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Abstract

This work considers the quantum interactive proof system model of computation, which
is the (classical) interactive proof system model’s natural quantum computational analogue.
An exact characterization of the expressive power of quantum interactive proof systems is
obtained: the collection of computational problems having quantum interactive proof systems
consists precisely of those problems solvable by deterministic Turing machines that use at most
a polynomial amount of space (or, more succinctly, QIP = PSPACE). This characterization is
proved through the use of a parallelized form of the matrix multiplicative weights update
method, applied to a class of semidefinite programs that captures the computational power
of quantum interactive proof systems. One striking implication of this characterization is that
quantum computing provides no increase in computational power whatsoever over classical
computing in the context of interactive proof systems, for it is well-known that the collection of
computational problems having classical interactive proof systems coincides with those prob-
lems solvable by polynomial-space computations.

1 Introduction

The notion of a proof has fundamental importance in the theory of computation. Indeed, the
foundational work of Church [Chu36] and Turing [Tur37] in the 1930s, which produced the first
formal models of computation (A-calculus and Turing machines), was principally motivated by
questions concerning proofs in formal logic. The theory of NP-completeness, developed in the
1970s by Cook [Coo71], Karp [Kar72], and Levin [Lev73], provides another example. It is built on
the notion of efficient proof verification, and is among the most widely applicable discoveries ever
made in the theory of computation.



This paper is concerned with the potential advantages offered by quantum computation in the
setting of proofs, and in particular its advantages when applied to the interactive proof system model
of computation. Considered by many to be a cornerstone of modern computational complexity
theory, the interactive proof system model was first introduced in the mid-1980s, and its quantum
computational variant has been an object of study in quantum computing for more than a decade.
The main result to be presented herein is that quantum computation does not enhance the ex-
pressive power of interactive proof systems: quantum and classical interactive proof systems are
equivalent in power, both coinciding with the complexity class PSPACE of problems solvable by
deterministic Turing machines that use an amount of space scaling polynomially in the length of
the input to the problem. This resolves a fundamental question about the quantum interactive
proof system model that has been open since its introduction [Wat99].

1.1 Classical interactive proofs

When speaking of proofs, one typically has a traditional notion in mind where, at least in an
abstract sense, the proof itself is a string of symbols to be verified by some form of computation.
A natural complexity-theoretic abstraction of this notion requires that the proof verification is
computationally efficient—it is represented by the complexity class NP, wherein a deterministic
polynomial-time verification procedure decides whether a polynomial-length proof string is valid
for a given input.

There are, however, other interesting notions of proofs that extend the traditional notion in var-
ious ways. In particular, Babai [Bab85] and Goldwasser, Micali, and Rackoff [GMR85] introduced
a computational model that extends the notion of efficient proof verification to an interactive set-
ting, and that also makes essential use of randomness. (Journal versions of these papers appeared
as [BM88] and [GMR89].) In this model, which is known as the interactive proof system model, a
computationally efficient verifier interacts with a prover of unlimited computation power. The in-
teraction comprises one or more rounds of communication between the prover and verifier, and
the verifier may make use of randomly generated bits during the interaction. After the rounds of
communication are finished, the verifier makes a decision to accept or reject based on the interac-
tion.

A decision problem A, which we take to be a promise problem [ESY84, (Gol05] in the interest of
generality, is said to have an interactive proof system if there exists a verifier with two properties
that reflect the essential meaning of a proof:

1. Completeness. For any yes-input string x, there exists a behavior of the prover that, with high
probability, causes the verifier to conclude that x is indeed a yes-input. This situation is
indicated by the verifier outputting 1 (or accept) after interacting with the prover.

2. Soundness. For any no-input string x, the verifier will not conclude that x is a yes-input,
except perhaps with a small probability, regardless of the behavior of the prover. The verifier
outputs 0 (or reject) to indicate the prover’s failure to convince it that x is a yes-input.

Intuitively speaking, the completeness property represents the requirement that true statements
can be proved, while the soundness property represents the complementary requirement that
false statements cannot be proved. One denotes by IP the collection of decision problems having
efficient (i.e., polynomial-time) verifiers that meet these conditions.

It is appropriate to make note of the probabilistic nature of the completeness and soundness
properties just described. While one would not expect a formal notion of proof to allow for a
nonzero probability of error in the setting of mathematical logic, the interactive proof system
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model allows for a small, but nevertheless nonzero, error probability. In this way, the model
may be seen as describing a cryptographic notion of proof, as opposed to one of mathematical
logic. Although a nonzero error probability can be eliminated from the completeness condition, it
is known that a nonzero soundness error must be permitted if interaction is to provide additional
computational power over NP [FGM™89].

The most fundamental question about the interactive proof system model, from the viewpoint
of complexity theory, is: Which decision problems have interactive proof systems? The answer
to this question is well-known. A problem has an interactive proof system if and only if it is
solvable by a deterministic Turing machine running in polynomial space (or, more succinctly,
IP = PSPACE). The containment IP C PSPACE is fairly straightforward to establish, as was
tirst demonstrated by Feldman [Fel86|], using a space-efficient recursive traversal of a game tree
whose edges represent messages exchanged between the prover and verifier. (Interested readers
may find a proof in the textbook of Sipser [Sip97].) The reverse containment, PSPACE C IP, was
proved by Shamir [Sha92], based on the work of Lund, Fortnow, Karloff, and Nisan [LFKN92|.
This was a landmark result that established the powerful proof technique of arithmetization as a
standard tool in computational complexity.

Several variants of interactive proof systems have been studied, including public-coin inter-
active proof systems [Bab85, BM88), IGS89], zero-knowledge interactive proof systems [GMRS85,
GMR89, GMW91]], multi-prover interactive proof systems [BOGKWS88, IBFLI1], and interactive
proof systems with competing provers [FK97].

1.2 Quantum computing and quantum interactive proofs

The idea of quantum computation was born in the early 1980s when Feynman [Fey82] asked a
brilliant question: If quantum mechanics is so hard to simulate with a classical computer, why
not build a computer based on quantum mechanics to simulate quantum mechanics more di-
rectly? Feynman'’s ideas on the subject led Deutsch [Deu85] to define the quantum Turing machine
model and to investigate its computational power. Driven in large part by Shor’s discoveries of
polynomial-time algorithms for factoring and computing discrete logarithms on a quantum com-
puter [Sho97], quantum computation has developed into an active field of study within theoretical
computer science and both theoretical and experimental physics.

Large-scale quantum computers do not currently exist, and it is universally agreed that at the
very least their realization will be an enormous technological challenge. However, it must be ap-
preciated that quantum mechanics is a remarkably accurate theory that has never been refuted—so
scientists are naturally compelled to test the theory of quantum mechanics by attempting to build
a quantum computer. Efforts to do this are underway in many laboratories around the world.

Within the theoretical study of quantum computation, it is natural to consider quantum com-
putational variants of interesting classical models, including those based on the notion of proofs.
The quantum interactive proof system model, which was first introduced by Watrous [Wat99], repre-
sents a natural quantum computational analogue to the (classical) interactive proof system model.
In simple terms, the quantum model allows the verifier and prover in an interactive proof system
to perform quantum computations and exchange quantum information, but is otherwise similar
to the classical model. In particular, the verifier in a quantum interactive proof system may per-
form efficient (polynomial-time) quantum computations while the prover can perform quantum
computations of arbitrary complexity.

It is important to stress that the potential advantages of quantum computation in the setting
of interactive proof systems are not limited to the verifier’s ability to perform a potentially wider



range of computations. The nature of quantum information is such that it has striking benefits
in a variety of information-processing tasks, such as private key exchange [BB84] and distributed
computational tasks allowing limited communication [BCW98, Raz99]. A known benefit of quan-
tum computation in the interactive proof system model is that it allows for a major reduction in
the number of messages that must be exchanged: quantum interactive proof systems allowing just
three messages to be exchanged between the prover and verifier have the full power of those al-
lowing any polynomial number of messages [KWO00]. It is not known if the analogous fact holds
for classical interactive proof systems, but it is conjectured not to hold. It would, in particular,
imply the collapse of the polynomial-time hierarchy to the second level [BM88| |GS89].

Like the classical interactive proof system model, several variants of quantum interactive proof
systems have been studied [KM03, MW05| GW07, HKSZ08, Kob08, KKMV(9, Wat09]. The present
paper relies heavily on a result of Marriott and Watrous [MWO05] that establishes that quantum
interactive proof systems with a very simple form, known as quantum Arthur-Merlin games, have
the full power of general quantum interactive proof systems. This characterization is described in
greater detail later in the paper.

The complexity class QIP is defined to be the class of decision problems having efficient quan-
tum verifiers meeting completeness and soundness conditions similar to those described previ-
ously for the classical setting. QIP trivially contains IP, as the ability of a verifier to process quan-
tum information is never a hindrance: a quantum verifier can simulate a classical verifier, and a
single computationally unbounded prover can never use quantum information to an advantage
against a verifier behaving classically. The inclusion PSPACE C QIP is therefore immediate. Un-
like the subset relation IP C PSPACE, however, it is not straightforward to prove QIP C PSPACE.
The best upper bound on QIP known prior to the present paper was QIP C EXP, where EXP
denotes the class of problems solvable by deterministic Turing machines running in exponential
time. This containment was proved by Kitaev and Watrous [KWO0O0] through the use of semidef-
inite programming: the optimal probability with which a given verifier can be made to accept in
a quantum interactive proof system can be represented as the optimal value of an exponential-
size semidefinite program, and known polynomial-time algorithms for semidefinite program-
ming provide the required tool to prove the containment. It has been an open problem for the
last decade to establish more precise bounds on the class QIP. We resolve this problem by proving
QIP C PSPACE, thereby establishing QIP = PSPACE.

1.3 The matrix multiplicative weights update method

The key algorithmic technique that allows us to prove QIP C PSPACE is a method known as
the matrix multiplicative weights update method. The ordinary (non-matrix) multiplicative weights
method is a framework for algorithm design having its origins in various fields, including learning
theory, game theory, and combinatorial optimization. Its matrix variant, as discussed in the survey
paper of Arora, Hazan, and Kale [AHKO5] and the PhD thesis of Kale [Kal07], provides an iterative
way to efficiently approximate optimal values of certain semidefinite programs [AK0Z, WKO6].

An important aspect of the matrix multiplicative weights update method from the viewpoint
of this paper is its parallelizability for certain restricted classes of semidefinite programs. Three
of us [JUWOQ9] previously used an algorithm based on the matrix multiplicative weights update
method to prove that QIP(2), the class of problem having 2-message quantum interactive proof
systems, is contained in PSPACE. Prior to that work, two of us [JW09] used a different algorithm
based on the matrix multiplicative weights update method to prove the containment of a different
quantum complexity class (namely QRG(1)) in PSPACE.



2 Preliminaries

This section summarizes background material that is required for an understanding of subsequent
sections of the paper. It is not meant to be comprehensive: it is intended mainly to introduce nota-
tions and to highlight certain facts that may be unfamiliar to some readers. A basic understanding
of both computational complexity theory and quantum computation is also required, and we re-
fer readers interested in presentations of these topics to Arora and Barak [AB09] and Nielsen and
Chuang [NCO00].

2.1 Linear algebra basics

Throughout this paper, the scripted letters 1V, X', and ) denote finite-dimensional complex vector
spaces taking the form C* for some finite and non-empty index set X. As is typical, we write CN
rather than C{1++N}, and we note that the choice to allow index sets besides {1,..., N} is purely
one of convenience: for any finite and non-empty index set £, one can equate C> with CV for
N = |X| through any fixed choice of a bijective correspondence between £ and {1, ..., N}.

On such a space V = C* one defines a standard inner product as

(u,v) =} u(a)v(a)

acx

for all u,v € V (where, in general, & denotes the complex conjugate of « € C). This inner product
defines the Euclidean norm
2
lull =\ wuy = [ u(a)

acey

The space of all linear mappings (or operators) from V to itself is denoted L (V). One may
identify elements in this space with matrices whose rows and columns are indexed by X (with
the notation A(a,b) denoting the entry of a matrix A indexed by the pair (4, b)) in the usual way,
and we will freely switch between speaking of operators and matrices as the context favors. The
identity operator on V is denoted 1y, or simply by 1 when V can safely be taken as implicit. The
trace of A € L (V) is defined as

Tr(A) = )_ A(a,a).

IS

For each A € L (V) one defines the adjoint operator A* € L (V) as the unique operator satisfy-
ing (u, Av) = (A*u,v) forall u,v € V. As a matrix, A* is obtained by taking the conjugate transpose
of A:

A*(a,b) = A(b,a).
It is convenient to define an inner product on L (V) as
(A,B) = Tr(A*B).

For an operator A € L (V), a complex number A € C is said to be an eigenvalue of A if there
exists a nonzero vector u € V such that Au = Au. Any such vector u is said to be an eigenvector of
A whose associated eigenvalue is A.

The spectral norm of an operator A € L (V) is defined as

[ Al = max{[|Au|| : w €V, [[u]| =1},



where || Au|| and ||u|| refer to the Euclidean norm on V. The spectral norm is sub-multiplicative:
|AB|| < ||AJ || B|| for all operators A,B € L (V).
We write Herm (V) to denote the subset of L (V) consisting of all Hermitian, or self-adjoint,
operators:
Herm (V) ={AecL(V): A=A"}.

It holds that (A, B) is a real number for all Hermitian operators A,B € Herm (V), and every
eigenvalue of a Hermitian operator is necessarily a real number as well. The notations Amin(A)
and Amax(A) refer, respectively, to the smallest and largest eigenvalues of a Hermitian operator A.
When we refer to the negative eigenspace of a Hermitian operator A € Herm ('), we are referring to
the subspace of V spanned by every vector u € V that is an eigenvector of A having an associated
eigenvalue that is negative.

An operator P € L (V) is positive semidefinite if and only if P = A*A for some choice of A €
L (V). Itholds that P € L (V) is positive semidefinite if and only if (i) P € Herm (V') and (ii) every
eigenvalue of P is nonnegative. The set of all positive semidefinite operators on VV will be denoted
Pos (V), so that

Pos(V)={A"A: AcL(V)}.

We note that (P, Q) is a nonnegative real number for all positive semidefinite operators P, Q &
Pos (V). For Hermitian operators A and B, the notations A < B and B > A mean that B — A is
positive semidefinite. A positive semidefinite operator I1 € Pos (V) is a projection operator if and
only if I12 =11, or equivalently if and only if all of its eigenvalues are either 0 or 1.

Finally, an operator U € L (V) is unitary if and only if UU* = 1y = U*U.

2.2 Quantum information basics

When we speak of a register in this paper, we mean a finite and nonempty sequence of qubits that
we view as a single entity and to which we assign a name. The names X and Y, in sans serif font,
will be used to refer to registers. When a register X consists of m qubits we say that X is an m-qubit
register, and in this case it has an associated vector space X = cio, (We take ) to be the vector
space associated with the register Y in a similar way.)

The possible quantum states (or simply states) of a register X correspond to the set D (X') of
density operators on X, which are the positive semidefinite operators having unit trace:

D(X)={p €Pos(X) : Tr(p) =1}.

It is traditional in quantum physics to use lower-case Greek letters, often p, o and ¢, to represent
density operators.
A measurement on a register X is a finite collection of operators {P, : b € T'} C Pos(X)

satisfying

Y D=1y

beTl
The set I' is the set of measurement outcomes, and when such a measurement is performed on X
while it is in the state p, each outcome b € T occurs with probability (P, p). A projective measure-
ment is one in which each P, is a projection operator.

The space associated with a pair of registers is given by the tensor product of the spaces asso-
ciated with the individual registers. In particular, for registers X and Y having associated spaces
X and Y, we have that the space associated with the pair (X,Y) is X ® Y. If Xand Y are registers
independently prepared in the quantum states represented by ¢ € D (X') and ¢ € D ()), then the

6



state of the pair (X,Y) is understood to coincide with the density operator c ® { € D (X ® ).
Of course, not every state of a pair of registers (X,Y) can be expressed as a tensor product in
this way, representing the fact that X and Y may be correlated. Entanglement is a form of correla-
tion representing one of the most important and distinguishing features of quantum information
[HHHHO09].

For every state of a pair of registers (X, Y), whether correlated or not, there is a uniquely deter-
mined reduced state of the register X that, in essence, would describe the state of X if Y were to be
destroyed or lost. This is analogous to the marginal probability distribution of X in the probabilistic
case. In mathematical terms the reduced state of X is defined by the partial trace over ). This is the
unique linear mapping Try from L (X ® V) to L (X') that satisfies the equation

Try(A® B) = Tr(B)A
forevery A € L (X) and B € L ()). We note that
(A, Try(B)) = (A®1y,B)

for all choices of A € L (X) and B € L (X ® )), which is an identity we will make use of several
times.

One additional component of quantum information theory that has not been mentioned above
is the description of transformations of quantum registers according to physical processes (such as
computations). We will only need to consider unitary transformations in this paper: if a register
X is in a state p € D (X'), and a transformation described by a unitary operator U € L (X)) is
performed on this register, its state becomes Up U*.

2.3 A lemma underlying the matrix multiplicative weights update method

The main algorithm, and its analysis, that we present later in the paper makes use of a lemma
to be presented in this section. The lemma is associated with the matrix multiplicative weights
update method, and may be found in [Kal07] (for instance). A proof is included here for the sake of
completeness.

We begin with the definition of the exponential function of an operator. For every operator
A € L(V), the exponential of A is defined as

exp(A) =) —.

Two properties of operator exponentials will be required to prove the main lemma of this subsec-
tion. One property is the Golden-Thompson inequality, which states that

Tr [exp(A + B)] < Tr [exp(A) exp(B)]

for any choice of Hermitian operators A,B € Herm (V). A proof of the Golden-Thompson in-
equality may be found in Section IX.3 of [Bha97]. A second property of operator exponentials that
we will require is stated by the following lemma.

Lemma 1. Let R € Pos (V) be a positive semidefinite operator satisfying R < 1. For every real number n
it holds that exp(nR) < 1+ nexp(n)R.



Proof. It is sufficient to prove the inequality for R replaced by a scalar A € [0,1], for then the
operator inequality follows by considering a spectral decomposition of R. If A = 0 the inequality
is immediate, so assume 0 < A < 1. By the Mean Value Theorem there exists a value Ay € (0,7)
such that

exp(nA) — 1
p(”A) = nexp(ipho) < 17exp(1),
from which the inequality follows. O
We are now prepared to state and prove the main lemma of this subsection.

Lemma 2. Let T be a positive integer, let M(©),..., M(T=1) € Pos (V) be operators on a space V = CN
that satisfy 0 < M < 1 foreacht € {0,..., T —1}, and let ¢ > 0. The following two facts hold:

1. For
%) K (+1) = ) PO
= ]lv, = exp —8]20M , an Y = m
foreacht € {0,..., T — 1}, one has
T-1 T-1 ln(N)
. ORIES _ " MmN _
Amm<tZOM )_exp< ) X (om0 - . )

2. For

t
YO =1, vt —exp (sZM(j)> , and o) = Yo
=0

foreacht € {0,...,T —1}, one has

)\max (Tz_l MU)) < GXP(E) Til <0'(t)’M(t)> + ll’l(N) ) (2)
t=0

t=0

Proof. Let us first prove the first fact stated in the lemma. Consider any choiceof t € {0,..., T —1}.
By the Golden-Thompson inequality it holds that

Tr (X(t+1)) <Tr (X(t) exp (—EM(t)>> . (3)

By Lemmal(l] one has
exp (—EM(t)> <1 —eexp(—e)MY, (4)

Given that X(*) is positive semidefinite, equations (@) and {@) imply
Tr (X(t+1)> <Tr (X(t) — sexp(—s)X(t)M(t)> =Tr (X(t)) (1 —eexp(—¢) <p(t),M(t)>> .
Making use of the fact that 1 + z < exp(z) for every real number z, one obtains

Tr (X(t“)) <Tr (X(t)> exp <—s exp(—e) <p(t),M(t)>> . (5)



Iteratively applying the inequality tot = T—1,...,0, and using the observation that
Tr(X(©) = N, yields

Tr (X(T)> < Nexp (—eexp(—s) Til <p(t),M(t)>> . (6)
=0

Next, using the fact that Tr(exp(—H)) > exp(—Amin(H)) for every Hermitian operator H, one

has that
T—1
Tr (X(T)) > exp (—e)\min (2 M(t)>> . (7)
t=0

Combining the inequalities (6) and (7) yields (I) as claimed.
The second fact stated in the lemma is proved in much the same way as the first, except that
signs and inequalities are reversed in the most straightforward manner. More specifically, one has

Tr (Y(f“)) <Tr (y(f) exp <€M(t)>)

for each t € {0,...,T — 1} by the Golden-Thompson inequality. By Lemma [l| it holds that
exp (eM(t)> < 1 +eexp(e) MY, so that

Tr (Y(t“)) <Tr <Y(t)> exp (8 exp(e) <U(t),M(t)>) ,

and therefore

t=0

Tr (Y(T)) < Nexp <£ exp(e) Tz_l <U(t),M(t)>> .

Combining this inequality with the inequality

T-1
Tr (Y(”) > exp (sAmaX (Z M<f>>>

yields (2). This completes the proof. ]

We note that the two facts stated in this lemma may be combined into a single inequality, as
is done in [Kal07]. For our purposes, however, it is natural to separate the two statements as we
have done.

2.4 Quantum interactive proof systems and single-coin Arthur-Merlin games

Taken in its most general form, the quantum interactive proof system model can allow for com-
plicated interactions between a prover and verifier involving the exchange of quantum messages
over the course of many rounds. By the nature of quantum information, such an interaction cannot
generally be described by the sort of game tree that describes a classical interaction: the possibility
of entanglement among the prover, verifier and message registers prohibits this.

It is, however, always possible to transform a given quantum interactive proof system into
one with a conceptually simple form by following the method presented in Section 5 of [MWO05].
A polynomial p, independent of the input string, is fixed, and the input to the problem under
consideration is denoted by x. The verifier expects that the messages sent to it by the prover will



be contained in m-qubit registers for m = p(n), where n = | x| is the input length. (Marriott and
Watrous did not restrict the prover’s messages to have a common length, and we do not really
require this restriction either—but given that the restriction can easily be made without altering
the power of the model, we will assume it in the interest of simplicity.) The transformed proof
system has the following form:

1. The prover begins by sending the verifier an m-qubit register X. Upon receiving X, the
verifier sets it aside without interacting with it.

2. The verifier chooses a bit a € {0,1}, uniformly at random, and sends a copy of a to the
prover.

3. The prover sends the verifier a second m-qubit register Y.

4. The verifier measures the pair (X,Y) with respect to one of two binary-outcome measure-
ments: {II), 119} in case 2 = 0 and {II},I1}} in case 2 = 1. The measurement outcome
is interpreted as the verifier’s output: as usual, 1 means the proof is accepted, 0 means it is
rejected.

The verifier’s measurements {I1), 19} and {IT}, I} } naturally depend on the input string x to the
problem under consideration. In accordance with the definition of the quantum interactive proof
system model, these measurements must be efficiently implementable by a quantum computation
to be performed by the verifier.

In greater detail, we may assume that the verifier performs its measurements by first apply-
ing a polynomial number g(1) of unitary operations Uy, . .., Uy, to the 2m qubits comprising the
pair (X,Y), followed by a measurement of all of these qubits with respect to the standard basis.
Each of the operations Uy, ..., U, corresponds to either a Toffoli gate, a Hadamard gate, or a
7t/ 2-phase shift (or i-phase shift) gate, and the specification of this sequence of gates is given by a
polynomial-time computable function of the input x. The final binary-valued output of the veri-
fier’s measurement is obtained by a simple computation on the result obtained from the standard-
basis measurement: for the first measurement {I1J,I10} we may take the output to be 1 if and
only if the standard-basis measurement gives an outcome where the first m bits are 0, and for the
second measurement {I1},IT}} we may take the output to be 1 if and only if the standard-basis
measurement gives an outcome where the first bit is 1. (Any other polynomial-time computable
predicate would be equivalent in terms of our proof. We have only mentioned these particular
predicates for concreteness, and because they are the ones required by Marriott and Watrous.) We
note that {I1), 19} and {IT},IT}} are projective measurements, and although our proof could be
adapted to more general measurements without significant complications, it will simplify matters
for us to make use of this fact.

Such a proof system is an example of a quantum Arthur-Merlin game given that the verifier’s
messages to the prover consist entirely of uniformly generated random bits (which is analogous
to the classical definition [Bab85, BM88]). By making use of the results of [KW00], [MWO05] proved
that every problem A € QIP has a quantum interactive proof system of the above form, where the
completeness is perfect and the soundness error is bounded by 1/2 + ¢ for any desired constant
g > 0. In other words, the verifier’s measurements can be forced to output 1 with certainty when
the input is a yes-input, while the maximum probability for the output 1 is at most 1/2 + ¢ (for any
tixed choice of a constant € > 0) when the input is a no-input.

A common question about quantum interactive proof systems having the above form is this:
Why cannot the prover simply prepare three registers X, Yo, and Yj, send all three to the verifier
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in a single message, and allow the verifier to measure (X, Y) or (X, Y1) depending on its choice
of the random bit a? This would seem to eliminate the need for interaction, as the verifier would
never send anything to the prover.

The reason is that entanglement prevents this from working: in order for the two measure-
ments to both result in the output 1 with high probability, the register pairs (X, Yy) and (X, Y1)
would generally need to simultaneously be in highly entangled states (at least for non-trivial proof
systems). One of the curious features of entanglement, however, is that any single quantum regis-
ter is constrained with respect to the degree of entanglement it may simultaneously share with two
or more other registers. (This phenomenon is often called the monogamy of entanglement [Ter04].)
In general, the only way for the prover to cause the verifier to output 1 is to prepare X in a highly
entangled state with a register of its own, and then use this entanglement to prepare Y once the
random bit a has been received.

2.5 Semidefinite programs for single-coin quantum Arthur-Merlin games

There are a variety of strategies that a prover could potentially employ in an attempt to cause a
verifier to output 1 in a single-coin quantum Arthur-Merlin game, as discussed above; but they can
all be accounted for by considering the possible states of the pair (X,Y) that the verifier measures,
conditioned on the two possible values of the random bit a. That is, for any two density operators
po,p1 € D(X ®)), one may consider whether it is possible for the prover to follow a strategy
that will leave the verifier with the state pg for the pair (X, Y) when the random bit takes the value
a = 0, and with the state p; when a = 1. The set of all such choices for py and p; is simple to
characterize: it is precisely the set of all pairs (po, p1) for which

Try(po) = Try(p1)- (8)

The necessity of this condition follows immediately from the fact that the prover cannot touch
X at any point after learning a, while its sufficiency follows from the well-known principle in
quantum information theory sometimes called the unitary equivalence of purifications. It follows
that the maximum probability for a prover to cause the verifier to output 1 in the type of proof
system described above is the maximum of the quantity

S (Wp0)+ 2 (1), ©)

subject to the condition that py, p1 € D (X ® V) satisfy (8).

The problem of maximizing the above quantity (9), subject to the constraint (8), is an instance
of a semidefinite programming problem, and the main result of this paper is obtained through an al-
gorithmic method for approximating the optimal solution to it. In order to make this optimization
problem more amenable to our method, we must modify it in the following way:.

First, consider the problem of maximizing the quantity

Lo L/m
§ <H /QO> + E <H /Q1>/

over all operators Qp, Q1 € Pos (X ® )) such that Try(Qp) < ¢ and Try(Q1) < ¢ for some choice
of a density operator ¢ € D (X). It is not difficult to see that this problem has the same maximum
value as the original problem.

Next, for a positive number a (which we will set as « = 4 shortly), we define two operators:

Py =TI +all} and P, =TT +alIl}.

11



These operators are positive semidefinite and invertible, with inverses given by

1 1
Pyt =119 + &ng and P! =TT + &H(l,.

It holds that the maximum value of the quantity

1, 5 1, 5
§<P0 /QO>+§<P] IQ1>/
subject to the same constraints on Qp and Q; as before, is at least the original optimal value and at
most the original optimal value plus 1/42.

Finally, given that Py and P; are Hermitian and invertible, we have that PyQo P, ranges over all
positive semidefinite operators on X ® ) as Qp does, and likewise for P;Q;P; and Q;. Thus, by a

simple change-of-variables, the problem described above is equivalent to maximizing the quantity
1 1
Tr ( = =
r <2 Qo+ 5 Q1>
over all Qp, Q1 € Pos (X ® V) subject to the constraints Try(PyQoPy) < & and Try(PiQ1P;) < &
for some choice of § € D (X).

To aid in the exposition of the later sections of this paper, the semidefinite programming prob-
lem just described, together with its dual problem formulation, is presented in the following defi-
nition.

Definition 3. For positive semidefinite operators Py, P; € Pos (X ® )), we define the semidefinite
program SDP (P, P;) to consist of the following primal and dual optimization problems:

Primal problem Dual problem
maximize: Tr <1Q0 + 1Q1> minimize: ’ 1Ro + 1Rl
2 2 2 2
subject to: Try(PoQoPo) < ¢, subject to: Py(Ro®@ 1y)Py > 1y ® 1y,
Try(P1Q1P1) < ¢, PI(Ri®@1y)P > 1y ® 1y,
Qo, Q1 € Pos (X ®Y), Ro, Ry € Pos (X).
ceD(X).

It is not necessary for this paper that readers have familiarity with semidefinite programming
duality, and an understanding of how the dual problem above is obtained from the primal prob-
lem is not required. All that is necessary is to observe that weak duality holds, which means that
every value obtainable for the primal problem is bounded above by every value obtainable for
the dual problem. This can be verified directly as follows. Suppose that Qp, Q1 € Pos (X ® V)
and ¢ € D(X) satisfy the primal problem constraints Try(PyQoPy) < ¢ and Try(PiQ1P;) <
¢, and Ro,R; € Pos (X) satisfy the dual problem constraints Py(Ro ® 1y)Py > 1y ® 1y and
P (Rl ® ]ly)Pl > 1y ®1y. One then has

Tr <;Q0 4+ ;Ql) < 1 <P()(R0 X ]ly)P(), Q0> -+ % <P1(R1 ® ]l)))Pll Q1>

= 5 (Ro,Tey (PoQoP)) + 5 (Ry, Try(PLQIPY)) < 5 (Ro, &) + 5 (R1, )

1 1 1 1
= <2R0 + 2R1,§> < ‘RO + Ry

2 2
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3 PSPACE, bounded-depth circuits, and the main proof overview

At the heart of our proof of the containment QIP C PSPACE is a parallel algorithm for approxi-
mately solving semidefinite programs of the special form described in the previous section. The
purpose of the present section is to specify the precise requirements of this algorithm, and why its
existence implies QIP C PSPACE. The algorithm itself is presented in the section following this
one.
Suppose A = (Ayes, Ano) is a promise problem in QIP. Our goal is to prove A € PSPACE, or,
equivalently, that there exists a polynomial-space algorithm for A. While it is evidently possible to
describe such an algorithm directly, we find that it is more natural from an algorithmic perspective
to translate the task at hand into one involving families of bounded-depth Boolean circuits. This
translation is possible using a classic result in circuit complexity due to Borodin [Bor77].

Recall that NC is defined as the class of all functions (including predicates that represent deci-
sion problems) computable by families of logarithmic-space uniform Boolean circuits of polylog-
arithmic depth. The requirement that such a family is logarithmic-space uniform implies that its
circuits are polynomial in size, and therefore represent polynomial-time computations. That these
circuits have polylogarithmic depth represents an abstraction of massive parallelizability. Many
interesting computational tasks are known to correspond to NC computations, including a wide
range of matrix computations.

We also consider a “scaled-up” variant of NC, to be denoted NC(poly), that consists of all func-
tions computable by polynomial-space uniform families of Boolean circuits having polynomial-depth.
(The notation NC(2/°%) has also previously been used for this class [BCP83].) A family of cir-
cuits meeting these requirements could potentially have exponential size, and therefore does not
necessarily represent an efficient computation. However, the polynomial bound on the depth of
these circuits does represent a significant computational restriction. In particular, restricting our
attention to decision problems, we have NC(poly) = PSPACE. This equality follows from a more
general result of Borodin [Bor77] that was referred to above. The primary appeal of this reformu-
lation is that it allows one to make use of extensive work on parallel algorithms for performing
various computational tasks when designing PSPACE algorithms.

Given that NC(poly) = PSPACE, we may consider that the task at hand is to prove A €
NC(poly). When doing this we will make use of a property of NC and NC(poly), which is that
functions in these classes compose well. Specifically, if F is a function in NC(poly) and G is a func-
tion in NC, then the composition G o F is also in NC(poly). This follows from the most straightfor-
ward way of composing the families of circuits that compute F and G.

The assumption that A € QIP implies that there exists a quantum interactive proof system
for A with the special structure described in Section In particular, we have that the verifier’s
actions in such a proof system on a fixed input string x are described by projection operators I,
ITY, IT}, and I, and we make the following assumptions on the completeness and soundness of
this proof system.

Completeness: If it holds that x € Ayes, then there exists a strategy for the prover that causes the
verifier to output 1 (accept) with probability 1. It follows that the optimal value of the semidefinite
program SDP(Py, Py), for Py = ITY + aIl), P; = IT{ + &I}, and a = 4, is at least 1.

Soundness: 1f it holds that x € A, then every prover strategy causes the verifier to output 0
(reject) with probability at least 1/2 — ¢, for e = 1/64. It follows that the optimal value of the
semidefinite program SDP(P,, ), for Py = H(l) + ocflg, P = H% +aITl, and & = 4, is at most
1/24¢e+1/a*> <5/8.
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Problem input « (n bits)

Ch
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Explicit description of H8, 9, H(l)7 and TI} polynomial
L L mn
Cy

Problem output (1 bit)

Figure 1: An illustration of the two-stage process for solving any problem A € QIP by bounded-
depth Boolean circuits. The circuit C; transforms the input string into an exponentially large
description of the verifier’s measurements {I1J,I10} and {I1},IT1}, and the circuit C; implements
a parallel algorithm for approximating the optimal value of the associated semidefinite program.

(Any other sufficiently small positive constant in place of ¢ = 1/64 would do. One can, in fact,
assume that the probability 1/2 — € in the soundness condition is replaced by a quantity exponen-
tially close to 1/2, as a function of n, but such an assumption does not offer any advantages with
respect to our analysis.)

With these assumptions in mind we consider a two-stage computation, illustrated in Figure
as follows:

1. Compute from a given input string x an explicit description of the projections IT), ITY, I},
and I} that determine the quantum interactive proof system for A that is under considera-
tion. This computation, which is represented by the circuit C; in Figure|l} is to be performed
in NC(poly).

2. Run an NC implementation of the algorithm described below in Section @ on IT¢, H(l), H(l,,
and I1}. This computation is represented by the circuit C; in Figure [1} and must accept (or
output 1) if the optimal value of the semidefinite program SDP (P, P; ) is at least 1, and reject
(or output 0) if the optimal value is less than 5/8.

The first stage of this process turns out to be fairly straightforward, using elementary facts
about quantum computations and bounded-depth circuits. Making use of the assumption that
the verifier’s measurements are efficiently implementable (i.e., representable by polynomial-time
uniform families of quantum circuits), this stage can be computed exactly in NC(poly). This may
be done by computing explicit matrix representations of all of the gates in the quantum circuits
specifying the verifier’s measurements, followed by elementary matrix computations that yield
119, ITY, 11}, and I1].

In greater detail, suppose that {IT,I1;} is one of the verifier’s two measurements. Following
the discussion in the previous section, this measurement takes the form

o = U -+ Uy Mol Uy and Ty = U -+ Uy Al -+ U

for Uy, ..., Uq(n) being unitary operators on X ® )Y induced by Toffoli, Hadamard, and 7 /2-phase
shift gates and A¢ and A; being diagonal projection operators with Ag + A; = 1y ® 1y and
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with diagonal entries (in {0,1}) computable in polynomial-time. Letting  denote the number of

Hadamard gates among the gates corresponding to Uy, . .., Uy(,), we see that
1 1
Ho = ?Ml tee MZq(n)—H and Hl = ?Nl cee NZq(n)-i—l/

for My, ..., Mag(ny11 and Ny, ..., Noy()41 being 22m » 22" matrices whose entries have integer real
and imaginary parts computable in polynomial time. By this fact it is possible to compute explicit
descriptions of these matrices in NC(poly) by constructing an exponential-size, polynomial-depth
circuit that independently computes each matrix entry of My, ..., Mgy 1 and Ny, ..., Noy ()41 in
parallel, and then composing this computation with an NC algorithm for computing iterated ma-
trix products. One obtains an NC(poly) algorithm for computing Iy and I, and by performing
this computation for both of the verifier’'s measurements one obtains an NC(poly) algorithm for
computing o, H(l), H(l), and H%.

The second stage is more difficult, and the algorithm for accomplishing it is representative
of the main technical contribution of this work. The section following this one is devoted to a
discussion of this algorithm. Assuming the results reported therein we have that the composition
of the two steps of our computation is an NC(poly) computation, and therefore A € NC(poly) =
PSPACE.

4 A parallel semidefinite programming algorithm

We now present a parallel algorithm that operates as follows. It takes as input four projection
operators I, T19, IT}, IT} € Pos (X ® Y) satisfying

I+ T1 = 1y ® 1y =1} + 113,

where X and Y are complex vector spaces, both having dimension M = 2". Under the promise
that the semidefinite program SDP(P,, P;) defined in Section for Py = H(l) + ocHS, P = H% +
aIl}, and & = 4, has an optimal value that is either at least 1 or less than 5/8, the algorithm
determines which is the case (accepting if the optimal value is at least 1 and rejecting when it is
less than 5/8).

The algorithm refers to constant values

4 1 3
0624, ")/Zg, €:a, and 529,

which, for the sake of clarity, are referred to by these names rather than their numerical values.
The algorithm is as follows:

1. Compute

P =TI +all?, X" =1y®1y, and p\ =

fora € {0,1}, and compute

YO 1, O Y 4 T:[



2. Repeat the following steps for each t from O to T — 1:

(a) Compute

O _ Y 0 (t)
z) = o — Ty (Papg Pa>

and compute the projection Aff) onto the negative eigenspace of th), fora € {0,1}.
(b) Compute

B = (8 @1y, Pl Po) + (A @ 1y, Pl Py ).

If (1) < ¢, then output 1 (i.e., accept) and stop.
(c) Compute

t
(++1) _ Rl ()
XU = exp ( ];) 50 P, (Au ® ]ly) Pa>
(++1) _ X
t+1 t+1
Tr (x4 x{)

fora € {0,1} and

b2
(t+1) _ € () (7)
Y exp (Z Z,B(j) (AO + A ))
j=0
Sy _ YD
Tr (Y(t+1)) ’
3. Output 0 (i.e., reject).

4.1 Intuition behind the algorithm

Before presenting the analysis of the algorithm, we briefly discuss the intuition behind the algo-
rithm itself.

First, it should be noted that the algorithm does not really attempt to approximate the optimal
value of SDP(Py, P;), but merely attempts to determine whether its optimal value is greater or less
than 1/ = 3/4. One could repeat the algorithm for different values of 7y and ¢ for an increasingly
accurate approximation of the optimum, but this is not necessary for solving the decision problem
under consideration.

The variables p((]t), pgt), and o) generated in successive iterations within the algorithm will be
used to specify possible candidates for Qp, Q1, and ¢ in SDP(Py, P;). More specifically, if it is the

case that the substitutions Qg = Zp(()t), Q1= 2p§t) ,and ¢ = o) yield a setting of (Qo, Q1,¢) that is
close to satisfying the primal constraints of SDP (P, P; ), then the algorithm accepts.

The specific notion of closeness used by the algorithm is represented by the number B*), whose
specification is technical but well-suited to the analysis of the algorithm. At an informal and

()

intuitive level, one may observe that large constraint violations are required for the operators Z;
and ZY) to have nontrivial negative eigenspaces, and B(!) may be seen as a sort of measure of

these spaces relative to the current choices of p(()t) and pgt). It is not difficult to show, as is done in
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(5 (1)

the formal analysis that follows in the next subsection, that if p;’, p}”’, and ¢*) provide a setting
of (Qo, Q1,¢) that is close to being feasible, then these operators can be massaged to yield a truly
feasible solution that achieves a large objective value for the primal problem.

If it so happens that a given choice of p(()t), pgt), and ¢ fails to yield a setting for (Qo, Q1, &)
that is close to meeting the primal constraints of SDP(Py, P ), then the algorithm has effectively

generated a witness of this failure: A((Jt) and A( ). The operators A )/ B and A )/ B are then
implicitly used to construct candidate settings for the dual Varlables Rp and Ry, respectlvely. The
quality of the dual variables Ry and R; depends on the number of iterations of the algorithm that
are performed: if a logarithmic number T of iterations pass in which the algorithm fails to find
a setting of (Qo, Q1,¢) that is close to being primal feasible, a dual-feasible setting for Ry and R;
achieving a small dual objective value can be exhibited. It is critical for the parallelizability of the
algorithm that a logarithmic setting for T (which corresponds to a polynomial in the input size to
the original problem A € QIP) suffices for this demonstration.

The magic of the matrix multiplicative weights update method takes place in step (2)(c) where

p(tﬂ), pgtﬂ) and ¢{**1) are regenerated from the previously computed values of Ay bl B and

Alj /B, forj=0,...,t. Lemmal2 from Sect1onlprov1des the key technical tool that allows for a
formal demonstration that the algorithm operates correctly by means of these regenerations.

4.2 Analysis (ignoring precision)

We now show that the algorithm described above answers correctly, meaning (1) if the optimal
value of the semidefinite program SDP (P, P;) is at least 1, then the algorithm accepts, and (2) if
the optimal value is at most 5/8, then the algorithm rejects. These implications are established
by considering two cases: one is that the algorithm accepts and the other is that the algorithm
rejects. The behavior of the algorithm in these cases will allow us to construct feasible solutions to
SDP(P,, P;) that establish the required implications.

In this subsection we consider only the idealized situation where all of the matrix operations
are performed exactly, as this analysis better illustrates the basic principles of the algorithm. The
finite-precision case is discussed in the subsection following this one.

Case 1: the algorithm accepts

If the algorithm accepts, it must do so during an iteration of step (2). For whichever iteration ¢ it

is, we will write pg, p1, 0, Ag, A1, and B rather than pét), pgt), o), A(()t), Agt), and B) to simplify our
notation. Define

Qa:

T € Pos (X ®Y)

fora € {0,1}, and define

Yo + 2Ag TI‘y(Pop()P())AO +2A Try(P1p1P1)A1
7 +2p
The fact that ¢ is a density operator is easily verified. We will prove that (Qo, Q1,¢) is a primal

feasible point of SDP(P,, P;) that achieves an objective value larger than 5/8.
For each a € {0,1} it holds that

= eD(X).

v

_Aa Try(Papan)Aa S Ag (EU - Try(Papan)> Au S %0’ - Try(Pupan),
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with the first inequality following from the fact that 2A,0A, is positive semidefinite, and with the
second inequality holding by the definition of A,. We conclude that

Try(PapaPs) < %a + Ag Try(PapaPa)Aa, (10)

and thus
Yo + 20, Try (PapaPa)Ag

v+2p
It has therefore been established that (Qo, Q1,¢) is a feasible solution to the primal problem of
SDP(Py, P ).

Given that the algorithm has accepted it holds that § < ¢, and therefore the primal objective
value obtained is

Try(P,QaPs) <

<.

1 1 1 1 5
Tr( = = = > =.
r<2Q°+2Q1> Y+2B = yt2¢ 8
Consequently, if the optimal value of SDP(P,, P;) is at most 5/8, then the algorithm cannot accept,
so it must reject.

Case 2: the algorithm rejects

Now assume that the algorithm rejects, and define

1+4£ Z;lﬁl AD (11)

fora € {0,1}. We will prove that the pair (Ro, R1) forms a feasible solution to the dual problem of
SDP(Py, P;) that achieves an objective value smaller than 7/8.
Toward this goal, define a (2M?) x (2M?) matrix

s (P (A“) ® 11y) Py 0
M = ( 0 0 P, (Agt) ®ﬂy) Pl) (12)

foreach t € {0,...,T —1}. Each M is positive semidefinite, and under the assumption that the
algorithm rejects it holds that B(*) > & and therefore, by the sub-multiplicativity of the spectral
norm, M < 1. Writing

(t) (t)
X = (XO %)) and o) = <p0 (()t)>
0 X 0 0

fort € {0,..., T — 1}, one sees that item (1) of Lemmaapplies (for N = 2M?), and implies that

T-1 T—
Amin (Z Mm) > exp(—e) X:l <p(f),M(t)> _ ln(ZMZ)' (13)
=0

=0 €

Foreacht € {0,..., T — 1} it holds that <p(t), M(f)> = ¢, and therefore

In(2M?)

Amin (Z M > > exp(—¢)oT — —
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so that

. P()(R() ®1y)P0 0 > N 11’1<2M2) >
)\mm< 0 PRy ®1)P ) = (1+4e) [ exp(—¢) T )2 1.

Equivalently, P, (R, ® 1y)P, > 1y ® 1y fora € {0,1}, implying that (Ro, R;) forms a dual feasible
solution to SDP (P, P;) as claimed.

It remains to prove an upper bound on the dual objective value achieved by (Ro, R1). To do
this we will apply item (2) of Lemma 2} this time taking N = M and

€
MO = 750 (a9 +a"), (14)

which is consistent with the algorithm’s computation of Y} and ¢(*). The assumption that the
algorithm rejects implies that ,B(t) > ¢, and therefore M < 1 x foreach t € {0,..., T —1}.
Lemma [2| therefore implies that

T-1 T—1
o (2 10) <) (o0 00,
t=0

=0 €
To upper-bound the right-hand-side of this expression, we note that

Al (%(7(” —Try (Papff)Pa)) AD <0

and therefore

2(a,00) < (A, Tey (PplRa) ) = (80 @ 1y, Papl'Pu),

fora € {0,1}. It follows that <a(t),M(t)> <¢/yforeacht € {0,...,T —1},so that

T-1
A (Z M(t)> < eexp(e)T 4 ln(M),

0% €

and therefore

“Ro+ =R
pRot 5k

Hl 1

1+4e =1 ) exp(e) In(M) 7
= < —.
T Amax<t;)M _(1+4g)< p + o7 ><8

If the optimal value of SDP (P, P;) is at least 1, it therefore cannot be that the algorithm rejects, so
it must accept. Thus, the algorithm operates as required.

4.3 Comments on precision

The algorithm computes operators A,gt), pgt), and 0¥, as well as scalar values B*), for a € {0,1}
and some range of values for t. The algorithm also computes Zét), Xét), and Y®) fora e {0,1} and
varying values of ¢, but these operators are only used locally within the algorithm in what may be
viewed as intermediate calculations leading to Al(f), p,(zt), o, and ﬁ(t). With this fact in mind, for

the sake of presenting the analysis that follows in simple terms, we will take each operator Zét),
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ngt), and Y to be an idealized operator that would result from an exact computation. In other
words, we define these operators as X,SO) =1y @1y, YO =1y,

t

XC(,thl —ex< —(5 ®1 P)

p Eoﬁ ( y)
toog2

Y = exp (Z ‘B— (A(()j) + Ap)) ,

and

20 = 2o ~Try (Pl P)
fora € {0,1} and t € {0,...,T — 1}, where Afzt), pgt), o), and B refer to the finite-precision
operators and scalars that are actually stored by an implementation of the algorithm. Let us also
define Ab(f) to be the true projection operator onto the negative eigenspace of Z,gt)
{0,1}andt € {0,..., T —1}.
Now, the matrix exponentials can only be computed approximately, and as a result one can
only guarantee that

for each a €

(£) (t)
o X and o) ~ Y

T (x"+x1") Tr (Y®)°

Similarly, the negative eigenspace computations can only be performed approximately, so that

Agt) ~ Agt). The precise assumptions we will make on the accuracy of these approximations, to be
justified in the subsection following this one, are as follows:

(a) For eacha € {0,1} and t € {0,...,T —1}, AP is a positive semidefinite operator that

satisfies ”
(£)

We will also assume (for the sake of convenience more than necessity) that each A, satisfies

&2
20c2M

(15)

Aflt) < 1y. Under these assumption, one may conclude that

2
VaDZO AP < ADZPAD + il (16)

(b) Foreacha € {0,1} and t € {0,..., T — 1} it holds that pgt) and ¢(*) are positive semidefinite
operators that satisfy

(t)

t) Xa 1)
Pa — (17)

CT (P x| T2

and
y(® 2

) < —. 18
H Tr (Y) H vM (18)

In addition, we will assume that both p((f) + pgt) and ¢*) have trace equal to 1 (and are there-

fore density operators).
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The scalars {Y) may be computed exactly, meaning that
B = (8 @1y, P Po) + (A @ 1y, PPy )

fort =0,...,T — 1, so it is not necessary to make an assumption on their accuracy.

As in the analysis for the exact case, one may consider two cases when the computations are
inexact: one is that the algorithm accepts and the other is that the algorithm rejects. The aspects of
the analysis that differ from the exact case are as follows.

Case 1: the algorithm accepts

As in the exact case, we write pg, p1, 0, Ag, A1, and B rather than p(()t), pgt), a(t), A(()t), Agt), and ,B(t)

for t corresponding to the iteration in which acceptance occurs. This time we define

_ 20
Qo = Y i2B+e

fora € {0,1}, and

C _ % + 2\/ Ao TI'y(Pop()P())\/ Ao + 2\/ Al TI‘y(Plplpl)\/ A1 + ﬁ]l/'\{
Y+2B+e

(which, once again, is a density operator).
In place of the inequality (10), one may obtain the inequality

2
€
Try (PopaPs) < 20+ V/Ba Ty (PapaPo) /Do + 1 (19)
by means of (16). It follows that

2
Try (PLQuPy) < YO + 2/ Ba Ty (PapaPa) vV/Bs + %5 1y _
y\lalala) > ’)/—|—2ﬁ-|—8 ~

s0 (Qo, Q1, ¢) is a feasible solution to the primal problem of SDP (P, P;). Given that the algorithm
has accepted it holds that < ¢, and therefore the primal objective value obtained is

g

1 1 5
> > —.
Yy+2+¢e y+3 8

T (3Q0+ 501 ) -

Case 2: the algorithm rejects

In the case that the algorithm rejects, we once again consider the pair (R, R1) defined precisely as
in the error-free case (as given by (I1)). Lemma 2|is applied to the operators M), ..., M(T-1) as
defined in (12), yielding the bound

T-1 T-1 X(t) ln(ZMZ)
Amin | 3 MY | > exp(— e M) - = 20
(2 >_exp< e)t:zo<ﬁ(x(t)) : 20

in place of (I3). By means of (I7) we obtain

x ()
— 2 MW) > (1—¢)s,
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which yields

Py(Ro ® 1) P, 0 In(2M?)
Amm< b(Ro 0 v)P pl(ley)Pl) > (1 +4¢) <exp(—e)(l—s) —SH> > 1,

by similar reasoning to the error-free analysis. Thus, dual feasibility holds for (Rg, Ry).
Now, when bounding the dual objective value obtained by (Ro, R1), we once again apply
Lemmato the operators MO . M1 a5 defined in (14), obtaining

T-1 T-1 Y(t) h’l(M)
® ] < - M

t=0

By means of first (18) and then (16), we have

YU o) o (o, 1) L€ (20
T (ymy M) =T 7Sy

which implies

1 1
—R —R
”2 0+2 1

exp(e)(1+2¢) In(M) 7
§(1—|—4e)( pgv 2 ><8.

4.4 An NC implementation of the algorithm

In this subsection we explain how the algorithm above can be implemented by an NC computa-
tion.

The matrices stored and processed by our algorithm will have entries with rational real and
imaginary parts, and we assume that all rational numbers are represented as pairs of integers in
binary notation. With these assumptions in place, we first note that elementary matrix operations,
including sums, products, tensor products, inverses, and iterated sums and products of matrices,
are known to be in NC. There is an extensive literature on this topic, and we refer the reader to
the survey of von zur Gathen [vzG93] for more details.

As was mentioned in the previous subsection, the negative eigenspace computations in step
(2)(a) and the matrix exponential computations in step (2)(c) of the algorithm will not be per-
formed exactly in our implementation. Based on the discussion of precision above, however, it
will suffice that the following computational problems can be solved by NC computations.

Matrix exponentials

Input: An n x n matrix A, a positive rational number 7, and an integer k expressed in
unary notation (i.e., 1%).

Promise: || Al < k.

Output: ~ Ann x n matrix X such that ||exp(A) — X|| < 5.

Negative eigenspace projection

Input:  Ann x n Hermitian matrix H and a positive rational number 7.
Output: Ann X n positive semidefinite matrix A < 1 such that

A=Al <7,

for A being the projection operator onto the negative eigenspace of H.
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Indeed, the fact that these computations can be performed in NC provides significantly more
precision than is needed for our algorithm.

The fact that matrix exponentials can be approximated in NC follows by truncating the series

[e%) Am

exp(A) = ), —

|
m=0 m:

to a number of terms linear in k + In(1/ 17). (From a numerical point of view this is not necessarily
a good way to compute matrix exponentials [MVL03], but it is arguably the simplest way to prove
that the stated problem is in NC.) In the case that A is Hermitian it holds that exp(A) is positive
semidefinite, and one may ensure that the approximation X is positive semidefinite as well by
taking an odd number of terms in the truncated series for exp(A).

That negative eigenspace projections can be approximated in NC relies on the fact that roots
of integer polynomials can be approximated to very high precision in NC. This was proved first
for polynomials having only real roots by Ben-Or, Feig, Kozen, and Tiwari [BOFKTS86], and an
alternate proof was given by Bini and Pan [BP98]. While the real-root case is sufficient for our
needs, we note that the general case, which allows for complex roots, was solved by Neff [Nef94].
It is important to note that distinct nonzero roots of integer polynomials can neither be too close
to one another nor to zero [Mah61, Bug04], and that the accuracy with which the roots may be
approximated in NC can be taken to be small even relative to this minimal separation. This allows
one to determine without error which root approximations correspond to negative roots (in the
real-root case).

Given that the characteristic polynomial of a matrix can be computed in NC [Csa76], it follows
that an NC algorithm exists for approximating the eigenvalues of a Hermitian matrix to high pre-
cision. Given a sufficiently accurate approximation x to an eigenvalue A of a Hermitian matrix H,
one may obtain a close approximation of the projection IT onto the eigenspace of H corresponding
to A by dividing the matrix (x1 — H )_1 by a close approximation to its eigenvalue of maximum
absolute value. (One simple way to avoid the special case where x = A is to perturb « slightly.)
By summing the approximate projections onto the eigenspaces corresponding to distinct negative
eigenvalues of H, we obtain a close approximation A to A as claimed. (The fact that our analy-
sis places a requirement on ||v/A — A|| rather than ||A — A|| is easily handled by computing an
approximation A to A, then substituting A? for A in the algorithm.)

Once each of the matrix computations required by the algorithm has been implemented as an
NC computation, it is straightforward to implement the entire algorithm by an NC computation.

We may agree from the start that the real and imaginary parts of each entry of the matrices Agt),

pgt) and o) is to be stored by the algorithm as an integer divided by 2K, for K = O(M) (or even
K = O(log M) if one prefers), as rounding in this way can only introduce small errors that are
within our accuracy requirements. This ensures that the size of the entire computation remains
polynomially bounded. As the number of iterations of the algorithm is logarithmic in M, and
therefore logarithmic in the size of the input to the algorithm, a composition of the computations
described above yields an NC implementation of the algorithm.

5 Open problems
We will conclude this paper by discussing two directions for future research.

The question that is perhaps most clearly raised by this paper is: Which semidefinite programs
can be solved approximately in parallel (by NC algorithms)? We do not have an answer to this
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question, and believe it is deserving of further investigation. The fact that the algorithm presented
in this paper can be implemented in NC relies heavily on the specific form of the semidefinite pro-
gram it approximates. Other algorithms appearing in previous works, including both sequential
algorithms [AHKO5}/AK07] and parallel algorithms [JW09, JUW09], for efficiently solving semidef-
inite programs using the matrix multiplicative weights update method have also been limited to
specific sub-classes of semidefinite programs. To what extent these methods can be applied to
more general classes of semidefinite programs remains open. It is, of course, highly unlikely that
all semidefinite programs can be approximated to high accuracy in NC—for even if this were true
just for linear programs it would imply NC = P [DLR79, [Ser91, Meg92]. (Recent progress on this
question has been reported by [JY11]].)

A second open problem relating to this paper is whether QRG(2) = PSPACE. The class
QRG(2) contains all problems having two-turn (i.e., one-round) quantum refereed games, or, in
other words, competing-prover quantum interactive proof systems in which the verifier asks each
prover a question (in parallel), receives their answers, and makes a decision to accept or reject. The
optimal accept/reject probabilities for quantum refereed games can be represented by semidefi-
nite programs [GWO07] and the classical analogue of this class is known to coincide with PSPACE
[EK97]. (A positive answer to this question has recently been reported by [GW10].)
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