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Abstract

This paper proves that the computational power of quantum interactive proof systems, with a double-
exponentially small gap in acceptance probability between the completeness and soundness cases, is precisely
characterized by EXP, the class of problems solvable in exponential time by deterministic Turing machines.
This fact, and our proof of it, has implications concerning quantum and classical interactive proof systems in
the setting of unbounded error that include the following:

• Quantum interactive proof systems are strictly more powerful than their classical counterparts in the
unbounded-error setting unless PSPACE = EXP, as even unbounded error classical interactive proof
systems can be simulated in PSPACE.

• The recent proof of Jain, Ji, Upadhyay, and Watrous (STOC 2010) establishing QIP = PSPACE relies
heavily on the fact that the quantum interactive proof systems defining the class QIP have bounded
error. Our result implies that some nontrivial assumption on the error bounds for quantum interactive
proofs is unavoidable to establish this result (unless PSPACE = EXP).

• To prove our result, we give a quantum interactive proof system for EXP with perfect completeness
and soundness error 1− 2−2poly , for which the soundness error bound is provably tight. This establishes
another respect in which quantum and classical interactive proof systems differ, because such a bound
cannot hold for any classical interactive proof system: distinct acceptance probabilities for classical
interactive proof systems must be separated by a gap that is at least (single-)exponentially small.

We also study the computational power of a few other related unbounded-error complexity classes.

1 Introduction

Interactive proof systems [Bab85, GMR89] are a central notion in complexity theory. It is well-known that IP, the
class of problems having single-prover classical interactive proof systems with polynomially-bounded verifiers,
coincides with PSPACE [Fel86, LFKN92, Sha92], and it was recently proved that the same characterization
holds when the prover and verifier have quantum computers [JJUW10]. More succinctly, it holds that

IP = PSPACE = QIP. (1)

The two equalities in (1) are, in some sense, intertwined: it is only through the trivial relationship IP ⊆ QIP,
together with the landmark result PSPACE ⊆ IP, that we know PSPACE ⊆ QIP. While there exist clas-
sical refinements [She92, Mei10] of the original method of Lund, Fortnow, Karloff, and Nisan [LFKN92] and
Shamir [Sha92] used to prove PSPACE ⊆ IP, there is no “short-cut” known that proves PSPACE ⊆ QIP
through the use of quantum computation.

The opposite containments required to prove the two equalities in the above equation (1) are IP ⊆ PSPACE
and QIP ⊆ PSPACE, respectively. The first containment is usually attributed to Feldman [Fel86], and can fairly
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be described as being straightforward to prove. The standard proof, in fact, gives a polynomial-space algorithm
that computes the optimal acceptance probability for a prover in a classical interactive proof system exactly, with
this optimal probability expressible as some integer divided by 2k, where k is the maximum number of coin-flips
used by the verifier. The proof of the containment QIP ⊆ PSPACE given in [JJUW10], on the other hand,
is more complicated: it uses known properties of QIP [KW00, MW05] to derive a semidefinite programming
formulation of it, which is then approximated in PSPACE through the use of an algorithm based on the matrix
multiplicative weights update method [AK07, WK06]. Unlike the standard proof of IP ⊆ PSPACE, this proof
depends crucially on the bounded-error property of the quantum interactive proof systems that define QIP.

There must, of course, be alternate ways to prove QIP ⊆ PSPACE, and we note that Wu [Wu10] and
Gutoski and Wu [GW10] have made advances in both simplifying and extending the proof method of [JJUW10].
The main question that motivates the work we present in this paper is whether the assumption of bounded-error is
required to prove QIP ⊆ PSPACE, or could be bypassed. Our results demonstrate that indeed some assumption
on the gap between completeness and soundness probabilities must be in place to prove QIP ⊆ PSPACE unless
PSPACE = EXP.

To explain our results in greater detail it will be helpful to introduce the following notation. Given any choice
of functions m : N → N and a, b : N → [0, 1], where we take N = {0, 1, 2, . . .}, we write QIP(m, a, b)
to denote the class of promise problems1 A = (Ayes, Ano) having a quantum interactive proof system2 with
m(|x|) messages, completeness probability at least a(|x|) and soundness error at most b(|x|) on all input strings
x ∈ Ayes ∪ Ano. When sets of functions are taken in place of m, a, or b, it is to be understood that a union is
implied. For example,

QIP(poly , 1, 1− 2−poly) =
⋃

m,p∈poly
QIP(m, 1, 1− 2−p),

where poly denotes the set of all functions of the form p : N→ N for which there exists a polynomial-time deter-
ministic Turing machine that outputs 1p(n) on input 1n for all n ∈ N. We will also frequently refer to functions
of the form f : N → [0, 1] that are polynomial-time computable, and by this it is meant that a polynomial-time
deterministic Turing machine exists that, on input 1n, outputs a rational number f(n) in the range [0, 1], repre-
sented by a ratio of integers expressed in binary notation. Our main result may now be stated more precisely as
follows.

Theorem 1. It holds that⋃
a

QIP(poly , a, a− 2−2
poly

) = QIP(3, 1, 1− 2−2
poly

) = EXP,

where the union is taken over all polynomial-time computable functions a : N→ (0, 1].

The only new relation in the statement of Theorem 1 is

EXP ⊆ QIP(poly , 1, 1− 2−2
poly

); (2)

we have expressed the theorem in the above form only for the sake of clarity. In particular, the containment

QIP(poly , 1, 1− 2−2
poly

) ⊆ QIP(3, 1, 1− 2−2
poly

)

1We formulate decision problems as promise problems [ESY84] because using promise problems is more natural than restricting our
attention to languages in the presence of error bounds.

2The definitions of quantum computational models based on quantum circuits, including quantum interactive proof systems, is par-
ticularly sensitive to the choice of a gate set in the unbounded error setting. For our main result we take the standard Toffoli, Hadamard,
π/2-phase-shift gate set, but relax this choice for a couple of our secondary results.
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follows from the fact that
QIP(m, 1, 1− ε) ⊆ QIP(3, 1, 1− ε/(m− 1)2)

for all m ∈ poly and any function ε : N → [0, 1], as was proved in [KKMV09] (or an earlier result of [KW00]
with a slightly weaker parameter). The containment

QIP(3, 1, 1− 2−2
poly

) ⊆
⋃
a

QIP(poly , a, a− 2−2
poly

)

is trivial. The containment ⋃
a

QIP(poly , a, a− 2−2
poly

) ⊆ EXP

follows from the results of Gutoski and Watrous [GW07], as a semidefinite program representing the optimal
acceptance probability of a given quantum interactive proof system3 can be solved to an exponential number of
bits of accuracy using an exponential-time algorithm [Kha79, GLS88, NN94].

The new containment (2), which represents the main contribution of this paper, is proved in two steps.
The first step constructs a classical two-prover one-round interactive proof system with one-sided error double-
exponentially close to 1 for the EXP-complete SUCCINCT CIRCUIT VALUE problem. It will be proved that
when an instance whose answer is “no” is given to this proof system, provers cannot make the verifier accept
with probability more than double-exponentially close to 1 even if they are allowed to use a no-signaling strategy,
i.e., a strategy that cannot be used for communication between them. The second step converts this classical two-
prover one-round interactive proof system to a single-prover quantum interactive proof system without ruining
its soundness properties.

Theorem 1 and its proof have the following three consequences.

• Unbounded-error quantum interactive proof systems are strictly more powerful than their classical counter-
parts unless PSPACE = EXP, as unbounded-error classical interactive proof systems recognize exactly
PSPACE.

• The dependence on the error bound in the proof in [JJUW10] is not an artifact of the proof techniques,
but is a necessity unless PSPACE = EXP. To be more precise, even though a double-exponential gap
is sufficient to obtain the EXP upper bound by applying a polynomial-time algorithm for semidefinite
programming, Theorem 1 implies that a double-exponential gap is not sufficient for the PSPACE upper
bound unless PSPACE = EXP.

• Our proof of Theorem 1 shows that a quantum interactive proof system can have a completeness-sound-
ness gap smaller than singly exponential, which cannot happen in classical interactive proof systems. In
our quantum interactive proof system for EXP, the gap is double-exponentially small, and this is tight in
the sense that a dishonest prover can make the verifier accept with probability double-exponentially close
to 1.

We do not know if the double-exponentially small gap in Theorem 1 can be improved to one that is single-
exponentially small by constructing a different proof system.

The two parts of the proof of Theorem 1 mentioned above are contained in Sections 2 and 3. Some additional
results concerning unbounded-error quantum interactive proof systems are discussed in Section 4.

3The results of Gutoski and Watrous [GW07] establish an EXP upper bound even for interactive proof systems with two competing
quantum provers, and only mild assumptions on the gate set are needed to obtain this containment. Namely, the containment holds if
the gate set consists of finitely many gates and the Choi-Jamiołkowski representation of each gate is a matrix made of rational complex
numbers.
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2 A no-signaling proof system for EXP with a weak error bound

As discussed in the previous section, our proof of the containment (2) has two parts. This section discusses the
first part, in which we present a classical two-prover one-round interactive proof system for an EXP-complete
problem. The proof system will have perfect completeness and a soundness error double-exponentially close to
1, even when the provers are permitted to employ an arbitrary no-signaling strategy. No-signaling strategies,
which are defined below, have been considered previously in [Hol09] and [IKM09], for instance.

2.1 Definition of no-signaling proof systems

In a (classical) two-prover one-round interactive proof system, a verifier is a randomized polynomial-time pro-
cess having access to two provers (which we will call Alice and Bob). All of the parties are given the same
input string x. The verifier produces polynomial-length questions to Alice and Bob, receives polynomial-length
answers from them, and decides whether to accept or reject.

A verifier V naturally defines a family of two-player one-round games indexed by input strings. A (classical)
two-player one-round game G = (S, T, Y, Z, π,R) is determined by finite sets S, T , Y , and Z, a probability dis-
tribution π over S×T and a functionR : S×T×Y ×Z → [0, 1]. The valueR(s, t, y, z) is written asR(y, z | s, t)
by convention. This game is interpreted as a cooperative two-player game of imperfect information played by
two players (Alice and Bob) and run by a third party called the referee, who enforces the rules. First the referee
generates a pair of questions (s, t) ∈ S × T according to the probability distribution π and sends s to Alice and t
to Bob. Then Alice responds to the referee with an element y ∈ Y and Bob responds with z ∈ Z. Finally the
referee decides whether Alice and Bob win or lose, using randomness in the most general situation: Alice and
Bob win with probability R(y, z | s, t) and lose with probability 1 − R(y, z | s, t). Note that if we fix a verifier
and an input string x ∈ {0, 1}∗, the verifier acts as a referee in some two-player one-round game GV,x.

A strategy of players in a two-prover one-round game G = (S, T, Y, Z, π,R) is a family of probability
distributions ps,t over Y ×Z indexed by (s, t) ∈ S×T , where the value ps,t(y, z) represents the probability with
which Alice replies with the string y and Bob replies with the string z under the condition that the verifier sends
the question s to Alice and the question t to Bob. It is customary to write p(y, z | s, t) instead of ps,t(y, z). The
strategy is said to be no-signaling if the following no-signaling conditions are satisfied:

1. No-signaling from Alice to Bob: ∑
y∈Y

p(y, z | s, t) =
∑
y∈Y

p(y, z | s′, t)

for all s, s′ ∈ S, t ∈ T , and z ∈ Z.

2. No-signaling from Bob to Alice: ∑
z∈Z

p(y, z | s, t) =
∑
z∈Z

p(y, z | s, t′)

for all s ∈ S, t, t′ ∈ T , and y ∈ Y .

For functions a, b : N → [0, 1], a two-prover one-round interactive proof system with a verifier V is said to
recognize a promise problemA = (Ayes, Ano) with no-signaling provers with completeness probability at least a
and soundness error at most b if the corresponding games satisfy the following conditions:

• Completeness. For every x ∈ Ayes, there exists a no-signaling strategy for the game GV,x that makes the
verifier accept with probability at least a(|x|).
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• Soundness. For every x ∈ Ano, every no-signaling strategy for the game GV,x makes the verifier accept
with probability at most b(|x|).

The class of promise problems A having such a two-prover one-round interactive proof system is denoted
by MIPns

a,b(2, 1). It is known that MIPns
a,b(2, 1) = PSPACE for all polynomial-time computable functions a, b :

N→ (0, 1] for which a(n)− b(n) ≥ 1/p(n) for some p ∈ poly [IKM09, Ito10].

2.2 The proof system for EXP and its analysis

This section describes a (classical) two-prover one-round interactive proof system for EXP with perfect com-
pleteness (for uncorrelated honest provers) and soundness error double-exponentially close to 1 against arbitrary
no-signaling provers. The proof system has the additional property that the verifier’s questions to the two provers
are uniformly generated random strings, which will be important in the next section.

For a Boolean circuit C with N gates g0, g1, . . . , gN−1, where gate gj is an input to gate gi only if j < i, a
pair (N,D) is called a succinct representation ofC ifD is a Boolean circuit that, given an integer 0 ≤ i ≤ N−1,
returns the kind of gate gi (ZERO, ONE, AND, OR, or NOT) and the indices of gates from which the inputs to gi
come (if any). Note that a succinct representation of length n represents a Boolean circuit with at most 2n gates.
The SUCCINCT CIRCUIT VALUE problem is the following decision problem.

SUCCINCT CIRCUIT VALUE

Instance: A succinct representation of a Boolean circuit C with N gates whose fan-in is at
most two and an integer 0 ≤ k ≤ N − 1.

Question: Does gate gk have value 1?

The SUCCINCT CIRCUIT VALUE problem is EXP-complete (see, e.g., Theorem 3.31 of [DK00]). We will give
a two-prover one-round interactive proof system for SUCCINCT CIRCUIT VALUE with the completeness and
soundness conditions stated above.

Theorem 2. The SUCCINCT CIRCUIT VALUE problem has a two-prover one-round interactive proof system with
no-signaling provers with perfect completeness and soundness error 1− 2−2

p(n)
for some p ∈ poly , i.e.,

SUCCINCT CIRCUIT VALUE ∈ MIPns

1,1−2−2poly
(2, 1).

Moreover, for some constant α > 0 and infinitely many input strings x, the soundness error of this proof system
is at least 1− 2−2

|x|α
.

Protocol. Without loss of generality we assume that N is a power of two by adding unused gates as necessary.
The verifier chooses two integers 0 ≤ s, t ≤ N − 1 uniformly and independently. He sends s to Alice and t to
Bob. Alice answers all the values of the input gates of gs in the same order as D returns (if any). Bob answers
the value of gt. The verifier checks the following conditions.

(a) If s = t, then Bob’s answer must be equal to the value computed from Alice’s answers (if any) and the kind
of gate gs.

(b) If gt is an input to gate gs, then the value of gt claimed by Alice must agree with the value claimed by Bob.

(c) If t = k, then Bob’s answer must be 1.

The verifier accepts if and only if all the conditions (a)–(c) are satisfied.
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Completeness. Completeness is easy: if the value of gate gk is 1, then provers who simply answer the requested
values of gates are accepted with probability 1.

Soundness. Now we shall prove that this two-prover interactive proof system has soundness error at most 1−
2−O(N) = 1 − 2−O(2n) against no-signaling dishonest provers. Again we can assume that N is a power of two
without loss of generality.

Let (N,D, k) be an instance of SUCCINCT CIRCUIT VALUE, and let vi ∈ {0, 1} be the value of gate gi
for 0 ≤ i ≤ N − 1. Fix any no-signaling strategy in the two-prover interactive proof system, and let ε be the
probability that this strategy is rejected. We assume ε < 1/(N2 · 3N ) and prove that gate gk has value 1.

Let ε(s, t) be the probability that this strategy is rejected, conditioned on pair (s, t) of questions. Then

ε =
1

N2

∑
s,t

ε(s, t),

which implies for any questions s, t, it holds that

ε(s, t) ≤
∑
s′,t′

ε(s′, t′) = N2ε <
1

3N
.

Let δ(i) be the probability that Bob answers 1− vi when asked i.
We prove that

δ(i) <
3i

3N
(3)

by induction on i.
First we consider the case where gi is a constant gate. This includes the case of i = 0. As Bob gives a

wrong answer with probability δ(i) when Bob’s question is i, regardless of Alice’s question, δ(i) ≤ ε(i, i) by
considering the probability that the strategy fails in the test (a), which implies

δ(i) ≤ ε(i, i) < 1

3N
≤ 3i

3N
.

Suppose i ≥ 1 and gi is not a constant gate. Assume gi is an AND or OR gate, and let j1 and j2 be the indices
of the inputs to gi. First consider Alice’s answer in the case where her question is i. If the value of gj1 claimed by
Alice when her question is i is wrong, then when Bob’s question is j1, either Bob’s answer is wrong or Alice’s
and Bob’s answers disagree. If their answers disagree, then the verifier rejects by the test (b), and therefore this
happens with probability at most ε(j1, j1) < 1/3N . As Bob’s answer is wrong with probability δ(j1) and their
answers disagree with probability less than 1/3N , the value of gj1 claimed by Alice when her question is i is
wrong with probability at most

δ(j1) +
1

3N
<

3j1 + 1

3N
.

In the same way, the value of gj2 claimed by Alice when her question is i is wrong with probability at most

δ(j2) +
1

3N
<

3j2 + 1

3N
.

If Bob’s answer for i is wrong, then if both questions are i, at least one of the following happens:

• The value of gj1 claimed by Alice is wrong. This happens with probability less than (3j1 + 1)/3N .

• The value of gj2 claimed by Alice is wrong. This happens with probability less than (3j2 + 1)/3N .
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• The values of gj1 and gj2 claimed by Alice are correct, but the value of gi claimed by Bob is wrong. As
this is detected by the test (a) of the verifier, it happens with probability at most ε(i, i) < 1/3N .

Therefore,

δ(i) <
3j1 + 1

3N
+

3j2 + 1

3N
+

1

3N
<

3i

3N
.

The case where gi is a NOT gate is proved in a similar way. This finishes the inductive case and establishes the
inequality (3) for all i.

The inequality (3) implies that Bob’s answer to question k is equal to vk with probability greater than 1 −
3k/3N ≥ 2/3. On the other hand, by the test (c), Bob’s answer to question k is equal to 1 with probability at
least 1− ε(k, k) > 1− 1/3N ≥ 2/3. These two conditions imply vk = 1.

Remark. For a function a : N → (0, 1], let MIPns
a,<a(2, 1) denote the class of promise problems having a two-

prover one-round interactive proof system with no-signaling provers with acceptance probability at least a and
soundness error strictly less than a. Because the maximum acceptance probability for no-signaling provers can
be computed exactly by solving an exponential-size linear program [Pre], we have MIPns

a,<a(2, 1) ⊆ EXP for
any polynomial-time computable function a : N → (0, 1] by using any polynomial-time algorithm for linear
programming [Kha79, Kar84]. Combined with Theorem 2, we have MIPns

a,<a(2, 1) = EXP for any such a.

Tightness of soundness analysis. We shall prove the “moreover” part of Theorem 2: the double-exponential
gap is tight for this protocol. This will be used in the next section to prove that the soundness error of the quantum
interactive proof system for EXP that we construct is at least 1− 2−2

poly
on infinitely many input strings.

This can be proved by studying the instance of the SUCCINCT CIRCUIT VALUE problem used by Trevisan
and Xhafa [TX98].4 Let h be a positive integer. Consider a circuit C with N = 2h + 2 gates g0, g1, . . . , g2h+1,
where g0 and g1 are ZERO gates and, for 1 ≤ i ≤ h, g2i and g2i+1 are two identical OR gates whose inputs come
from g2(i−1) and g2(i−1)+1. Clearly this circuit C has a succinct representation of length polylogarithmic in h.
Let k = 2h− 1.

Alice and Bob decide their answers as follows. First we describe each prover’s marginal probability distribu-
tion. When Bob is asked either 2i or 2i + 1 where 0 ≤ i ≤ h, he answers 1 with probability 1/2h−i and 0 with
probability 1 − 1/2h−i. When Alice is asked 2i or 2i + 1 where 1 ≤ i ≤ h, she answers (1, 0) and (0, 1) each
with probability 1/2h−i+1, and (0, 0) with probability 1− 2h−i. The joint distribution of their answers is defined
as follows. In what follows, (y1, y2; z) denotes that Alice’s answer is (y1, y2) and Bob’s answer is z.

• s = t, bs/2c = i ≥ 1: Alice and Bob answer (1, 0; 1) and (0, 1; 1) each with probability 1/2h−i+1, and
(0, 0; 0) with probability 1− 1/2h−i.

• bs/2c = i ≥ 1, t = 2(i− 1): Alice and Bob answer (1, 0; 1) and (0, 1; 0) each with probability 1/2h−i+1,
and (0, 0; 0) with probability 1− 1/2h−i.

• bs/2c = i ≥ 1, t = 2(i − 1) + 1: Alice and Bob answer (1, 0; 0) and (0, 1; 1) each with probability
1/2h−i+1, and (0, 0; 0) with probability 1− 1/2h−i.

• Otherwise: Alice and Bob give their answers in any way as long as the marginal distributions agree with
the description above (e.g. they answer independently).

It is easy to check that this strategy is no-signaling.
With this strategy, the verifier accepts unless t ∈ {0, 1} and Bob answers 1 (which fails in test (a)). Therefore,

the verifier accepts with probability at least 1−1/((h+1) ·2h) ≥ 1−2−h = 1−2−2
nα

for some constant α > 0.
4Note that we cannot avoid a large soundness error simply by restricting the problem to succinct Boolean formula values: with this

restriction in place, the problem is in PSPACE [Lyn77].
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3 Simulating no-signaling provers with quantum interactive proofs

In this section we present the second part of the proof of the containment (2), which is a simulation of the
two-prover one-round interactive proof system described in the previous section by a quantum interactive proof
system with perfect completeness and unbounded soundness error. The result in this section can be stated as the
following lemma.

Lemma 3. Let ε : N → (0, 1). Suppose that a promise problem A = (Ayes, Ano) has a two-prover one-round
interactive proof system with no-signaling provers with perfect completeness and soundness error at most 1− ε.
Assume moreover that, for each input x ∈ Ayes ∪ Ano, the verifier’s questions are chosen uniformly at random
from the set {0, 1}k(|x|) × {0, 1}k(|x|), for some function k ∈ poly .

(i) It holds that A ∈ QIP(4, 1, 1 − ε2/144), that is, the problem A has a four-message quantum interactive
proof system with perfect completeness and soundness error at most 1− ε2/144.5

(ii) If the original system has soundness error 1 − ε′ on input x ∈ Ano, then the derived quantum interactive
proof system has soundness error at least 1− ε′/4 on input x.

Note that the containment (2) follows by applying Lemma 3 to the two-prover one-round interactive proof
system for the SUCCINCT CIRCUIT VALUE problem with no-signaling provers with perfect completeness and
soundness error at most 1− 2−2

poly
constructed in the previous section.

Construction of the protocol. Given an input string x ∈ Ayes ∪ Ano, the verifier in the quantum interactive
proof system that we construct acts as follows. First, the verifier prepares six quantum registers S, T, S′, T′, Y,
and Z in the state |Φ〉SS′ |Φ〉TT′ |0〉Y|0〉Z, where |Φ〉 is the following maximally entangled state:

|Φ〉 =

(
|00〉+ |11〉√

2

)⊗k
,

where k = k(|x|). The four registers S, T, S′, and T′ are k qubits long, and Y and Z must be long enough to
hold Alice and Bob’s answers in the two-prover one-round protocol. Next, in the first round, the verifier sends
S, T, Y, and Z to the prover and the prover sends back the same registers. Then, the verifier performs one of the
following three tests each with probability 1/4, and accepts unconditionally with probability 1/4.

• Simulation test: The verifier measures S′, T′, Y, and Z in the computational basis to obtain s, t, y, and z,
respectively. If the result is accepted by the base two-prover protocol, then the verifier accepts; otherwise
he rejects.

• Undo-Alice test: The verifier tells the prover that the undo-Alice test is to be performed. He then sends
registers S and Y back to the prover, and receives S. The verifier then destructively tests whether registers
S and S′ are in state |Φ〉 or not. If they are, then he accepts; otherwise he rejects.

• Undo-Bob test: The verifier tells the prover that the undo-Bob test is to be performed. He then sends
registers T and Z back to the prover, and receives T. The verifier then destructively tests whether registers
T and T′ are in state |Φ〉 or not. If they are, then he accepts; otherwise he rejects.

Note that this verifier can be implemented exactly with the standard Toffoli, Hadamard, π/2-phase-shift gate set.

5It is possible to replace the coeffieicnt 1/144 with a larger constant at the expense of introducing slight complications in several parts
in the proof, but we will choose to use simpler arguments rather than trying to maximize the coefficient.
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Proof of completeness and part (ii) of the lemma. Let x ∈ Ayes ∪ Ano. We prove that if there exists a
no-signaling strategy in the base two-prover interactive proof system that makes the verifier accept with prob-
ability 1 − ε′, then the quantum interactive proof system admits a strategy that makes the verifier accept with
probability 1− ε′/4.

Let p be the no-signaling strategy in the base two-prover interactive proof system whose acceptance proba-
bility is 1− ε′. Let

pA(y | s) =
∑
z∈Z

p(y, z | s, t), pB(z | t) =
∑
y∈Y

p(y, z | s, t)

be the marginal strategies, which are well-defined because of the no-signaling conditions. The prover in the
constructed quantum interactive proof system performs the following. Registers S̃, T̃, Ỹ, and Z̃ are the prover’s
private registers initialized to |0〉.

• In the first round, he performs the following operation on registers S̃, T̃, Y, Ỹ, Z, and Z̃ controlled on
registers S and T being in the state |s〉S|t〉T:

|0〉S̃T̃YỸZZ̃ 7→ |s〉S̃|t〉T̃
∑
y,z

√
p(y, z | s, t) |yy〉YỸ|zz〉ZZ̃.

This controlled operation changes the global state as follows:

1

2k

∑
s,t

|ss0〉SS′S̃|tt0〉TT′T̃|00〉YỸ|00〉ZZ̃

7→ 1

2k

∑
s,t

|sss〉SS′S̃|ttt〉TT′T̃
∑
y,z

√
p(y, z | s, t) |yy〉YỸ|zz〉ZZ̃.

• In the undo-Alice test, he performs the following operation on registers S̃, Y, and Ỹ controlled on regis-
ters S, T̃, and Z̃ being in the state |s〉S|t〉T̃|z〉Z̃:

|s〉S̃
∑
y

√
p(y, z | s, t)
pB(z | t)

|yy〉YỸ 7→ |0〉S̃|00〉YỸ,

or does nothing if pB(z | t) = 0. This controlled operation changes the global state to

1

2k

∑
s,t

|ss0〉SS′S̃|ttt〉TT′T̃|00〉YỸ
∑
z

√
pB(z | t) |zz〉ZZ̃,

which can be rewritten as

|Φ〉SS′ |0〉S̃|00〉YỸ ⊗
1√
2k

∑
t

|ttt〉TT′T̃
∑
z

√
pB(z | t) |zz〉ZZ̃

by rearranging the registers.

• In the undo-Bob test, he performs the following operation on registers T̃, Z, and Z̃ controlled on registers S̃,
T, and Ỹ being in the state |s〉S̃|t〉T|y〉Ỹ:

|t〉T̃
∑
z

√
p(y, z | s, t)
pA(y | s)

|zz〉ZZ̃ 7→ |0〉T̃|00〉ZZ̃,
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or does nothing if pA(y | s) = 0. This controlled operation changes the global state to

1

2k

∑
s,t

|sss〉SS′S̃|tt0〉TT′T̃|00〉ZZ̃
∑
y

√
pA(y | s) |yy〉YỸ,

which can be rewritten as

|Φ〉TT′ |0〉T̃|00〉ZZ̃ ⊗
1√
2k

∑
s

|sss〉SS′S̃
∑
y

√
pA(y | s) |yy〉YỸ.

This strategy passes the undo-Alice and undo-Bob tests with certainty, and passes the simulation test with prob-
ability 1− ε′, resulting in the overall acceptance probability 1− ε′/4.

In particular, this implies that this quantum interactive proof system has perfect completeness and the state-
ment in part (ii) of Lemma 3.

Proof of soundness. We prove the contrapositive: if there is a strategy in the single-prover protocol that is
accepted with high probability, then the input must be a yes-instance. Fix an instance x ∈ Ayes ∪ Ano and
a strategy in the single-prover protocol that is accepted with probability 1 − ε′, where ε′ < ε(|x|)2/144. We
prove that there is a no-signaling strategy for Alice and Bob in the base two-prover protocol that is accepted with
probability at least 1−12

√
ε′ > 1−ε(|x|), implying that x ∈ Ayes. As the verifier accepts with probability 1−ε′,

the simulation test, the undo-Alice test, and the undo-Bob test each succeed with probability at least 1− 4ε′.
Let register P denote the prover’s private space. Without loss of generality, we assume that P is first initialized

to |0〉 and that the prover performs a unitary operation U = USTYZP in the first round, a unitary operation
V = VSYP in the second round in the undo-Alice test, and a unitary operation W = WTZP in the second round
in the undo-Bob test. Let |Ψ〉 be the state in registers S, T, S′, T′, Y, Z, and P after the first round:

|Ψ〉 = (IS′T′ ⊗ USTYZP)|Φ〉SS′ |Φ〉TT′ |0〉Y|0〉Z|0〉P.

Let p̃(s, t, y, z) be the probability with which the results of the measurement in the simulation test are s, t, y,
and z:

p̃(s, t, y, z) = 〈s|S′〈t|T′〈y|Y〈z|Z(TrSTP|Ψ〉〈Ψ|)|s〉S′ |t〉T′ |y〉Y|z〉Z.

Note that because the verifier never sends S′ or T′ to the prover, the reduced state TrSTYZP|Ψ〉〈Ψ| is not affected
by the operation by the prover in the first round. Therefore, TrSTYZP|Ψ〉〈Ψ| is the completely mixed state I/22k

on S′ and T′. This implies
∑

y,z p̃(s, t, y, z) = 1/22k for every s and t. Let

p(y, z | s, t) = 22kp̃(s, t, y, z).

We shall show that strategy p is “close” to some no-signaling strategy. For this purpose, we use the notion
of δ-no-signaling strategies.

A strategy p in a two-player one-round game is said to be δ-no-signaling with respect to probability distribu-
tion π over the questions if there exist single-prover strategies pA(y | s) and pB(z | t) such that

∑
s,t

π(s, t)
1

2

∑
y

∣∣∣∣∣∑
z

p(y, z | s, t)− pA(y | s)

∣∣∣∣∣ ≤ δ, (4)

∑
s,t

π(s, t)
1

2

∑
z

∣∣∣∣∣∑
y

p(y, z | s, t)− pB(z | t)

∣∣∣∣∣ ≤ δ. (5)
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We will now prove that p is 4
√
ε′-no-signaling with respect to the uniform distribution over the questions. Toward

this goal, we define

pA(y | s) =
1

2k

∑
t,z

p(y, z | s, t), pB(z | t) =
1

2k

∑
s,y

p(y, z | s, t),

and prove the inequalities (4) and (5) with δ = 4
√
ε′.

Define an unnormalized state

|ϕ̃〉SS′YZP = (〈Φ|TT′ ⊗ ISS′YZP)(ISS′T′Y ⊗WTZP)|Ψ〉.

Given that this strategy passes the undo-Bob test with probability at least 1−4ε′, we have that ‖|ϕ̃〉SS′YZP‖
2 ≥ 1−

4ε′. As ε′ < ε2/144 < 1/4, the unnormalized state |ϕ̃〉SS′YZP is nonzero. Let |ϕ〉SS′YZP = |ϕ̃〉SS′YZP/‖|ϕ̃〉SS′YZP‖.
Then,

(〈Φ|TT′ ⊗ 〈ϕ|SS′YZP)(ISS′T′Y ⊗WTZP)|Ψ〉 ≥
√

1− 4ε′,

which is equivalent to

1

2
‖(ISS′T′Y ⊗WTZP)|Ψ〉〈Ψ|(ISS′T′Y ⊗W ∗TZP)− (|Φ〉〈Φ|TT′ ⊗ |ϕ〉〈ϕ|SS′YZP)‖1 ≤ 2

√
ε′.

By taking the partial trace appropriately, this implies that

1

2

∥∥∥∥TrSTZP|Ψ〉〈Ψ| −
IT′

2k
⊗ TrSZP|ϕ〉〈ϕ|

∥∥∥∥
1

≤ 2
√
ε′,

1

2
‖TrSTT′ZP|Ψ〉〈Ψ| − TrSZP|ϕ〉〈ϕ|‖1 ≤ 2

√
ε′.

Then we have that

1

2

∥∥∥∥TrSTZP|Ψ〉〈Ψ| −
IT′

2k
⊗ TrSTT′ZP|Ψ〉〈Ψ|

∥∥∥∥
1

≤ 1

2

∥∥∥∥TrSTZP|Ψ〉〈Ψ| −
IT′

2k
⊗ TrSZP|ϕ〉〈ϕ|

∥∥∥∥
1

+
1

2

∥∥∥∥IT′2k
⊗ TrSTT′ZP|Ψ〉〈Ψ| −

IT′

2k
⊗ TrSZP|ϕ〉〈ϕ|

∥∥∥∥
1

≤ 4
√
ε′.

Note that ∑
z

p(y, z | s, t) = 22k〈s|S′〈t|T′〈y|Y(TrSTZP|Ψ〉〈Ψ|)|s〉S′ |t〉T′ |y〉Y,

pA(y | s) = 2k〈s|S′〈y|Y(TrSTT′ZP|Ψ〉〈Ψ|)|s〉S′ |y〉Y.

Then,

1

22k

∑
s,t

1

2

∑
y

∣∣∣∣∣∑
z

p(y, z | s, t)− pA(y | s)

∣∣∣∣∣
=

1

2

∑
s,t,y

∣∣∣∣〈s|S′〈t|T′〈y|Y (TrSTZP|Ψ〉〈Ψ| −
IT′

2k
⊗ TrSTT′ZP|Ψ〉〈Ψ|

)
|s〉S′ |t〉T′ |y〉Y

∣∣∣∣
≤ 1

2

∥∥∥∥TrSTZP|Ψ〉〈Ψ| −
IT′

2k
⊗ TrSTT′ZP|Ψ〉〈Ψ|

∥∥∥∥
1

≤ 4
√
ε′,
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and therefore the inequality (4) is satisfied. The proof of the inequality (5) is analogous. This establishes the
claim that strategy p is 4

√
ε′-no-signaling.

Now we prove that a δ-no-signaling strategy is close to some no-signaling strategy. We use a property of the
no-signaling conditions shown by Holenstein [Hol09]. By applying Lemma 9.4 in [Hol09] twice, we obtain the
following.

Lemma 4. Let p be a δ-no-signaling strategy with respect to a probability distribution π. Then there exists a
no-signaling strategy p̂ such that∑

s,t

π(s, t)
1

2

∑
y,z

|p(y, z | s, t)− p̂(y, z | s, t)| ≤ 2δ.

The proof of Lemma 4 is the same as that of Lemma 9.5 in [Hol09], and is omitted.
By Lemma 4, there exists a no-signaling strategy p̂ such that

1

22k

∑
s,t

1

2

∑
y,z

|p(y, z | s, t)− p̂(y, z | s, t)| ≤ 8
√
ε′.

As the simulation test succeeds with probability at least 1− 4ε′, the no-signaling strategy p̂ makes the verifier in
the base two-prover protocol accept with probability at least

1− 4ε′ − 8
√
ε′ > 1− 12

√
ε′ > 1− ε(|x|).

By the soundness of the base two-prover protocol, it must hold that x ∈ Ayes. Therefore, the quantum interactive
proof has soundness error at most 1− ε2/144.

4 Additional results

In this section we mention some additional results about quantum interactive proof systems with unbounded
error.

4.1 One-round quantum interactive proofs for PSPACE with a weak error bound

Theorem 5. It holds that PSPACE ⊆ QIP(2, 1, 1− 2−poly).

Proof. The SUCCINCT BIPARTITENESS problem is the problem of deciding if an exponential-size graph, given
in its succinct representation, is bipartite. It is known to be PSPACE-complete [LB89]. It is straightforward to
construct a two-prover one-round XOR interactive proof system with perfect completeness and an exponentially
small gap for this problem. (We refer the reader to [CHTW04, Weh06] for the definition of XOR interactive
proof systems.) This proves the containment

PSPACE ⊆ ⊕MIP1,1−2−poly(n) [2].

Theorem 5.10 of Cleve, Høyer, Toner, and Watrous [CHTW04] implies that

⊕MIP1,1−2−poly(n) [2] = ⊕MIP∗
1,1−2−poly(n) [2],

and the construction of Wehner [Weh06] implies

⊕MIP∗
1,1−2−poly(n) [2] ⊆ QIP(2, 1, 1− 2−poly).

We obtain the theorem by chaining these inclusions.
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4.2 Upper bounds

One may also consider the power of quantum interactive proof systems when acceptance is defined by a sharp
threshold value. That is, for any choice of functions m ∈ poly and a : N → (0, 1], we may consider the class
QIP(m, a,< a), defined as the class of promise problems A = (Ayes, Ano) having a quantum interactive proof
system withm(|x|) messages that accepts with probability at least a(|x|) on inputs x ∈ Ayes, and with probability
strictly smaller than a(|x|) on all inputs x ∈ Ano. The notation QMA(1, < 1) is shorthand for QIP(1, 1, < 1).
The following two theorems concerning these classes are proved.

In this section, the following mild assumptions are made on the gate set:

• The gate set consists of a finite number of gates.

• The amplitudes of each gate in the gate set are algebraic numbers.

Without the second restriction, even BQP would contain some undecidable languages; see Theorem 5.1 of
Adleman, Demarrais, and Huang [ADH97].

4.2.1 Upper bound on QIP(poly , a,<a)

Theorem 6. For any polynomial-time computable function a : N→ (0, 1], it holds that

QIP(poly , a,<a) ⊆ EXPSPACE.

As stated in the introduction, Gutoski and Watrous [GW07] give a semidefinite program representing the opti-
mal acceptance probability of a given quantum interactive proof system. When applied to the class QIP(poly , a,<
a), with our relaxed assumptions on the gate set, this transformation results in a semidefinite program of expo-
nential size with algebraic coefficients. The remaining task is to decide whether this semidefinite program has
the optimal value at least a or less than a. This task can be formulated as an exponential-size instance of the
SEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTS problem.

SEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTS is a problem based on semidefinite pro-
gramming. Let Q, R, and Q̄ ∩ R be the fields of rational numbers, real numbers, and algebraic real numbers,
respectively. Each element α of Q̄∩R can be encoded as a triple (f(X), a, b) of the minimum polynomial f(X)
of α over Q and a, b ∈ Q with a < α < b such that α is the only root of f(X) between a and b. (See Section 10.2
of Basu, Pollack, and Roy [BPR03].)

SEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTS

Instance: Integers n, d > 0, m algebraic real matrices A1, . . . , Am of size d × d, and m
algebraic real numbers b1, . . . , bm.

Question: Does there exist a d× d real matrix X � 0 such that TrAiX = bi for all i?

The complexity of SEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTS is not known. (See Ra-
mana [Ram97] for related results.) Although there exist polynomial-time algorithms for semidefinite program-
ming that compute an approximate solution to an arbitrary precision, they cannot be applied in a straightforward
way to the SEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTS problem. We point out that the
problem is in PSPACE by using the following result.

Theorem 7 (Canny [Can88]). The problem EXISTENTIAL THEORY OF THE REALS is in PSPACE. That is,
given a quantifier-free Boolean formula F (x1, . . . , xk) with atomic predicates of the forms p(x1, . . . , xk) = 0
and p(x1, . . . , xk) > 0, where p is a polynomial with integer coefficients given as a list of coefficients in binary
notation, it is decidable in space polynomial in the length of the formulaF whether there exists (x1, . . . , xk) ∈ Rk

that satisfies F .
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Corollary 8. The problem SEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTS is in PSPACE.

Proof. Note that an algebraic number encoded as (f(X), a, b) can be represented as a variable x constrained
as f(x) = 0 ∧ x− a > 0 ∧ b− x > 0. By using this, we can write down each linear constraint TrAiX = bi in
terms of the variables representing the d2 coordinates of X . Moreover, the semidefinite constraint X � 0 can be
written as ∃M.X = MTM , and therefore can be written as polynomial constraints on the coordinates of X .

By combining the semidefinite programming formulation of [GW07] and the polynomial-space algorithm for
SEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTS, we obtain Theorem 6.

4.2.2 Upper bound on QMA(1, <1)

Theorem 9. It holds that QMA(1, <1) ⊆ PSPACE.

Proof. Let L ∈ QMA(1, < 1). The same technique as the proof of QMA ⊆ PP by Marriott and Wa-
trous [MW05] reduces L to a problem of deciding whether or not an implicitly given exponential-sized matrix A
has an eigenvalue 1, or equivalently I −A is singular.

The entries ofA are in a field F that depends on the languageL as follows. Let α1, . . . , αu ∈ C be the distinct
numbers that appear as entries in the natural representations of the gates in the gate set used by the verifier in
the system for the language L. Let F = Q(α1, . . . , αu) be the field generated by the adjunction of α1, . . . , αu

to the field Q, i.e. the smallest field containing all the rational numbers and α1, . . . , αu. Because α1, . . . , αu

are algebraic, F is a finite extension of the field Q. By the primitive element theorem (see e.g. Problem 7.5 of
[Lor06]), there exists an algebraic number α ∈ F such that F = Q(α). Let f(t) be the minimal polynomial
of α over Q and d be the degree of f(t). The field F is isomorphic to the quotient field Q[t]/(f(t)), by which
we identify F with the set of polynomials over Q of degree at most d − 1. Using this representation, addition,
subtraction, multiplication, division, and equality testing of the numbers in F can be performed in NC.

Using this representation, each entry of A can be computed in PSPACE. Csanky’s algorithm [Csa76] can
then be used to determine whether I −A is singular or not in PSPACE.

5 Open problems

We conclude with a short list of open problems related to quantum interactive proof systems with an unbounded
error.

• Is EXP ⊆ QIP(2, 1, <1)?

• We have PSPACE ⊆ QIP(poly , 1, 1 − 2−poly) ⊆ EXP. Where does QIP(poly , 1, 1 − 2−poly) lie? One
may try to prove QIP(poly , 1, 1− 2−poly) = PSPACE by improving the dependence of the parallel time
of an approximation algorithm for semidefinite programming on the error parameter. Note, however, that
this is open even for the special case of positive linear programming [TX98].

• Is it possible to improve our upper bound of EXPSPACE on QIP(poly , a,< a)? In particular, is it pos-
sible to avoid resorting to the exact feasibility of a semidefinite program? Or does the succinct version
of the semidefinite feasibility problem belong to QIP(poly , a,< a)? How small can the gap in accep-
tance probability between the completeness case and the soundness case be in a quantum interactive proof
system?

• Does the containment QMA ⊆ PP [MW05] extend to the unbounded-error case? Our upper bound of
PSPACE may not hold if perfect completeness is not assumed.
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