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Abstract

We study properties of quantum strategies, which are complete specifications of a given
party’s actions in any multiple-round interaction involving the exchange of quantum infor-
mation with one or more other parties. In particular, we focus on a representation of quantum
strategies that generalizes the Choi-Jamiołkowski representation of quantum operations. This
new representation associates with each strategy a positive semidefinite operator acting only
on the tensor product of its input and output spaces. Various facts about such representations
are established, and two applications are discussed: the first is a new and conceptually simple
proof of Kitaev’s lower bound for strong coin-flipping, and the second is a proof of the exact
characterization QRG = EXP of the class of problems having quantum refereed games.

1 Introduction

The theory of games provides a general structure within which both cooperation and competition
among independent entities may be modeled, and provides powerful tools for analyzing these
models. Applications of this theory have fundamental importance in many areas of science.

This paper considers games in which the players may exchange and process quantum informa-
tion. We focus on competitive games, and within this context the types of games we consider are
very general. For instance, they allow multiple rounds of interaction among the players involved,
and place no restrictions on players’ strategies beyond those imposed by the theory of quantum
information.

While classical games can be viewed as a special case of quantum games, it is important to
stress that there are fundamental differences between general quantum games and classical games.
For example, the two most standard representations of classical games, namely the normal form
and extensive form representations, are not directly applicable to general quantum games. This is
due to the nature of quantum information, which admits a continuum of pure (meaning extremal)
strategies, imposes bounds on players’ knowledge due to the uncertainty principle, and precludes
the representation of general computational processes as trees. In light of such issues, it is neces-
sary to give special consideration to the incorporation of quantum information into the theory of
games.

A general theory of quantum games has the potential to be useful in many situations that arise
in quantum cryptography, computational complexity, communication complexity, and distributed
computation. This potential is the primary motivation for the work presented in this paper. The
following facts are among those proved herein:
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• Every multiple round quantum strategy can be faithfully represented by a single positive
semidefinite operator acting only on the tensor product of the input and output spaces of
the given player. This representation is a generalization of the Choi-Jamiołkowski represen-
tation of super-operators. The set of all operators that arise in this way is precisely charac-
terized by the set of positive semidefinite operators that satisfy a simple collection of linear
constraints.

• If a multiple round quantum strategy calls for one or more measurements then its represen-
tation consists of one operator for each of the possible measurement outcomes. The proba-
bility of any given pair of measurement outcomes for two interacting strategies is given by
the inner product of their associated operators.

• The maximum probability with which a given strategy can be forced to output a particular
result is the minimum value of p for which the positive semidefinite operator corresponding
to the given measurement result is bounded above (with respect to the Löwner partial order)
by the representation of a valid strategy multiplied by p.

We give the following applications of these facts:

• A new and conceptually simple proof of Kitaev’s bound for strong coin-flipping, which
states that every quantum strong coin-flipping protocol allows a bias of at least 1/

√
2− 1/2.

• The exact characterization QRG = EXP of the class of problems having quantum refer-
eed games (i.e., quantum interactive proof systems with two competing provers). This es-
tablishes that quantum and classical refereed games are equivalent in terms of expressive
power: QRG = RG.

Relation to previous work

It is appropriate for us to comment on the relationship between the present paper and a fairly
large collection of papers written on a topic that has been called quantum game theory. Meyer’s PQ
Penny Flip game [27] is a well-known example of a game in the category these papers consider.
The work of Eisert, et al. [9] is also commonly cited in this area. Some controversy exists over the
interpretations drawn in some of these papers—see, for instance, Refs. [5, 10].

A key difference between our work and previous work on quantum game theory is that our
focus is on multiple-round interactions. Understanding the actions available to players that have
quantum memory is therefore critical to our work, and to our knowledge has not been previously
considered in the context of quantum game theory.

A second major difference is that, in most of the previous quantum game theory papers we are
aware of, the focus is on rather specific examples of classical games and on identifying differences
that arise when so-called quantum variants of these games are considered. As a possible conse-
quence, it may arguably be said that none of the results proved in these papers has had sufficient
generality to be applicable to any other studies in quantum information. In contrast, our interest
is not on specific examples of games, but rather on the development of a general theory that holds
for all games. It remains to be seen to what extent our work will be applied, but the applications
that we provide suggest that it may have interesting uses in other areas of quantum information
and computation.

A different context in which games arise in quantum information theory is that of nonlocal
games [8], which include pseudo-telepathy games [6] as a special case. These are cooperative games
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of incomplete information that model situations that arise in the study of multiple-prover inter-
active proof systems, and provide a framework for studying Bell Inequalities and the notion of
nonlocality that arises in quantum physics. While such games can be described within the general
setting we consider, we have not yet found an application of the methods of the present paper to
this type of game. Possibly there is some potential for further development of our work to shed
light on some of the difficult questions in this area.

2 Preliminaries

This section gives a brief overview of various quantum information-theoretic notions that will
be needed for the remainder of the paper. We assume the reader has familiarity with quantum
information theory, and intend only that this overview will serve to establish our notation and
highlight the main concepts that we will need. Readers not familiar with quantum information
are referred to the books of Nielsen and Chuang [30] and Kitaev, Shen and Vyalyi [23].

When we speak of the vector space associated with a given quantum system, we are referring
to some complex Euclidean space (by which we mean a finite-dimensional inner product space
over the complex numbers). Such spaces will be denoted by capital script letters such as X , Y ,
and Z . We always assume that an orthonormal standard basis of any such space has been chosen,
and with respect to this basis elements of these spaces are associated with column vectors, and
linear mappings from one space to another are associated with matrices in the usual way. We will
often be concerned with finite sequences X1, X2, . . . , Xn of complex Euclidean spaces. We then
define

Xi...j = Xi ⊗ · · · ⊗ Xj

for nonnegative integers i, j ≤ n, and define Xi...j = C for i > j.
It is convenient to define various sets of linear mappings between given complex Euclidean

spaces X and Y as follows. Let L (X ,Y) denote the space of all linear mappings (or operators)
from X to Y , and write L (X ) as shorthand for L (X ,X ). We write Herm (X ) to denote the set of
Hermitian operators acting on X , Pos (X ) to denote the set of all positive semidefinite operators
acting on X , and D (X ) to denote the set of all density operators on X (meaning positive semidef-
inite operators having trace equal to 1.) An operator A ∈ L (X ,Y) is a linear isometry if A∗A = IX .
The existence of a linear isometry in L (X ,Y) of course requires that dim(X ) ≤ dim(Y), and if
dim(X ) = dim(Y) then any linear isometry A ∈ L (X ,Y) is unitary. We let U (X ,Y) denote the
set of all linear isometries from X to Y . The operator IX ∈ L (X ) denotes the identity operator
on X . Transposition of operators is always taken with respect to standard bases.

The Hilbert-Schmidt inner product on L (X ) is defined by

〈A, B〉 = Tr(A∗B)

for all A, B ∈ L (X ).
For given operators A, B ∈ Herm (X ), the notation A ≤ B means that B − A ∈ Pos (X ). This

relation is sometimes called the Löwner partial order on Herm (X ).
When we refer to measurements, we mean POVM-type measurements. Formally, a measure-

ment on a complex Euclidean space X is described by a collection of positive semidefinite opera-
tors

{Pa : a ∈ Σ} ⊂ Pos (X )

satisfying the constraint

∑
a∈Σ

Pa = IX .
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Here Σ is a finite, non-empty set of measurement outcomes. If a state represented by the density
operator ρ is measured with respect to such a measurement, each outcome a ∈ Σ results with
probability 〈Pa, ρ〉 = Tr(Paρ).

A super-operator is a linear mapping of the form

Φ : L (X ) → L (Y) ,

where X and Y are complex Euclidean spaces. A super-operator of this form is said to be positive
if Φ(X) ∈ Pos (Y) for every choice of X ∈ Pos (X ), and is completely positive if Φ ⊗ IL(Z) is positive
for every choice of a complex Euclidean space Z . The super-operator Φ is said to be admissible
if it is completely positive and preserves trace: Tr(Φ(X)) = Tr(X) for all X ∈ L (X ). Admissi-
ble super-operators represent discrete-time changes in quantum systems that can, in an idealized
sense, be physically realized.

The Choi-Jamiołkowski representation [20, 7] of super-operators is as follows. Suppose that
Φ : L (X ) → L (Y) be a given super-operator and let {|1〉 , . . . , |N〉} be the standard basis of X .
Then the Choi-Jamiołkowski representation of Φ is the operator

J(Φ) = ∑
1≤i,j≤N

Φ(|i〉 〈j|)⊗ |i〉 〈j| ∈ L (Y ⊗X ) .

It holds that Φ is completely positive if and only if J(Φ) is positive semidefinite, and that Φ is
trace-preserving if and only if TrY (J(Φ)) = IX .

For two complex Euclidean spaces X and Y , we define a linear mapping

vec : L (X ,Y) → Y ⊗X

by extending by linearity the action |i〉 〈j| 7→ |i〉 |j〉 on standard basis states. We make extensive
use of this mapping in some of our proofs, as it is very convenient in a variety of situations.
Let us now state some identities involving the vec mapping, each of which can be verified by a
straightforward calculation.

Proposition 1. The following hold:

1. For any choice of A, B, and X for which the product AXBT makes sense we have

(A ⊗ B) vec(X) = vec(AXBT).

2. For any choice of A, B ∈ L (X ,Y) we have

TrX (vec(A) vec(B)∗) = AB∗,

TrY (vec(A) vec(B)∗) = (B∗A)T .

3. For any choice of A, B ∈ L (X ) we have

vec(IX )∗(A ⊗ B) vec(IX ) = Tr(ABT).

4. Let A ∈ L (X ,Y ⊗Z) and suppose Φ : L (X ) → L (Y) is given by Φ(X) = TrZ(AXA∗) for all
X ∈ L (X ). Then

J(Φ) = TrZ(vec(A) vec(A)∗).

4



For any non-empty set C ⊆ Herm (X ) of Hermitian operators, the polar of C is defined as

C◦ = {A ∈ Herm (X ) : 〈B, A〉 ≤ 1 for all B ∈ C} ,

and the support and gauge functions of C are defined as follows:

s(X | C) = sup{〈X, Y〉 : Y ∈ C},

g(X | C) = inf{λ ≥ 0 : X ∈ λC}.

These functions are partial functions in general, but it is typical to view them as total functions
from Herm (X ) to R ∪ {∞} in the natural way. For any set C of positive semidefinite operators,
we denote

↓C = {X : 0 ≤ X ≤ Y for some Y ∈ C}.

Proposition 2. Let X be a complex Euclidean space and let C and D be non-empty subsets of Herm (X ).
Then the following facts hold:

1. If C ⊆ D then D◦ ⊆ C◦.

2. If −X ∈ C for each X ∈ Pos (X ) then C◦ ⊆ Pos (X ).

3. If C is closed, convex, and contains the origin, then the same is true of C◦. In this case we have
C◦◦ = C,

s(· | C) = g(· | C◦), and s(· | C◦) = g(· | C).

The first two items in the above proposition are elementary, and a proof of the third may be found
in Rockafellar [31].

3 Quantum Strategies

In this section we define the notions of a quantum strategy and the Choi-Jamiołkowski representation
of quantum strategy. The remainder of the paper is concerned with the study of these objects and
their interactions.

Definition of quantum strategies

We begin with our definition for quantum strategies, which we will simply call strategies given
that the focus of the paper is on the quantum setting.

Definition 3. Let n ≥ 1 and let X1, . . . ,Xn and Y1, . . . ,Yn be complex Euclidean spaces. An n-turn
non-measuring strategy having input spaces X1, . . . ,Xn and output spaces Y1, . . . ,Yn consists of:

1. complex Euclidean spaces Z1, . . . ,Zn, which will be called memory spaces, and

2. an n-tuple of admissible mappings (Φ1, . . . , Φn) having the form

Φ1 : L (X1) → L (Y1 ⊗Z1)

Φk : L (Xk ⊗Zk−1) → L (Yk ⊗Zk) (2 ≤ k ≤ n).

An n-turn measuring strategy consists of items 1 and 2 above, as well as:

3. a measurement {Pa : a ∈ Σ} on the last memory space Zn.
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Φ1 Φ2 Φ3 Φn

X1 X2 X3 XnY1 Y2 Y3 Yn

Z1 Z2 Z3 Zn−1 Zn

Figure 1: An n-turn strategy.

We will use the term n-turn strategy to refer to either a measuring or non-measuring n-turn strat-
egy.

Figure 1 illustrates an n-turn non-measuring strategy.
Although there is no restriction on the dimension of the memory spaces in a quantum strategy,

it is established in the proof of Theorem 6 that every measuring strategy is equivalent to one in
which dim(Zk) ≤ dim(X1...k ⊗Y1...k) for each k = 1, . . . , n.

We also note that our definition of strategies allows the possibility that any of the input or
output spaces is equal to C, which corresponds to an empty message. One can therefore view
simple actions such as the preparation of a quantum state or performing a measurement without
producing a quantum output as special cases of strategies.

When we say that an n-turn strategy is described by linear isometries A1, . . . , An, it is meant that
the admissible super-operators Φ1, . . . , Φn defining the strategy are given by Φk(X) = AkXA∗

k for
1 ≤ k ≤ n. Notice that, when it is convenient, there is no loss of generality in restricting ones
attention to strategies described by linear isometries in this way. This is because every admissible
super-operator can be expressed as a mapping X 7→ AXA∗ for some linear isometry A, followed
by the partial trace over some “garbage” space that represents a tensor factor of the space to which
A maps. By including the necessary “garbage” spaces as tensor factors of the memory spaces, and
therefore not tracing them out, there can be no change in the action of the strategy on the input
and output spaces. Along similar lines, there is no loss of generality in assuming that a given
measuring strategy’s measurement is projective.

Interactions among strategies

A given n-turn strategy expects to interact with something that provides the inputs corresponding
to X1, . . . ,Xn and accepts the strategy’s outputs corresponding to Y1, . . . ,Yn. Let us define an n-
turn co-strategy to be the sort of object that a strategy interfaces with in the most natural way.

Definition 4. Let n ≥ 1 and let X1, . . . ,Xn and Y1, . . . ,Yn be complex Euclidean spaces. The
spaces X1, . . . ,Xn are viewed as the input spaces of some n-turn strategy while Y1, . . . ,Yn are to
be viewed as its output spaces. An n-turn non-measuring co-strategy to these spaces consists of:

1. complex Euclidean memory spaces W0, . . . ,Wn,

2. a density operator ρ0 ∈ D (X1 ⊗W0), and

3. an n-tuple of admissible mappings (Ψ1, . . . , Ψn) having the form

Ψk : L (Yk ⊗Wk−1) → L (Xk+1 ⊗Wk) (1 ≤ k ≤ n − 1)

Ψn : L (Yn ⊗Wn−1) → L (Wn) .

An n-turn measuring co-strategy consists of items 1, 2 and 3 above, as well as:
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ρ0 Ψ1 Ψ2 Ψ3 Ψn

Φ1 Φ2 Φ3 Φn

X1 X2 X3 X4 XnY1 Y2 Y3 Yn

Z1 Z2 Z3 Zn−1

W0 W1 W2 W3 Wn−1

Zn

Wn

Figure 2: An interaction between an n-turn strategy and co-strategy.

4. a measurement {Qb : b ∈ Γ} on the last memory space Wn.

As for strategies, we use the term n-turn co-strategy to refer to either a measuring or non-measuring
n-turn co-strategy.

Figure 2 represents the interaction between an n-turn strategy and co-strategy.
We have arbitrarily defined strategies and co-strategies in such a way that the co-strategy sends

the first message. This accounts for the inevitable asymmetry in the definitions. While it is possible
to view any n-turn co-strategy as being an (n + 1)-turn strategy having input spaces C,Y1, . . . ,Yn

and output spaces X1, . . . ,Xn, C, it will be convenient for our purposes to view strategies and
co-strategies as being distinct types of objects.

Similar to strategies, there will be no loss of generality in assuming that the initial state ρ0

of a co-strategy is pure, that each of the admissible super-operators Ψ1, . . . , Ψn takes the form
Ψj(X) = BjXB∗

j for some linear isometry Bj, and, in the case of measuring co-strategies, that the

measurement {Qb : b ∈ Γ} is a projective measurement.
An n-turn strategy and co-strategy are compatible if they agree on the spaces X1, . . . ,Xn and

Y1, . . . ,Yn. By the output of a compatible strategy and co-strategy, assuming at least one of them
is measuring, we mean the result of the measurement or measurements performed after the inter-
action between the strategies takes place. In particular, if both the strategy and co-strategy make
measurements, then each output (a, b) ∈ Σ × Γ results with probability

〈

Pa ⊗ Qb, (IL(Zn) ⊗ Ψn) · · · (Φ1 ⊗ IL(W0))ρ0

〉

.

A new way to represent strategies

The definitions of strategies and co-strategies given above are natural from an operational point
of view, in the sense that they clearly describe the actions of the players that they model. In some
situations, however, representing a strategy (or co-strategy) in terms of a sequence of admissible
super-operators is inconvenient. We now describe a different way to represent strategies that is
based on the Choi-Jamiołkowski representation of super-operators.

Let us first extend this representation to n-turn non-measuring strategies. To do this, we asso-
ciate with the strategy described by (Φ1, . . . , Φn) a single admissible super-operator

Ξ : L (X1...n) → L (Y1...n) .

This is the super-operator that takes a given input ξ ∈ D (X1...n) and feeds the portions of this state
corresponding to the input spaces X1, . . . ,Xn into the network pictured in Figure 1, one piece at a
time. The memory space Zn is then traced out, leaving some element Ξ(ξ) ∈ D (Y1...n). Such a map
is depicted in Figure 3 for the case n = 3. The Choi-Jamiołkowski representation of the strategy
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Φ1

Φ2

Φ3

traced out

ξ





































Ξ(ξ)

Z3

Y3

Y2

Y1

X3

X2

X1

Z2

Z1

Figure 3: The super-operator Ξ associated with a 3-turn strategy.

described by (Φ1, . . . , Φn) is then simply defined as the Choi-Jamiołkowski representation J(Ξ) of
the super-operator Ξ we have just defined.

An alternate expression for the Choi-Jamiołkowski representation of a strategy exists in the
case that it is described by linear isometries (A1, . . . , An). Specifically, its representation is given
by TrZn (vec(A) vec(A)∗) where A ∈ L (X1...n,Y1...n ⊗Zn) is defined by the product

A =
(

IY1...n−1
⊗ An

) (

IY1...n−2
⊗ An−1 ⊗ IXn

)

· · · (A1 ⊗ IX2...n
). (1)

Next we consider measuring strategies. Assume that an n-turn measuring strategy is given,
where the measurement is described by

{Pa : a ∈ Σ} ⊂ Pos (Zn) ,

for some finite, non-empty set Σ of measurement outcomes. In this case we first associate with the
strategy a collection of super-operators {Ξa : a ∈ Σ}, each having the form

Ξa : L (X1...n) → L (Y1...n) .

The definition of each super-operator Ξa is precisely as in the non-measuring case, except that the
partial trace over Zn is replaced by the mapping

X 7→ TrZn ((Pa ⊗ IY1...n
)X) .

Notice that

∑
a∈Σ

Ξa = Ξ,

where Ξ is the mapping defined as in the non-measuring case. Each super-operators Ξa is com-
pletely positive but generally is not trace-preserving. The Choi-Jamiołkowski representation of
the measuring strategy described by (Φ1, . . . , Φn) and {Pa : a ∈ Σ} is defined as {J(Ξa) : a ∈ Σ}.

In the situation where a measuring strategy is described by linear isometries A1, . . . , An and a
measurement {Pa : a ∈ Σ}, its Choi-Jamiołkowski representation is given by {Qa : a ∈ Σ} for

Qa = TrZn (vec(Ba) vec(Ba)
∗)

where
Ba =

(√
Pa ⊗ IY1...n

)

A

for A as defined above (1).
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It is not difficult to prove that for given input spaces X1, . . . ,Xn and output spaces Y1, . . . ,Yn,
a collection {Qa : a ∈ Σ} of operators is the Choi-Jamiołkowski representation of some n-turn
measuring strategy if and only if Q = ∑a∈Σ Qa is the representation of an n-turn non-measuring
strategy over the same spaces.

Finally, we define the Choi-Jamiołkowski representation of measuring and non-measuring co-
strategies in precisely the same way as for strategies, except that for technical reasons the result-
ing operators are transposed with respect to the standard basis. (This essentially allows us to
eliminate one transposition from almost every subsequent equation in this paper involving rep-
resentations of co-strategies.) Specifically, a given n-turn co-strategy is viewed as an (n + 1)-turn
strategy by including an empty first and last message as discussed previously. This strategy’s
Choi-Jamiołkowski representation is defined as above. The operators comprising this strategy rep-
resentation are then transposed with respect to the standard basis to obtain the Choi-Jamiołkowski
representation of the co-strategy.

As we work almost exclusively with the Choi-Jamiołkowski representation of strategies and
co-strategies hereafter, we will typically use the term representation rather than Choi-Jamiołkowski
representation for brevity.

4 Properties of representations

The applications of Choi-Jamiołkowski representations of strategies given in this paper rely upon
three key properties of these representations, stated below as Theorems 5, 6, and 9. This section is
devoted to establishing these properties.

Interaction output probabilities

The first property provides a simple formula for the probability of a given output of an interaction
between a strategy and a co-strategy.

Theorem 5. Let {Qa : a ∈ Σ} be the representation of a strategy and let {Rb : b ∈ Γ} be the represen-
tation of a compatible co-strategy. For each pair (a, b) ∈ Σ × Γ of measurement outcomes, we have that the
output of an interaction between the given strategy and co-strategy is (a, b) with probability 〈Qa, Rb〉.

Proof. Let us fix a strategy and co-strategy whose representations are {Qa : a ∈ Σ} and
{Ra : a ∈ Γ}, respectively. Without loss of generality, the strategy is described by linear isometries
A1, . . . , An and a projective measurement {Πa : a ∈ Σ}, while the co-strategy is described by a
pure initial state u0, linear isometries B1, . . . , Bn and a projective measurement {∆b : b ∈ Γ}.

For each output pair (a, b) ∈ Σ × Γ, define va,b ∈ Zn ⊗Wn as follows:

va,b = (Πa ⊗ ∆b)(IZn
⊗ Bn)(An ⊗ IWn−1

) · · · (IZ1
⊗ B1)(A1 ⊗ IW0

)u0.

The probability of the outcome (a, b) is ‖va,b‖2 for each pair (a, b).
Now, making use of the vec mapping, we may express va,b in a different way:

va,b =
(

vec (IY1...n⊗X1...n
)∗ ⊗ IZn⊗Wn

)

(xa ⊗ yb),

where

xa =
(

IX1...n⊗Y1...n⊗Zn
⊗ vec(IZ1...n−1

)∗
)

(vec(A1)⊗ · · · ⊗ vec(An−1) ⊗ vec((Πa ⊗ IYn
)An)),

yb =
(

IX1...n⊗Y1...n⊗Wn
⊗ vec(IW0...n−1

)∗
)

(u0 ⊗ vec(B1)⊗ · · · ⊗ vec(Bn−1) ⊗ vec(∆bBn)).
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The probability of outcome (a, b) is therefore

‖va,b‖2 = Tr va,bv∗a,b

= vec(IY1...n
⊗X1...n)

∗
[

(TrZn
xax∗a )⊗ (TrWn

yby∗b)
]

vec(IY1...n⊗X1...n
)

= Tr
[

(TrZn
xax∗a) (TrWn

yby∗b)
T
]

= 〈Qa, Rb〉

as required.

Characterization of strategy representations

Let us denote by
Sn(X1...n,Y1...n)

the set of all representations of n-turn strategies having input spaces X1, . . . ,Xn and output spaces
Y1, . . . ,Yn. We may abbreviate this set as Sn or S whenever the spaces or number of turns is clear
from the context. Similarly, we let

co-Sn(X1...n,Y1...n)

denote the set of all representations of co-strategies for the same spaces. It will be convenient to
define S0(C, C) = co-S0(C, C) = {1}.

The second property of strategy representations that we prove provides a characterization of
Sn(X1...n,Y1...n) in terms of linear constraints on Pos (Y1...n ⊗X1...n).

Theorem 6. Let n ≥ 1, let X1, . . . ,Xn and Y1, . . . ,Yn be complex Euclidean spaces, and let Q ∈
Pos (Y1...n ⊗X1...n). Then

Q ∈ Sn(X1...n,Y1...n)

if and only if
TrYn

(Q) = R ⊗ IXn

for R ∈ Sn−1(X1...n−1,Y1...n−1).

Proof. Let us first assume that Q ∈ Sn(X1...n,Y1...n), which implies that there exist memory spaces
Z1, . . . ,Zn and admissible super-operators Φ1, . . . , Φn that comprise a strategy whose represen-
tation is Q. Let Ξn : L (X1...n) → L (Y1...n) be the super-operator associated with this strategy as
described in Section 3, and let

Ξn−1 : L (X1...n−1) → L (Y1...n−1)

be the super-operator associated with the (n − 1)-turn strategy obtained by terminating the strat-
egy described by (Φ1, . . . , Φn) after n − 1 turns. We have

TrYn
(J(Ξn)) = J(TrYn

◦Ξn) = J(Ξn−1 ◦ TrXn
) = J(Ξn−1) ⊗ IXn

,

and so TrYn
(Q) = R ⊗ IXn

for

R = J(Ξn−1) ∈ Sn−1(X1...n−1,Y1...n−1)

as required.
Now assume that Q ∈ Pos (Y1...n ⊗X1...n) satisfies TrYn

(Q) = R ⊗ IXn
for some choice of R ∈

Sn−1(X1...n−1,Y1...n−1). Our goal is to prove that Q ∈ Sn(X1...n,Y1...n). This will be proved by
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induction on n. In fact, it will be easier to prove a somewhat stronger statement, which is that the
assumptions imply that there exists a strategy whose representation is Q that (i) is described by
linear isometries A1, . . . , An, and (ii) satisfies dim(Zn) = rank(Q).

If n = 1, there is nothing new to prove: it is well-known that if Q ∈ Pos (Y1 ⊗X1) satisfies
TrY1

(Q) = IX1
, then Q = J(Φ1) for some admissible super-operator Φ1 : L (X1) → L (Y1). Any

such super-operator can be expressed as

Φ1(X) = TrZ1
A1XA∗

1

for dim(Z1) = rank(Q) and some choice of a linear isometry A1 ∈ L (X1,Y1 ⊗Z1). The 1-turn
strategy we require is therefore the strategy described by A1.

Now assume that n ≥ 2. By the induction hypothesis, there exist spaces Z1, . . . ,Zn−1 and
linear isometries A1, . . . , An−1 with

A1 ∈ U (X1,Y1 ⊗Z1) ,

Ak ∈ U (Xk ⊗Zk−1,Yk ⊗Zk) (2 ≤ k ≤ n − 1),

such that
R = TrZn−1

(vec(A) vec(A)∗)

for A ∈ L (X1...n−1,Y1...n−1 ⊗Zn−1) defined as

A = (IY1...n−2
⊗ An−1) · · · (A1 ⊗ IX2...n−1

).

As required, we let Zn be a complex Euclidean space with dimension equal to the rank of Q,
and let B ∈ L (X1...n,Y1...n ⊗Zn) be any operator satisfying

TrZn (vec(B) vec(B)∗) = Q.

Such a choice of B must exist given that the dimension of Zn is large enough to admit a purification
of Q. Note that

TrYn⊗Zn
(vec(B) vec(B)∗) = TrYn

(Q) = R ⊗ IXn
.

Next, let V be a complex Euclidean space with dimension equal to that of Xn, and let V ∈
U (Xn,V) be an arbitrary unitary operator. We have

TrV (vec(V) vec(V)∗) = IXn
,

and therefore
TrZn−1⊗V (vec(A ⊗ V) vec(A ⊗ V)∗) = R ⊗ IXn

.

At this point we have identified two purifications of R ⊗ IXn
. We will use the isometric equiv-

alence of purifications to define an isometry An that will complete the proof. Specifically, because
Zn−1 ⊗ V has the minimal dimension required to admit a purification of R ⊗ IXn

, it follows that
there must exist a linear isometry U ∈ U (Zn−1 ⊗ V ,Yn ⊗Zn) such that

(IY1...n−1
⊗ U ⊗ IX1...n

) vec(A ⊗ V) = vec(B).

This equation may equivalently be written

B = (IY1...n−1
⊗ U)(A ⊗ V).

11



We now define An = U(IZn−1
⊗ V). This is a linear isometry from Xn ⊗ Zn−1 to Yn ⊗ Zn that

satisfies
B = (IY1...n−1

⊗ An)(A ⊗ IXn
).

This implies that the strategy described by A1, . . . , An has representation

TrZn (vec(B) vec(B)∗) = Q,

and therefore completes the proof.

Theorem 6 is equivalent to the following statement: an operator Q ∈ Pos (Y1...n ⊗X1...n) is the
representation of some n-turn strategy with input spaces X1, . . . ,Xn and output spaces Y1, . . . ,Yn

if and only if there exist operators Q1, . . . , Qn−1, where Qk ∈ Pos (Y1...k ⊗X1...k), such that the
following linear constraints are satisfied:

TrYk...n
(Q) = Qk−1 ⊗ IXk...n

(2 ≤ k ≤ n),

TrY1...n
(Q) = IX1...n

.

Each operator Qk in of course uniquely determined by the representation Q, and represents the
strategy obtained by terminating any strategy represented by Q after k turns.

Theorem 6 also gives a characterization of n-turn co-strategies, as stated in the following corol-
lary.

Corollary 7. Let n ≥ 1, let X1, . . . ,Xn and Y1, . . . ,Yn be complex Euclidean spaces, and let Q ∈
Pos (Y1...n ⊗X1...n). Then

Q ∈ co-Sn(X1...n,Y1...n)

if and only if Q = R ⊗ IYn
for R ∈ Pos (Y1...n−1 ⊗X1...n) satisfying

TrXn
(R) ∈ co-Sn−1(X1...n−1,Y1...n−1).

The fact that Sn(X1...n,Y1...n) and co-Sn(X1...n,Y1...n) are bounded and characterized by the
positive semidefinite constraint together with finite collections of linear constraints yields the fol-
lowing corollary.

Corollary 8. Let n ≥ 1, let X1, . . . ,Xn and Y1, . . . ,Yn be complex Euclidean spaces. Then the sets
Sn(X1...n,Y1...n) and co-Sn(X1...n,Y1...n) are compact and convex.

Just as Sn(X1...n,Y1...n) consists of all representations of non-measuring strategies, the set

↓Sn(X1...n,Y1...n)

consists of all elements of representations of measuring strategies. In other words, for any n-turn
measuring strategy representation {Qa : a ∈ Σ}, it holds that Qa ∈ ↓Sn(X1...n,Y1...n) for each
a ∈ Σ. Moreover, for each operator Q there exists an n-turn measuring strategy {Qa : a ∈ Σ} of
which Q is an element if and only if Q ∈ ↓Sn(X1...n,Y1...n). The set ↓co-Sn(X1...n,Y1...n) has similar
analogous properties.
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Maximum output probabilities

The final property of strategy representations that we will prove concerns the maximum proba-
bility with which some interacting co-strategy can force a given measuring strategy to output a
given outcome.

Theorem 9. Let n ≥ 1, let X1, . . . ,Xn and Y1, . . . ,Yn be complex Euclidean spaces, and let {Qa : a ∈ Σ}
represent an n-turn measuring strategy with input spaces X1, . . . ,Xn and output spaces Y1, . . . ,Yn. Then
for each a ∈ Σ, the maximum probability with which this strategy can be forced to output a, maximized
over all choices of compatible co-strategies, is given by

min{p ∈ [0, 1] : Qa ≤ pR for some R ∈ Sn(X1...n,Y1...n)}.

An analogous result holds when {Qa : a ∈ Σ} is a measuring co-strategy.

The remainder of the present section is devoted to a proof of this theorem.

Lemma 10. Let V and W be complex Euclidean spaces and let D ⊆ Herm (V) be any closed, convex set
that contains the origin. Then for

C = {X ∈ Herm (V ⊗W) : X ≤ Y ⊗ IW for some Y ∈ D}

we have
C◦ = {Q ∈ Pos (V ⊗W) : TrW (Q) ∈ D◦} .

Proof. The assumption 0 ∈ D implies that −R ∈ C for every R ∈ Pos (V ⊗W), and therefore
C◦ ⊆ Pos (V ⊗W). Consider any choice of Q ∈ Pos (V ⊗W), and note that

〈TrW (Q), Y〉 = 〈Q, Y ⊗ IW〉

for every choice of Y ∈ Herm (V).
If it is the case that Q ∈ C◦ then we have 〈Q, Y ⊗ IW 〉 ≤ 1 for all Y ∈ D, and therefore

TrW (Q) ∈ D◦. On the other hand, if TrW (Q) ∈ D◦ then 〈Q, Y ⊗ IW 〉 ≤ 1 for all Y ∈ D. It follows
from the fact that Q is positive semidefinite that 〈Q, X〉 ≤ 1 for all X ≤ Y ⊗ IW , and therefore
Q ∈ C◦.

Lemma 11. Let V be a complex Euclidean space, let A,B ⊂ Pos (V) be non-empty closed and convex sets,
and suppose

(↓A)◦ = {X ∈ Herm (V) : X ≤ Q for some Q ∈ B} .

Then
(↓B)◦ = {Y ∈ Herm (V) : Y ≤ R for some R ∈ A} .

Proof. Let
C = {Y ∈ Herm (V) : Y ≤ R for some R ∈ A} .

As −P ∈ C for every P ∈ Pos (V), it follows that C◦ ⊆ Pos (V). Clearly ↓A ⊆ C, and therefore
C◦ ⊆ (↓A)◦. Thus,

C◦ ⊆ (↓A)◦ ∩ Pos (V) = ↓B.

On the other hand, we have that every Q ∈ ↓B is contained in (↓A)◦, implying that 〈Q, R〉 ≤ 1
for all R ∈ A. As Q ≥ 0, this implies that 〈Q, X〉 ≤ 1 for X ≤ R. Consequently, Q ∈ C◦. Thus
↓B = C◦, and so (↓B)◦ = C as required.
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Lemma 12. Let n ≥ 1 and let X1, . . . ,Xn and Y1, . . . ,Yn be complex Euclidean spaces. Then for all
X ∈ Herm (Y1...n ⊗X1...n) we have

1. X ∈ (↓Sn(X1...n,Y1...n))
◦ if and only if X ≤ Q for some choice of Q ∈ co-Sn(X1...n,Y1...n).

2. X ∈ (↓co-Sn(X1...n,Y1...n))
◦ if and only if X ≤ Q for some choice of Q ∈ Sn(X1...n,Y1...n).

Proof. The proof is by induction on n. As ↓S0 = ↓co-S0 = [0, 1] and (↓S0)
◦ = (↓co-S0)

◦ =
(−∞, 1], the lemma holds for the case n = 0.

Now suppose that n ≥ 1. The two items in the statement of the lemma are equivalent by
Lemma 11, so it will suffice to prove the first.

Define E ⊂ Herm (Y1...n−1 ⊗X1...n) as

E = {Y : Y ≤ P ⊗ IXn
for some P ∈ ↓Sn−1} .

By Lemma 10 we have

E◦ = {Q ∈ Pos (Y1...n−1 ⊗X1...n) : TrXn
(Q) ∈ (↓Sn−1)

◦} .

Also define F ⊂ Herm (Y1...n ⊗X1...n) as

F = {Z : Z ≤ Q ⊗ IYn for some Q ∈ E◦} .

Again applying Lemma 10, we obtain

F ◦ = {R ∈ Pos (Y1...n ⊗X1...n) : TrYn
(R) ∈ E} .

Now, by Theorem 6 we have F ◦ = ↓Sn(X1...n,Y1...n), and so F = (↓Sn(X1...n,Y1...n))
◦. By the

induction hypothesis we have

E◦ = {Q ∈ Pos (Y1...n−1 ⊗X1...n) : TrXn
(Q) ∈ ↓co-Sn−1} ,

and therefore
F = {Z : Z ≤ Q ⊗ IYn for TrXn(Q) ∈ ↓co-Sn−1} .

By Corollary 7 we have that

F = {Z : Z ≤ R for some R ∈ ↓co-Sn} ,

which completes the proof.

Proof of Theorem 9. Let pa ∈ [0, 1] denote the maximum probability with which {Qa : a ∈ Σ} can
be forced to output a in an interaction with some compatible co-strategy. It follows from Theorem 5
that pa = s(Qa | co-S). Using Lemma 12, along with the fact that Qa is positive semidefinite, we
have

s(Qa | co-S) = s(Qa | ↓co-S) = g(Qa | (↓co-S)◦) = g(Qa | ↓S),

which completes the proof.
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5 Applications

Kitaev’s bound for strong coin-flipping

Quantum coin-flipping protocols aim to solve the following problem: two parties, Alice and Bob,
at separate locations, want to flip a coin but do not trust one another. A quantum coin-flipping
protocol with bias ε is an interaction between two (honest) strategies A and B, both having output
sets {0, 1, abort}, that satisfies two properties:

1. The interaction between the honest parties A and B produces the same outcome b ∈ {0, 1}
for both players, with probability 1/2 for each outcome. (Neither player outputs “abort”
when both are honest.)

2. If one of the parties does not follow the protocol but the other does, neither of the outcomes
b ∈ {0, 1} is output by the honest player with probability greater than 1/2 + ε.

Protocols that satisfy these conditions are generally referred to as strong coin-flipping protocols,
because they require that a cheater cannot bias an honest player’s outcome toward either result 0
or 1. (In contrast, weak protocols assume that Alice desires outcome 0 and Bob desires outcome 1,
and only require that cheaters cannot bias the outcome toward their desired outcome.)

Kitaev [22] proved that no strong quantum coin-flipping protocol can have bias smaller than
1/

√
2− 1/2, meaning that one cheating party can always force a given outcome on an honest party

with probability at least 1/
√

2. Kitaev did not publish this proof, but it appears in Refs. [2, 32].
Here we give a different proof based on the results of the previous section.

Suppose {A0, A1, Aabort} is the representation of honest-Alice’s strategy and {B0, B1, Babort} is
the representation of honest-Bob’s co-strategy in some coin-flipping protocol. These strategies
may involve any fixed number of rounds of interaction. The first condition above implies

1

2
= 〈A0, B0〉 = 〈A1, B1〉 .

Now, fix b ∈ {0, 1}, and let p be the maximum probability that a cheating Bob can force honest-
Alice to output b. Obviously we have p ≥ 1/2. Theorem 9 implies that there must exist a strategy
Q for Alice such that Ab ≤ p Q. If a cheating Alice plays this strategy Q, then honest-Bob outputs
b with probability

〈Q, Bb〉 ≥
1

p
〈Ab, Bb〉 =

1

2p
.

Given that

max

{

p,
1

2p

}

≥ 1√
2

for all p > 0, we have that either honest-Alice or honest-Bob can be convinced to output b with
probability at least 1/

√
2.

This proof makes clear the limitations of strong coin-flipping protocols: the inability of Bob to
force Alice to output b directly implies that Alice can herself bias the outcome toward b. Weak
coin-flipping does not directly face this same limitation. Currently the best bound known on the
bias of weak quantum coin-flipping protocols, due to Ambainis [1], is that Ω(log log(1/ε)) rounds
of communication are necessary to achieve a bias of ε. The best weak quantum coin-flipping
protocol currently known, which is due to Mochon [28], achieves bias approximately 0.192 (which
surpasses the barrier 1/

√
2 − 1/2 ≈ 0.207 on strong quantum coin-flipping).
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Zero-sum quantum games

Next, we define quantum refereed games. It will be noted that von Neumann’s Min-Max Theorem
for zero-sum quantum refereed games follows from the facts we have proved about representa-
tions of strategies together with well-known generalizations of the classical Min-Max Theorem.
Although it is completely expected that the Min-Max Theorem should hold for quantum games, it
has not been previously noted in the general case with which we are concerned. (Lee and Johnson
[26] proved this fact in the one-round case.) This discussion will also be helpful for the application
to interactive proof systems with competing provers that follows.

Let us first define specifically what is meant by a zero-sum quantum refereed game. Such a
game is played between two players, Alice and Bob, and is arbitrated by a referee. The referee’s
output after interacting with Alice and Bob for some fixed number of rounds determines their
pay-offs.

Definition 13. An n-turn referee is an n-turn measuring co-strategy {Ra : a ∈ Σ} whose input
spaces X1, . . . ,Xn and output spaces Y1, . . . ,Yn take the form

Xk = Ak ⊗Bk and Yk = Ck ⊗Dk

for complex Euclidean spaces Ak, Bk, Ck and Dk, for 1 ≤ k ≤ n. An n-turn quantum refereed game
consists of an n-turn referee along with functions

VA, VB : Σ → R

defined on the referee’s set of measurement outcomes, representing Alice’s payoff and Bob’s pay-
off for each output a ∈ Σ. Such a game is a zero-sum quantum refereed game if VA(a) + VB(a) = 0
for all a ∈ Σ.

The referee’s actions in a quantum refereed game are completely determined by its represen-
tation {Ra : a ∈ Σ}. During each turn, the referee simultaneously sends a message to Alice and
a message Bob, and a response is expected from each player. The spaces Ak and Bk correspond
to the messages sent by the referee during turn number k, while Ck and Dk correspond to their
responses. After n turns, the referee produces an output a ∈ Σ.

A refereed quantum game does not in itself place any restrictions on the strategies available
to Alice and Bob. For example, Alice and Bob might utilize a strategy that allows quantum com-
munication, they might share entanglement but be forbidden from communicating, or might even
be forbidden to share entanglement. Specific characteristics of a given game, such as its Nash
equilibria, obviously depend on such restrictions in general.

The focus of the remainder of the paper is on the comparatively simple setting of zero-sum
quantum refereed games. In this case, we assume that Alice and Bob do not communicate or
share entanglement before the interaction takes place. More precisely, we assume that Alice and
Bob play independent strategies represented by A ∈ Sn(A1...n, C1...n) and B ∈ Sn(B1...n,D1...n), re-
spectively. The combined actions of Alice and Bob are therefore together described by the operator
A ⊗ B ∈ Sn(X1...n,Y1...n).

It is a completely natural assumption that Alice and Bob play independent strategies in a zero-
sum quantum refereed game, given that it cannot simultaneously be to both players’ advantage
to communicate directly with one another or to initially share an entangled state. This should not
be confused with the possibility that entanglement among the players and referee might exist at
various points in the game, or that the referee might choose to pass information from one player to
the other. These possibilities are not disallowed when Alice and Bob’s joint strategy is represented
by A ⊗ B.
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Now, assume that a zero-sum quantum refereed game is given, and that Alice and Bob play
independent strategies A and B as just discussed. Let us write

V(a) = VA(a) = −VB(a),

and define
R = ∑

a∈Σ

V(a)Ra.

Alice’s expected pay-off is then given by

∑
a∈Σ

V(a) 〈A ⊗ B, Ra〉 = 〈A ⊗ B, R〉 ,

while Bob’s expected pay-off is − 〈A ⊗ B, R〉.
Now, 〈A ⊗ B, R〉 is a real-valued bilinear function in A and B. Because the operators A and B

are drawn from compact, convex sets Sn(A1...n, C1...n) and Sn(B1...n,D1...n) respectively, we have
that

max
A∈Sn(A1...n,C1...n)

min
B∈Sn(B1...n ,D1...n)

〈A ⊗ B, R〉 = min
B∈Sn(B1...n,D1...n)

max
A∈Sn(A1...n,C1...n)

〈A ⊗ B, R〉 .

This is the Min-Max Theorem for zero-sum quantum games.
Note that the above expression does not immediately follow from von Neumann’s original

Min-Max Theorem, but follows from an early generalization due to J. Ville [33] and several subse-
quent generalizations such as the well-known Min-Max Theorem of Ky Fan [11]. The real number
represented by the two sides of this equation is called the value of the given game.

Quantum interactive proofs with competing provers

Classical interactive proof systems with competing provers have been studied by several authors,
including Feige, Shamir, and Tennenholts [14], Feige and Shamir [13], Feigenbaum, Koller, and
Shor [15], and Feige and Kilian [12]. A quantum variant of this model is defined by allowing the
verifier to exchange quantum information with the provers [19, 18]. In both cases these interactive
proof systems are generalizations of single prover interactive proof systems [3, 4, 16, 24, 34].

Interactive proof systems with two competing provers are naturally modeled by zero-sum
refereed games. To highlight this connection we will refer to the verifier as the referee and the two
provers as Alice and Bob. The referee is assumed to be computationally bounded while Alice and
Bob are computationally unrestricted. Alice, Bob, and the referee receive a common input string
x ∈ {0, 1}∗, and an interaction follows. After the interaction takes place, the referee decides that
either Alice wins or Bob wins.

A language or promise problem L = (Lyes, Lno) is said to have a classical refereed game if
there exists a referee, described by a polynomial-time randomized computation, such that: (i) for
every input x ∈ Lyes, there is a strategy for Alice that wins with probability at least 3/4 against
every strategy of Bob, and (ii) for every input x ∈ Lno, there is a strategy for Bob that wins with
probability at least 3/4 against every strategy of Alice.

The class of promise problems having classical refereed games is denoted RG. It is known that
RG is equal to EXP. The work of Koller and Megiddo [25] implies RG ⊆ EXP, while Feige and
Kilian [12] proved the reverse containment.

Let us note that zero-sum classical refereed games, and therefore the class RG, are unaffected
by the assumption that Alice and Bob may play quantum strategies, assuming the referee remains
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classical. This assumes of course that the classical referee is modeled properly within the setting of
quantum information, which requires that any quantum information that it touches immediately
loses coherence. Equivalently, the referee effectively measures all messages sent to it by Alice
and Bob with respect to the standard basis before any further processing takes place. As there
also cannot be a mutual advantage to Alice and Bob to correlate their strategies using shared
entanglement, there is no advantage to Alice or Bob to play a quantum strategy against a classical
referee. This is not the case in the cooperative setting, because there Alice and Bob might use a
shared entangled state to their advantage [8].

Quantum interactive proof systems with competing provers are defined in a similar way to
the classical case, except that the referee’s actions are described by polynomial-time generated
quantum circuits and the referee may exchange quantum information with Alice and Bob. The
complexity class of all promise problems having quantum refereed games is denoted QRG. The
containment EXP ⊆ QRG follows from EXP ⊆ RG. It was previously known that QRG ⊆ NEXP∩
co-NEXP [18], and we will improve this to QRG ⊆ EXP. This establishes the characterization
QRG = EXP, and implies that quantum and classical refereed games are equivalent with respect
to their expressive power.

In the refereed game associated with a competing prover quantum interactive proof system,
the referee declares either Alice or Bob to be the winner. Specifically, the referee outputs one of
two possible values {a, b}, with a meaning that Alice wins and b meaning that Bob wins. By
setting V(a) = 1 and V(b) = 0, we obtain a quantum refereed game whose value is the maximum
probability with which Alice can win. We will show that this optimal winning probability for
Alice can be efficiently approximated: it is the value of a semidefinite programming problem
whose size is polynomial in the total dimension of the input and output spaces of the referee. It
follows from the polynomial-time solvability of semidefinite programming problems [21, 17, 29]
that QRG ⊆ EXP.

We will use similar notation to the previous subsection: for a fixed input x, the referee is
represented by operators {Ra, Rb}, and assuming n is the number of turns for this referee we let the
input and output spaces to Alice be denoted by A1, C1, . . . ,An, Cn while B1,D1, . . . ,Bn,Dn denote
the input and output spaces to Bob. The assumption that the referee is described by polynomial-
time generated quantum circuits implies that the entries in the matrix representations of Ra and
Rb with respect to the standard basis can be approximated to very high precision in exponential
time.

Now, given any strategy A ∈ Sn(A1...n, C1...n) for Alice, let us define

Ωa(A) = TrC1...n⊗A1...n
((A ⊗ ID1...n⊗B1...n

)Ra) ,

Ωb(A) = TrC1...n⊗A1...n
((A ⊗ ID1...n⊗B1...n

)Rb) .

The functions Ωa and Ωb are linear and extend to uniquely defined super-operators. Under the
assumption that Alice plays the strategy represented by A ∈ Sn(A1...n, C1...n) and Bob plays the
strategy represented by B ∈ Sn(B1...n,D1...n), we have that the referee outputs a with probability
〈A ⊗ B, Ra〉 = 〈B, Ωa(A)〉 and outputs b with probability 〈A ⊗ B, Rb〉 = 〈B, Ωb(A)〉. One may
think of {Ωa(A), Ωb(A)} as being the co-strategy that results from “hard-wiring” Alice’s strategy
represented by A into the referee.

Now, Alice’s goal is to minimize the maximum probability with which Bob can win. For a
given strategy A for Alice, the maximum probability with which Bob can win is

max {〈B, Ωb(A)〉 : B ∈ Sn(B1...n,D1...n)}
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which, by Theorem 9, is given by

min {p ≥ 0 : Ωb(A) ≤ p Q, Q ∈ co-Sn(B1...n,D1...n)} .

The following optimization problem therefore determines the maximum probability p for Bob to
win, minimized over all strategies for Alice:

Minimize: p

Subject to: Ωb(A) ≤ p Q,

A ∈ Sn(A1...n, C1...n),

Q ∈ co-Sn(B1...n,D1...n).

This optimization problem can be expressed in terms of linear and semidefinite constraints as
follows:

Minimize: Tr(P1)

Subject to: Ωb(An) ≤ Qn,

TrCk
(Ak) = Ak−1 ⊗ IAk

(2 ≤ k ≤ n),

TrC1
(A1) = IA1

,

Qk = Pk ⊗ IDk
(1 ≤ k ≤ n),

TrBk
(Pk) = Qk−1 (2 ≤ k ≤ n),

Ak ∈ Pos (C1...k ⊗A1...k) (1 ≤ k ≤ n),

Qk ∈ Pos (D1...k ⊗B1...k) (1 ≤ k ≤ n),

Pk ∈ Pos (D1...k−1 ⊗B1...k) (1 ≤ k ≤ n).

Acknowledgements

This research was supported by Canada’s NSERC and the Canadian Institute for Advanced Re-
search (CIAR).

References

[1] AMBAINIS, A. A new protocol and lower bounds for quantum coin flipping. In Proceedings
of the Thirty-Third Annual ACM Symposium on Theory of Computing (2001), pp. 134–142.

[2] AMBAINIS, A., BUHRMAN, H., DODIS, Y., AND RÖHRIG, H. Multiparty quantum coin flip-
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