyer[9, 10] that any 2pfa recognizing a non-regular lan-guage with bounded error probability must take ex-ponential expected time on in�nitely many inputs.Thus, 2dfa's, 2nfa's and polynomial expected time,bounded error 2pfa's recognize exactly the regularlanguages.We show that 2qfa's are strictly more powerful than2dfa's, 2nfa's and 2pfa's in the sense that linear time,bounded error 2qfa's recognize a class of languageswhich properly includes the regular languages. Specif-ically, we prove:1. For any � > 0, there is a 2qfa M which recognizesthe non-regular language L = fambm jm � 1g with(one-sided) error bounded by �, and which halts in



linear time. Speci�cally, M accepts any string inL with probability 1 and rejects any string not inL with probability at least 1� �.2. For every regular language L, there is a reversible(and hence quantum) 2-way �nite state automatonwhich recognizes L and which runs in linear time.We prove 1 by exhibiting a sequence of linear time2qfa's for fambm jm � 1g which have error probabilityapproaching zero. We also note that the non-context-free language fambmcm jm � 1g can be recognized bybounded error, linear time 2qfa's, based on the sametechnique. In order to prove 2, we apply a techniquefrom a recent result of Lange, McKenzie and Tapp [14]regarding reversible simulation of deterministic Turingmachines to the �nite automaton case. A corollary of2 is that reversible 2-way �nite state automata areequivalent in power to (1-way or 2-way) deterministic�nite state automata. This is in contrast to the factthat 1-way reversible �nite state automata are knownto be less powerful than deterministic �nite state au-tomata [19].In this paper, we also prove an elementary re-sult regarding 1qfa's; similar to 1-way reversible �nitestate automata, 1qfa's are strictly less powerful than1-way deterministic, nondeterministic and probabilis-tic �nite state automata (1dfa's, 1nfa's and 1pfa's).The fact that bounded error 1qfa's can only recognizeregular languages can be demonstrated by modifyingslightly a proof due to Rabin [21] for the analogousresult for probabilistic automata. In order to demon-strate that the containment of the class of languagesrecognized by bounded error 1qfa's in the regular lan-guages is proper, a simple example of a regular lan-guage which evinces this given: we show that fa; bg�acannot be recognized by any bounded error 1qfa. In-dependent of this paper, study of a slightly di�erentmodel of 1-way quantum �nite state automata has re-cently appeared in [18].The remainder of this paper has the following or-ganization. In Section 2, we de�ne 2-way quantum�nite state automata, and in Section 3 we providea well-formedness criterion for 2qfa's and discuss amethod by which well-formed 2qfa's can be easilyspeci�ed. In Section 4, we present bounded error,linear time 2qfa's for the language fambm jm � 1g,and in Section 5 we show that any regular languagecan be recognized by a 2-way reversible (and hencequantum) �nite state automaton. Finally, we discuss1-way quantum �nite state automata in Section 6,and conclude with mention of some open problems inSection 7.

2 De�nition of 2-way quantum �niteautomataA 2-way quantum �nite state automaton (2qfa) con-sists of a �nite state control and a 2-way tape headwhich scans a read-only input tape. Formally, a 2qfais speci�ed by a 6-tuple M = (Q;�; �; q0; Qacc; Qrej),where Q is a �nite set of states, � is a �nite inputalphabet, � is a transition function (described below),q0 2 Q is the initial state, and Qacc � Q and Qrej � Qare the sets of accepting states and rejecting states,respectively. Elements of Qacc and Qrej are haltingstates and elements of Qnon = Qn(Qacc [ Qrej) arenon-halting states. It is assumed that q0 2 Qnon andQacc \ Qrej = ;. In addition to the input symbols�, there are two symbols c; $ 62 � which will be usedto mark the left and right ends of the input string,respectively. Together with the input alphabet, thesesymbols form the tape alphabet � = � [ fc; $g.Unlike the usual de�nition of 2-way automata, wewill assume that the tape of any 2qfa is circular inthe sense that if the machine is scanning the last tapesquare and subsequently moves its tape head right (oris scanning the �rst tape square and moves its tapehead left), the tape head will then be scanning the �rsttape square (last tape square, respectively). This issimply a convenient way to restrict 2qfa's from movingoutside the boundaries of the input on the tape; thealternative, which is restricting the movement of thetape head for symbols c and $, introduces unnecessarycomplications in the quantum case. The contents ofany tape can be described by a mapping x : Zn ! �,n being the number of distinct tape squares on thetape. Such a mapping will itself be referred to as atape, and n will be identi�ed as the length of that tape(also denoted jxj). For technical reasons, we will makethe further assumption that all tapes have length atleast 3.The number of con�gurations of a 2qfa M on anytape x of length n is precisely njQj, since there are npossible locations for the tape head and jQj internalstates. For �xed M , we denote this set of con�gu-rations by Cn, and identify Cn with Q � Zn in theobvious way.A superposition ofM on a tape x of length n is anynorm 1 element of the �nite-dimensional Hilbert spaceHn = `2(Cn) (i.e. the space of mappings from Cn to Cwith the usual inner product). We will use the Diracnotation to express superpositions. For each c 2 Cn,��c� denotes the unit vector which takes value 1 at c and0 elsewhere; all other elements ofHn may be expressedas linear combinations of these basis vectors. For asuperposition �� � =Pc2Cn �c ��c�, �c is the amplitude



associated with c in superposition �� �.We are now ready to describe the transition func-tion �. This is a mapping of the form� : Q� ��Q� f�1; 0; 1g ! C ;and is to be interpreted as follows. For each q; q0 2 Q,� 2 � and d 2 f�1; 0; 1g, �(q; �; q0; d) represents theamplitude with which a machine currently in state qand scanning symbol � will change state to q0 andmove its tape head in direction d. For any tape x,� induces an operator Ux� (called the time-evolutionoperator of M on tape x) on Hjxj as follows.Ux� ��q; k� =Xq0;d �(q; x(k); q0; d) ��q0; k + d (mod jxj)�for each (q; k) 2 Cjxj, and is extended to all of Hjxj bylinearity. Thus, (Ux� )t �� � is the superposition whichwould be obtained if M on tape x were placed in su-perposition �� � and run (unobserved) for t steps.In order for a superposition to be valid, it mustbe of unit norm. This restriction is inherent to thequantum theory, and its necessity will be apparentfrom the section below regarding observables. A ma-chine which guarantees that any valid superpositionwill evolve into another valid superposition is said tobe well-formed. Since each Hn is �nite-dimensional,this corresponds to the time-evolution operator Ux� foreach tape x being a unitary operator. Note that thiscondition is quite restrictive. For example, arbitrary2dfa's which are not reversible (i.e. whose \yields" re-lations are not one-to-one) will not directly correspondto well-formed 2qfa's. In Section 3, we provide a cri-terion to determine whether or not a given 2qfa iswell-formed.ObservablesThe time-evolution operator Ux� speci�es how a 2qfawill evolve given tape x, assuming that the 2qfa is notobserved by an outside observer. We must assume,however, that a machine has to be observed in orderfor it to yield any information about its computation.The information obtained by a particular sort of ob-servation, as well as the e�ect of that observation onthe machine, is described by an observable.An observable O for a 2qfa M is a decomposi-tion of each Hilbert space Hn into subspaces: Hn =E1 � � � � � Ek, where the Ej are pairwise orthogonal.Corresponding to each j = 1; : : : ; k will be some par-ticular (distinct) outcome; if a 2qfa M on tape x isin superposition �� � and is observed using observableO, then one of these outcomes will result and M willbe modi�ed in a certain way. Speci�cally, let �� j�

be the projection of �� � onto Ej for each j, so that�� � = �� 1�+ � � �+ �� k�. Then the result of the obser-vation is as follows.1. The outcome observed is random, each outcome jbeing seen with probability 

�� j�

2.2. Immediately after the observation, the machinewill \collapse" to the superposition 1k j jik �� j�,where j corresponds to the particular outcomewhich was observed.An example of an observable is to let c1; : : : ; ck bean enumeration of Cn, and let Ej = span���cj�	. (Theoutcome of the observation can be taken to be simply adescription of the corresponding con�guration.) Now,the probability of seeing a given con�guration is theabsolute square of the amplitude associated with thatcon�guration, and upon observation the machine willcollapse to the superposition ��c� for whichever con�g-uration c which was observed.We will use a di�erent observable, however, whichwill correspond to determining not the entire con�g-uration of a machine, but rather only whether thatmachine is in an accepting, rejecting or non-haltingstate. For �xed n, de�ne Cacc = Qacc � Zn, Crej =Qrej � Zn and Cnon = Qnon � Zn, and let Eacc =span���c� �� c 2 Cacc	, Erej = span���c� �� c 2 Crej	,Enon = span���c� �� c 2 Cnon	. Now, let O be theobservable corresponding to the decomposition Hn =Eacc �Erej �Enon, where the outcome of any obser-vation is \accept", \reject" or \non-halting" accord-ingly. For example, if the amplitude associated withevery halting con�guration in some superposition is0, then the result of an observation using observableO will be \non-halting" with probability 1, and thesuperposition will \collapse" to itself (i.e. will not bealtered by the observation).Languages recognized by 2qfa'sFinally, we can discuss the languages recognized by2qfa's. For a given input string w 2 ��, we de�nea corresponding tape xw which has length jwj + 2and takes the form xw(0) = c, xw(jwj + 1) = $ andxw(i) = wi for 1 � i � jwj. (The exceptional case iswhen the input string is the empty string; in this casethe corresponding tape will take the form x(0) = c andx(1) = $, with x(2) de�ned arbitrarily.) Now, to saythat a 2qfa M is run on input w means that 1) thetape of M is described by xw, 2) the computationbegins with M in superposition ��q0; 0�, and 3) aftereach step, the machine is observed using observable Ode�ned in the previous paragraph. The computationcontinues until the result of an observation is \accept"



or \reject", at which time the computation halts. Thecomputation can now be treated in the same manneras for a probabilistic machine: if input w results in\accept" with probability greater than 1/2, then w isan element of the language recognized by M , other-wise it is not.As in the probabilistic case, classes of languagesmay be de�ned by placing restrictions on the 2qfa'swhich recognize them, such as running time, proba-bility of error, etc. In this paper we are interestedin the class of languages which can be recognized bypolynomial time 2qfa's with error probability boundedaway from 1/2.3 De�ning well-formed 2qfa'sWe will only be interested in 2qfa's which are well-formed, so it will be necessary to be able to determinewhether or not given machines satisfy this condition.The following proposition, which is analogous to Bern-stein and Vazirani's criterion for well-formedness ofquantum Turing machines [1], allows us to do this.Proposition 1 A 2qfa M = (Q;�; �; q0; Qacc; Qrej)is well-formed if and only if for every choice of�; �1; �2 2 � and q1; q2 2 Q the following hold.1: Xq0;d �(q1; �; q0; d) �(q2; �; q0; d) = � 1 q1 = q20 q1 6= q22: Xq0 ��(q1; �1; q0; 1) �(q2; �2; q0; 0)+ �(q1; �1; q0; 0) �(q2; �2; q0;�1)� = 03: Xq0 �(q1; �1; q0; 1) �(q2; �2; q0;�1) = 0Proof. For each x, Ux� is unitary if and only if thevectors Ux� ��q; k� for q 2 Q; k 2 Zjxj are orthonormal.Condition 1 is equivalent to the statement that, forevery x, we have 

Ux� ��q; k�

 = 1 for each q and k,and Ux� ��q1; k� ? Ux� ��q2; k� for q1 6= q2. Conditions 2and 3 are equivalent to Ux� ��q1; k� ? Ux� ��q2; k + 1� andUx� ��q1; k� ? Ux� ��q2; k + 2�, respectively, for each x, q1,q2 and k, with jxj � 5. For 3 � jxj � 4, conditions 2and 3 are su�cient to show Ux� ��q1; k� ? Ux� ��q2; k + 1�and Ux� ��q1; k� ? Ux� ��q2; k + 2�. It is clear thatUx� ��q1; k1� ? Ux� ��q2; k2� whenever k1 and k2 are morethan two squares away, since the tape head of a 2qfamoves at most one square per step. Thus, the vectorsUx� ��q; k�, q 2 Q; k 2 Zjxj are orthonormal for every xif and only if conditions 1, 2 and 3 are satis�ed.Proposition 1 provides a relatively simple criterionto determine whether a 2qfa is or is not well-formed.However, it will simplify matters to mention a method

by which well-formed machines can be more easilyspeci�ed. In essence, the method is to decompose thetransition function � into two parts: one for transform-ing states and the other for moving the tape head.Consider the Hilbert space `2(Q), where Q is theset of internal states of a 2qfa M . Suppose that wehave a linear operator V� : `2(Q) ! `2(Q) for each� 2 �, and a function D : Q ! f�1; 0; 1g. De�netransition function � as�(q; �; q0; d) = � 
q0 ��V� �� q� D(q0) = d0 D(q0) 6= d: (1)(Here, 
q0 ��V� �� q� denotes the coe�cient of ��q0� inV� ��q�.) We see from Proposition 1 that M is well-formed if and only ifXq0 
q0 ��V� �� q1� 
q0 ��V� �� q2� = � 1 q1 = q20 q1 6= q2;for each � 2 �. Equivalently, M is well-formed whenevery V� is unitary.Example: a 2qfa for a�b�To illustrate the above method, we will show how a2qfa for the language a�b� can be de�ned. (Note thatit is not immediate that there is a well-formed 2qfa forthis language, as a \typical" 1dfa or 2dfa for a�b� willlikely not be reversible.)De�ne M = (Q;�; �; q0; Qacc; Qrej) as follows. LetQ = fq0; q1; q2; q3; q4g, � = fa; bg, Qacc = fq3g andQrej = fq4g. De�neVc ��q0� = ��q0�, Va ��q0� = ��q0�, Vb ��q0� = ��q1�,Vc ��q1� = ��q2�, Va ��q1� = ��q2�, Vb ��q1� = ��q0�,Vc ��q2� = ��q4�, Va ��q2� = ��q4�, Vb ��q2� = ��q2�,Vc ��q3� = ��q3�, Va ��q3� = ��q3�, Vb ��q3� = ��q3�,Vc ��q4� = ��q1�, Va ��q4� = ��q1�, Vb ��q4� = ��q4�,V$ ��q0� = ��q1�, D(q0) = +1,V$ ��q1� = ��q0�, D(q1) = �1,V$ ��q2� = ��q3�, D(q2) = +1,V$ ��q3� = ��q2�, D(q3) = 0,V$ ��q4� = ��q4�, D(q4) = 0,and de�ne � as in (1). Each V� is unitary by inspec-tion, so M is well-formed.Consider �rst inputs not in a�b�. For example,suppose that the input string is \abba", so the cor-responding tape x satis�es: x(0) = c, x(1) = a,x(2) = b, x(3) = b, x(4) = a, x(5) = $. We have



the following sequence of superpositions when M isrun:��q0; 0� 7! ��q0; 1� 7! ��q0; 2�7! ��q1; 1� 7! ��q2; 2� 7! ��q2; 3� 7! ��q2; 4� 7! ��q4; 4� :After each step except for the last, observation withour observable O yields \non-halting" with certainty,and after the last step the result of the observationis \reject" with certainty (and thus, the input is re-jected). Other inputs not in a�b� are rejected in asimilar manner.For any input w 2 a�b�, the reader may verify thatthe machine will enter superposition ��q3; jwj+ 1� afterjwj + 4 steps, and will not have previously been in ahalting state (and will therefore accept w).Note that many values of V� ��qj� de�ne transitionswhich are not encountered during a computation onany input w. Here, we have de�ned these values arbi-trarily in such a way that each V� is unitary. In gen-eral, we need only specify those values which matter;so long as these vectors are orthonormal, the remain-ing values can always be assigned in arbitrary fashionso that the resulting operator is unitary.4 A 2qfa for fambm jm � 1gIn this section, we will show that for any error bound� > 0, there exists a 2qfa which accepts the non-regular language L = fambm jm � 1g with errorbounded by � in linear time.For each N , de�ne MN = (Q;�; �; q0; Qacc; Qrej)as follows. Let � = fa; bg,Q = fq0; q1; q2; q3; g[ frj;k j 1 � j � N; 0 � k � max(j;N � j + 1)g[ fsj j 1 � j � Ng;Qacc = fsNg and Qrej = fq3g [ fsj j 1 � j < Ng.Let each V� take the values indicated in �gure 1, andextend each to be unitary on `2(Q) (for each �, thevectors fV� ��q�g are orthonormal by inspection). Alsode�ne D as in �gure 1, and let � be de�ned in themanner described in Section 3.Proposition 2 Let w 2 fa; bg�. For every positiveinteger N , if w 2 fambm jm � 1g then MN acceptsw with probability 1, and otherwise MN rejects w withprobability at least 1� 1=N . In either case MN haltsafter O(N jwj) steps with certainty.Proof. The computation of each MN consists of twophases. The �rst phase rejects any input not of theform aubv for u; v � 1, and the second phase rejects,with some probability, those inputs for which u 6= v.

The �rst phase is straightforward, similar to the ex-ample in section 3. If the input is not of the indicatedform, a reject state is entered and the computationends. Otherwise, the second phase begins with themachine in state q2 with the tape head reading theright end-marker.At the start of the second phase, the computa-tion branches into N paths, indicated by the statesr1;0; : : : ; rN;0, each with amplitude 1=pN . For each ofthese paths, the tape head moves deterministically tothe left end-marker in the following way: along the jthpath, if the tape head reads the symbol a it remainsstationary for j steps and then moves left; if it readsthe symbol b it remains stationary for N � j+1 stepsand then it moves left. Thus, on input aubv, the tapehead requires precisely (j+1)u+(N�j+2)v+1 stepsto move from the right to the left end-marker along thejth path. Under the assumption that j 6= j0, we have(j+1)u+(N�j+2)v+1 = (j0+1)u+(N�j0+2)v+1if and only u = v, from which it follows that any twodistinct computation paths will reach the c symbol atthe same time if and only if u = v (i.e. the input is ofthe form ambm).Upon reaching the c symbol, each computationpath again splits according to the quantum Fouriertransform, yielding either the single accepting statesN or one of the rejecting states fsj j 1 � j < Ng.Consider �rst the case that the input is of the formambm. Since each of the N computation paths reachesthe c symbol at the same time, we have that the super-position of the machine immediately after performingthe quantum Fourier transform is1N NXj=1 NXl=1 exp�2�iN j l���sl; 0� = ��sN ; 0� :Hence, our observable yields the result accept withprobability 1.Now suppose that the input is not of the formambm. Each of the N computation paths reaches thec symbol at a di�erent time, and so there is no can-cellation between the rejecting states. For each of theN possible path lengths, the conditional probabilitythat an observation results in accept at the time cor-responding to that path length is 1=N , given that somehalting state was observed. It follows that the totalprobability that an observation results in accept is also1=N , and consequently the input is rejected with prob-ability 1� 1=N .Each possible computation path clearly has lengthO(N jwj). Since each path ends in a halting con-�guration, MN must halt after O(N jwj) steps withcertainty.



Vc ��q0� = ��q0�, V$ ��q0� = ��q3�,Vc ��q1� = ��q3�, V$ ��q2� = 1pN PNj=1 ��rj;0�,Vc ��rj;0� = 1pN PNl=1 exp � 2�iN j l� ��sl� ; 1 � j � N ,Va ��q0� = ��q0�, Vb ��q0� = ��q1�,Va ��q1� = ��q2�, Vb ��q2� = ��q2�,Va ��q2� = ��q3�, Vb ��rj;0� = ��rj;N�j+1� ; 1 � j � N ,Va ��rj;0� = ��rj;j� ; 1 � j � N , Vb ��rj;k� = ��rj;k�1� ; 1 � k � N � j + 1; 1 � j � N ,Va ��rj;k� = ��rj;k�1� ; 1 � k � j; 1 � j � N ,D(q0) = +1, D(rj;0) = �1; 1 � j � N ,D(q1) = �1, D(rj;k) = 0; 1 � j � N; k 6= 0,D(q2) = +1, D(sj) = 0; 1 � j � N .D(q3) = 0, Figure 1: Speci�cation of the transition function of MN .This method can be extended to show that non-context-free languages can be recognized by boundederror, linear time 2qfa's as well.Corollary 3 For each � > 0, there exists a 2qfa Mwhich recognizes the language fambmcm jm � 1g withone-sided error bounded by �, and which halts in lineartime.Proof. [Sketch] For each N , a 2qfa M can be de-�ned which functions similarly to MN above, exceptthat M runs in three phases rather than two: M �rstchecks to see that the input is of the form a+b+c+,then checks the last part of the string to see that it isin fbmcm jm � 1g, and �nally checks the initial part ofthe string to see that it is in fambm jm � 1g. Detailswill appear in the �nal version of this paper.5 Reversible simulation of 1dfa'sIn this section, we use a technique from a recent re-sult due to Lange, McKenzie and Tapp [14] regard-ing space-e�cient reversible simulation of determinis-tic Turing machines to show that an arbitrary 1-waydeterministic �nite automaton (1dfa) can be simulatedby a 2-way reversible �nite automaton (2rfa) (whichwe may simply de�ne as a well-formed 2qfa whosetransition amplitudes may only take the values 0 and1). Here, the construction is considerably simpler thanin the Turing machine case.

A 1dfa can be formally speci�ed by a quintupleA = (S;�; �; s0; F ) in the familiar way (see [15],for example). Given such an A, we de�ne a 2qfaM = (Q;�; �; q0; Qacc; Qrej) which will accept thesame language as A.First, in order to allowM to behave correctly whenreading the c and $ symbols, extend S and � to S0 and�0 as follows (essentially converting A to an equivalent2dfa). Let S0 = S [fs00; sacc; srejg, where s00, sacc andsrej are not elements of S, and de�ne�0(s; �) = 8>><>>: �(s; �) s 2 S; � 2 �s0 s = s00; � = csacc s 2 F; � = $srej s 2 SnF; � = $:For all other values, let �0 be unde�ned. Also de�neIs;� = fs0 2 S j �0(s0; �) = �0(s; �)g ;Js;� = fs0 2 S j �0(s0; �) = sg ;and �x some ordering of the set S0. Let max andmin denote the maximum and minimum functions rel-ative to this ordering, and for any subset T � S0let succ(s; T ) be the least element larger than s in T(assuming there is such an element).Now, we may de�ne M . Let Q = S0 � f�1;+1g,and let q0 = (s00;+1), Qacc = f(sacc;+1)g andQrej = f(srej ;+1)g. We will again use the techniquefrom Section 3 to de�ne �. For each s 2 S0 and � 2 �



for which �0(s; �) is de�ned, letV� ��(s;+1)� =( ��(succ(s; Is;�);�1)� s 6= max(Is;�)��(�0(s; �);+1)� s = max(Is;�);and for every s 2 S0 and � 2 � letV� ��(s;�1)� = ( ��(s;+1)� Js;� = ;��(min(Js;�);�1)� Js;� 6= ;:Note that each V� can be extended to be a permuta-tion of ���q� �� q 2 Q	, inducing a unitary operator on`2(Q). De�ne D((s;+1)) = +1, D((s;�1)) = �1 andlet � be de�ned as in (1).Proposition 4 For any 1dfa A, let M be as de�nedabove. For any w 2 ��, if A accepts w thenM acceptsw in O(jwj) steps, and if A does not accept w, thenM rejects w in O(jwj) steps.Proof. Viewing A as a 2dfa which only moves its tapehead to the right, we have that the set of con�gura-tions of A on any input w of length n is S0�Zn+2. Forgiven A and w, let G be an undirected graph with setof vertices S0 � Zn+2, and an edge between vertices(s1; k) and (s2; k + 1) if and only if �0(s1; wk) = s2(i.e. G is an undirected graph representing the \yields"relation of A on input w). Let G0 be the connectedcomponent of G which contains the initial con�gura-tion (s00; 0). There can be no cycles in G0, and G0must contain exactly one vertex corresponding to ahalting state (sacc or srej). So, we may view G0 asbeing a tree with the single halting con�guration ver-tex as the root and the leaves of the tree including thevertex representing the initial con�guration (as well aspossibly many other con�gurations which have no pre-decessors). M simulates A on input w by traversingG0 in a reversible manner.The speci�c manner in which M performs thistraversal is now described. For each con�guration(s; k) of A, there correspond two con�gurations ofM : ((s;+1); k) and ((s;�1); k � 1), which are tobe interpreted as follows. When M is in con�gu-ration ((s;+1); k), this indicates that the subtree ofG0 rooted at vertex (s; k) has just been traversed,and when M is in con�guration ((s;�1); k � 1), thesubtree of G0 rooted at vertex (s; k) is now aboutto be traversed. Consider �gure 2. Here we haveJs;wk = Is0i;wk = fs01; : : : ; s0lg for each i = 1; : : : ; l,and we assume that s01 < s02 < � � � < s0l ac-cording to our ordering of S0. Suppose that M

(s; k + 1)
(s01; k) (s02; k) (s0l�1; k) (s0l; k)Figure 2: Vertex (s; k + 1) and its children.is in con�guration ((s0i;+1); k) for i < l. Sinces0i 6= max(Is0i;wk), the next con�guration of M is((succ(s0i; Is0i;wk);�1); k � 1) = ((s0i+1;�1); k � 1).(And now the tree rooted at (s0i+1; k) is about to betraversed.) Now suppose that M is in con�guration((s0l;+1); k). Since s0l = max(Is0l;wk), the next con�gu-ration will be ((�(s0l; wk);+1); k+1) = ((s;+1); k+1).Hence, M enters con�guration ((s;+1); k+1) only af-ter each of the subtrees rooted at its children havebeen traversed. Next, suppose that M is in con�g-uration ((s;�1); k). The next con�guration of M is((min(Js;wk);�1); k�1) = ((s01;�1); k�1), and so thesubtree rooted at vertex (s01; k) is now to be traversed.Finally, in the case that (s; k+1) has no predecessors(such as when k = 0 and s 6= s0), we have Js;wk = ;,and so the con�guration of M which immediately fol-lows ((s;�1); k) is ((s;+1); k+1). (The subtree rootedat (s; k+1) consists of a single vertex in this case, andhence has been traversed.)By traversing G0 in this manner,M will eventuallyenter one of the two con�gurations ((sacc;+1); 0) or((srej ;+1); 0), and consequently accepts or rejects ac-cordingly. It is clear that M halts after O(jwj) steps,since there are O(jwj) con�gurations ofM and no con-�guration may be entered more than once before ahalting con�guration is reached. (This is true of any2rfa which eventually halts.)Since any regular language can be recognized by some1dfa, we have the following result.Corollary 5 For any regular language L, there existsa 2rfa which recognizes L.6 1-way quantum �nite automataIn this section, we will brie
y discuss 1-way quan-tum �nite automata (1qfa's). In contrast to the factthat 2-way quantum �nite automata are more pow-erful than classical 2-way �nite automata, 1qfa's areshown to be strictly less powerful than classical 1-way�nite automata.



In the interest of simplicity, we will de�ne 1qfa's tobe that subset of all 2qfa's for which the tape headmay only move to the right, but with the added re-striction that the computation may continue for onlyjwj+2 steps on input w (hence each symbol, includingthe two end-markers, is read exactly once). The end-markers are not super
uous for 1qfa's; the existence ofthe left end-marker allows the model to simulate thesituation in which the result of an observation doesnot necessarily correspond directly to a classical state(i.e. the observable may correspond to any orthogonaldecomposition `2(Q) = Eacc � Erej � Enon), and theexistence of the right end-marker allows the model tosimulate the situation in which a second observablemay be used after the entire input has been read.It is not di�cult to show that for any well-formed1qfaM = (Q;�; �; q0; Qacc; Qrej), there must be a uni-tary operator V� acting on `2(Q), for each � 2 �, suchthat �(q; �; q0; d) = � 
q0 ��V� �� q� d = 10 d 6= 1:This fact yields a means by which analysis of 1qfa's issimpli�ed, which we will now discuss.De�ne V = `2(Q) � R � R. Elements of V willrepresent total states of M as follows: a machine de-scribed by ( ; pacc; prej) 2 V has, thus far in its com-putation, accepted with probability pacc, rejected withprobability prej and neither with probability k k22,in which case the current superposition of internalstates is �� � (normalized). Let Pacc, Prej and Pnonbe the projections of `2(Q) onto span���q� �� q 2 Qacc	,span���q� �� q 2 Qrej	, and span���q� �� q 2 Qnon	 re-spectively. For each � 2 �, the evolution of M assymbol � is read can be described by an operator T�on V , de�ned as follows.T� : ( ; pacc; prej) 7!�PnonV� ; pacc + kPaccV� k22; prej + kPrejV� k22� :For x = �1 � � ��n 2 ��, de�ne Tx = T�n � � �T�1 . So,for example, if ( ; pacc; prej) = Tcw$ ���q0� ; 0; 0�, thenM accepts w with probability pacc, etc.De�ne a norm on V ask( ; pacc; prej)k = 12(k k2 + jpaccj+ jprej j);and let B = fv 2 V j kvk � 1g. Clearly, any v whichrepresents the state of a valid 1qfa must be in B. Astraightforward calculation reveals that there exists a�xed constant c such that kTxv � Txv0k � ckv � v0kfor every v; v0 2 B and x 2 ��. Furthermore, it can be

shown that if a set A � B satis�es the property thatthere exists a � > 0 such that for all v; v0 2 A we havekv � v0k > �, then there can be at most �nitely manyelements in A.Proposition 6 Let L be any language recognized bya 1qfa with bounded error. Then L is regular.Proof. [Sketch] The proof is essentially the same asthe proof of Theorem 3 in [21], adjusted to the quan-tum case.Let M = (Q;�; �; q0; Qacc; Qrej) be a 1qfa whichrecognizes L with probability of error bounded by1=2 � �. Write w �L w0 if, for all y 2 ��, we havewy 2 L if and only if w0y 2 L. The relation �L isan equivalence relation, and partitions �� into �nitelymany equivalence classes if and only if L is regular[20].Let W � �� be any set of strings which are pair-wise inequivalent with respect to �L. In order toprove the proposition, it su�ces to show that Wmust be �nite. For w 6= w0 2 W , there must ex-ists y 2 �� such that wy 2 L if and only if w0y 62 L.Hence, for v = Tcw(��q0� ; 0; 0) and v0 = Tcw0(��q0� ; 0; 0)we have kTy$v � Ty$v0k > 2�, since M has errorprobability bounded away from 1=2 by �. Conse-quently, we have kv � v0k > 2�=c, so that the set�Tcw ���q0� ; 0; 0� �� w 2 W	 must be �nite. From thisit follows that W must be �nite as well.Finally, we note that the containment of the classof languages recognized by 1qfa's with bounded errorin the regular languages is proper. One rather simpleexample of a regular language not recognizable by abounded error 1qfa is provided by the following propo-sition.Proposition 7 The language L = fa; bg�a cannot berecognized by a 1qfa with bounded error.Proof. Let M be a 1qfa that recognizes L. For eachx = �1 � � ��n 2 ��, write x = (PnonV�n) � � � (PnonV�1 ) ��q0� ;and let � = inf fk cwk j w 2 fa; bg�g. Since wa 2 Land wb 62 L for each w, we can conclude that if � = 0,then M does not recognize L with bounded error. Soassume � > 0. Let � > 0, and choose w such thatk cwk < �+ �. It follows that k cwyk 2 [�; �+ �) forevery y 2 fa; bg�. In particular, for any nonnegativeinteger j we have


(PnonVb)j  cwa


 2 [�; �+ �): (2)



The sequence n(PnonVb)j  cwao is a bounded se-quence in a �nite dimensional Hilbert space, andmust therefore have a limit point. Thus, theremust exist integers j � 0 and k � 1 such that


(PnonVb)j � cwa � (PnonVb)k  cwa�


 < �. Using(2), it can be shown that this implies that thereis a �xed constant c0 (independent of �) such that


 cwa � (PnonVb)k  cwa


 < c0�1=4, and from this itfollows that

Tcwa$ ���q0� ; 0; 0�� Tcwabk$ ���q0� ; 0; 0�

 < c00�1=4;for �xed c00. Since � may be chosen arbitrarily small,and sinceM must accept wa and reject wabk, M can-not have error probability bounded away from 1/2.7 Open problemsA number of questions have been left open by thispaper. One interesting question is whether there arelanguages recognizable by polynomial time, boundederror 2qfa's but not by bounded error (exponentialtime) 2pfa's (or vice versa). Along similar lines, arethere languages recognized by exponential time 2qfa'sbut not polynomial time 2qfa's? Various general-izations of 2qfa's, such as multi-head 2qfa's, multi-dimensional 2qfa's and 2qfa's with more general typesof observables can be de�ned, as can quantum ana-logues of other devices based on �nite automata, suchas interactive proof systems with 2qfa veri�ers. Whatare the relations of these models to one another andto their classical counterparts?AcknowledgmentsWe would like to thank Eric Bach, Anne Condon,Katalin Friedl, Mike Si�, and G�abor Tardos for theirhelpful comments and discussions.References[1] E. Bernstein and U. Vazirani. Quantum complex-ity theory (preliminary abstract). In Proceedingsof the Twenty-Fifth Annual ACM Symposium onTheory of Computing, pages 11{20, 1993.[2] A. Berthiaume. Quantum computation. In Com-plexity Theory Retrospective II. Springer-Verlag,1997.[3] A. Berthiaume and G. Brassard. The quantumchallenge to structural complexity theory. In Pro-ceedings of the 7th Annual IEEE Conference onStructure in Complexity, pages 132{137, 1992.
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