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ABSTRACTIn this paper we 
onsider quantum intera
tive proof systems,whi
h are intera
tive proof systems in whi
h the prover andveri�er may perform quantum 
omputations and ex
hangequantum information. We prove that any polynomial-roundquantum intera
tive proof system with two-sided boundederror 
an be parallelized to a quantum intera
tive proof sys-tem with exponentially small one-sided error in whi
h theprover and veri�er ex
hange only 3 messages. This yields asimpli�ed proof that PSPACE has 3-message quantum in-tera
tive proof systems. We also prove that any languagehaving a quantum intera
tive proof system 
an be de
ided indeterministi
 exponential time, implying that single-proverquantum intera
tive proof systems are stri
tly less power-ful than multiple-prover 
lassi
al intera
tive proof systemsunless EXP = NEXP.
1. INTRODUCTIONIntera
tive proof systems were introdu
ed by Babai [3℄ andGoldwasser, Mi
ali, and Ra
ko� [17℄ in 1985. In the sameyear, Deuts
h [10℄ gave the �rst formal treatment of quan-tum 
omputation. Sin
e then, both subje
ts have re
eived agreat deal of attention and have generated a number of ex-
iting results, perhaps most notably the IP = PSPACE 
har-a
terization of Lund, Fortnow, Karlo�, and Nisan [25℄ andShamir [26℄, and the polynomial-time quantum algorithmsfor fa
toring and dis
rete logarithms due to Shor [28℄.In this paper we 
onsider quantum intera
tive proof systems,whi
h merge notions from these two subje
ts. A quantumintera
tive proof system 
onsists of two parties|a proverwith unbounded quantum 
omputational power and a quan-tum polynomial-time veri�er|that 
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quantum 
hannel. As in the 
ase of 
lassi
al intera
tiveproof systems, the prover attempts to prove to the veri�erthat a given input string satis�es some spe
i�ed property,while the veri�er tries to determine the validity of this proof.A language L is said to have a quantum intera
tive proofsystem if there exists a quantum veri�er V su
h that (i) thereexists a quantum prover P that 
an always 
onvin
e V toa

ept when the input is in L, and (ii) no quantum proverP 
an 
onvin
e V to a

ept with nonnegligible probabilitywhen the input is not in L.Quantum intera
tive proof systems were �rst studied in apaper by one of us [30℄, wherein it was shown that everyPSPACE language has a quantum intera
tive proof system,with exponentially small one-sided error, in whi
h the proverand veri�er ex
hange a total of only 3 messages. This im-plies that any 
lassi
al intera
tive proof system 
an be par-allelized to require just 3 messages in the quantum setting,whi
h is a task that 
annot be a

omplished 
lassi
ally un-less the polynomial-time hierar
hy 
ollapses to AM [3; 18℄.In this paper we prove the following stronger result: anyquantum intera
tive proof system 
an be parallelized to a3-message quantum proto
ol with exponentially small one-sided error. In order to a
hieve exponentially small errorin the 3-message 
ase, we prove the somewhat surprisingfa
t that entanglement among parallel repetitions of a 3-message quantum intera
tive proof system gives a 
heatingprover absolutely no in
rease in su

ess probability. Our re-sult simpli�es the proof that PSPACE has 3-message quan-tum intera
tive proof systems, in the sense that it treatsany 
lassi
al proto
ol for a given PSPACE language as abla
k-box.While (single-prover) 
lassi
al intera
tive proof systems re
-ognize pre
isely those languages in PSPACE, it was shownby Babai, Fortnow, and Lund [4℄ that any language in non-deterministi
 exponential time (NEXP) has a two-prover in-tera
tive proof system, wherein the two provers are not per-mitted to 
ommuni
ate with one another during the proto-
ol. A sequen
e of papers [9; 13; 24℄ led to a result of Feigeand Lov�asz [14℄ that any language in NEXP has a two-proverintera
tive proof system requiring just one round of 
om-muni
ation (meaning that the veri�er sends one question toea
h of the provers in parallel, then re
eives their responses).A natural question to ask is whether NEXP has single-proverquantum intera
tive proof systems, or equivalently whethersingle-prover quantum intera
tive proof systems 
an simu-late multiple 
lassi
al provers. We show that this is notlikely to be the 
ase, as any language having a quantum in-tera
tive proof system is ne
essarily 
ontained in determin-



isti
 exponential time (EXP); under the assumption EXP6= NEXP, multiple-prover 
lassi
al intera
tive proof systemsare stri
tly more powerful than single-prover quantum in-tera
tive proof systems. Our proof of this fa
t relies on thete
hnique of semide�nite programming.The remainder of this paper is organized as follows. In se
-tion 2 we review ne
essary ba
kground information and de-�ne the quantum intera
tive proof system model. In se
-tion 3 we prove that two-sided error quantum intera
tiveproof systems 
an be 
onverted to one-sided error quantumintera
tive proofs by adding one round of 
ommuni
ationto the proto
ol, in se
tion 4 we prove that any polynomial-message (one-sided error) quantum intera
tive proof system
an be parallelized to a 3-message proto
ol, and in se
tion 5we prove that parallel exe
utions of a given 3-message quan-tum intera
tive proof system result in an exponential de-
rease in error probability. In se
tion 6 we prove that anylanguage having a quantum intera
tive proof system is 
on-tained in EXP. We 
on
lude with se
tion 7, whi
h summa-rizes the relations we have proved and mentions a numberof open questions regarding quantum intera
tive proofs.
2. PRELIMINARIESWe begin by mentioning some of the basi
 notation usedin this paper. As usual, N, Z+, and C denote the positiveintegers, the nonnegative integers, and 
omplex numbers,respe
tively. For a given 
omplex number z, <(z) denotesthe real part of z. We let poly denote the 
lass of fun
tionsf : Z+! N satisfying the following two properties: (i) thereexists a polynomial p su
h that f(n) � p(n) for all n 2 Z+,and (ii) f(n) is 
omputable in time polynomial in n. We alsowrite poly�1, 2�poly , et
., to denote 
lasses of fun
tions de-rived from fun
tions in poly in the obvious ways. The lengthof a given string x is denoted jxj, and we assume all stringsare over the alphabet � = f0; 1g. Given a �nite set S, `2(S)denotes the Hilbert spa
e of dimension jSj whose elementsare mappings from S to C . All Hilbert spa
es 
onsidered inthis paper will be �nite dimensional, and this assumptionwill be made hereafter without expli
it mention. For anypositive semide�nite operator A a
ting on a given Hilbertspa
e, there exists a unique positive semide�nite operatordenoted by pA that satis�es (pA)2 = A.
2.1 Quantum formalismNext we brie
y review various fa
ts and notation from quan-tum 
omputation and quantum information theory. Wewill not attempt to provide a 
omprehensive review, as thishas been done elsewhere. (See, for instan
e, the surveys ofBerthiaume [8℄ and Kitaev [23℄.)For given Hilbert spa
es H and K, L(H;K) denotes the setof linear operators mapping H to K, L(H) denotes L(H;H),D(H) denotes the set of positive semide�nite operators onH having unit tra
e, U(H) denotes the set of unitary opera-tors on H, and P(H) denotes the set of proje
tion operatorson H. Finally, T(H;K) denotes the set of linear mappingsfrom L(H) to L(K), viewing L(H) and L(K) as linear spa
esin the usual way, and T(H) denotes T(H;H). The identityelements of L(H) and T(H) are denoted IH and IL(H), re-spe
tively.A pure state or superposition of a quantum system having(�nite) 
lassi
al state set S is a unit ve
tor in the Hilbertspa
e H = `2(S). We use the Dira
 notation to representelements of Hilbert spa
es: for ea
h s 2 S, jsi represents the

unit ve
tor 
orresponding to the map that takes s to 1 andea
h s0 6= s to 0. Arbitrary ve
tors will be denoted j i, j�i,et
., even though the symbols  , �, et
., are not used alone,and may be spe
i�ed by linear 
ombinations of elementsin the orthonormal basis fjsi : s 2 Sg. Corresponding toea
h j i is a linear fun
tional h j that maps ea
h ve
torj�i to the inner produ
t h j�i (
onjugate-linear in the �rstargument).A mixed state of a quantum system is a state that may bedes
ribed by a distribution on (not ne
essarily orthogonal)pure states. A 
olle
tion f(pk; j k i)g su
h that 0 � pk,Pk pk = 1, and ea
h j k i is a pure state is 
alled a mix-ture: for ea
h k, the system is in superposition j k i withprobability pk. With a given mixture f(pk; j ki)g, we as-so
iate a density operator � = Pk pkj k ih k j. Ne
essaryand suÆ
ient 
onditions for a given operator � 2 L(H) tobe a density operator (i.e., to represent some mixed state)are (i) � must be positive semide�nite, and (ii) � must haveunit tra
e. (Thus,D(H) denotes the set of density operatorsover a given spa
eH.) Di�erent mixtures may yield identi
alstates, in the sense that no measurement 
an distinguish themixtures even in a statisti
al sense. Two mixtures yieldingdi�erent density operators 
an be statisti
ally distinguishedhowever, and for this reason we interpret a given densityoperator � as being a 
anoni
al representation of a givenmixed state.An admissible transformation from D(H) to D(K) is a map-ping T for whi
h there exists a some 
olle
tion fA1; : : : ; Akgof operators in L(H;K) su
h that (i) T (�) =Pkj=1Aj�Ayj forevery �, and (ii) Pkj=1AyjAj = IH. It is a straightforwardexer
ise to verify that su
h mappings preserve both tra
eand the property of a operator being positive semide�nite.Admissible transformations are pre
isely those transforma-tions that 
an (in prin
iple) be realized physi
ally. We iden-tify admissible transformations with elements of T(H;K) asfollows: T (X) =Pkj=1AjXAyj for ea
h X 2 L(H).For any Hilbert spa
e H there is exa
tly one admissibletransformation T 2 T(H; C ), whi
h ne
essarily satis�esT (X) = tr(X) for every X 2 L(H). To perform this trans-formation on some part of a quantum system essentiallymeans that this part of the system is dis
arded or not further
onsidered. When ne
essary we refer to this transformationas the tra
e-out operation, and more 
ommonly we say thatsome part of a given system is tra
ed-out to mean that thisoperation is performed on that part of the system. Thepartial tra
e is de�ned as follows: given a density operator� 2 D(H 
 K) and any orthonormal basis fje1 i; : : : ; jenigof K, de�ne trK � = nXj=1(IH 
 hej j)�(IH 
 jej i):Alternately we may de�ne the partial tra
e by taking thetensor produ
t of the identity transformation and the tra
e-out operation.Any unitary operator U 2 U(H) gives rise to an admissibletransformation TU 2 T(H) given by TU(�) = U�Uy. Anytransformation that 
an be expressed in this way will be
alled a unitary transformation. When des
ribing unitarytransformations, it is suÆ
ient (and often more 
onvenient)to des
ribe the transformation in question in terms of itsa
tion on pure states: in 
ase T is a unitary transformationwe write T (j�i) = j i to mean T (j�ih�j) = j ih j.



It is helpful to note the following alternate 
hara
terizationof admissible transformations. A transformation T fromD(H) toD(K) is admissible if and only if there exist Hilbertspa
es F , G, and L satisfying L �= H
F �= K 
 G, a uni-tary operator U 2 U(L), and an arbitrary ve
tor j i 2 Fsu
h that T (�) = trG U(�
 j ih j)Uy for every � 2 D(H).It 
an be proved (see [23℄) that if T is admissible then wemay take L su
h that dim(L) � dim(H) dim(K).An important 
on
ept in quantum physi
s is that of a mea-surement. Although measurements may be treated as par-ti
ular types of admissible transformations, it is helpful toformalize them somewhat di�erently. Any 
olle
tion of op-erators fA1; : : : ; Akg satisfying Pkj=1AyjAj = I de�nes ameasurement. If a system in a mixed state � is observedvia su
h a measurement, then the following happens: (i)for ea
h j 2 f1; : : : ; kg the result of the measurement is jwith probability tr(Aj�Ayj), and (ii) the state of the sys-tem is 
hanged to one represented by the density operatorAj�Ayj= tr(Aj�Ayj) for whi
hever j resulted in (i). In 
asefA1; : : : ; Akg is a 
olle
tion of orthonormal proje
tions, themeasurement is a proje
tion or von Neumann measurement.When we say that a system is observed in a parti
ular basisfje1 i; : : : ; jenig, we mean that is observed a

ording to theproje
tion measurement given by fje1 ihe1 j; : : : ; jenihen jg.We de�ne the following norms on L(H) and T(H;K): forX 2 L(H) de�ne kXktr = trpXyX andkXk = supj i2Hnf0g kXj ikkj ik(with k�k denoting the `2-norm), and for T 2 T(H;K) de�nekTk3 = inf nkAk kBk : T (�) = trF (A � By)o :Here, the in�mum is taken over all A;B 2 L(H;K 
 F)with dim(H) dim(K) � dim(F). In general, the norm k � ktr(known as the tra
e norm) is appropriate for measuring dis-tan
e between density operators, while k � k3 (
alled thediamond norm) is appropriate for measuring distan
es be-tween admissible transformations. The norm k �ktr may alsobe extended to T 2 T(H;K) askTktr = supX2L(H)nf0g kT (X)ktrkXktr :Given two density operators �; � 2 D(H), we also de�ne the�delity between � and �, denoted F (�; �), as follows:F (�; �) = 


p�p� 


2tr :Some of the proofs 
ontained in this paper rely on the fa
tsstated in the following theorem.Theorem 1. The following relations hold:1. For X 2 L(H), kXktr = maxfjtr(UX)j : U 2 U(H)g.2. Let T 2 T(H;K) and let L be a Hilbert spa
e satisfyingdim(L) � dim(H). Then kTk3 = kT 
 IL(L)ktr.3. Let T1; T2 2 T(H;K). Then kT1 
 T2k3 = kT1k3kT2k3.4. Let H and K be Hilbert spa
es with dim(H) � dim(K)and let �; � 2 D(H). Then F (�; �) = max�jh�j ij2	,where the maximum is taken over all j�i; j i 2 H 
 Ksatisfying trK j ih j = � and trK j�ih�j = �. Equiva-lently, for � = min fkj�i � j ikg (over the same set ofvalues for j i and j�i) we have F (�; �) = (1� �2=2)2.

5. Let �; � 2 D(H). Then2� 2pF (�; �) � k�� �ktr � 2p1� F (�; �):6. If j�i; j i 2 H
K satisfy trK j�ih�j = trK j ih j, thenthere exists U 2 U(K) su
h that (I 
 U)j�i = j i.Proofs of the fa
ts 
omprising Theorem 1 
an be found asfollows: 1. see page 430 of [20℄, 2. and 3. see [1℄ or [23℄, 4. see[22℄, 5. see [15℄, and 6. see [21℄.
2.2 Quantum circuitsThe 
omputational model upon whi
h quantum intera
tiveproof systems are based is the (a
y
li
) quantum 
ir
uitmodel. See [1; 8; 23; 31℄ for ba
kground information re-garding quantum 
ir
uits.A family fQxg of quantum 
ir
uits is said to be polynomial-time uniformly generated if there exists a deterministi
 pro-
edure that, on input x, outputs a des
ription of Qx andruns in time polynomial in x. It is assumed that the 
ir-
uits in su
h a family are 
omposed only of gates in whathas been 
alled the Shor basis: Hadamard gates, p�z gates,and To�oli gates [27℄. Furthermore, it is assumed that thenumber of gates in any 
ir
uit is not more than the lengthof that 
ir
uit's des
ription (i.e., no 
ompa
t des
riptionsof large 
ir
uits are allowed), so Qx must have size polyno-mial in jxj. Often we identify a 
ir
uit Qx with the unitaryoperator it indu
es.A few notes are in order regarding polynomial-time uni-formly generated families of quantum 
ir
uits. First, wenote that the above notion of uniformity is somewhat non-standard, sin
e we allow an input x to be given to the pro-
edure generating the 
ir
uits rather than just jxj written inunary. This does not 
hange the 
omputational power forthe resulting 
lass of quantum 
ir
uits, and we �nd that it ismore 
onvenient to des
ribe the quantum intera
tive proofsystem model using this notion. The se
ond note regardsour 
hoi
e of the Shor basis. This 
olle
tion of gates is uni-versal (in the sense des
ribed in [5; 6; 11; 12℄, for instan
e);see [23℄ for a proof of this fa
t. While our results hold forany other reasonable 
hoi
e for a universal set of gates, wehave 
hosen this basis for de�niteness and 
onvenien
e; byallowing reversible 
omputations and Hadamard transformsto be performed without error, we avoid the need to in
lud-ing negligible error terms in some 
al
ulations.The a
tions performed by the intera
ting parties in a quan-tum intera
tive proof system will be des
ribed by quantum
ir
uits. In the 
ase of the veri�er, whose 
omputationalpower is assumed to be limited, a
tions essentially 
orre-spond to polynomial-time uniformly generated families of
ir
uits; this will be made more pre
ise in the next subse
-tion. In the 
ase of the prover we allow 
ir
uits 
omposedof arbitrary unitary gates, as we do not pla
e restri
tions onthe 
omplexity or pre
ision of the prover's a
tions. (Note,however, that the prover must of 
ourse obey the restri
-tions imposed by the laws of quantum physi
s.) One mayinstead view the prover as simply applying some arbitraryunitary transformation to a 
olle
tion of qubits rather thanapplying a parti
ular 
ir
uit.Our model does not 
hange if we 
onsider the more general
lass of quantum 
ir
uits one obtains if gates are permit-ted to 
orrespond to arbitrary admissible transformationson 
olle
tions of qubits (rather than just the unitary gates



in the Shor basis, whi
h perform only unitary transforma-tions). This follows from the 
hara
terization of admissibletransformations mentioned above|for a detailed dis
ussionof the equivalen
e of the unitary vs. non-unitary quantum
ir
uit models, see [1℄. Often we will des
ribe quantum 
ir-
uits in a high-level manner that suggests that measure-ments are performed at various times as the 
ir
uits areapplied to some 
olle
tion of qubits. In fa
t, as all of our
ir
uits are assumed to be unitary, su
h measurements donot o

ur, but rather are assumed to be simulated by uni-tary gates as des
ribed in [1℄.
2.3 Quantum interactive proof systemsIn this se
tion we de�ne the quantum intera
tive proof sys-tem model. It is assumed the reader is familiar with 
lassi
alintera
tive proof systems, whi
h have been dis
ussed in de-tail in a number of works (see, e.g., [16℄ and the referen
estherein).As in the 
lassi
al 
ase, a quantum intera
tive proof system
onsists of two parties, a prover with unlimited 
omputationpower and a 
omputationally bounded veri�er, that re
eivea 
ommon input string and have an intera
tion that deter-mines whether or not the veri�er is to a

ept the input.The goal of the prover is to 
onvin
e the veri�er that the in-put satis�es some parti
ular property, while the goal of theveri�er is to de
ide whether the prover's argument is valid.Quantum intera
tive proofs di�er from 
lassi
al intera
tiveproofs in that the prover and veri�er may send and pro
essquantum information (i.e., qubits). This may result in a sit-uation in whi
h the prover's qubits and veri�er's qubits areentangled. While the veri�er in a quantum intera
tive proofsystem gains the advantage of being able to perform quan-tum 
omputations over 
lassi
al 
omputations, it seems tobe the 
ase that this is se
ondary to 
ryptographi
 advan-tages o�ered by entanglement.We now formalize the notion of a quantum intera
tive proofsystem using the quantum 
ir
uit model. We begin by de-s
ribing separately the two parties.A quantum veri�er is a polynomial-time 
omputable map-ping of the form V : �� ! ��. For ea
h x 2 ��, V (x)is interpreted as a k(jxj)-tuple (V (x)1; : : : ; V (x)k(jxj)), forsome polynomial bounded fun
tion k, with ea
h V (x)j a de-s
ription of a quantum 
ir
uits a
ting on qV (jxj) + qM(jxj)qubits (for qV and qM polynomial bounded fun
tions to bedis
ussed shortly). It is assumed that these 
ir
uit des
rip-tions satisfy the properties of polynomial-time uniformlygenerated 
ir
uits dis
ussed in the previous subse
tion; ea
h
ir
uit V (x)j is of size polynomial in jxj, and ea
h 
ir
uitV (x)j is 
omposed only of gates in the Shor basis. Thequbits upon whi
h ea
h 
ir
uit V (x)j a
ts are divided intotwo sets: qV(jxj) qubits that are private to the veri�er, andqM(jxj) qubits that represent the 
ommuni
ation 
hannelbetween the prover and veri�er. One of the veri�er's privatequbits is designated as the output qubit.A prover is a mapping P that maps ea
h input x 2 �� to anl(jxj)-tuple (P (x)1; : : : ; P (x)l(jxj)) of quantum 
ir
uits, forsome fun
tion l, with ea
h 
ir
uit a
ting on qM(jxj)+qP(jxj)qubits. No restri
tions are pla
ed on the 
omplexity of themapping P , the gates of whi
h ea
h P (x)j is 
omposed, oron the size of ea
h P (x)j (i.e., ea
h P (x)j may simply beviewed as a unitary transformation). As in the 
ase of theveri�er, the qubits upon whi
h ea
h P (x)j a
ts are dividedinto two sets: qP(jxj) qubits that are private to the prover,

and qM(jxj) qubits representing the 
ommuni
ation 
hannel.A veri�er V and a prover P are 
ompatible if for all in-puts x we have (i) ea
h V (x)i and P (x)j agree on the num-ber qM(jxj) of message qubits upon whi
h they a
t, and(ii) k(jxj) = bm(jxj)=2 + 1
 and l(jxj) = bm(jxj)=2 + 1=2
for some m(jxj) (representing the number of messages ex-
hanged). We say that V is an m-message veri�er and Pis an m-message prover in this 
ase. Whenever we dis
ussan intera
tion between a prover and veri�er, we naturallyassume they are 
ompatible.Given a veri�er V , a prover P , and an input x, we de�ne a
ir
uit (V (x); P (x)) a
ting on q(jxj) = qV(jxj) + qM(jxj) +qP (jxj) qubits as follows. If m(jxj) is odd, 
ir
uitsP (x)1; V (x)1; : : : ; P (x)(m(jxj)+1)=2; V (x)(m(jxj)+1)=2are applied in sequen
e, ea
h to the qM(jxj) + qP(jxj) mes-sage and prover qubits or to the qV (jxj) + qM(jxj) veri�erand message qubits a

ordingly. If m(jxj) is even the sit-uation is similar, ex
ept that the veri�er applies the �rst
ir
uit; 
ir
uitsV (x)1; P (x)1; V (x)2; : : : ; P (x)m(jxj)=2; V (x)m(jxj)=2+1are applied in sequen
e similar to the above 
ase. This sit-uation is illustrated in Figure 1 for the 
ase m(jxj) = 4.Now, for a given input x, the probability that the pair (V; P )a

epts x is de�ned to be the probability that an observationof the output qubit (in the fj0i; j1ig basis) yields the value1, after the 
ir
uit (V (x); P (x)) is applied to a 
olle
tion ofq(jxj) qubits ea
h initially in the j0i state.Finally, we de�ne a number of 
lasses of languages based onquantum intera
tive proof systems.Definition 1. For fun
tions m : Z+ ! N and a; b :Z+! [0; 1℄, let QIP(m; a; b) denote the 
lass of languages Lfor whi
h there exists an m-message veri�er V su
h that1. There exists an m-message prover P su
h that for anyx 2 L, (V; P ) a

epts x with probability at least a(jxj).2. For all m-message provers P and all x 62 L, (V; P )a

epts x with probability at most b(jxj).We also let QIP(poly; a; b) denote the union of the 
lassesQIP(m;a; b) over all m 2 poly .It will be ne
essary in our proofs to refer to the quantumstates of various subsystems of a quantum intera
tive proofsystem. We will use the following notation for this pur-pose. Assume we have a veri�er V and a prover P , andlet us �x an input x. For readability we often drop the ar-gument x and jxj in the various fun
tions above when itis understood (e.g., we write Vj and Pj to denote V (x)jand P (x)j for ea
h j, and we write m to denote m(jxj)).Let V = `2(�qV ), M = `2(�qM ), and P = `2(�qP ) denotethe Hilbert spa
es 
orresponding to the veri�er's qubits, themessage qubits, and the prover's qubits, respe
tively. At agiven instant, the state of the 
ir
uit (V; P ) is thus a unitve
tor in the spa
e V 
M
P. For instan
e, if j init i de-notes the state in whi
h all qubits are zero, the state of thesystem after all of the prover's and veri�er's 
ir
uits havebeen applied is V2P2V1P1j init i in the 
ase m = 3. Here,and throughout this paper, we assume that operators a
t-ing on subsystems of a given system are extended to theentire system by tensoring with the identity|in all 
asesit will be 
lear from 
ontext upon what part of a system agiven operator a
ts. We may also 
onsider the mixed states
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Figure 1: Quantum 
ir
uit for a 4-message quantum intera
tive proof systemof subsystems of 
ir
uits in the usual way; for instan
e, ifj i 2 V 
M
P denotes the state of (V; P ) at some time,then trM
P j ih j 2 D(V) denotes the mixed state of theveri�er's qubits that results by ex
luding the message qubitsand prover's qubits from 
onsideration.
3. ONE-SIDED VS. TWO-SIDED ERRORIn this se
tion we prove that any quantum intera
tive proofsystem having two-sided bounded error 
an be made to haveone-sided bounded error at the 
ost of one additional roundof 
ommuni
ation.Theorem 2. Let m 2 poly and let a : Z+ ! [0; 1℄ besu
h that there exists a family fQ1ng of polynomial-time uni-formly generated quantum 
ir
uits su
h that Q1n performs(exa
tly) the unitary transformation Ta(n) having the follow-ing e�e
t on pure states:Ta(n)(j0i) = pa(n)j0i �p1� a(n)j1iTa(n)(j1i) = p1� a(n)j0i+pa(n)j1i:Then for b : Z+ ! [0; 1℄ satisfying b(n) < a(n) for every n,QIP(m; a; b) � QIP(m+ 2; 1; 1� (a� b)2).Proof. Let L 2 QIP(m;a; b) for m, a, and b as in thestatement of the theorem. Without loss of generality, wemay assume there exists an m-message proto
ol for L that
auses the veri�er to a

ept with probability pre
isely equalto a(jxj) for ea
h input x 2 L (following from the fa
tthat any nontrivial proto
ol 
an be modi�ed to yield onein whi
h the prover 
an de
rease the probability that theveri�er a

epts by any desired quantity). In order to proveL 2 QIP(m+2; 1; 1�(a�b)2), we 
onsider the modi�
ationof su
h a proto
ol as des
ribed in Figure 2.Consider an exe
ution of this proto
ol on a given input xof length n. Suppose that j i des
ribes the state of reg-ister R, along with any of the prover's private registers,after the original proto
ol is simulated in step 1. AfterB and B0 are in
remented, the state of the entire systemmay be expressed as �a

 j00ij a

 i + �rej j11ij rej i, where�a

 ; �rej 2 [0; 1℄ and j i = �a

 j a

 i + �rej j rej i (forj a

 i and j rej i representing the normalized proje
tionsof j i onto a

epting and reje
ting states). The provernow applies some transformation U to the registers of thesystem ex
ept B, resulting in state �a

 j0iU (j0ij a

 i) +

1. Run the original proto
ol, ex
ept do not output a

eptor reje
t. Let R denote the veri�er's qubits in the ini-tial proto
ol after all messages have been ex
hanged.Assume registers B and B0 (not used in the originalproto
ol) are initially zero. In
rement both B and B0 ifand only if the 
ontents of R would 
ause the originalveri�er to reje
t.2. Send B0 and R to the prover.3. Re
eive B0 from the prover, subtra
t B from B0, andperform Ta(jxj) on B. Observe B: if B 
ontains 0, thena

ept, otherwise reje
t.Figure 2: Veri�er's proto
ol for Theorem 2.�rej j1iU (j1ij rej i). After re
eiving B0 from the prover instep 3, the veri�er subtra
ts B from B0, yielding the state�a

 j0ij�a

 i + �rej j1ij�rej i, where j�a

 i = U (j0ij a

 i)and j�rej i is equivalent to U (j1ij rej i), but with B0 
ipped.Finally, the veri�er applies transformation Ta(n) to B. Theprobability of a

eptan
e is thus given by


�a

pa(n)j�a

 i+ �rejp1� a(n)j�rej i


2 : (1)Assume x 2 L, so that �a

 =pa(n) and �rej =p1� a(n).The prover may 
hoose U so that U(j0ij a

 i) = j0ij
iand U(j1ij rej i) = j1ij
i for arbitrary j
i, implying thatj�a

 i = j�rej i. By (1) the probability of a

eptan
e is there-fore 1 as required.Now assume x 62 L. By (1), the probability of a

eptan
e isbounded by��a

pa(n) + �rejp1� a(n)�2� 1� �a(n)� �2a

�2 � 1� (a(n)� b(n))2;as required.By de�nition QIP(m; a; b) � QIP(m;a0; b) whenever a0 < a,and thus Theorem 2 impliesQIP(m; a; b) � QIP(m+ 2; 1; 1� (a0 � b)2)



assuming (i) b(n) < a0(n) � a(n) for every n and (ii) Ta0(n)
an be performed by polynomial-time uniformly generated
ir
uits. It is the 
ase that a fun
tion a0 
an in fa
t alwaysbe 
hosen that is exponentially 
lose (in a point-wise sense)to a given (polynomial-time 
omputable) fun
tion a:Proposition 3. Let f 2 2�poly , let a : Z+ ! [0; 1℄ bepolynomial-time 
omputable, and assume a(n)�f(n) 2 [0; 1℄for every n. Then there exists a fun
tion a0 : Z+ ! [0; 1℄su
h that (i) a0(n) 2 (a(n) � f(n); a(n)℄ for every n, and(ii) there exists a family fQ1ng of polynomial-time uniformlygenerated quantum 
ir
uits for exa
tly performing the trans-formation Ta0(n).This proposition follows from a more general theorem re-garding the a

ura
y to whi
h any 2-dimensional unitarytransformation 
an be approximated by gates in our basis.(See [23℄ for details.) As a result, we see thatQIP(m; a; b) � QIP(m+ 2; 1; 1� poly�1)given that a� b 2 poly�1.
4. PARALLELIZATION OF QUANTUM INTERAC-

TIVE PROOF SYSTEMSNext, we prove that any one-sided error quantum intera
tiveproof system in whi
h the prover and veri�er ex
hange apolynomial number of messages 
an be parallelized to onein whi
h the prover and veri�er ex
hange just 3 messages.Theorem 4. Let m 2 poly and let � : Z+! [0; 1℄ be anyfun
tion. ThenQIP(m; 1; 1� �) � QIP�3; 1; 1� �24m2� :For 
onvenien
e we restri
t our attention to quantum inter-a
tive proofs in whi
h m is odd, implying that the proversends the �rst message. (A quantum proto
ol with even m
an trivially be simulated by one with odd m in whi
h theveri�er reje
ts if the �rst message does not 
onsist of allzero-valued qubits.) Sin
e there is nothing to prove in 
asem � 3, we will assume m > 3. For a given �xed input x, welet k denote (m+1)=2, so the prover and veri�er alternatelyapply 
ir
uits P1; : : : ; Pk and V1; : : : ; Vk on this input. Wede�ne MAP(V1; : : : ; Vk) (the maximum a

eptan
e proba-bility of V1; : : : ; Vk) as follows:MAP(V1; : : : ; Vk) = max�k�a

VkPk � � �V1P1j init ik2	 ;where the maximum is over all P1; : : : ; Pk 2 U(M 
 P)and �a

 denotes the proje
tion onto a

epting states (i.e.,states for whi
h the output qubit is 1). Let �init denote theproje
tion onto those states for whi
h the veri�er's qubitsare all in the state j0i.In order to prove Theorem 4 we require the following lemma.Lemma 5. Let �1; : : : ; �k 2 D(V 
M) and V1; : : : ; Vk 2U(V 
 M) satisfy �k = (V yk�a

Vk)�k(V yk�a

Vk), �1 =�init �1�init, and MAP(V1; : : : ; Vk) < 1� �. Thenk�1Xj=1rF �trM Vj�jV yj ; trM �j+1� � (k � 1)� �28(k � 1) :

Proof. Let j 1 i; : : : ; j k i 2 V 
 M 
 P be su
h thattrP j j ih j j = �j , and writeF �trM Vj�jV yj ; trM �j+1� = �1� �2j2 �2for �1; : : : ; �k�1 � 0. By Theorem 1 (item 4) there existve
tors j�j i; j
j i 2 V 
M
P su
h that trM
P j�j ih�j j =trM Vj�jV yj , trM
P j
j ih
j j = trM �j+1, and kj�j i�j
j ik ��j , for 1 � j � k � 1. For ea
h j we have trM
P j
j ih
j j =trM
P j j+1 ih j+1 j, and thus by Theorem 1 (item 6) thereexists Qj+1 2 U(M
P) su
h thatQj+1j
j i = j j+1 i. Sim-ilarly, as trM
P Vj j j ih j jV yj = trM
P j�j ih�j j, there ex-ists Rj+1 2 U(M
P) su
h that Rj+1Vj j j i = j�j i. De�nePj+1 = Qj+1Rj+1 for 1 � j � k� 1. As �1 = �init �1�init,we may also de�ne P1 su
h that P1j init i = j 1 i. Now, for1 � j � k � 1 we havekPj+1Vj j j i � j j+1 ik = kj�j i � j
j ik � �j ;and 
onsequentlykPkVk�1 � � �P1j init i � j k ik= kPkVk�1 � � �P2V1j 1 i � j k ik � k�1Xj=1 �j :Sin
e �k = (V yk�a

Vk)�k(V yk�a

Vk), it follows thatk�a

Vkj k ik = 1, and thusk�a

VkPk � � �V1P1j init ik � 1� k�1Xj=1 �j :As MAP(V1; : : : ; Vk) < 1� �, we therefore have Pk�1j=1 �j �1 � p1� � � �=2. The lemma now follows by noting thatthe maximum of Pk�1j=1 (1 � �2j =2) subje
t to the 
onstraintPk�1j=1 �j � �=2 is as stated.Proof of Theorem 4. Fix an input x, and let V1; : : : ; Vk 2U(V
M) des
ribe the veri�er's 
ir
uits for this input. Alsolet P1; : : : ; Pk 2 U(M
P) be an optimal sequen
e of uni-tary transformations for the prover, and let �init and �a

be as above.In Figure 3, we des
ribe the veri�er's 3-message proto
ol.In step 1, the veri�er e�e
tively measures (V1;M1) and1. Re
eive registers V1; : : : ;Vk and M1; : : : ;Mk fromthe prover. Reje
t if V1 does not 
ontain all zeroes.Perform Vk on (Vk;Mk), reje
t if (Vk;Mk) does not
ontain an a

epting state, and then perform V yk on(Vk;Mk).2. Prepare (B;B0) in state j�+i = 1p2 (j0ij0i+ j1ij1i) and
hoose r 2 f1; : : : ; k � 1g uniformly at random. ApplyVr to (Vr;Mr), perform a 
ontrolled-swap between Vrand Vr+1 with 
ontrol bit B, and send Mr, Mr+1, B0,and r to the prover.3. Re
eive B0 from the prover, perform a 
ontrolled-notoperation on (B;B0), and perform a Hadamard trans-form on B. A

ept if B 
ontains 0, and reje
t otherwise.Figure 3: Veri�er's parallelization proto
ol.



(Vk;Mk) 
orresponding to proje
tions �init and V yk�a

Vk,respe
tively. Under the assumption that the veri�er does notreje
t in step 1, the state of the entire system is proje
teda

ording to �init and V yk�a

Vk appropriately.First let us assume MAP(V1; : : : ; Vk) = 1. We now de-�ne a prover that 
auses the (3-message) veri�er to a
-
ept with 
ertainty. The prover initially prepares regis-ters (Vj ;Mj ;Pj), 1 � j � k, as follows: (V1;M1;P1)is prepared in state P1j init i, and (Vj+1;Mj+1;Pj+1) isprepared in state Pj+1VjPj � � � V1P1j init i for j � 1. Forwhi
hever r the veri�er sends in step 2, the prover per-forms Pr+1 to (Mr;Pr) and then performs a 
ontrolled-swap on (Mr;Pr) and (Mr+1;Pr+1) using 
ontrol bit B0.The prover then sendsB0 ba
k to the veri�er. Assuming thatMAP(V1; : : : ; Vk) = 1 and P1; : : : ; Pk is an optimal sequen
eof transformations in the m-message 
ase, it is routine toshow that the 3-message veri�er a

epts with 
ertainty.Now 
onsider the 
ase that MAP(V1; : : : ; Vk) < 1 � �. Forea
h j, let �j 2 D(V 
M) denote the state of the registers(Vj ;Mj) re
eived from the prover in step 1, assuming allother registers are tra
ed out. We 
laim that the probabilitythat the veri�er a

epts for ea
h 
hoi
e of r is at mostpr := 12 + 12rF �trM Vr�rV yr ; trM �r+1�:Sin
e r is 
hosen uniformly, this will imply that the totalprobability that the veri�er a

epts is bounded byk�1Xr=1 prk � 1 � 1� �216(k � 1)2 = 1� �24(m� 1)2by Lemma 5. To a

ount for the possibility that we haveadded 1 to m to handle the 
ase that m was initially even,we obtain the bound given in the statement of the theorem.It remains to prove that pr bounds the probability that theveri�er a

epts for given r. Consider the state of the entiresystem immediately after the 
ontrolled-not in step 3 hasbeen performed. We may denote this state by (j0ij�0 i +j1ij�1 i)=p2 for unit ve
tors j�0 i; j�1 i 2 V 
 K, where theV 
omponent of ea
h ve
tor des
ribes the state of Vr andthe K 
omponent des
ribes all registers of the system besidesB and Vr. Note that by Theorem 1 (item 4) we must havejh�0 j�1 ij2 � F �trM Vr�rV yr ; trM �r+1�, as trK j�0 ih�0 j =trM Vr�rV yr and trK j�1 ih�1 j = trM �r+1. The veri�er ap-plies a Hadamard transform toB and a

epts if the resultingbit is 0. The probability of a

eptan
e is thus given by



12 j0i(j�0 i+ j�1 i)



2 = 12 + 12 <h�0 j�1 i;whi
h is bounded by 12 + 12qF (trM Vr�rV yr ; trM �r+1) asrequired.
5. AMPLIFICATION OF 3-MESSAGE PROTOCOLSThe simplest way to (potentially) redu
e the error probabil-ity of a quantum intera
tive proof system is to perform theproto
ol many times in parallel and to allow the veri�er tomake its de
ision to a

ept or reje
t based on the out
omesof the individual exe
utions. In 
ase the original proto
olhas one-sided error, the veri�er simply a

epts if and only ifevery one of the parallel exe
utions a

epts. For the 
ase oftwo-sided error, the veri�er may 
hoose to a

ept or reje
t

based on the ratio of a

eptan
e to reje
tion of the parallelexe
utions.One might expe
t that there is the possibility that thismethod will not work, sin
e a mali
ious prover might en-tangle its responses among the parallel exe
utions, perhapsin a way that biases the out
ome of a parti
ular exe
utionbased on the out
ome of another. We prove, however, thatin the 
ase of one-sided error 3-message proto
ols this 
an-not happen; the prover gains no advantage whatsoever byentangling parallel exe
utions.Theorem 6. Let p 2 poly and let b : Z+ ! [0; 1℄ be anyfun
tion. Then QIP(3; 1; b) � QIP(3; 1; bp).The proof of this theorem is based on the following lemma,whi
h relates the maximum a

eptan
e probability of anintera
tive proof system to the diamond norm of a mappingbased only the spe
i�
ation of the veri�er.Lemma 7. Let operators V1; V2 2 U(V 
M) and proje
-tions �init and �a

 be as de�ned previously. De�neW1;W2 2 L(V 
M) as W1 = V1�init and W2 = V y2 �a

,and de�ne T 2 T(V 
 M;M) as T (X) = trVW1XW y2 .Then MAP(V1; V2) = kTk23.Proof. First note thatMAP(V1; V2)=max����h�jW y2UW1j i���2� ;where the maximum is over all j i, j�i, and U 2 U(M
P),where j i; j�i 2 V 
M
P are unit ve
tors.Now, for P of suÆ
iently large dimension, by Theorem 1(item 2) we have thatkTk3 = kT 
 IL(P)ktr = max�kT 
 IL(P)(Y )ktr	 ;where the maximum is taken over all Y 2 L(V 
M 
 P)satisfying kY ktr = 1. Any Y 2 L(V 
M 
 P) satisfyingkY ktr = 1 
an be written asPj �j j j ih�j j wherePj j�j j =1 and ea
h j j i; j�j i 2 V 
M
P is a unit ve
tor. Thus,it must be the 
ase that the maximum of kT 
 IL(P)(Y )ktris obtained on an operator of the form j ih�j (again for j iand j�i unit ve
tors). We therefore havekTk3 = max�kT 
 IL(P)(j ih�j)ktr	= maxnk trV W1j ih�jW y2 ktro ;with both maximums being taken over all 
hoi
es for unitve
tors j i; j�i 2 V 
M
P. By Theorem 1 (item 1) wetherefore havekTk23 = maxn���tr�U trV W1j ih�jW y2����o2for U 2 U(M
P). Simplifying this equality, we havekTk23 = maxn���tr�UW1j ih�jW y2 ����o2= maxn���h�jW y2UW1j i���o2= MAP(V1; V2)as required.Proof of Theorem 6. Let L 2 QIP(3; 1; b) and let V bea veri�er witnessing this fa
t. Fix an input string x andde�ne T 2 T(V 
 M;M) as in Lemma 7. If x 2 L we



have kTk23 = 1, while if x 62 L we have kTk23 � b. Nowlet V 0 be a veri�er that runs p 
opies of the proto
ol ofV in parallel and a

epts if and only if every one of the p
opies a

epts. The operators 
orresponding to the a
tionsof V 0 are des
ribed by V 0i = Vi 
 � � � 
 Vi (p times) fori = 1; 2, while the proje
tions �0init and �0a

 
orrespondingto the initial and a

epting 
onditions of V 0 are given by�0init = �init 
 � � � 
 �init and �0a

 = �a

 
 � � � 
 �a

 (ptimes ea
h). Consequently, de�ning T 0 for V 0 as in Lemma 7we have T 0 = T 
 � � � 
T . By Item 3 in Theorem 1 we havekT 0k3 = kT 
 � � � 
 Tk3 = kTkp3. Thus, if x 2 L thenMAP(V 01 ; V 02 ) = 1, while if x 62 L then MAP(V 01 ; V 02 ) � bp.We note that a simple modi�
ation of the proof of this the-orem implies that 1-message and 2-message quantum inter-a
tive proofs 
an be ampli�ed in a similar way (althoughthere is a mu
h simpler proof in the 1-message 
ase).By Theorem 2, Proposition 3, Theorem 4, and Theorem 6,we obtain the following 
orollary:Corollary 8. Let p 2 poly, � 2 poly�1, and assumea; b : Z+ ! [0; 1℄ satisfy a(n) � b(n) � �(n) for every n.Then QIP(poly ; a; b) � QIP(3; 1; 2�p).
6. EXPONENTIAL-TIME SIMULATION OF QUAN-

TUM INTERACTIVE PROOFSFinally, we prove the following upper bound on the powerof quantum intera
tive proof systems: any language hav-ing a quantum intera
tive proof system 
an be de
ided indeterministi
 exponential time.Theorem 9. QIP(3; 1; 1=2) � EXP.Here, EXP denotes the 
lass of languages L de
idable by adeterministi
 Turing ma
hine M in time bounded by 2p forsome p 2 poly .The method used to prove this fa
t is based on semidef-inite programming. For information on semide�nite pro-gramming, we refer the reader to [2; 29℄ and the referen
estherein.The following problem is 
alled the standard semide�niteprogramming (SDP) problem:Input: A1; : : : ; Ak; C 2 CN�N and b1; : : : ; bk 2 C .Problem: Minimize <(trCyX) for X 2 CN�N positivesemide�nite and satisfying trAyjX = bj forj = 1; : : : ; k.It should be noted that it is generally required that the un-derlying �eld be the real numbers rather than the 
omplexnumbers for this problem. It is a fairly straightforward exer-
ise, however, to show that the two problems are equivalent(up to a polynomial fa
tor in
rease in the size of the prob-lem). Given an a

ura
y bound �, the SDP problem 
an besolved in (deterministi
) time polynomial in the input sizeand j log � j (given that a polynomial upper-bound on thelength of the solution is known) [19℄ (see also [2℄).Proof of Theorem 9 First we 
onsider an optimizationproblem that redu
es to the SDP problem. We then showthat membership in a given language L 2 QIP(3; 1; 1=2) 
anbe de
ided in EXP by solving an exponential-size instan
eof our optimization problem.Assume we are given positive integer parameters N1, N2,andM , as well asM�N1 
omplex matri
es B1;1; : : : ; B1;k1 ,

andM �N2 
omplex matri
es B2;1; : : : ; B2;k2 . De�ne map-pings eT1; eT2 : CNi�Ni ! CM�M as follows:eTi(Y ) = kiXj=1Bi;jY Byi;j ;and suppose we are promised that one of the following twopossibilities holds for given � > 0:1. There exist positive semide�nite, tra
e 1 matri
es Y1 andY2 su
h that eT1(Y1) = eT2(Y2).2. For all positive semide�nite, tra
e 1 matri
es Y1 and Y2,k eT1(Y1)� eT2(Y2)k > �.We wish to determine whi
h of these two 
ases holds. Thisproblem redu
es to the SDP problem, as we now show.Let N 0 = N1 + N2 + 2M + 1 and 
onsider the set of allN 0 �N 0 matri
es having the formX = diag(t; Y1; Y2; tI � ( eT1(Y1)� eT2(Y2));tI + ( eT1(Y1)� eT2(Y2))) (2)(where t is a s
alar) and subje
t to the 
onstraints thattrY1 = trY2 = 1 and X is positive semide�nite. For anysu
h X we must have that t is a nonnegative real number,that Y1 and Y2 are positive semide�nite, and furthermorethat t � k eT1(Y1) � eT2(Y2)k. Thus, there exists an X satis-fying these 
onstraints for whi
h t = 0 if and only if item 1above is satis�ed; otherwise t > � for all su
h X, in whi
hitem 2 holds.We will de�ne a 
olle
tion of matri
es A1; : : : ; Al and num-bers b1; : : : ; bl that, in the sense of the SDP problem, imposethe 
onstraints on a given matrixX that it be of the form (2)with tr(Y1) = tr(Y2) = 1. First, for ea
h i; j 2 f1; : : : ; N 0g,de�ne Ei;j to be the N 0�N 0 matrix having a 1 as its i; j en-try and with all other entries 0. Note that trEyi;jX = X[i; j℄for any N 0 � N 0 matrix X. Let us also de�ne K1 = f1g,K2 = f2; : : : ; N1 + 1g, K3 = fN1 + 2; : : : ; N1 + N2 + 1g,K4 = fN1 + N2 + 2; : : : ; N1 + N2 + M + 1g, and K5 =fN1 + N2 +M + 2; : : : ; N1 + N2 + 2M + 1g. Next, we dothe following:� For every pair i; j su
h that i 2 Km1 and j 2 Km2 form1 6= m2, de�ne Ui;j = Ei;j and ui;j = 0.� De�ne V1 = Pi2K2 Ei;i, V2 = Pi2K3 Ei;i, and set v1 =v2 = 1.� For ea
h i; j 2 f1; : : : ;Mg de�neFi;j = NXi0;j0=1" k1Xt=1By1;t[i0; i℄B1;t[j; j0℄!Ei0+1;j0+1� k2Xt=1By2;t[i0; i℄B2;t[j; j0℄!Ei0+N1+1;j0+N1+1# ;de�ne Gi;j and Hi;j as follows:Gi;j = Æi;jE1;1 � Fi;j �Ei+N1+N2+1;j+N1+N2+1;Hi;j = Æi;jE1;1 + Fi;j �Ei+N1+N2+M+1;j+N1+N2+M+1;and set gi;j = hi;j = 0.Relabel the matri
es fUi;jg [ fV1; V2g [ fGi;jg [ fHi;jg andthe numbers fui;jg [ fv1; v2g [ fgi;jg [ fhi;jg as A1; : : : ; Al



and b1; : : : ; bl for appropriately 
hosen l, and 
onsider the
olle
tion of all N 0 � N 0 matri
es X for whi
h we havetrAy1X = b1; : : : ; trAylX = bl. It may be veri�ed thatthis is pre
isely the 
olle
tion of matri
es of the form (2)su
h that tr(Y1) = tr(Y2) = 1; the �rst item above imposesthe 
onstraint that X be of the form diag(t; Y1; Y2; Z1; Z2)for Y1 an N1 � N1 matrix, Y2 an N2 � N2 matrix, andZ1 and Z2 M �M matri
es, the se
ond item imposes the
onstraint trY1 = trY2 = 1, and the third item imposesthe 
onstraint that Z1 = tI � ( eT1(Y1) � eT2(Y2)) and Z2 =tI + (eT1(Y1) � eT2(Y2)). By de�ning C = E1;1, we see thatthe minimum of <(trCyX) subje
t to the above 
onstraintsis pre
isely the minimum value of k eT1(Y1) � eT2(Y2)k overall matri
es Y1; Y2 representing density operators, and thusdetermines whi
h of possibility 1 or 2 above holds.Now we show that membership in a given language L 2QIP(3; 1; 1=2) 
an be redu
ed to an exponential-size instan
eof the optimization problem dis
ussed above. Assume V isa 3-message veri�er for L having one-sided error boundedby 1/2. For a given input x, we therefore wish to determinewhether MAP(V1; V2) = 1 or MAP(V1; V2) < 1=2 holds.Re
all the de�nitions of the spa
es V, M, and P and theproje
tions �init and �a

 as de�ned in Se
tion 2.3. De�neH1 =M and de�ne H2 to be V 
M with the output qubitremoved (i.e., H2 = `2(�qV�1��qM )). De�ne Ti : D(Hi)!D(V) for i = 1; 2 as follows:T1 : � 7! trM �V1 (j0qV ih0qV j 
 �)V y1 � ;T2 : � 7! trM �V y2 (j1ih1j 
 �)V2� :We 
laim that if MAP(V1; V2) = 1 then there exists �1 2D(H1) and �2 2 D(H2) su
h that T1(�1) = T2(�2), and ifMAP(V1; V2) < 1=2 thenkT1(�1)� T2(�2)k � 2�qV�4for any �1 2 D(H1) and �2 2 D(H2). If MAP(V1; V2) = 1,this is straightforward. Suppose on the other hand thatMAP(V1; V2) < 1=2. For any �1 2 D(H1) and �2 2 D(H2)we may 
on
ludepF (T1(�1); T2(�2)) � 3132by Lemma 5. ConsequentlykT1(�1)� T2(�2)k � 2�qV kT1(�1)� T2(�2)ktr � 2�qV�4by Theorem 1 (item 5).Now let M = 2qV , N1 = 2qM , and N2 = 2qV+qM�1. Itremains to be shown that a 
olle
tion of M � N1 matri
esB1;1; : : : ; B1;k1 (des
ribing an approximation eT1 to T1) andM �N2 matri
es B2;1; : : : ; B2;k2 (des
ribing an approxima-tion eT2 to T2) may be 
omputed in time exponential in jxjto a suÆ
ient degree of a

ura
y su
h that the solution tothe 
orresponding instan
e of SDP des
ribed above revealswhether or not x 2 L. But under the assumption that V1and V2 are polynomial-time uniformly generated 
ir
uits asdis
ussed in Se
tion 2, it is routine to show that in exponen-tial time one may 
ompute matri
es Bi;1; : : : ; Bi;ki for whi
hthe inequalities kTi(�i)� eTi(�i)ktr < 2�p(jxj) (i = 1; 2) holdfor any �xed polynomial p and all �i 2 D(Hi). (Note thatthis bound in pre
ision is suÆ
ient for our purposes, but isindeed very 
oarse|the error 
an in fa
t be made smallerthan 2�2p , as an exponential number of bits of pre
ision

rPrNP r 
o-RQPrQIP(1) r BQPrPP r QIP(2)r QIP(3) = QIP(poly)r EXPrPSPACE

HHHHHH ������
������ HHHHHH

HHHHHHHHHHHH HHHHHHHHHHHH������������

Figure 4: Relationships among quantum intera
tive proofsystem 
lasses and some other 
omplexity 
lasses.may be 
omputed for ea
h entry of ea
h Bi;j in exponen-tial time.) Thus, taking p = qV + 7 for instan
e, we havethat x 2 L implies k eT1(�1) � eT2(�2)k � 2�(qV+6) for some�1; �2, while x 62 L implies k eT1(�1) � eT2(�2)k � 2�(qV+5)for every �1; �2. As there exist polynomial time algorithmsfor the SDP problem for whi
h the solution is a

urate to apolynomial number of bits of pre
ision in the instan
e size, itfollows that in time exponential in jxjO(1) we may determinewhether or not x 2 L, whi
h 
ompletes the proof.
7. CONCLUSIONFigure 4 summarizes relationships among some of the 
lasses
onsidered in this paper. Here we let QIP(m) denote theone-sided error 
lass QIP(m; 1; 1=2). A de�nition of the 
lassBQP may be found in [7℄, while RQP may be de�ned as aone-sided error version of BQP.A number of open questions regarding quantum intera
tiveproof systems remain. Of parti
ular interest is the followingquestion: 
an QIP(1), QIP(2), and QIP(3) be 
hara
terizedby 
lassi
al 
omplexity 
lasses? More generally, what otherrelations hold among quantum intera
tive proof systems and
lassi
al models of 
omputation? We know very little aboutQIP(2); how does this 
lass 
ompare to PP or to PSPACE?Finally, one may 
onsider many variants on quantum inter-a
tive proof systems, su
h as quantum variants of PCPs andmultiprover proof systems. How do these models 
ompareto their 
lassi
al 
ounterparts?
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