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Abstract

This paper studies complexity theoretic aspects of quantum refereed games, which
are abstract games between two competing players that send quantum states to a
referee, who performs an efficiently implementable joint measurement on the two
states to determine which of the player wins. The complexity class QRG(1) contains
those decision problems for which one of the players can always win with high prob-
ability on yes-instances and the other player can always win with high probability
on no-instances, regardless of the opposing player’s strategy. This class trivially con-
tains QMA ∪ co-QMA and is known to be contained in PSPACE. We prove stronger
containments on two restricted variants of this class. Specifically, if one of the play-
ers is limited to sending a classical (probabilistic) state rather than a quantum state,
the resulting complexity class CQRG(1) is contained in ∃ · PP (the nondeterministic
polynomial-time operator applied to PP); while if both players send quantum states
but the referee is forced to measure one of the states first, and incorporates the classi-
cal outcome of this measurement into a measurement of the second state, the resulting
class MQRG(1) is contained in P · PP (the unbounded-error probabilistic polynomial-
time operator applied to PP).

1. Introduction

Abstract notions of games have long played an important role in complexity theory. For
example, combinatorial games provide complete problems for various complexity classes
[DH09], the notion of alternation is naturally described in game-theoretic terms [CKS81],
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and interactive proof systems [Bab85, BM88, GMR85, GMR89] and many variants of them
are naturally formulated as games [Con87, FKS95].

This paper is concerned with games between two competing, computationally un-
bounded players, administered by a computationally bounded referee. In the classical
setting, complexity theoretic aspects of games of this form were investigated in the 1990s
by Koller and Megiddo [KM92], Feigenbaum, Koller, and Shor [FKS95], Condon, Feigen-
baum, Lund, and Shor [CFLS95, CFLS97], and Feige and Kilian [FK97]. Quantum compu-
tational analogues of these games were later considered in [GW05], [Gut05], [GW07], and
[JW09].

Our focus will be on one-turn refereed games, in which the players and the referee first
receive a common input string, and then each player sends a single polynomial-length
(quantum or classical) message to the referee, who then decides which player has won. We
will refer to the two competing players as Alice and Bob for convenience. In the classical
case Alice and Bob’s messages may in general be described by probability distributions
over strings, while in the quantum case Alice and Bob’s messages are described by mixed
quantum states, which are represented by density operators. In both cases, the referee’s
decision process must be specified by a polynomial-time generated family of (quantum
or classical) circuits. Two complexity classes are defined—RG(1) in the classical setting1

and QRG(1) in the quantum setting—consisting of all promise problems A = (Ayes, Ano)
for which there exists a game (either classical or quantum, respectively) such that Alice
can win with high probability on inputs x ∈ Ayes and Bob can win with high probability
on inputs x ∈ Ano, regardless of the other player’s behavior.

In essence, the complexity classes RG(1) and QRG(1) may be viewed as extensions of
the classes MA and QMA in which two competing Merlins, one whose aim is to convince
the referee (whose role is analogous to Arthur, also called the verifier, in the case of MA
and QMA) that the input string is a yes-instance of a given problem, and the other whose
aim is to convince the referee that the input string is a no-instance.

It is known that the complexity class RG(1) is equal to Sp
2 , which refers to the second

level of the symmetric polynomial-time hierarchy introduced by Canetti [Can96] and Russell
and Sundaram [RS98]. This class is most typically defined in terms of quantifiers that
suggest games in which Alice and Bob choose polynomial-length strings (as opposed to
probability distributions of strings) to send to the referee, but the class does not change if
one adopts a bounded-error definition in which Alice and Bob are allowed to make use of
randomness [FIKU08]. Moreover, the class does not change if the referee is permitted the
use of randomness, again assuming a bounded-error definition. An essential fact through
which these equivalences may be proved, due to Althöfer [Alt94] and Lipton and Young
[LY94], is that non-interactive randomized games always admit near-optimal strategies
that are uniform over polynomial-size sets of strings. It is also known that RG(1) is closed
under Cook reductions [RS98] and satisfies RG(1) ⊆ ZPPNP [Cai07].

1We note explicitly that this nomenclature clashes with [FK97], which defines RG(1) in terms of one-
round (i.e., two-turn) refereed games, which is RG(2) with respect to our naming conventions.
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In contrast to the containment RG(1) ⊆ ZPPNP, the best upper-bound known for
QRG(1) is that this class is contained in PSPACE [JW09]. It is reasonable to conjecture
that a stronger upper-bound on QRG(1) can be proved.

Indeed, Gutoski and Wu [GW13] proved that even the class QRG(2), which is anal-
ogous to QRG(1) except that the referee first sends a message to Alice and Bob and
then receives responses from them, is contained in PSPACE. The two classes are in fact
equal, meaning QRG(2) = PSPACE, as a consequence of the trivial containment RG(2) ⊆
QRG(2) together with the known equality RG(2) = PSPACE [FK97]. While not directly
relevant to our results, we note that the classes RG = RG(poly) and QRG = QRG(poly)
defined in an analogous way, but allowing any polynomial number of messages between
the referee and Alice and Bob are both equal to EXP [FK97, GW07].

In this work we consider two restricted variants of QRG(1), and prove stronger upper-
bounds than PSPACE on these restricted variants. The first variant is one in which Alice is
limited to sending a classical message to the referee, while Bob is free to send a quantum
state. The resulting class, which we call CQRG(1), is proved to be contained in ∃ · PP (the
class obtained when the nondeterministic polynomial-time operator is applied to PP).
This containment follows from an application of the Althöfer–Lipton–Young technique
mentioned above, although in the quantum setting the proof requires relatively recent
tail bounds on sums of matrix-valued random variables, as opposed to a more standard
Hoeffding–Chernoff type of bound that suffices in the classical case. In particular, we
make use of a tail bound of this sort due to Tropp [Tro12]. The second variant we consider
is one in which both Alice and Bob are free to send quantum states, but where the referee
must first measure Alice’s state and then incorporate the classical outcome of this mea-
surement into a measurement of Bob’s state. We call the corresponding class MQRG(1),
and prove the containment MQRG(1) ⊆ P · PP (the class obtained when the unbounded
error probabilistic polynomial-time operator is applied to PP). Note that ∃ · PP is con-
tained in P · PP, which is, in turn, contained in PSPACE.

2. Preliminaries

We assume the reader is familiar with basic aspects of computational complexity theory
and quantum information and computation. There are four subsections included in this
preliminaries section, the first of which clarifies a few specific concepts, conventions, and
definitions concerning complexity theory. The second subsection is concerned specifically
with counting complexity, and presents a development of some results on this topic that
are central to this paper. Proofs are included because these results represent minor gen-
eralizations of known results on counting complexity. The third subsection discusses a
few specific definitions and concepts from quantum information and computation, along
with a proof of a fact that may be considered a known result, but for which a complete
proof does not appear in published form. The final subsection states the tail bound due
to Tropp mentioned above.
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Complexity theory basics

Throughout this paper, languages, promise problems, and functions on strings are as-
sumed to be over the binary alphabet Σ = {0, 1}. The set of natural numbers, including 0,
is denoted N.

A function of the form p : N → N is said to be polynomially bounded if there exists a
deterministic Turing machine that runs in polynomial time and outputs 0p(n) on input 0n

for all n ∈N. Unless it is explicitly indicated otherwise, the input of a given polynomially
bounded function p is assumed to be the natural number |x|, for whatever input string
x ∈ Σ∗ is being considered at that moment. With this understanding in mind, we will
write p in place of p(|x|) when referring to the natural number output that is determined
in this way. For example, in Definition 1 below, all of the occurrences of p in the displayed
equations are short for p(|x|). This convention helps to make formulas and equations
more clear and less cluttered.

A promise problem is a pair A = (Ayes, Ano) of sets of strings Ayes, Ano ⊆ Σ∗ with
Ayes ∩ Ano = ∅. Strings in Ayes represent yes-instances of a decision problem, strings in
Ano represent no-instances, and all other strings represent “don’t care” inputs for which
no restrictions are placed on a hypothetical computation for that problem.

We fix a pairing function that efficiently encodes two strings x, y ∈ Σ∗ into a single
binary string denoted 〈x, y〉 ∈ Σ∗, and we assume that this function satisfies some simple
properties:

1. The length of the pair 〈x, y〉 depends only on the lengths |x| and |y|, and is polynomial
in these lengths.

2. The computation of x and y from 〈x, y〉, as well as the computation of 〈x, y〉 from x
and y, can be performed deterministically in polynomial time.

One suitable choice for such a function is suggested by the equation

〈a1a2 · · · an, b1b2 · · · bm〉 = 0a10a2 · · · 0an1b1b2 · · · bm (1)

for a1, a2, . . . , an, b1, b2, . . . , bm ∈ Σ. Any such pairing function may be extended recur-
sively to obtain a tuple function for any fixed number of inputs by taking

〈x1, x2, x3, . . . , xk〉 = 〈〈x1, x2〉, x3, . . . , xk〉 (2)

for strings x1, . . . , xk ∈ Σ∗, where k ≥ 3. Hereafter, when we refer to the computation of
any function taking multiple string-valued arguments, we assume that these input strings
have been encoded into a single string using this tuple function. For instance, when f is a
function that represents a computation, we write f (x, y, z) rather than f (〈x, y, z〉).

Finally, we define the nondeterministic and probabilistic polynomial-time operators,
which may be applied to an arbitrary complexity class, as follows.
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Definition 1. For a given complexity class of languages C, the complexity classes ∃ ·C and
P · C are defined as follows.

1. The complexity class ∃ · C contains all promise problems A = (Ayes, Ano) for which
there exists a language B ∈ C and a polynomially bounded function p such that these
two implications hold:

x ∈ Ayes ⇒
{

y ∈ Σp : 〈x, y〉 ∈ B
}
6= ∅,

x ∈ Ano ⇒
{

y ∈ Σp : 〈x, y〉 ∈ B
}
= ∅.

(3)

2. The complexity class P · C contains all promise problems A = (Ayes, Ano) for which
there exists a language B ∈ C and a polynomially bounded function p such that these
two implications hold:

x ∈ Ayes ⇒
∣∣∣{y ∈ Σp : 〈x, y〉 ∈ B

}∣∣∣ > 1
2
· 2p,

x ∈ Ano ⇒
∣∣∣{y ∈ Σp : 〈x, y〉 ∈ B

}∣∣∣ ≤ 1
2
· 2p.

(4)

Counting complexity

Counting complexity is principally concerned with the number of solutions to certain
computational problems. Readers interested in learning more about counting complexity
and some of its applications are referred to the survey paper of Fortnow [For97]. As was
suggested at the beginning of the current section, we will require some basic results on
counting complexity that represent minor generalizations of known results. We begin
with the following definition.

Definition 2. Let C be any complexity class of languages over the alphabet Σ. A function
f : Σ∗ → Z is a Gap · C function if there exist languages A, B ∈ C and a polynomially
bounded function p such that

f (x) =
∣∣{y ∈ Σp : 〈x, y〉 ∈ A

}∣∣− ∣∣{y ∈ Σp : 〈x, y〉 ∈ B
}∣∣ (5)

for all x ∈ Σ∗.

We observe that this definition is slightly non-standard, as gap functions are usually
defined in terms of differences between the number of accepting and rejecting computa-
tions of nondeterministic machines (as opposed to a difference involving two potentially
unrelated languages A and B). It is also typical that one focuses on specific choices for C,
particularly C = P. Our definition is, however, equivalent to the traditional definition in
this case, and we will write GapP rather than Gap · P so as to be consistent with the stan-
dard name for this class of functions. We will also be interested in the case C = PP, which
yields a class of functions Gap · PP that is less commonly considered.
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A key feature of the class of GapP functions that facilitates its use is that it possesses
strong closure properties. This is true more generally for the class Gap · C provided that C
itself possesses certain properties. For the closure properties we require, it suffices that C
is nontrivial (meaning that C contains at least one language that is not equal to ∅ or Σ∗)
and is closed under the join operation as well as polynomial-time truth-table reductions.
(The join of languages A and B is defined as {x0 : x ∈ A} ∪ {x1 : x ∈ B}.) These
properties are, of course, possessed by both P and PP, with the closure of PP under truth
table reductions having been proved by Fortnow and Reingold [FR96] based on methods
developed by Beigel, Reingold, and Spielman [BRS95].

The following proposition is immediate from the definitions of Gap · C and P · C.

Proposition 3. Let C be a complexity class of languages that is closed under complementation
and joins. A promise problem A = (Ayes, Ano) is contained in P · C if and only if there exists a
Gap · C function f such that

x ∈ Ayes ⇒ f (x) > 0,

x ∈ Ano ⇒ f (x) ≤ 0.
(6)

The lemmas that follow establish the specific closure properties we require. For the
first property the assumption that C is closed under joins and polynomial-time truth-table
reductions is not required; closure under Karp reductions suffices.

Lemma 4. Let C be a nontrivial complexity class of languages that is closed under Karp reduc-
tions. Let f ∈ Gap · C and let p be a polynomially bounded function. The function

g(x) = ∑
y∈Σp

f (x, y) (7)

is a Gap · C function.

Proof. By the assumption that f ∈ Gap · C, there exists a polynomially bounded function
q and languages A0, A1 ∈ C such that

f (x, y) =
∣∣{z ∈ Σq(|〈x,y〉|) : 〈x, y, z〉 ∈ A0

}∣∣− ∣∣{z ∈ Σq(|〈x,y〉|) : 〈x, y, z〉 ∈ A1
}∣∣ (8)

for all x ∈ Σ∗ and y ∈ Σp. By the assumptions on our pairing function described above, it
is the case that |〈x, y〉| depends only on |x| and |y|, and therefore there exists a (necessarily
polynomially bounded) function r such that r(|x|) = p(|x|)+ q(|〈x, y〉|) for all x ∈ Σ∗ and
y ∈ Σp. Define

B0 =
{
〈x, yz〉 : y ∈ Σp, z ∈ Σq(|〈x,y〉|), 〈x, y, z〉 ∈ A0

}
,

B1 =
{
(x, yz) : y ∈ Σp, z ∈ Σq(|〈x,y〉|), 〈x, y, z〉 ∈ A1

}
.

(9)

By the nontriviality and closure of C under Karp reductions, it is evident that B0, B1 ∈ C.
It may be verified that

g(x) =
∣∣{w ∈ Σr : 〈x, w〉 ∈ B0

}∣∣− ∣∣{w ∈ Σr : 〈x, w〉 ∈ B1
}∣∣ (10)

for all x ∈ Σ∗, and therefore g ∈ Gap · C.
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For the next lemma, and elsewhere in the paper, we will use the following notation for
convenience: Σn

1 denotes the set of all strings over the binary alphabet Σ that have length
n and contain exactly one occurrence of the symbol 1. It is therefore the case that |Σn

1 | = n.

Lemma 5. Let C be a nontrivial complexity class of languages that is closed under joins and
polynomial-time truth table reductions. Let f ∈ Gap · C and let p be a polynomially bounded
function. The function

g(x) = ∏
y∈Σp

1

f (x, y) (11)

is a Gap · C function.

Proof. Given that f ∈ Gap · C, there exists a polynomially bounded function q and lan-
guages A0, A1 ∈ C such that

f (x, y) =
∣∣∣{z ∈ Σq(|(x,y)|) : 〈x, y, z〉 ∈ A0

}∣∣∣− ∣∣∣{z ∈ Σq(|(x,y)|) : 〈x, y, z〉 ∈ A1

}∣∣∣ (12)

for all x, y ∈ Σ∗. We may assume further that A0 and A1 are disjoint languages, for if they
are not, we may replace A0 and A1 with A0 ∩ A1 and A1 ∩ A0, respectively; this does not
change the value of the right-hand side of the equation (12), and the languages A0 ∩ A1
and A1 ∩ A0 must both be contained in C for A0, A1 ∈ C by the closure of C under joins
and truth-table reductions.

By the assumptions on our pairing function described above, there exists a polynomi-
ally bounded function r such that r(|x|) = q(|(x, y)|) for all x ∈ Σ∗ and y ∈ Σp. We will
write y1, . . . , yp to denote the elements of Σp

1 sorted in lexicographic order. Define two
languages B0 and B1 as follows:

• B0 is the language of all pairs 〈x, z1 · · · zp〉, where x ∈ Σ∗ and z1, . . . , zp ∈ Σr, for
which there exists a string w ∈ Σp having even parity such that

〈x, y1, z1〉 ∈ Aw1 , . . . , 〈x, yp, zp〉 ∈ Awp . (13)

• B1 is the language of all pairs 〈x, z1 · · · zp〉, where x ∈ Σ∗ and z1, . . . , zp ∈ Σr, for
which there exists a string w ∈ Σp having odd parity such that

〈x, y1, z1〉 ∈ Aw1 , . . . , 〈x, yp, zp〉 ∈ Awp . (14)

Given that A0 and A1 are disjoint and contained in C, along with the fact that C is closed
under joins and truth-table reductions, it follows that B0, B1 ∈ C. The lemma now follows
from the observation that

g(x) =
∣∣∣{z ∈ Σs : 〈x, z〉 ∈ B0

}∣∣∣− ∣∣∣{z ∈ Σs : 〈x, z〉 ∈ B1

}∣∣∣ (15)

for all x ∈ Σ∗, where s = p · r.
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Lemma 6. Let C be a nontrivial complexity class of languages that is closed under joins and
polynomial-time truth table reductions, let f0, f1 ∈ Gap · C, and let p and q be polynomially
bounded functions. For every string x ∈ Σ∗ and y ∈ Σq

1, define the matrix Mx,y as

Re
(
〈z|Mx,y|w〉

)
= f0(x, y, z, w),

Im
(
〈z|Mx,y|w〉

)
= f1(x, y, z, w),

(16)

for all z, w ∈ Σp. In other words, each Mx,y is a matrix whose entries are indexed by z, w ∈ Σp.
There exist Gap · C functions g0 and g1 satisfying

Re
(
〈z|Mx,y1 · · ·Mx,yq |w〉

)
= g0(x, z, w),

Im
(
〈z|Mx,y1 · · ·Mx,yq |w〉

)
= g1(x, z, w),

(17)

for all x ∈ Σ∗ and z, w ∈ Σp, where y1, . . . , yq denote the elements of Σq
1 sorted in lexicographic

order.

Proof. By the assumptions on C stated in the lemma, there must exist a Gap · C function h
satisfying

h(x, y, 0z, 0w) = f0(x, y, z, w),

h(x, y, 0z, 1w) = f1(x, y, z, w),

h(x, y, 1z, 0w) = − f1(x, y, z, w),

h(x, y, 1z, 1w) = f0(x, y, z, w),

(18)

for all x ∈ Σ∗, y ∈ Σq
1, and z, w ∈ Σp. The matrix Nx,y defined as

〈u|Nx,y|v〉 = h(x, y, u, v) (19)

for all x ∈ Σ∗, y ∈ Σq
1 and u, v ∈ Σp+1 may be visualized as a 2× 2 block matrix:

Nx,y =

(
Re(Mx,y) Im(Mx,y)

− Im(Mx,y) Re(Mx,y)

)
. (20)

We observe that

Nx,y1 · · ·Nx,yq =

(
Re
(

Mx,y1 · · ·Mx,yq

)
Im
(

Mx,y1 · · ·Mx,yq

)
− Im

(
Mx,y1 · · ·Mx,yq

)
Re
(

Mx,y1 · · ·Mx,yq

)) . (21)

Given that h is a Gap · C function, there must exist a Gap · C function F for which

F(x, u0 · · · uq, yk) = h(x, yk, uk−1, uk) (22)

for all x ∈ Σ∗, u0, . . . , uq ∈ Σp+1, and k ∈ {1, . . . , q}.
Finally, define

G(x, u0 · · · uq) = ∏
y∈Σq

1

F(x, u0 · · · uq, y) = h(x, y1, u0, u1) · · · h(x, yq, uq−1, uq) (23)
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for all x ∈ Σ∗ and u0, . . . , uq ∈ Σp+1, as well as

g0(x, z, w) = ∑
u∈Σ(q−1)(p+1)

G(x, 0zu0w),

g1(x, z, w) = ∑
u∈Σ(q−1)(p+1)

G(x, 0zu1w),
(24)

for all x ∈ Σ∗ and z, w ∈ Σp. It follows by Lemmas 4 and 5 that g0, g1 ∈ Gap · C.
Observing that g0 and g1 satisfy the equations (17), which is perhaps most evident

from the equation (21), the proof of the lemma is complete.

Quantum information and quantum circuits

The notation we use when discussing quantum information is standard for the subject,
and we refer the reader to the books [NC00, KSV02, Wil17, Wat18] for further details. A
couple of points concerning quantum information notation and conventions that may be
helpful to some readers follow.

First, when we refer to a register X, we mean a collection of qubits that we wish to view
as a single entity, and we then use the same letter X in a scripted font to denote the finite-
dimensional complex Hilbert space associated with X (i.e., the space of complex vectors
having entries indexed by binary strings of length equal to the number of qubits in X).
The set of density operators acting on such a space is denoted D(X).

Second, a channel transforming a register X into a register Y is a completely positive
and trace-preserving linear map Φ that transforms each density operator ρ ∈ D(X) into a
density operator Φ(ρ) ∈ D(Y). (More generally, such a mapping Φ transforms arbitrary
linear operators acting on X into linear operators acting on Y.) The adjoint of such a chan-
nel Φ is the uniquely determined linear map Φ∗ transforming linear operators acting on Y

into linear operators acting on X that satisfies the equation

Tr
(

PΦ(ρ)
)
= Tr

(
Φ∗(P)ρ

)
(25)

for all density operators ρ ∈ D(X) and all positive semidefinite operators P acting on Y.
The adjoint Φ∗ of a channel Φ is not necessarily itself a channel, but rather is a completely
positive and unital linear map, which means that Φ∗(1Y) = 1X (for 1X and 1Y denot-
ing the identity operators acting on X and Y, respectively). Intuitively speaking, if P is
a measurement operator in the equation above, one can think of Φ∗ as transforming the
measurement operator P into a new measurement operator Φ∗(P), with the probability of
this outcome for the state ρ being the same as if one first applied Φ to ρ and then measured
with respect to P.

Now we will move on to quantum circuits, which are acyclic networks of quantum
gates connected by qubit wires. We choose to use the standard, general model of quan-
tum information based on density operators and quantum channels, as opposed to the
restricted model of pure state vectors and unitary operations, when discussing quantum
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circuits. In this general model, each gate represents a quantum channel acting on a con-
stant number of qubits—including nonunitary gates, such as gates that introduce fresh
initialized qubits or gates that discard qubits. Through this model, ordinary classical cir-
cuits, as well as classical circuits that introduce randomness into computations, can be
viewed as special cases of quantum circuits. One may also represent measurements di-
rectly as quantum gates or circuits.

It is well-known that this general model is equivalent to the purely unitary model, as
is explained in [AKN98] and [Wat09], for instance. The main benefits of using the general
model in the context of this paper are that (i) it allows us to avoid having to constantly dis-
tinguish between input qubits and ancillary qubits, or output qubits and garbage qubits,
and (ii) it has the minor but nevertheless positive side effect of eliminating the appearance
of the irrational number 1/

√
2 in many of the formulas that will appear.

We choose a universal gate set from which all quantum circuits are assumed to be
composed. The gates in this set include Hadamard, Toffoli, and phase-shift gates (which
induce the single-qubit unitary transformation determined by the actions |0〉 7→ |0〉 and
|1〉 7→ i|1〉), as well as ancillary gates and erasure gates. Ancillary gates take no input qubits
and output a single qubit in the |0〉 state, while erasure gates take one input qubit and
produce no output qubits, and are described by the partial trace. Any other choice for the
unitary gates that is universal for quantum computing could be taken instead, but the
gate set just specified is both simple and convenient.

The size of a quantum circuit is defined to be the number of gates in the circuit plus the
total number of input and output qubits. Thus, if a quantum circuit were to be represented
in a standard way as a directed acyclic graph, its size would simply be the number of
vertices, including a vertex for each input and output qubit, of the corresponding graph.

A collection {Qx : x ∈ Σ∗} of quantum circuits is said to be polynomial-time generated
if there exists a polynomial-time deterministic Turing machine that, on input x ∈ Σ∗,
outputs an encoding of the circuit Qx. When such a family is parameterized by tuples of
strings, it is to be understood that we are implicitly referring to one of the tuple-functions
discussed previously. We will not have any need to discuss the specifics of the encoding
scheme that we use, but naturally it is assumed to be efficient, with the size of a circuit
and its encoding length being polynomially related.

The following lemma relates the complexity of computing circuit transition ampli-
tudes to GapP functions. The essential idea it expresses is due to Fortnow and Rogers
[FR99], who proved a variant of it for unitary computations by quantum Turing machines.
An idea, similar in spirit, also appears in [DHM+05]. While a result along the lines of the
lemma that follows is suggested in the survey paper [Wat09], that paper does not include
a proof, and so we include one below.

Lemma 7. Let {Qx : x ∈ Σ∗} be a polynomial-time generated family of quantum circuits, where
each circuit Qx takes n input qubits and outputs k qubits, for polynomially bounded functions n
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and k. There exists a polynomially bounded function r and GapP functions f0 and f1 such that

Re
(
〈u|Qx

(
|z〉〈w|

)
|v〉
)
= 2−r f0(x, z, w, u, v),

Im
(
〈u|Qx

(
|z〉〈w|

)
|v〉
)
= 2−r f1(x, z, w, u, v),

(26)

for all x ∈ Σ∗, z, w ∈ Σn, and u, v ∈ Σk.

Proof. Consider first an arbitrary channel Φ that maps n-qubit density operators to k-
qubit density operators. The action of Φ on density operators is linear, and can therefore
be represented through matrix multiplication. One concrete way to do this is to use the
so-called natural representation (also known as the linear representation) of quantum
channels.

A description of the natural representation of a quantum channel begins with the
vectorization mapping: assuming M is a matrix whose rows and columns are indexed by
strings of some length m, the corresponding vector vec(M) is indexed by strings of length
2m according to the following definition:

vec(M) = ∑
y,z∈Σm

〈y|M|z〉 |yz〉. (27)

In words, the vectorization map reshapes a matrix into a vector by transposing the rows
of the matrix into column vectors and stacking them on top of one another.

With respect to the vectorization mapping, the action of the channel Φ is described by
its natural representation K(Φ), which is a linear mapping that acts as

K(Φ) vec(ρ) = vec(Φ(ρ)) (28)

for every n-qubit density operator ρ. As a matrix, K(Φ) has columns indexed by strings
of length 2n and rows indexed by strings of length 2k. Its entries are described explicitly
by the equation

〈uv|K(Φ)|zw〉 = 〈u|Φ(|z〉〈w|)|v〉 (29)

holding for every z, w ∈ Σn and u, v ∈ Σk. The equations (26) may therefore be equiva-
lently written as

Re
(
〈uv|K(Qx)|zw〉

)
= 2−r f0(x, z, w, u, v),

Im
(
〈uv|K(Qx)|zw〉

)
= 2−r f1(x, z, w, u, v).

(30)

It must be observed that the natural representation is multiplicative, in the sense that
channel composition corresponds to matrix multiplication: K(ΦΨ) = K(Φ)K(Ψ) for all
channels Φ and Ψ for which the composition ΦΨ makes sense. It is also helpful to note
that a channel Φ(ρ) = UρU∗ corresponding to a unitary operation has as its natural
representation the operator

K(Φ) = U ⊗U. (31)
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Now let us turn to the family {Qx : x ∈ Σ∗}. Because this family is polynomial-time
generated, there must exist a polynomially bounded function r for which size(Qx) ≤ r
for all x ∈ Σ∗. We may therefore write

Qx = Qx,r · · ·Qx,1 (32)

for Qx,1, . . . , Qx,r being either identity channels or channels that describe the action of
a single gate of Qx tensored with the identity channel on all of the qubits besides the
inputs of the corresponding gate that exist at the moment that the gate is applied. We also
observe that the number of input qubits and output qubits of each Qx,k must be bounded
by r.

Given that
K(Qx) = K(Qx,r) · · ·K(Qx,1), (33)

we are led to consider the natural representation of each channel Qx,k. It will be conve-
nient to identify each operator K(Qx,k) with the matrix indexed by strings of length 2r,
as opposed to being indexed by strings whose lengths depend on the number of qubits
in existence before and after Qx,k is applied, simply by padding K(Qx,k) with rows and
columns of zero entries.

The natural representations of the individual gates in the universal gate set we have
selected are as follows:

1. Hadamard gate:

1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (34)

2. Phase gate: 
1 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 1

 (35)

3. Toffoli gate: 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


⊗



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(36)

12



4. Ancillary qubit gate: 
1
0
0
0

 (37)

5. Erasure gate: (
1 0 0 1

)
(38)

Based on these representations, it is straightforward to define GapP functions (or, in fact,
FP functions) g0 and g1 such that

Re
(
〈uv|K(Qx,k)|zw〉

)
=

1
2

g0(x, z, w, u, v, yk),

Im
(
〈uv|K(Qx,k)|zw〉

)
=

1
2

g1(x, z, w, u, v, yk),
(39)

for all x ∈ Σ∗, k ∈ {1, . . . , r}, and u, v, z, w ∈ Σr, where we write y1, . . . , yr to denote the
elements of Σr

1 sorted in lexicographic order. It now follows through a straightforward
application of Lemma 6 there must exist GapP functions f0 and f1 satisfying (26) and
therefore (30), for all x ∈ Σ∗, z, w ∈ Σn, and u, v ∈ Σk, as required.

A tail bound for operator-valued random variables

We will make use of the following tail bound on the minimum eigenvalue of the average
of a collection of operator-valued random variables. This bound follows from a more
general result due to Tropp. In particular, the bound stated in the theorem below follows
from Theorem 5.1 of [Tro12] together with Pinsker’s inequality, which relates the relative
entropy of two distributions to their total variation distance.

Theorem 8 (Tropp). Let d and N be positive integers, let η ∈ [0, 1] and ε > 0 be real numbers,
and let X1, . . . , XN be independent and identically distributed operator-valued random variables
having the following properties:

1. Each Xk takes d× d positive semidefinite operator values satisfying Xk ≤ 1.

2. The minimum eigenvalue of the expected operator E(Xk) satisfies λmin(E(Xk)) ≥ η.

It is the case that

Pr
(

λmin

(
X1 + · · ·+ XN

N

)
< η − ε

)
≤ d exp(−2Nε2). (40)
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3. Complexity classes for one-turn quantum refereed games

In this section we define the complexity classes to be considered in this paper: QRG(1),
CQRG(1), and MQRG(1). The definitions of these classes all refer to the notion of a referee,
which (in this paper) is a polynomial-time generated family

R = {Rx : x ∈ Σ∗} (41)

of quantum circuits having the following special form.

1. For each x ∈ Σ∗, the inputs to the circuit Rx are grouped into two registers: an n-qubit
register A and an m-qubit register B, for polynomially bounded functions n and m.

2. The output of each circuit Rx is a single qubit, which is to be measured with respect
to the standard basis immediately after the circuit is run.

Given that classical probabilistic states may be viewed as special cases of quantum states
(corresponding to diagonal density operators), this definition of a referee can still be used
in the situation in which either or both of the registers A and B is constrained to initially
store a classical state.

We are interested in the situation that, for a given choice of an input string x ∈ Σ∗, the
input to the circuit Rx is a product state of the form ρ⊗ σ, where ρ ∈ D(A) is a state of
the register A and σ ∈ D(B) is a state of the register B. The state ρ ∈ D(A) is to be viewed
as representing the state that Alice plays, while σ ∈ D(B) represents the state Bob plays.
When the single output qubit of the circuit Rx is measured with respect to the standard
basis, the outcome 1 is interpreted as “Alice wins,” while the outcome 0 is interpreted as
“Bob wins.”

Now, consider the quantity defined as

ω(Rx) = max
ρ∈D(A)

min
σ∈D(B)

〈1|Rx(ρ⊗ σ)|1〉. (42)

Given that D(A) and D(B) are compact and convex sets, and the value 〈1|Rx(ρ⊗ σ)|1〉 is
bilinear in ρ and σ, Sion’s min-max theorem implies that changing the order of the min-
imum and maximum does not change the value of the expression. That is, this quantity
may alternatively be written

ω(Rx) = min
σ∈D(B)

max
ρ∈D(A)

〈1|Rx(ρ⊗ σ)|1〉. (43)

This value represents the probability that Alice wins the game defined by the circuit Rx,
assuming both Alice and Bob play optimally. With that definition in hand, we may now
define the complexity class QRG(1), which is short for one-turn quantum refereed games.

Definition 9. A promise problem A = (Ayes, Ano) is contained in the complexity class
QRG(1)α,β if there exists a referee R = {Rx : x ∈ Σ∗} such that the following properties
are satisfied:

14



1. For every string x ∈ Ayes, it is the case that ω(Rx) ≥ α.

2. For every string x ∈ Ano, it is the case that ω(Rx) ≤ β.

We also define QRG(1) = QRG(1)2/3,1/3.

In this definition, α and β may be constants, or they may be functions of the length of the
input x. A short summary of known facts and observations concerning the complexity
class QRG(1) follows.

• QMA ⊆ QRG(1). This is because the referee’s measurement may simply ignore Bob’s
state σ and treat Alice’s state ρ as a quantum proof in a QMA proof system.

• QRG(1) is closed under complementation: QRG(1) = co-QRG(1). For a promise
problem (Ayes, Ano) ∈ QRG(1), one may obtain a one-turn quantum refereed game
for (Ano, Ayes) by simply exchanging the roles of Alice and Bob.

• It is the case that QRG(1) = QRG(1)α,β for a wide range of choices of α and β, sim-
ilar to error bounds for BPP, BQP, and QMA. In particular, QRG(1) = QRG(1)α,β
provided that α and β are polynomial-time computable and satisfy

α ≤ 1− 2−p, β ≥ 2−p, and α− β ≥ 1
p

(44)

for some choice of a strictly positive polynomially bounded function p.2

• QRG(1) ⊆ PSPACE [JW09].

Definitions of new complexity classes

The first variant of QRG(1) we define is one in which Alice’s state is restricted to be a
classical state. We will call this class CQRG(1).

Definition 10. A promise problem A = (Ayes, Ano) is contained in the complexity class
CQRG(1)α,β if there exists a referee R = {Rx : x ∈ Σ∗} such that the following properties
are satisfied:

1. For every string x ∈ Σ∗, the circuit Rx takes the form illustrated in Figure 1. That is,
Rx takes an n-qubit register A and an m-qubit register B as input, measures each qubit
of A with respect to the standard basis, leaving it in a classical state, and then runs
the circuit Qx on the pair (A,B), producing a single output qubit.

2. For every string x ∈ Ayes, it is the case that ω(Rx) ≥ α.

2Error reduction may be performed through parallel repetition followed by majority vote. An analysis
of this method for QRG(1) requires that one considers the possibility that the dishonest player (meaning
the one that should not have a strategy that wins with high probability) entangles his or her state across
the different repetitions, with the claimed bounds following from a similar analysis to parallel repetition
followed by majority vote for QMA [KSV02]. We note that there is no “in place” error reduction method
known for QRG(1) that is analogous to the technique of [MW05] for QMA.

15



Rx

Qx

A

B

Figure 1: A CQRG(1) referee. The register A is initially measured (or, equivalently, de-
phased) with respect to the standard basis, causing a classical state to be input into Qx,
along with the register B, which is unaffected by this standard basis measurement.

3. For every string x ∈ Ano, it is the case that ω(Rx) ≤ β.

We also define CQRG(1) = CQRG(1)2/3,1/3.

Formally speaking, the standard basis measurement suggested by Definition 10 can
be implemented by independently performing the completely dephasing channel on each
qubit of A. This channel can be constructed using the universal gate set we have selected
using a Toffoli gate with suitably initialized inputs as follows:

|1〉

|0〉

Tr

Tr

Here the square labeled |0〉 is an ancillary gate, the square labeled |1〉 denotes an ancillary
gate composed with a not-gate X = HPPH (for H and P denoting Hadamard and phase-
shift gates), and the square labeled Tr denotes an erasure gate.

In effect, a referee R that satisfies the first requirement of Definition 10 forces the state
Alice plays to be a classical state (i.e., a state represented by a diagonal density operator).
That is, for any density operator ρ that Alice might choose to play, the state of A that is
input into Qx takes the form

∑
y∈Σn

p(y) |y〉〈y| (45)

for some probability vector p over n-bit strings, and therefore the state that is plugged
into the top n qubits of the circuit Qx represents a classical state. Given that the standard
basis measurement acts trivially on all diagonal states, we observe that Alice may cause
an arbitrary diagonal density operator of the form (45) to be input into Qx. In short, the
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Rx

Qx

Pxρ

σ

Figure 2: An MQRG(1) referee.

set of possible states that may be input into the top n qubits of the circuit Qx is precisely
the set of diagonal n-qubit density operators.

The second variant of QRG(1) we define is one in which Alice and Bob both send
quantum states to the referee, but the referee first measures Alice’s state, obtaining a clas-
sical outcome, which is then measured together with Bob’s state (as illustrated in Fig-
ure 2).

Definition 11. A promise problem A = (Ayes, Ano) is contained in the complexity class
MQRG(1)α,β if there exists a referee R = {Rx : x ∈ Σ∗} such that the following properties
are satisfied:

1. For every string x ∈ Σ∗, the circuit Rx takes the form illustrated in Figure 2. That is,
Rx takes an n-qubit register A and an m-qubit register B as input, and first applies a
quantum circuit Px to A, yielding a k-qubit register Y, for k a polynomially bounded
function. The register Y is then measured with respect to the standard basis, so that it
then contains a classical state, and finally a quantum circuit Qx is applied to the pair
(Y,B), yielding a single qubit.

2. For every string x ∈ Ayes, it is the case that ω(Rx) ≥ α.

3. For every string x ∈ Ano, it is the case that ω(Rx) ≤ β.

We also define MQRG(1) = MQRG(1)2/3,1/3.

In essence, an MQRG(1) referee measures Alice’s qubits with respect to a general,
efficiently implementable measurement, which yields a k-bit classical outcome, which is
then plugged into Qx along with Bob’s quantum state.

It is of course immediate that

CQRG(1) ⊆ MQRG(1) ⊆ QRG(1); (46)

a CQRG(1) referee is a special case of an MQRG(1) referee in which Px is the identity
map on n qubits, while an MQRG(1) referee is a special case of a QRG(1) referee. We also
observe that both CQRG(1) and MQRG(1) are robust with respect to error bounds in the
same way as was described above for QRG(1).
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4. Upper-bound on CQRG(1)

In this section, we prove that CQRG(1) is contained in ∃ · PP. The proof represents a fairly
direct application of the Althöfer–Lipton–Young [Alt94, LY94] technique, although (as
was suggested above) the quantum setting places a new demand on this technique that
requires the use of a tail bound on sums of matrix-valued random variables. We will
split the proof of this containment into two lemmas, followed by a short proof of the
main theorem—this is done primarily because the lemmas will also be useful for proving
MQRG(1) ⊆ P ·PP in the section following this one. Some readers may wish to skip to the
statement and proof of Theorem 14 below, as it explains the purpose of these two lemmas
within the context of that theorem.

The first lemma represents an implication of Theorem 8 due to Tropp to the setting at
hand.

Lemma 12. Let k and m be positive integers, let p ∈ P(Σk) be a probability distribution on
k-bit strings, let Sy be a 2m × 2m positive semidefinite operator satisfying 0 ≤ Sy ≤ 1 for each
y ∈ Σk, and let N ≥ 72(m + 2). For strings y1, . . . , yN ∈ Σk sampled independently from the
distribution p, it is the case that

Pr

(
λmin

(
Sy1 + · · ·+ SyN

N

)
< λmin

(
∑

y∈Σk

p(y)Sy

)
− 1

12

)
<

1
3

. (47)

Proof. Define X1, . . . , XN to be independent and identically distributed operator-valued
random variables, each taking the (operator) value Sy with probability p(y), for every
y ∈ Σk. The expected value of each of these random variables is therefore given by

P = ∑
y∈Σk

p(y)Sy. (48)

By taking η = λmin(P) and ε = 1/12 in Theorem 8, we find that

Pr
(

λmin

(
X1 + · · ·+ XN

N

)
< λmin(P)− 1

12

)
≤ 2m exp

(
−N

72

)
<

1
3

, (49)

which is equivalent to the bound stated in the lemma.

The second lemma uses counting complexity to relate the minimum eigenvalue of
measurement operators defined by quantum circuits to PP languages. We note that the
technique of weakly estimating the largest eigenvalue of a measurement operator using
the trace of a power of that operator, through the relations (53) appearing in the proof
below, is the essential idea behind the unpublished proof of the containment QMA ⊆ PP
claimed in [KW00].
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Lemma 13. Let {Qx : x ∈ Σ∗} be a polynomial-time generated family of quantum circuits,
where each circuit Qx takes as input a k-qubit register Y and an m-qubit register B, for polynomi-
ally bounded functions k and m, and outputs a single qubit. For each x ∈ Σ∗ and y ∈ Σk, define
an operator

Sx,y =
(
〈y| ⊗ 1B

)
Q∗x(|1〉〈1|)

(
|y〉 ⊗ 1B

)
. (50)

For every polynomially bounded function N, there exists a language B ∈ PP for which the follow-
ing implications are true for all x ∈ Σ∗ and y1, . . . , yN ∈ Σk:

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≥ 2

3
⇒ (x, y1 · · · yN) ∈ B, (51)

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≤ 1

3
⇒ (x, y1 · · · yN) 6∈ B. (52)

Proof. The essence of the proof is that if P is an operator whose entries have real and
imaginary parts proportional to GapP functions, and r is a polynomially bounded func-
tion, then there exists a GapP function that is proportional to the real part of Tr(Pr). When
P is a 2m × 2m positive semidefinite operator, this allows one to choose r to be sufficiently
large, but still polynomially bounded, so that a GapP function is obtained that takes posi-
tive or negative values in accordance with the required implications (51) and (52), through
the use of the following bounds relating the largest eigenvalue and the trace of any such P:

λmax(P)r = λmax(Pr) ≤ Tr(Pr) ≤ 2mλmax(Pr) = 2mλmax(P)r. (53)

In the case at hand, it will suffice to take r = 2m.
In greater detail, let us begin by defining

Tx,y =
(
〈y| ⊗ 1B

)
Q∗x(|0〉〈0|)

(
|y〉 ⊗ 1B

)
(54)

for each x ∈ Σ∗ and y ∈ Σk. Observe that Sx,y and Tx,y are positive semidefinite operators
satisfying Sx,y + Tx,y = 1B, so that the implication in the statement of the lemma may
alternatively be written as

λmax

(
Tx,y1 + · · ·+ Tx,yN

N

)
≤ 1

3
⇒ (x, y1 · · · yN) ∈ B, (55)

λmax

(
Tx,y1 + · · ·+ Tx,yN

N

)
≥ 2

3
⇒ (x, y1 · · · yN) 6∈ B. (56)

Thus, if the operator

Px,y1···yN =
Tx,y1 + · · ·+ Tx,yN

N
(57)

satisfies λmax(Px,y1···yN) ≤ 1/3, then

Tr(P2m
x,y1···yN

) ≤ 2m

32m <
1

3m (58)
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while if λmax(Px,y1···yN) ≥ 2/3, then

Tr(P2m
x,y1···yN

) ≥
(2

3

)2m
>

1
3m . (59)

By Lemma 7 there exists a polynomially bounded function r along with GapP func-
tions f and g satisfying

Re(〈z|Tx,y|w〉) = Re
(
〈0|Qx

(
|yz〉〈yw|

)
|0〉
)
= 2−r f (x, y, z, w),

Im(〈z|Tx,y|w〉) = − Im
(
〈0|Qx

(
|yz〉〈yw|

)
|0〉
)
= 2−rg(x, y, z, w),

(60)

for all x ∈ Σ∗, y ∈ Σk, and z, w ∈ Σm. Define functions F and G as follows:

F(x, y1 · · · yN, z, w) = f (x, y1, z, w) + · · ·+ f (x, yN, z, w),

G(x, y1 · · · yN, z, w) = g(x, y1, z, w) + · · ·+ g(x, yN, z, w),
(61)

for all x ∈ Σ∗, y1, . . . , yN ∈ Σk, and z, w ∈ Σm. It is the case that F and G are GapP
functions satisfying

F(x, y1 · · · yN, z, w) = 2r · N · Re(〈z|Px,y1···yN |w〉),
G(x, y1 · · · yN, z, w) = 2r · N · Im(〈z|Px,y1···yN |w〉).

(62)

Through an application of Lemmas 4 and 6, we conclude that there must exist a GapP
function H satisfying

H(x, y1 · · · yN) = 22rm · N2m · Tr
(

P2m
x,y1···yN

)
. (63)

The GapP function

K(x, y1 · · · yN) = 22rm · N2m − 3m · H(x, y1 · · · yN) (64)

therefore takes positive values if λmax(Px,y1···yN) ≤ 1/3, and takes negative values if
λmax(Px,y1···yN) ≥ 2/3, implying the existence of a PP language B as claimed.

Theorem 14. CQRG(1) ⊆ ∃ · PP.

Proof. Let A = (Ayes, Ano) be any promise problem contained in CQRG(1), let a referee
be fixed that establishes the inclusion A ∈ CQRG(1)3/4,1/4, and let {Qx : x ∈ Σ∗} be the
collection of circuits that describes this referee, in accordance with Definition 10.

Let x ∈ Ayes ∪ Ano be any input string. Consider first the situation that Alice plays de-
terministically, sending a string y ∈ Σn to the referee, so that ρ = |y〉〈y|. Having selected a
state ρ representing Alice’s play, we are effectively left with a binary-valued measurement
being performed on the state sent to the referee by Bob. We observe that, for any choice of
a state σ ∈ D(B) representing Bob’s play, the probabilities that the referee’s measurement
generates the outcomes 0 and 1 are given by

〈0|Qx(|y〉〈y| ⊗ σ)|0〉 and 〈1|Qx(|y〉〈y| ⊗ σ)|1〉, (65)
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respectively. By defining an operator Sx,y ∈ Pos(B) as

Sx,y =
(
〈y| ⊗ 1B

)
Q∗x(|1〉〈1|)

(
|y〉 ⊗ 1B

)
, (66)

we therefore obtain the measurement operator corresponding to the 1 outcome of this
measurement, as

Tr
(
Sx,y σ

)
= 〈1|Qx(|y〉〈y| ⊗ σ)|1〉 (67)

and
Tr
(
(1B − Sx,y)σ

)
= 〈0|Qx(|y〉〈y| ⊗ σ)|0〉 (68)

for all σ ∈ D(B).
Now, as Bob aims to minimize the probability for outcome 1 to appear, the relevant

property of the operator Sx,y is its minimum eigenvalue λmin(Sx,y). A large minimum eigen-
value means that Alice has managed to force the outcome 1 to appear, regardless of what
state Bob plays, whereas a small minimum eigenvalue means that Bob has at least one
choice of a state that causes the outcome 1 to appear with small probability. Stated in
more precise terms, Bob’s optimal strategy in the case that Alice plays ρ = |y〉〈y| is to
play any state σ ∈ D(B) whose image is contained in the eigenspace of Sx,y correspond-
ing to the minimum eigenvalue λmin(Sx,y), which leads to a win for Alice with probability
equal to this minimum eigenvalue and a win for Bob with probability 1− λmin(Sx,y).

In general, Alice will not play deterministically, but will instead play a distribution
of strings p ∈ P(Σn). In this case, the resulting measurement operator on Bob’s space
becomes

∑
y∈Σn

p(y)Sx,y. (69)

That is to say, the probability that Alice wins when she plays a distribution p ∈ P(Σn),
and Bob plays optimally against this distribution, is given by the expression

λmin

(
∑

y∈Σn
p(y)Sx,y

)
. (70)

Determining whether x is a yes-instance or a no-instance of A is therefore equivalent to
discriminating between the case that there exists a distribution p ∈ P(Σn) for which the
minimum eigenvalue (70) is at least 3/4 and the case in which this minimum eigenvalue
is at most 1/4 for all choices of p ∈ P(Σn).

The goal of the proof is to show that this decision problem is contained in ∃ · PP. The
∃ operator will represent the existence or non-existence of a distribution p ∈ P(Σn) for
which the minimum eigenvalue (70) is large, while a PP predicate will allow for an esti-
mation of this minimum eigenvalue itself. A challenge that must be overcome in making
this approach work is that using the ∃ operator in this way requires Alice’s strategy to
have a polynomial-length representation. However, given that a distribution p ∈ P(Σn)
may have support that is exponentially large in n, an explicit description of p will gener-
ally have exponential size, assuming that the individual probabilities p(y) are represented
with a polynomial number of bits of precision.
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This obstacle may be overcome using the Althöfer–Lipton–Young [Alt94, LY94] tech-
nique mentioned in the introduction: in place of a distribution p ∈ P(Σn), we consider
an N-tuple of strings (y1, . . . , yN), representing N possible deterministic plays for Alice,
for N = N(|x|) being a suitable polynomially bounded function of the input length. This
N-tuple will represent the distribution q ∈ P(Σn) obtained by selecting j ∈ {1, . . . , N}
uniformly at random and then outputting the string yj. That is, the distribution q ∈ P(Σn)
represented by the N-tuple (y1, . . . , yN) is given by

q(y) =

∣∣{j ∈ {1, . . . , N} : y = yj}
∣∣

N
(71)

for each y ∈ Σn. Naturally, most choices of a distribution p ∈ P(Σn) are far away from
any such distribution q. Nevertheless, the existence of a distribution p ∈ P(Σn) for which
the minimum eigenvalue (70) is large does in fact imply the existence of an N-tuple
(y1, . . . , yN) for which the distribution q ∈ P(Σn) defined by (71) is still a good play for
Alice, meaning that the minimum eigenvalue

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
(72)

is also large, provided N is sufficiently large. This is precisely the content of Lemma 12.
In particular, by choosing N = 72(m + 2), where m is the number of qubits of B, we

find that if the minimum eigenvalue (70) is at least 3/4, then with probability at least
2/3 (over the random choices of y1, . . . , yN) the minimum eigenvalue (72) is at least 2/3.
Of course, this implies the existence of an N-tuple (y1, . . . , yN) for which the minimum
eigenvalue (72) is at least 2/3.

Naturally, if x ∈ Ano, then the minimum eigenvalue (70) is at most 1/4 for all choices
of p ∈ P(Σn), and therefore it must be that

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≤ 1

4
<

1
3

(73)

for all N-tuples (y1, . . . , yN). This is because the distribution q defined by (71) is simply
one example of a distribution in P(Σn).

The purpose of Lemma 13 is now evident, for it states that there exists a language
B ∈ PP such that if the minimum eigenvalue (72) is at least 2/3, then (x, y1 · · · yN) ∈ B,
while if this minimum eigenvalue is at most 1/3, then (x, y1 · · · yN) 6∈ B. Consequently, if
x ∈ Ayes, then there exists a string y1 · · · yN ∈ ΣnN such that (x, y1 · · · yN) ∈ B, while if
x ∈ Ano, then for every string y1 · · · yN ∈ ΣnN it is the case that (x, y1 · · · yN) 6∈ B. It has
therefore been proved that A ∈ ∃ · PP as required.

5. Upper-bound on MQRG(1)

We now turn to the complexity class MQRG(1), and prove the containment MQRG(1) ⊆
P · PP. In order to do this, we will first introduce a QMA-operator that, in some sense,
functions in a way that is similar to the ∃ and P operators previously discussed.
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χBPxρ

Figure 3: Definition 15 is concerned with the probability that the output of a circuit Px,
measured with respect to the standard basis, is contained in the language B, assuming
the input is ρ.

Definition 15. For a given complexity class C, the complexity class QMA · C contains all
promise problems A = (Ayes, Ano) for which there exists a polynomial-time generated
family of quantum circuits {Px : x ∈ Σ∗}, where each Px takes n = n(|x|) input qubits
and outputs k = k(|x|) qubits, along with a language B ∈ C, such that the following
implications hold.

1. If x ∈ Ayes, then there exists a density operator ρ on n qubits for which

Pr
(

Px(ρ) ∈ B
)
≥ 2

3
. (74)

2. If x ∈ Ano, then for every density operator ρ on n qubits,

Pr
(

Px(ρ) ∈ B
)
≤ 1

3
. (75)

Here, the notation Px(ρ) ∈ B refers to the event that Px is applied to the state ρ, the
output qubits are measured with respect to the standard basis, and the resulting string is
contained in the language B. Figure 3 illustrates the associated process, with χB being the
characteristic function of B on inputs of length k.

Theorem 16. If C is nontrivial complexity class of languages that is closed under joins and truth-
table reductions, then QMA · C ⊆ P · C.

Proof. Let A = (Ayes, Ano) ∈ QMA · C, and let {Px : x ∈ Σ∗} be a polynomial-time
generated family of quantum circuits that, together with a language B ∈ C, establishes
this inclusion according to Definition 15.

By Lemma 7 there exists a polynomially bounded function r and GapP functions f0
and f1 such that

Re
(
〈u|Px

(
|z〉〈w|

)
|v〉
)
= 2−r f0(x, z, w, u, v),

Im
(
〈u|Px

(
|z〉〈w|

)
|v〉
)
= 2−r f1(x, z, w, u, v),

(76)

for all x ∈ Σ∗, z, w ∈ Σn, and u, v ∈ Σk. Define

g0(x, z, w, u) =

{
f0(x, z, w, u, u) if u ∈ B
0 if u 6∈ B,

g1(x, z, w, u) =

{
f1(x, z, w, u, u) if u ∈ B
0 if u 6∈ B,

(77)
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for all x ∈ Σ∗, z, w ∈ Σn, and u ∈ Σk. By the properties of C, it is the case that g0, g1 ∈
Gap · C.

Next, define
F0(x, z, w) = ∑

u∈Σk

g0(x, z, w, u),

F1(x, z, w) = − ∑
u∈Σk

g1(x, z, w, u),
(78)

for all x ∈ Σ∗ and z, w ∈ Σn. By Lemma 4 we have that F0, F1 ∈ Gap · C. We observe that

Re
(
〈w|Rx|z〉

)
= 2−rF0(x, z, w),

Im
(
〈w|Rx|z〉

)
= 2−rF1(x, z, w)

(79)

for all x ∈ Σ∗ and z, w ∈ Σn, where

Rx = ∑
u∈Σk∩B

P∗x
(
|u〉〈u|

)
. (80)

Now let us consider the cases x ∈ Ayes and x ∈ Ano. If x ∈ Ayes then λmax(Rx) ≥ 2/3,
while if x ∈ Ano then λmax(Rx) ≤ 1/3. Observing that Rx is a positive semidefinite
operator on a 2n dimensional space, we have that

λmax(Rx)
n+1 = λmax(Rn+1

x ) ≤ Tr(Rn+1
x ) ≤ 2nλmax(Rn+1

x ) = 2nλmax(Rx)
n+1, (81)

similar to equation (53) in the proof of Lemma 13. By Lemma 6 it follows that there exists
a Gap · C function G possessing the following properties.

1. If x ∈ Ayes then

G(x) = 2(n+1)r tr(Rn+1
x ) ≥ 2(n+1)r+n+1

3n+1 (82)

2. If x ∈ Ano then

G(x) = 2(n+1)r tr(Rn+1
x ) ≤ 2(n+1)r+n

3n+1 . (83)

The Gap · C function
H(x) = 3n+1G(x)− 2(n+1)r+n (84)

therefore satisfies H(x) > 0 when x ∈ Ayes and H(x) ≤ 0 when x ∈ Ano. By Proposition 3
it follows that A ∈ P · C.

Next, we prove that MQRG(1) is contained in QMA · PP. Combining this fact with the
previous theorem will establish the main result as an immediate corollary.

Theorem 17. MQRG(1) ⊆ QMA · PP.
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Proof. Consider any promise problem A = (Ayes, Ano) in MQRG(1), and fix a referee that
establishes the inclusion A ∈ MQRG(1)3/4,1/4. Let {Px : x ∈ Σ∗} and {Qx : x ∈ Σ∗} be a
collection of circuits that describe this referee, in accordance with Definition 11. As in the
proof of Theorem 14, define an operator

Sx,y =
(
〈y| ⊗ 1B

)
Q∗x(|1〉〈1|)

(
|y〉 ⊗ 1B

)
(85)

for each x ∈ Σ∗ and y ∈ Σk. If x ∈ Ayes, there must exists a state ρ ∈ D(A) such that

λmin

(
∑

y∈Σk

〈y|Px(ρ)|y〉Sx,y

)
≥ 3

4
, (86)

while if x ∈ Ano, it is the case that

λmin

(
∑

y∈Σk

〈y|Px(ρ)|y〉Sx,y

)
≤ 1

4
(87)

for every ρ ∈ D(A).
Now define a function N = 72(m + 2) and observe that N is polynomially bounded

in |x|. By Lemma 13, there exists a language B ∈ PP for which these implications hold for
all x ∈ Σ∗ and y1, . . . , yN ∈ Σk:

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≥ 2

3
⇒ (x, y1 · · · yN) ∈ B, (88)

λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≤ 1

3
⇒ (x, y1 · · · yN) 6∈ B. (89)

Finally, for each input x, define a circuit Kx that takes as input N registers (A1, . . . ,AN),
each consisting of n qubits, and outputs N + 1 registers (X,Y1, . . . ,YN). The register X is
initialized to the state |x〉〈x|, so that it simply echoes the input string x, and each register
Yj is obtained by independently applying the circuit Px to Aj. Alternatively, one could
write

Kx = |x〉〈x| ⊗ P⊗N
x , (90)

with the understanding that we are identifying the state |x〉〈x| with the channel that
inputs nothing and outputs the state |x〉〈x|.

To prove that the promise problem A is contained in QMA · PP, it suffices to prove
two things:

Completeness. If it is the case that x ∈ Ayes, then there must exist a state ξ ∈ D(A⊗N) such
that

Pr(Kx(ξ) ∈ B) ≥ 2
3

. (91)

Soundness. If it is the case that x ∈ Ano, then for every state ξ ∈ D(A⊗N) it must be that

Pr(Kx(ξ) ∈ B) ≤ 1
3

. (92)
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The proof of completeness follows a similar argument to the proof of Theorem 14. Let
ρ ∈ D(A) be any state for which (86) is satisfied, and let ξ = ρ⊗N. It is evident that the
output of Kx(ξ) is given by (x, y1 · · · yN), for y1, . . . , yN ∈ Σk sampled independently from
the distribution

p(y) = 〈y|Px(ρ)|y〉. (93)

It follows by Lemma 12 that

Pr(Kx(ξ) ∈ B) ≥ 2
3

. (94)

For the proof of soundness, the possibility that the state ξ ∈ D(A⊗N) does not take
product form must be considered. Our aim is to prove that if y1, . . . , yN are randomly
selected according to the distribution that assigns the probability〈

y1 · · · yN
∣∣P⊗N

x (ξ)
∣∣y1 · · · yN

〉
(95)

to each tuple (y1, . . . , yN), then

Pr

(
λmin

(
Sx,y1 + · · ·+ Sx,yN

N

)
≤ 1

3

)
≥ 2

3
, (96)

for this implies that Pr(Kx(ξ) ∈ B) ≤ 1/3 by (89). Toward this goal, choose a density
operator σ ∈ D(B) for which

∑
y∈Σk

〈y|Px(ρ)|y〉Tr
(
Sx,y σ

)
≤ 1

4
(97)

for all ρ ∈ D(A), which is possible by Sion’s min-max theorem under the assumption (87),
and define random variables Z1, . . . , ZN as

Zj = Tr
(
Sx,yj σ

)
(98)

for every j ∈ {1, . . . , N}, assuming that y1, . . . , yN are chosen at random as above. It suf-
fices to prove that

Pr

(
Z1 + · · ·+ ZN

N
≤ 1

3

)
≥ 2

3
, (99)

as we have λmin(H) ≤ Tr(Hσ) for all Hermitian operators H.
The complication we face at this point is that the random variables Z1, . . . , ZN are not

necessarily independent (because ξ does not necessarily have product form), so the most
standard form of Hoeffding’s inequality will not suffice to establish the required bound
(99). However, we observe that Z1, . . . , ZN are discrete random variables that take values
in the interval [0, 1] and satisfy the inequality

E(Zj|Z1 = α1, . . . , Zj−1 = αj−1) ≤
1
4

(100)
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P · PP

Figure 4: Hasse diagram showing the relationships between CQRG(1), MQRG(1), and
other complexity classes.

for all j ∈ {2, . . . , N} and α1, . . . , αj−1 ∈ [0, 1] for which Pr(Z1 = α1, . . . , Zj−1 = αj−1)
is nonzero. This is evident from the inequality (97), for it must hold when ρ is equal to
the reduced state of register Aj, conditioned on any choice of y1, . . . , yj−1 (and therefore
on any choice of values Z1 = α1, . . . , Zj−1 = αj−1) that appear with nonzero probability.
While the standard statement of Hoeffding’s inequality does not suffice for our needs, the
standard proof of Hoeffding’s inequality does establish that

Pr

(
Z1 + · · ·+ ZN

N
≥ 1

3

)
= Pr

(
Z1 + · · ·+ ZN

N
≥ 1

4
+

1
12

)
≤ exp

(
− 2N

144

)
<

1
3

, (101)

as explained in an appendix at the end of the paper. Having obtained this bound, the
proof is complete.

Corollary 18. MQRG(1) ⊆ P · PP.

6. Conclusion

We have proved containments on two restricted versions of QRG(1), which we have called
CQRG(1) and MQRG(1). A diagram illustrating the containments is provided in Figure 6.

The question that originally motivated the work reported in this paper is whether the
containment QRG(1) ⊆ PSPACE can be improved. We did not succeed in this endeavor,
and so we leave this as an open question. Observing that the containments we prove
establish that CQRG(1) and MQRG(1) are contained in the counting hierarchy, we ask
specifically: is QRG(1) also contained in the counting hierarchy?
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A. Hoeffding’s inequality for dependent random variables
with bounded conditional expectation

In the proof of Theorem 17 we used a slight variant of Hoeffding’s inequality, where the
assumption of independence is replaced by a bound on conditional expectation. We ex-
pect that a bound along these lines has been observed before, but we have not found a
suitable reference. (A similar bound is proved in [BCF+95] for Bernoulli random vari-
ables, but we require the bound to hold more generally for discrete random variables.)

It is, however, straightforward to adapt the most typical proof of Hoeffding’s inequal-
ity to obtain this bound, as we now explain. We begin with Hoeffding’s lemma, which is
the essential ingredient in the proof, and which we state without proof. (A proof may be
found in [BW16], among many other references.)

Lemma 19 (Hoeffding’s lemma). Let X be a random variable taking values in [α, β], for real
numbers α < β, and assume E(X) ≤ 0. For every λ > 0 it is the case that

E
(
exp(λX)

)
≤ exp

(
λ2

8(β− α)2

)
. (102)

Remark 20. The more typical assumption for this lemma is that E(X) = 0, but (as is not
surprising) it is true assuming instead that E(X) ≤ 0. This follows immediately from the
observation that if E(X) ≤ 0, then

E(exp(λX)) ≤ E(exp(λ(X− E(X)))). (103)

The next lemma provides the inequality in the proof of Hoeffding’s inequality that
would ordinarily follow from the assumption of independence. For simplicity we prove
this lemma for discrete random variables, which suffices for our needs.

Lemma 21. Let X and Y be discrete random variables taking values in [α, β] for real numbers
α < β, and assume that E(Y |X) ≤ 0. For every λ > 0 it is the case that

E(exp(λ(X + Y)) ≤ exp
(

λ2

8(β− α)2

)
E(exp(λX)). (104)

Proof. We may write

E(exp(λ(X + Y)) = ∑
x

exp(λx)E(exp(λY) |X = x)Pr(X = x), (105)

where the sum ranges over all possible values of X. By the assumption E(Y |X) ≤ 0,
Hoeffding’s lemma implies

∑
x

exp(λx)E(exp(λY) |X = x)Pr(X = x)

≤ exp
(

λ2

8(β− α)2

)
∑
x

exp(λx)Pr(X = x) = exp
(

λ2

8(β− α)2

)
E(exp(λX)),

(106)

as required.
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Finally, we state and prove the variant of Hoeffding’s inequality we have used (again
for discrete random variables).

Theorem 22. Let X1, . . . , Xn be discrete random variables taking values in [0, 1], let γ ∈ [0, 1],
and assume that

E(Xk |X1, . . . , Xk−1) ≤ γ (107)

for all k ∈ {1, . . . , n}. For all ε > 0 it is the case that

Pr
(
X1 + · · ·+ Xn ≥ (γ + ε)n

)
≤ exp(−2nε2). (108)

Proof. For every λ > 0 we have that

Pr
(
X1 + · · ·+ Xn ≥ (γ + ε)n

)
= Pr

(
exp

(
λ(X1 + · · ·+ Xn − γn)

)
≥ exp(λεn)

)
≤

E
(
exp

(
λ(X1 + · · ·+ Xn − γn)

))
exp(λεn)

(109)

by Markov’s inequality. Applying Lemma 21 iteratively yields

E
(
exp

(
λ(X1 + · · ·+ Xn − γn)

))
≤ exp

(
nλ2

8

)
. (110)

Choosing λ = 4ε yields the claimed bound.
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