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Abstract Let us recall thediscrete Fourier transform (DFT)for
) o ) a given dimensionmn the DFT is a linear operator o™
We give new bounds on the circuit c_omplexny of the quan- Mapping(ao, ai, - .. ,am-1) 10 (bo, b, - .. ,bym_1), Where
tum Fourier transform (QFT). We give an upper bound of
O(logn + loglog(1/¢e)) on the circuit depth for comput- m—1
ing an approximation of the QFT with respect to the mod- b, = (e2mi/myzy g, . (1)
ulus 2™ with error bounded by. Thus, even for exponen- y=0

tially small error, our circuits have depti(logn). The ] o ) ]
best previous depth bound wéXn), even for approxima- The_ DFT has many important appll_canons in classmgl com-
tions with constant error. Moreover, our circuits have size Puting, essentially due to the efficiency of tfest Fourier
O(nlog(n/e)). transform (FFT) which is an algorithm that computes the
As an application of this depth bound, we show that PFT wit_h O(m 102g m) arithmetic operations,_as opposed to
Shor’s factoring algorithm may be based on quantum cir- € obviousO(im*) method. The FFT algorithm was pro-
cuits with depth onlyO(logn) and polynomial size, in posed by Cooley and Tukey in 1965 [12], though its origins
combination with classical polynomial-time pre- and post- can be traced back to Gauss in 1866 [16]. The FFT plays an
processing. important role in digital signal processing, and it has been
Next, we prove af(logn) lower bound on the depth suggested [35] as a contender for the second most important
complexity of approximations of the QFT with constant er- Nontrivial algorithmiin practice, after fast sorting.

ror. This implies that the above upper bound is asymptoti- 1 hequantum Fourier transform (QFTis a unitary op-
cally tight (for a reasonable range of valuespf eration that essentially performs the DFT on the amplitude

We also give an upper bound 6Kn(log n)? log log 1) vegnt% of aquantum state;’&hle QFT maps the quantum state
on the circuit size of thexactQFT modulo2™, for which > a0 Qz|z)tothestatey ;" b, |z), where
the best previous bound wéxn?). _—

Finally, based on our circuits for the QFT with power-of- B8, = —— Z (sz/m) vy
2 moduli, we show that the QFT with respect to an arbitrary T Vm e ’ v
modulusm can be approximated with accuracyvith cir- v
cuits of depthO((log log m)(log log 1/¢)) and size polyno-  The QFT can be approximated by quantum circuits of size
mial inlog m + log(1/e). polynomial inlog m, and for certainn the QFT can be per-
. formed exactly with polynomial-size quantum circuits.
1. Introduction and summary of results The fact that the QFT can be performed by quantum cir-
In this paper we consider the quantum circuit complex- cuit with size polynomial inlogm for some values ofn
ity of the quantum Fourier transform (QFT)The QFT is  was first observed by Shor [33]. In the case where=
the key quantum operation at the heart of Shor's quan-2", there exist quantum circuits performing the QFT with
tum algorithms for factoring and computing discrete log- O(n?) gates, which was proved by Coppersmith [13] (see
arithms [34] and the known extensions and variants of also [10]). These circuits are based on a recursive descrip-
these algorithms (see, e.g., Kitaev [24], Boneh and Lip- tion of the QFT that is analogous to the description of the
ton [7], Grigoriev [19], and Cleve, Ekert, Macchiavellogan DFT exploited by the FFT. While in some sense these quan-
Mosca [11]). The QFT also plays a key role in extensions tum circuits are exponentially faster than the classicdl,FF
of Grover’s quantum searching technique [20], due to Bras- the task that they perform is quite different. The QFT does

sard, Hayer, and Tapp [8] and Mosca [28]. not explicitly produce any of the valugh, 51, ..., Bm-1
~Research partially supported by Canada's NSERC. as output (nor doesllt epr|C|tIy. pbtam any_of the values
TDept. of Computer Science, University of Calgary, Calgajerta, g, 1, .., a1 @S input). Intuitively, the difference be-
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being analogous to the difference between computing all Using the most efficient techniques known for fault-toleran
the probabilities that comprise a probability distributend implementation of quantum circuits (see [1, 25, 30]), our
sampling a probability distribution—the latter task being circuits for the QFT can be implemented with a size in-
frequently much easier. crease of only a poly-logarithmic factor, @(n(logn)¢).
Coppersmith [13] also proposed quantum circuits that In contrast, these techniques result in at least a linear in-
approximate the QFT with error boundeddyyand showed  crease in size for any linear-depth approximate QFT—for
that such approximations can be computed by circuits ofinstance, for the approximate QFT circuits in [13], the re-
size O(nlog(n/e)) for modulus2”. Kitaev [24] showed  sulting size iSO (n?(logn)®).
how the QFT for an arbitrary modulus can be approxi- It has long been known that the bottleneck of the quan-
mated by circuits with size polynomial lvg(m/c). For tum portion of Shor’s factoring algorithm is not the QFT, but
most information processing purposes, it suffices to userather is the modular exponentiation step. If it were pdesib
such approximations of quantum operations eanging to perform modular exponentiation by classical (or quan-
from constant down td /n®™). Indeed, since it seems tum) circuits with poly-logarithmic depth and polynomial
rather implausible to physically implement quantum gates size then it would be possible to implement Shor’s factor-
with perfect accuracy, the need to ultimately consider ap- ing algorithm in poly-logarithmic depth with a polynomial
proximations is likely inevitable. Thus, we believe the number of qubits. Although no such algorithm is known for
most relevant consideration is to approximately compute modular exponentiation, we can prove the following weaker
the QFT, though exact computations of the QFT are still result, which nevertheless implies that quantum computers
of interest as part of the theory of quantum computation. need only run for logarithmic time for factoring to be feasi-
Moore and Nilsson [27] showed that encoding and de- ble.
coding for standard quantum error-correcting codes could
be done by logarithmic-depth quantum circuits, and noted Theorem 2 There is an algorithm for factoring-bit in-
that Coppersmith’s circuits for the QFT can be arranged tegers that consists of: a classical pre-processing stage,
so as to have depthn — 1 (but apparently not less than computed by a polynomial-size classical circuit; followed
this). Similarly, the techniques of Shor and of Kitaev for by a quantum information processing stage, computed by
the QFT have polynomial depth. Our first result shows that an O(log n)-depth polynomial-size quantum circuit; fol-
it is possible to compute good approximations of the QFT lowed by a classical post-processing stage, computed by a
with logarithmic-depth quantum circuits. polynomial-size classical circuit.

Theorem 1 For anyn ande there is a quantum circuit ap- It is interesting to note that this theorem implies that
proximating the QFT modul@™ with precision: that has  logarithmic-depth quantum circuits cannot be simulated in

depthO(log n + loglog(1/¢)) and sizeD(nlog(n/¢)). polynomial time unless factoring is in BPP.
o ] ] _ _ We also consider the minimum deptquired for ap-
By an approximation of a unitary operatiéhwith preci-  proximating the QFT. It is fairly easy to show that comput-

sione, we mean a unitary operatidn (possibly acting on  jng the QFTexactlyrequires depth at leaktg . However,
additional ancilla qubits) with the following property. IFO  this is less clear in the case of approximations—and we ex-
any input (pure) quantum state, the Euclidean distance beqjpjt in Theorem 6 a problem related to the QFT whose
tween applying” to the state andl” to the state is at most  gepth complexity decreases frolmgn in the exact case

e (in the Hilbert space that includes the input/output qubits g O(log log n) for approximations with precisioh/n®().
and the ancilla qubits). Also, whenever we refeciiguits, Nevertheless, we show the following.

there is an implicit technical assumption that the circoiés

long to a logarithmic-space uniformly generated family via Theorem 3 Any quantum circuit consisting of one- and
aclassicalTuring machine. This is a straightforward exten- two-qubit gates that approximates the QFT with precision
sion of uniformity definitions for classical circuits (wiiic % or smaller must have depth at least n.

are discussed in [15, 23]).

In Section 8, we consider an approach for parallelizing This implies that the depth upper bound in Theorem 1 is
Shor's QFT method, which may be described as a mixed-asymptotically tight for a reasonable range of values. of
radix method, that gives somewhat worse bounds. We also show that, if size rather than depth is the pri-

The proof of Theorem 1 follows the general approach mary consideration, it is possible to compute the QT
introduced by Kitaev [24], with several efficiency improve- actly with a near-linear number of gates.
ments and parallelizations. In particular, we introduce a
new method for parallel multiprecision phase estimation. Theorem 4 For everyn there exists a quantum circuit

An immediate benefit of the QFT circuits from Theo- that exactly computes the QFT moduld that has size
rem 1 regards fault-tolerant implementations of the QFT. O(n(logn)? loglogn) and depthO(n).



Theorem 4 is based on a nonstandard recursive descriptioMappings related to the QFT: A quantum Fourier state
of the QFT [10] combined with an asymptotically fast mul- computation (QFS)s any unitary operation that maps
tiplication algorithm [32]. |z)|0) to |z)|,) (for all z € Z,,). We refer to approxi-
While it is sufficient to use the QFT with respect to mations of a QFS aBourier state estimationA quantum
power-of-2 moduli in Shor’s algorithm, one may wish to Fourier phase computation (QFR$ any unitary operation
perform the QFT with respect to other moduli when consid- that mapg,.)|0) to |¢,)|z) (for all z € Z,,). We refer
ering other problems. By exploiting a relationship among to approximations of a QFP d@ourier phase estimatian
QFTs of different moduli noted by Hales and Halgren [21], As pointed out by Kitaev [24], the QFT can be computed
we prove that the QFT for an arbitrary modulus can be per- by composing a QFS and the inverse of a QFP as follows:
formed in poly-logarithmic depth. |2)[0) = |z)|thz) — 0)]1hy).

Quantum gates: All of the quantum circuits that we con-

struct will be composed of three types of unitary gates. One

is the one-qubiHadamardgate, H, which maps|z) to

\/%(|0) + (=1)*|1)) (for z € {0,1}). Another is the one-

gubit phase shifgate,P(6), whered is a parameter of the
The remainder of this paper is organized as follows. In form z/2" (for z € Zyn). P(6) maps|z) to e270% |z) (for

Section 2, we review some definitions and introduce nota- ;. ¢ {0,1}). Finally, we use the two-qubiontrolled-phase

tion used in subsequent sections. In Section 3 we prove thespift gate, cP(4), which mapsz)|y) to e272¥|z)|y) (for

depth and size bounds for quantum circuits approximating ;. , ¢ {0,1}). Note that controlled-NOT and Toffoli gates

the QFT for any power-of-2 modulus as claimed in Theo- ¢an pe composed of these gates.

rem 1. In Section 4 we prove Theorem 2 by demonstrating

how Shor’s factoring algorithm can be arranged so as to re-3. New depth bounds for the QFT

quire only logarithmic-depth quantum circuits. In Sectton . _ o

we prove the lower bound for the QFT in Theorem 3. In The.maln purppse of this section is tp prove Theorem 1.

Section 6 we prove the size bound claimed in Theorem 4  First, we review the approach of Kitaev [24] for perform-

for exactly performing the QFT. In Section 7 we discuss the I"d the QFT for an arbitrary modulua. By linearity, it is

situation when the modulus for the QFT is not necessarily a Sufficient to give a circuit that operates correctly on com-

power of 2, and in Section 8 we discuss the special case c)1putat_|onal basis states. _leen_a comput_at|0nal basis state

“smooth” moduli considered in Shor's original method for |z}, first create the Fourier basis state with phase parame-

performing the QFT. We conclude with Section 9, which t€r« (which can be done easily [f) is not erased in the

Theorem 5 For anym ande there is a quantum circuit ap-
proximating the QFT modulen with precisione that has
depthO((loglog m)(loglog(1/¢))) and size polynomial in
logm + log(1/e).

mentions some open questions relating to this paper.

2. Definitions and notation

Notation for special quantum states:For a given modu-
lus m, we will identify eachz € Z,,, with its binary repre-
sentationz,,_; ... z1z¢ € {0,1}", forn = [logm]. For
x € L, the statez) = |z,,_1 ... z120) IS acomputational
basis stateand the stat@), ) = ﬁ Z;”:*O] (e2mi/m)zy|y)
is aFourier basis statéwith phase parameter). As noted
in [11], whenm = 2", |+,.) can be factored as follows

W)z",l...zlzg>

_ \/121(|0> + 62777(0T0)‘1>)(|0> + e?ni(O.zlzg)H)) .
(2)

. (‘0> + 6271'7',(0.,%",1...,%1300)‘1)).
For convenience, we defingy) = %(\0) + €271} for
eachd € R. Using this notation, we can rewrite Eq. 2 as

®)

Definition of the QFT: The quantum Fourier transform
(QFT) (with modulusm) is the unitary operation that maps
|z) to|y,) (forall z € Z,,).

|"/}:L'71,—1""1:0> = ‘u0-$0>‘u0-$1$0> e |/’L0-1:71—1---1:11:0>'

process). The system is now in the statgi, ). Now, by
performing Fourier phase estimation, the stafgy, ) can

be approximated from the sta®|¢,.). Therefore, by per-
forming the inverse of Fourier phase estimation on the state
|z}, ), a good estimate of the stat®|v,) is obtained.

The particular phase estimation procedure used by Ki-
taev does not readily parallelize, but, in the case where the
modulus is a power of 2, we give a hew phase estimation
procedure that does parallelize. This procedure requires
several copies of the Fourier basis state rather than jest on
To insure that the entire process parallelizes, we must also
parallelize the creation of the Fourier basis state as vgell a
the process of copying and uncopying this state.

The basic steps of our technique are as follows:

1. Create the Fourier basis state, which is the QFS map-
ping |z)|0) = |)[¢).).
2. Copy the Fourier basis state, which is the mapping

3. Erase the computational basis state by estimating the
phase of the Fourier basis state, which is the mapping

|2} |tha)|ha) - - |tha) = [0} |9ha ) [9har) - - - [thar).



4. Reverse step 2, which corresponds to the mapping For our purposes, we need to reduce the size of the
[V )|Va) - - - [} = |1, )]0) -+ - ]0). QFS circuit, which is possible if we only require an ap-
o ) o proximate QFS circuit with error bounded By This is
Each of these components is discussed in detail in the subychieved by constructing a circuit similar to the exact QFS
sections that follow. Throughout we assume the modulus IScircuit, except that controlled phase shift gates are not in

m = 2" cluded whenever the phaseis O(s/n?). Thus, forj =
3.1. Fourier state computation and estimation 0,1,...,n—1,onlythe controlled phase shifts correspond-
ing to the wires|z;), ... ,|z;—r4+1) are performed, where

The first step is the creation of the Fourier basis state cor-i ¢ 21og(n/c) + O(1). This results in the following depth
responding to a given computational basis staje This and size bound.

corresponds to the QFS mapping
Theorem 6 For anyn ande there is a quantum circuit that
|£)]0) = |z) |tz ). 4) approximates a QFS mapping modalb with precision:
that has deptt) (log log(n/e)) and sizeD(nlog(n/e)).
First let us consider a circuit that performs this transfor- . .
3.2. Copying a Fourier state

mation exactly. By Eq. 2 (equivalently, Eq. 3), it suffices to

compute the statelig ., ), [140.2120)s -« 5 [HO.20_1...2120) In this section, we show how to efficiently produce sev-

individually. eral copies of am-qubit Fourier basis state from one copy.
The circuit suggested by Figure 1 performs the required This is a unitary operation that acts énn-qubit regis-

transformation for g o .. 2o )- ters (thuskn qubits in all) and mapgp,)|0™) ---|0™) to

[Va) W) - - - [by) fOr all z € {0,1}". The copying circuit
102, 2q) will be exact and have siz€(kn) and depthO(log(kn)).
The setting of will be O(log(n/¢)).

_ Consider the problem of producing two copies of a
07) Fourier state from one. Define tH{eeversible) addition
and (reversible) subtractioroperations as the mappings
j#)ly) + |#)ly + ) and |#)]y) > |z)]y - z) (respec-
tively), wherex,y € {0,1}" and additions and subtrac-
tions are performed as integers mod2ffo By appealing to
classical results about the complexity of arithmetic (adyoo
exposition can be found in Chapter 29 of [14]), one can con-
struct quantum circuits of siz€(n) and depthO(logn)
for these operations (using an ancilla of s2én)). It is
straightforward to show that applying a subtraction opera-
tion to the stateiy,)|v,) results in the stat&),.,)|y,).

In this figure we have not labelled the controlled phase The stateli) can be obtained fronj)™) by applying a
shift gates, d®(d) (such gates are defined in Section 2), Hadamard transform independently to each qubit. There-
which are the gates in the center drawn as two solid cir- fore, the copying operation can begin with a state of the
cles connected by a line. For each such gate, the phase form [0")[¢;) and consist of these two steps: (i) Apply
depends on and on the particular qubit ¢f,, 1 ... z1z0) H to each of the firsk qubits, and (i) apply the subtrac-
on which the gate acts. The value #for the controlled tion operation to th&n qubits. The resulting state will be
phase shift acting ofx;) is 2071 (fori € {0,1,... ,j}). [a) %)
The remaining gates consist of a Hadamard gate and several An obvious method for computing copies of a Fourier
controlled-NOT gates. The depth of this circuitiglog n) state is to repeatedly apply the above doubling operation.
and the size i§)(n). This will result in a quantum circuit of siz&(kn); how-

If such a circuit is to be applied fogr = 0,... ,n — 1, ever, its depth will be&)((log k) (log n)), which is too large
in order to perform the mapping in Eq. 4, then the qubits for our purposes. _
[Ty 1), ..., |z1),|zo) must first be copied several times ~ The depth bound can be improved @(log(kn)) by
(n — i times for |z;)) to allow the controlled phase shift @Pplying other classical circuit constructions to effitign
gates to operate in parallel. This may be performed (andimplement the(reversible) prefix additiomnd (reversible)
inverted appropriately) in siz@ (n?) and depttO(logn) in telescoping subtractioaperations, which are the mappings
the most obvious way. Thus we have that a QFS transform |z1)
can be performed exactly by circuits of depiflog n) and
sizeO(n?). |z1)|za) - |zk) = |za)|xe — @) Tk — Th—1)

0 —H]

07)

o1-e
o1-e

00—
00—

;) |z;)

o) |zo)

Figure 1. Quantum circuit for preparation §ffio ... z, )-

|za) -+ Jzk) = |zi)|Tr +xo) T+ T



(respectively), where;, zs, ... ,z; € {0,1}". Before ad-

form. The output will be(z:1, =1 +x2,... , 21 + -+ xp),

dressing the issue of efficiently implementing these oper- as required.

ations, let us note that the copying operation can be per-

formed by starting with the staté™) - - - |0™)|«,) and per-
forming these two steps: (i) Appl¥ to all of the first
(k — 1)n qubits, and (ii) apply the telescoping subtrac-
tion operation to thén qubits. The resulting state will be

|9) -+ |ta).

Now, to implement the prefix addition and telescoping

Note that step 4 of the main algorithm has a circuit of
identical size and depth to the one just described, as it is
simply its inverse.

3.3. Estimating the phase of a Fourier state

Finally, we explain the third step of the main algorithm,
which corresponds to the mapping

subtraction, note that they are inverses of each other. This

means that it is sufficient to implement each one efficiently
by a classical (nonreversible) circuit, and then combine

|tha) |the) - - (W) ) = [tha) [tha) - - [£02)]0)  (5)

these to produce a reversible circuit by standard techsique for = € {0,1}”. The number of copies df),) required

in reversible computing [5]. The telescoping subtraction
clearly consists of — 1 subtractions that can be performed

for this step depends on the error bounadve will require
k € O(log(n/e)) copies.

in parallel, so the nonreversible size and depth bounds are  First note that, by Eq. 3% copies of|¢,) comprisek

O(kn) andO(log n) respectively.

The prefix addition is a little more complicated. It relies
on a combination of well-known tools in classical circuit de
sign. One of them is the following general result of Ladner
and Fischer [26] about parallel prefix computations.

Theorem 7 (Ladner and Fischer) For any associative bi-
nary operatiom, the mapping

(w1, w2, ..., wp) = (L1, 10X, ..., L1 0 0I})
can be computed by a sigKk) and depthO(log k) circuit
consisting of gates of the forfe, y) — (z, x o y).

Anothertool is the so-callechrry-save addemwhich is a
circuit that takes three-bit integerse, y, z as input and pro-
duces twa-bit integerss, ¢ as output, such that+y +z =
s + ¢ (recall that addition is in modul@™ arithmetic). It

is remarkable that a carry-save adder can be implemente

with constant deptland sizeO(n) (see [14]). By combin-
ing two carry-save adders, one can implement a 6ige)
and depthO(1) four-two adderthat performs the mapping
(z,y,z,w) — (z,y,s,c), wherez+y+z+w = s+c. Now,
consider thgoairwise representatioof eachn-bit integerz

as a pair of twau-bit integergz’, z") such that = z'+2"".
This representation is not unique, but it is easy to conweert t

copies of|pg..;....,) for eachj € {0,1,... ,n —1}. Our
approach can be explained intuitively by considering the
problem of how to measure theke qubits in order to ob-
tain a good estimator of the string, 1 ... z;29. A So-
lution to this can then be translated via standard techsique
into a quantum circuit that computes the inverse of the map-
ping in EqQ. 5.

It should be noted that, in general; cannotbe esti-
mated well by measuring thecopies of| g o ... ., ) alone.
For example, wher,, ;... ;2 = 100... 0, measur-
iNg |uo.100...0) Will yield little information aboutz,,_1,
since|uo.100... 0) IS exponentially close tQu.011...1) (even
though|100. .. 0) is orthogonal td011 ... 1)).

The approach that we follow is to perform measurements
on thek copies ofj ... z,) in order to obtain information
aboutz; as a function ofe;_;. After this is performed in
parallel for eachj > 0, andz, is determined (easily by
dneasuringuo_zo)), the information can be combined to de-
terminex,,_1 ... T12g.

Two types of measurements are used here. For half of
the & copies of|uo.4;... z,), @ SO-calledr. measuremeris
performed. This is a measurement with respect to the basis
{L510) + 25119, 2510) — 51} = {|mo.o)s|p0.1)}. For
the remaining copies dfu..;... «,), @ 0, Measuremenis
performed, which is a measurement with respect to the basis

and from the pairwise representation: the respective map-{5/0) + J5/1), 75/0) — 5I1)} = {l10.01), [o.11) }-

pings arez — (z,0™) and(z’,z") — z' + 2". The useful

observation is that the four-two adder performs integer ad-

Let us now examine what these measurements reveal
when they are applied to a state of the form ;... z,)-

dition in the pairwise representation scheme, and it does sdt is helpful to think of the numbeb.z; ... zo € [0,1)

in constant depth and siz&(n).

Now, the following procedure computes prefix addition
in sizeO(kn) and depthD(log k + logn) = O(log(kn)).
The input is(z1, za, ... , x). (i) Convert thek integers
into their pairwise representation. (ii) Apply the parhlle
prefix circuit of Theorem 7 to perform the prefix additions
in the pairwise representation scheme. (iii) Convertihe
integers from their pairwise representation to their staidd

as a point on a circle with unit circumference (with
identified with 1). A 0. measurement ofuo.s;... ;)
has outcome probabilities + 3 cos(2m(0.z; ... z)) (for
|,LL0,0>), and é — %COS(Q?T(O..’IJJ' - ’1'0)) (for ‘/},01>) If
011 <0.zj...20<1o0r0 < 0.z;... 29 < 0.01, then
z; = zj—1 and the outcome is biased towargs o). If
0.01 < 0.zj...zp < 0.11 thenz; # z;_; and the out-
come is biased towardg, .1 ). Atthe boundary pointg).01



and0.11, the distribution is unbiased. Thus, if a statisti- x,_; ... x1x0, all suffix products of the string of conditions

cally significant bias among the/2 outcomes of ther, must be computed, which can be performed in parallel by
measurements occurs thep can be inferred in terms of  the parallel prefix method of Theorem 7. The depth of the
zj_1. Let P (propagat¢ denote the condition; = z;_4 circuit for this isO(log ) and the size i$)(n).

and letN (negat¢ denote the conditiom; # x;_;. When It follows from the above that there is circuit of depth
0.z; ... xo is at or near one of the two boundary points, the O(logn + loglog(n/ec)) = O(logn + loglog(1/e)) and

two outcomes of ar, measurement have nearly the same sizeO(nlog(n/e)) that estimates the string,_1 ... z;z0.
probability and are hard to distinguish. In these cases, theWhat remains is to show how to convert this into a quantum
outcomes of the,, measurements are needed. circuit without measurements that approximates the map-

For a 0, measurement the outcome probabilities are ping in Eq. 5. This follows from standard results based on
% + ]5 sin(27(0.z; ... o)) and the properties are similar to  ideas in [6] about converting quantum circuits that perform
those of ar, measurement, except that the two ranges thatmeasurements and produce classical information with small
are distinguished aré! < 0.z; ... zy < 0.1, which corre- error probability into unitary operations (without meassur
spondsta; = 0;and,0.1 < 0.z; ... 2o < 1, which corre- ments) that can operate on data in superposition. It should
sponds taz; = 1. A statistically significant bias among the be noted that a sta{g,) can be conserved throughout the
k/2 outcomes of the,, measurements enables an inference computation to ensure that errors corresponding to differe
z; = 0orz; = 1to be made. Led and1 denote these two  values ofx are orthogonal.

conditions. 4. Factoring via | rithmic-depth ntum
Forthe|uo..,... z,) States, the most frequent of theut- ' .ac O ing via fogar e-Cepih quant
comes among the, and s, measurements is taken (re- circuits

solving ties arbitrarily). The result will be the condition |n this section we discuss a simple modification of Shor’s
P, N, 0, or 1. The probability that the condition is an  factoring algorithm that factors integers in polynomiadéi
incorrect one is exponentially small with respectitoTo  ysing logarithmic-depth quantum circuits. It is importemt
see why this is so, recall the following result about indepen note that we are not claiming the existence of logarithmic-

dent Bernoulli trials (see, e.g., [17]). Let,... ,a; bein-  depth quantum circuits that take as input some intéger
dependent Bernoulli trials with probabilifyof success and  and output a non-trivial factor ¥ with high probability—
bi, ..., b be independent Bernoulli trials with probability the method will require (polynomial time) classical pre-
q of success, wherg > ¢. Then processing and post-processing that is not known to be par-
. . PTUN allelizable. The motivation for this approach is that, unde
Pri|d>iijai <) bi| <2e (=) t/2, the assumption that quantum computers can be built, one
o o _ may reasonably expect that quantum computation will be
When this is applied in our context, the valuepf- g is  expensive while classical computation will be inexpensive
31 cos(2m(0.z; ... o)) — g[sin(27(0.z;... z0))| > 3 The main bottleneck of the quantum portion of Shor’s
andt = k/2, so the probability of an error is less than factoring algorithm is the modular exponentiation. Whethe
2e~k/1% foreachj € {0,1,... ,n—1}. Thecircuitcomput-  or not modular exponentiation can be paralielized is a
ing then conditions has deptf(log k) = O(loglog(n/¢)) long-standing open question that is not resolved here. In-
and sizeD(nk) = O(nlog(n/e)). stead, we show that sufficient classical pre-processing al-
Now, assume that,i,...,Li,Ly € {P,N,0,1} lows parallelization of the part of the quantum circuit asso
are correct conditions fat,, 1, ... ,z1,zo (respectively),  ciated with the modular exponentiation. Combined with our

and thatL, is 0 or 1. From these values, the bits of |ogarithmic-depth circuits for the QFT, we obtain the résul
Z,_1 ... T1Zo Can be deduced by tracing through the con- ¢laimed in Theorem 2.

ditions. For example, the string of conditiobB1NNPPO In order to describe our method, let us briefly review
corresponds to the binary striid101000. The simplest  shor's factoring algorithm, including the reduction from

way to trace through the conditions is to start at the right factoring to order-finding. It is assumed the input is-a
side and proceed left, one condition at a time—this is a se-pijt integerN that is odd and composite.

quential process that takessteps.

However, these deductions can also be computed in par-1. (Classical) Randomly seleat € {2,... ., N — 1}. If
allel. A method for doing this can be seen by identifying ~ gcd(a, N) > 1 then outputgcd(a, V), otherwise con-
each condition with & x 2 matrix as follows tinue to step 2.

p— (5?)7 N = ((1](])) 0= ((]J(]))) 1= (2?) 2. c()?:?r:ltzqm) Attempt to find information about the order
N
Then, tracing through the conditions is equivalent to com- a. Initialize a2n-qubit register and an-qubit register

puting products of the matrices. To obtain all the bits of to statel0)|0).



b. Perform a Hadamard transform on each qubit of the of [, .. 4,4,) SN state%(m)+ez’”'(°-'””"f*1--- €120) 1)),
first register. its value depends on all qubits of the corresponding input
c. (Modular exponentiation step.) Perform the unitary Stat€|z,—1... z120). The depth of the circuit must be at
mapping|z)|0) — |z)|a® mod N). leastlogn for this to be possible. This lower bound proof
applies not only to the QFT, but also to QFS computations

d. Perform the quantum Fourier transform on the first yefined in Section 2). This is because the output of a QFS
register and measure (in the computational basis). 4, input|z) |0) includes the statgp, ).

Lety denote the result. On the other handpproximatecomputations can some-

d times be performed with much lower depth than their exact
counterparts. For example, we have already seen in Theo-
rem 6 (Section 3.1) that a QFS can be computed with pre-
cisione by a quantum circuit with dept®(loglog(n/¢)).
Thus, fore € 1/n°™), the QFS circuit depth need only be

4. (Classical) Ifr is even, computé = ged(a’/? — 1, N) O(loglogn). Although this suggests that it is conceivable
and outpud if it is a nontrivial factor of N. Otherwise  for a sub-logarithmic-depth circuit to approximate the QFT
gotostep 1. with precision1/n°("), Theorem 3 implies that this is not

possible. We now prove this theorem.

LetC be a quantum circuit that approximates timeerse
QFT with precisionf—o. In this section, since we will need to
consider distances between mixed states, we adoptite
distanceas a measure of distance (see Chapter 9 of [29] for
bo = a. by = o by = g2 (modN) an excellent discussion of distance measures betwee_n quan-

’ P e tum states, and for further references). The trace distance

can be computed in polynomial-time. With this informa- between two states with respective density operaiansd
tion available in step 2, the modular exponentiation step @ IS given asD(p, o) = 3 Trlp — |, where, for an operator
reduces to applying a unitary operation mapping0) to A, |A| = VAt A, For a pair of pure stateg) and|¢'), their
lz)[b5° - bt - b2 mod N). This is essentially an iter- ~ trace distance is/1 — [(¢|¢')|?, which is upper bounded

3. (Classical) Use the continued fraction algorithm to fin
relatively prime integerg andr, 0 < k£ < r < N, such
that|y/2?" — k/r| < 272", If a" = 1 (mod N) then
continue to step 4, otherwise repeat step 2.

The key idea is to use the fact (noted in [34]) that much
of the work required for the modular exponentiation step
can be shifted to the classical computation in step 1 of the
procedure. In step 1, the numbers

ated multiplication problem, where one is giv&nn-bit in- by their Euclidean distance.
tegershy®, bi', ... ,by2" " as input and the goal is to com- On input|v,, . ,2,), the output state of contains
pute their product. The most straightforward way to do this an approximation ofz,,_; ... z1z¢). In particular, one of

is to perform pairwise multiplications following the struc  the output qubits of” should be in a state that is an ap-

ture of a binary tree witl2n leaves. Each multiplication  proximation of|z,,_1) within % Let us refer to this as the

can be performed with depth(logn) and sizeD(n?). The high-orderoutput qubit ofC. If the depth ofC is less than

underlying binary tree has deplitg(2n) and2n — 1 inter- log n then the high-order output qubit 6f cannot depend

nal nodes. Thus, the entire process can be performed witton all n of its input qubits. Le% € {0,1,... ,n — 1} be

depthO((logn)?) and sizeD (n?). such that the high-order output qubit does not depend on the
There are alternative methods for performing iterated k™ input qubit (where we index the input qubits right to left

multiplication achieving various combinations of deptldan starting from 0). Let =n — k — 1.

size. In particular, it was recently proved by Chiu, Davida, = Setz = 2" —1,whichis1l...1 = 1™in binary. Follow-

and Litow [9] (improving on results in [4]) that a prod- ing Eq. 3, we havéy.) = |uo.1)|po11) - |o.1-). Con-

uct such as we have above can be computed yg n) sider the stat@). ;o-). Asz 4+ 2" = 0" "1" (mod 2"), we

depth boolean circuits of polynomial size. While the size see that

is likely to exceed th€(n?) bound obtained above, the re-

sult has an interesting consequence regarding simulations|ey, , o) = |po.1)- - +|o.17 ) 10.017 )| fto.0017 )+ - *| g gn—r1r)-

of logarithmic-depth quantum circuits: if logarithmic{até

quantum circuits can be simulated in polynomial time, then Note that, on inpuf.), the high-order output qubit of

factoring can be done in polynomial time as well. C approximategl) with precisionl]—o; whereas, on input

|42+ ), the high-order output qubit @ approximate$))

5. Lower bounds with precision.L .

Logarithmic-depth lower bounds fagxact computations Now, we consider a state’), which has an interesting

with two-qubit gates are fairly easy to obtain, based on the relationship with botty),) and|i . -). Define

fact that the state of some output qubit (usually) criticall

depends on every input qubit. Since, by Eq. 3, the last qubit  [¢.) = |po.1) - - - |to.1) |t0.017 ) [0 1742 ) - - - [po.17 )-



The states|y).) and |¢.) are identical, except in their
k" qubit positions (which are orthogonalig i) Vs.
|i.1-+1)). Since the high-order output qubit 6f does not
depend on it&™ input qubit, it is the same for input’ ) as
for input|¢.). Therefore, the state of the high-order output
qubit of C' on input|y.) is within - of |1).

On the other hand, the trace distance betwegéh and
|1.42-) can be calculated to be below 0.7712, as follows.
The two states are identical in qubit positioms- 1,n —
2,..., k. Inqubit positionk — 1, the two states differ by an
angle ofZ, in qubit positionk — 2 the two states differ by
an angle ofg, and so on. Therefore,

(W, |th2gar) (o.17+2|p0.0217) - - - (po.1n | ho.0m=r17)
= cos(gz) cos(gz) - - - cos(znp=T)
> cos(gz) cos(g3) cos(gs) - - -
> 0.6366.
This implies that the trace distance betweerl) and

|t.42-) is less than/1 — (0.6366)? < 0.7712. Since

the trace distance is contractive, it follows that the stdte
the high-order output af’ on input|+.) has trace distance
less than 0.7712 from the state of high-order outpu€'of
on input|y.+o-). But, by the triangle inequality, this im-
plies that the trace distance betweehand|1) is less than
L+0.7712+ % < 1, which is a contradiction, sinde) and

|1) are orthogonal. This completes the proof of Theorem 3.

6. New size bounds for the QFT

In this section, we prove Theorem 4. LEt. denote the
Fourier transform modul®”, which acts om qubits.

The standard quantum circuit fé#,» can be described
recursively as follows (where the controlled-phase shift
gates cP(#) are defined in Section 2).

Standard recursive circuit description for Fyx:
1. Apply F,. -1 to the firstn — 1 qubits.

2. Foreachy € {1,...,n— 1}, apply cP(1/2"~7*1) to
the ;" andn™ qubit.

3. Apply H to then™ qubit.

The resulting circuit consists @f(n — 1) /2 two-qubit gates
andn one-qubit gates.

Below is a more general recursive circuit description for
F,., parameterized byn € {1, ... ,n — 1} (based on [10]).
This coincides with the above circuit whem = 1. When
m > 1, it can be verified that the circuit does not change

Generalized recursive circuit description for Fy.:

1. Apply Fy. - to the firstn — m qubits.

2. Foreachj € {1,...,n—m} andk € {1,... ,m},
apply cP(1/2%=7+1) to thej" and(n —m+k)" qubit.

3. Apply Fy» to the lastn qubits.

Our new quantum circuits are based on this general-
ized recursive construction withh = |n/2], except that
they use a more efficient method for performing the trans-
formation in Step 2. Step 2 consists @f — m)m (or
approximatelyn?/4) two-qubit gates. The key observa-
tion is that Step 2 computes the mapping that, forc
{0,1}"~™ andy € {0,1}™, takes the statér)|y) to the
state(e?7¥/2")*¥|z)|y), wherez - y denotes the product of
x andy interpreted as binary integers. From this, it can
be shown that Step 2 can be computed using any classical
method for integer multiplication in conjunction with some
one-qubit phase shift gates (of the fof{d), defined in
Section 2).

Currently, the best known asymptotic circuit size for in-
teger multiplication, due to Schdnhage and Strassen [32],
is O(nlognloglogn). This can be translated into a re-
versible computation of the same size that we will denote
asS. Forz € {0,1}" ™ andy € {0,1}", S maps the
state|z)|y)|0™) to|z)|y)|z - y). (There are)(n) additional
ancilla qubits that are not explicitly indicated. Each afsk
begins and ends in staje).)

Improved Step 2 in general circuit description for Fy. :

2a. ApplyS to the2n qubits.

2b. For eachk € {1,...,n}, apply P(1/2*) to the
(n + k)™ qubit.

2c. Apply S—! to the2n qubits.

Using this improved Step 2 in the generalized recursive
circuit description forF,- results in a total number of gates
that satisfies the recurrence

Ty = Trpj21 + Tinj2) + O(nlognloglogn),

which implies that7,, € O(n(logn)?loglogn). It is
straightforward to also show that the circuit has depth)
and widthO(n).

7. Arbitrary moduli

In this section we sketch a proof of Theorem 5, which
states that it is possible to approximate the QFT with re-
spect to an arbitrary modulus in parallel with high ac-

curacy. This can be done using our circuits for the QFT

very much. It has exactly the same gates, though the relativenodulo2” for k& = |logm| + O(1). The depth of the cir-

order of the two-qubit gates (which all commute with each
other) changes.

cuit is O(log nloglog(1/e)) and the size is polynomial in
n + log(1/e).



The method exploits a relation between QFTs with dif- 8 Shor’s “mixed-radix” QFT
ferent moduli that was used by Hales and Hallgren [21] in
regard to the so-calleleburier Samplingproblem (see also
Hayer [22] for an extension and simplified proof).

The basic components of the technique are as follows:

We conclude with a brief discussion of Shor’s original
“mixed radix” method for computing the QFT, as it too can
be parallelized (although to our knowledge not as efficientl
as the power-of-2 case discussed previously in this paper).
Shor’s original method for computing the QFT is based
on the Chinese Remainder Theorem and its consequences
regardingZ,,, for given modulusm. Here the modulus
2. Copy the Fourier state, which corresponds to the map-iS m = mams - -my, for my,...,m; pairwise relatively
ping |)1,)]0) - - - [0) = |2)|the)|the) - - - [the). prime andmn; € O(logm). Thusk € O(logm/ loglogm)
is somewhat less than the number of bitshof and each
3. Apply the inverse Fourier transform modu?é on m; has length logarithmic in the length of. Takingm;

1. Create a Fourier state with modulus which is the
mapping|z)|0) = [z)[¢.).

each statéwy, ), which is the mapping to be thej™ prime results in a sufficiently dense collection

of moduli m for factoring [33] (see Rosser and Schoen-

)| - ) > |2) (ng Wz)) (ng \%)) _ feld [31] for explicit bounds and a detailed analysis of such
bounds).

Although stated somewhat differently by Shor, the mixed
4. Computelym2~* + 1/2| mod m for each computa-  radix QFT method may be described as follows:
tional basis statg occurring among the collections of

qubits on whichF), was performed. An observation 1. Foreachj = 1,... .,k definef]‘ = m/m; and set
of FJ,|¢,) in the computational basis yields some 9i € Zm; suchthay; = f;= (mod m;).

with [ym2~* +1/2| = = with probability exceeding 2. DefineC to be the (reversible) operator acting as fol-
1/2 + ¢ for some constant, which implies that with lows for each € {0,... ,m — 1}:

high probability the most frequent value obtained for T

|lym2~* 4+ 1/2] mod m will be . XOR this result to C:|z) = |(x mod my),...,(z mod my))

the qubits in statér), and reverse the computation of

eachLme*’“ +1/2] andy. With high probability the 3. DefineA to be the (reversible) operator such that
mapping

Azlzy,...zk) = g1z, . grTr)
t o (Ft
) (FQ’“W*)) (FQ’“W*)) foreach(zy, ... , o) € Zmy X -+ X L,
T T

— 10) (ng W)H) (ng W)w)) 4. Let F,, and F),,; denote the QFT for moduli» and

mj, j = 1,...,k, respectively. Then the following
has been performed. relation holds:

5. Reverse steps 3 and 2, giving the mapping Fp=CNEF,, @ - @ F, )AC. (6)

10) (ng W’z)) . (ng W’z)) s |0)[.)[0) - - - [0). Thus, to perform the QFT modute on|z), first con-

vert z to its modular representatiof , ... ,zy) us-

, ing the operatoC’, multiply eachz; by g; (modulo
Unfortunately some of the methods used in the power of 2 m;), perform the QFT modulan; independently on

case (such as using carry-save adders and approximating the coefficientj (for eachj), then apply the inverse af
individual qubits of the Fourier basis states) do not seem to to convert back to the ordinary representation of ele-
work in this case, which results in the slightly worse depth ments inZ
. . . . me

bound. The overall size bound increases as well, but is still
polynomial. The numbers computed in step 1 are used in the stan-

It is interesting to note that this method does not re- dard proof of the Chinese Remainder Theorem: given
quire the larger modulus to be a power of 2—effectively 4, ... 2., we have that for = fol figjz; mod m,
the method shows that the QFT moduidfor any modulus  the congruence = =, (modm;) is satisfied for eaclj.

m can be efficiently approximated given a black box that Thus the operatof’ can be implemented efficiently, since
approximates the QFT modula’ for any sufficiently large  the mapping

m'. Further technical details regarding this method will ap-

pear in the final version of this paper. x = ((x mod my),...,(x mod my))



and its inverse are efficiently computable (e.g., with size  Finally, the fact that the quantum Fourier transform can
O(log? m) circuits [2]). In the present casé can be par-  be performed in logarithmic depth suggests the following
allelized to logarithmic depth, since each of the moduli are question: are there interesting natural problems in BQNC
small. Similarly, the operatof can be parallelized to loga- (bounded-error quantum NC) not known to be in NC or
rithmic depth. RNC? For instance, computing the greatest common di-
To see that Eq. 6 holds, we may simply examine the ac-visor of two n-bit integers and computing” mod ¢ and
tion of the operator on the right hand side on computational ;—' mod ¢ for n-bit integersa, b, and ¢ is not known
basis states: to be possible using polynomial-size circuits with depth
poly-logarithmic inn in the classical setting. Are there

t .
O (Fmy ® - @ Fin JAC]z) logarithmic- or poly-logarithmic-depth quantum circuits

_ ot )

= C'(Fmy @~ @ Foy)|gran, -, gren) these problems? Greenlaw, Hoover and Ruzzo [18] list sev-

= \/%CT Z exp(2mi Y5y figimiyi /m)lyr. .. yk) eral other pro_blems not knoyvn to be classically para!leliz—
Y1 Uk able, all of which are interesting problems to consider & th

- \/%Zexp(%iﬂ?y/m)\y) quantum setting.

Y
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