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Abstract

We give new bounds on the circuit complexity of the quan-
tum Fourier transform (QFT). We give an upper bound ofO(logn + log log(1=")) on the circuit depth for comput-
ing an approximation of the QFT with respect to the mod-
ulus2n with error bounded by". Thus, even for exponen-
tially small error, our circuits have depthO(logn). The
best previous depth bound wasO(n), even for approxima-
tions with constant error. Moreover, our circuits have sizeO(n log(n=")).

As an application of this depth bound, we show that
Shor’s factoring algorithm may be based on quantum cir-
cuits with depth onlyO(logn) and polynomial size, in
combination with classical polynomial-time pre- and post-
processing.

Next, we prove an
(logn) lower bound on the depth
complexity of approximations of the QFT with constant er-
ror. This implies that the above upper bound is asymptoti-
cally tight (for a reasonable range of values of").

We also give an upper bound ofO(n(logn)2 log logn)
on the circuit size of theexactQFT modulo2n, for which
the best previous bound wasO(n2).

Finally, based on our circuits for the QFT with power-of-
2 moduli, we show that the QFT with respect to an arbitrary
modulusm can be approximated with accuracy" with cir-
cuits of depthO((log logm)(log log 1=")) and size polyno-
mial in logm+ log(1=").
1. Introduction and summary of results

In this paper we consider the quantum circuit complex-
ity of the quantum Fourier transform (QFT). The QFT is
the key quantum operation at the heart of Shor’s quan-
tum algorithms for factoring and computing discrete log-
arithms [34] and the known extensions and variants of
these algorithms (see, e.g., Kitaev [24], Boneh and Lip-
ton [7], Grigoriev [19], and Cleve, Ekert, Macchiavello, and
Mosca [11]). The QFT also plays a key role in extensions
of Grover’s quantum searching technique [20], due to Bras-
sard, Høyer, and Tapp [8] and Mosca [28].�Research partially supported by Canada’s NSERC.yDept. of Computer Science, University of Calgary, Calgary,Alberta,
Canada T2N 1N4.fcleve;jwatrousg@cpsc.ucalgary.ca

Let us recall thediscrete Fourier transform (DFT); for
a given dimensionm the DFT is a linear operator onCm
mapping(a0; a1; : : : ; am�1) to (b0; b1; : : : ; bm�1), wherebx = m�1Xy=0 (e2�i=m)x�y ay: (1)

The DFT has many important applications in classical com-
puting, essentially due to the efficiency of thefast Fourier
transform (FFT), which is an algorithm that computes the
DFT withO(m logm) arithmetic operations, as opposed to
the obviousO(m2) method. The FFT algorithm was pro-
posed by Cooley and Tukey in 1965 [12], though its origins
can be traced back to Gauss in 1866 [16]. The FFT plays an
important role in digital signal processing, and it has been
suggested [35] as a contender for the second most important
nontrivial algorithm in practice, after fast sorting.

The quantum Fourier transform (QFT)is a unitary op-
eration that essentially performs the DFT on the amplitude
vector of a quantum state—the QFT maps the quantum statePm�1x=0 �xjxi to the state

Pm�1x=0 �xjxi, where�x = 1pm m�1Xy=0 (e2�i=m)x�y �y:
The QFT can be approximated by quantum circuits of size
polynomial inlogm, and for certainm the QFT can be per-
formed exactly with polynomial-size quantum circuits.

The fact that the QFT can be performed by quantum cir-
cuit with size polynomial inlogm for some values ofm
was first observed by Shor [33]. In the case wherem =2n, there exist quantum circuits performing the QFT withO(n2) gates, which was proved by Coppersmith [13] (see
also [10]). These circuits are based on a recursive descrip-
tion of the QFT that is analogous to the description of the
DFT exploited by the FFT. While in some sense these quan-
tum circuits are exponentially faster than the classical FFT,
the task that they perform is quite different. The QFT does
not explicitly produce any of the values�0; �1; : : : ; �m�1
as output (nor does it explicitly obtain any of the values�0; �1; : : : ; �m�1 as input). Intuitively, the difference be-
tween performing a DFT and a QFT can be thought of as



being analogous to the difference between computing all
the probabilities that comprise a probability distribution and
sampling a probability distribution—the latter task being
frequently much easier.

Coppersmith [13] also proposed quantum circuits that
approximate the QFT with error bounded by", and showed
that such approximations can be computed by circuits of
sizeO(n log(n=")) for modulus2n. Kitaev [24] showed
how the QFT for an arbitrary modulusm can be approxi-
mated by circuits with size polynomial inlog(m="). For
most information processing purposes, it suffices to use
such approximations of quantum operations (for" ranging
from constant down to1=nO(1)). Indeed, since it seems
rather implausible to physically implement quantum gates
with perfect accuracy, the need to ultimately consider ap-
proximations is likely inevitable. Thus, we believe the
most relevant consideration is to approximately compute
the QFT, though exact computations of the QFT are still
of interest as part of the theory of quantum computation.

Moore and Nilsson [27] showed that encoding and de-
coding for standard quantum error-correcting codes could
be done by logarithmic-depth quantum circuits, and noted
that Coppersmith’s circuits for the QFT can be arranged
so as to have depth2n � 1 (but apparently not less than
this). Similarly, the techniques of Shor and of Kitaev for
the QFT have polynomial depth. Our first result shows that
it is possible to compute good approximations of the QFT
with logarithmic-depth quantum circuits.

Theorem 1 For anyn and" there is a quantum circuit ap-
proximating the QFT modulo2n with precision" that has
depthO(logn+ log log(1=")) and sizeO(n log(n=")).
By an approximation of a unitary operationU with preci-
sion", we mean a unitary operationV (possibly acting on
additional ancilla qubits) with the following property. For
any input (pure) quantum state, the Euclidean distance be-
tween applyingU to the state andV to the state is at most" (in the Hilbert space that includes the input/output qubits
and the ancilla qubits). Also, whenever we refer tocircuits,
there is an implicit technical assumption that the circuitsbe-
long to a logarithmic-space uniformly generated family via
aclassicalTuring machine. This is a straightforward exten-
sion of uniformity definitions for classical circuits (which
are discussed in [15, 23]).

In Section 8, we consider an approach for parallelizing
Shor’s QFT method, which may be described as a mixed-
radix method, that gives somewhat worse bounds.

The proof of Theorem 1 follows the general approach
introduced by Kitaev [24], with several efficiency improve-
ments and parallelizations. In particular, we introduce a
new method for parallel multiprecision phase estimation.

An immediate benefit of the QFT circuits from Theo-
rem 1 regards fault-tolerant implementations of the QFT.

Using the most efficient techniques known for fault-tolerant
implementation of quantum circuits (see [1, 25, 30]), our
circuits for the QFT can be implemented with a size in-
crease of only a poly-logarithmic factor, toO(n(logn)
).
In contrast, these techniques result in at least a linear in-
crease in size for any linear-depth approximate QFT—for
instance, for the approximate QFT circuits in [13], the re-
sulting size isO(n2(logn)
).

It has long been known that the bottleneck of the quan-
tum portion of Shor’s factoring algorithm is not the QFT, but
rather is the modular exponentiation step. If it were possible
to perform modular exponentiation by classical (or quan-
tum) circuits with poly-logarithmic depth and polynomial
size then it would be possible to implement Shor’s factor-
ing algorithm in poly-logarithmic depth with a polynomial
number of qubits. Although no such algorithm is known for
modular exponentiation, we can prove the following weaker
result, which nevertheless implies that quantum computers
need only run for logarithmic time for factoring to be feasi-
ble.

Theorem 2 There is an algorithm for factoringn-bit in-
tegers that consists of: a classical pre-processing stage,
computed by a polynomial-size classical circuit; followed
by a quantum information processing stage, computed by
an O(logn)-depth polynomial-size quantum circuit; fol-
lowed by a classical post-processing stage, computed by a
polynomial-size classical circuit.

It is interesting to note that this theorem implies that
logarithmic-depth quantum circuits cannot be simulated in
polynomial time unless factoring is in BPP.

We also consider the minimum depthrequired for ap-
proximating the QFT. It is fairly easy to show that comput-
ing the QFTexactlyrequires depth at leastlogn. However,
this is less clear in the case of approximations—and we ex-
hibit in Theorem 6 a problem related to the QFT whose
depth complexity decreases fromlogn in the exact case
toO(log logn) for approximations with precision1=nO(1).
Nevertheless, we show the following.

Theorem 3 Any quantum circuit consisting of one- and
two-qubit gates that approximates the QFT with precision110 or smaller must have depth at leastlogn.

This implies that the depth upper bound in Theorem 1 is
asymptotically tight for a reasonable range of values of".

We also show that, if size rather than depth is the pri-
mary consideration, it is possible to compute the QFTex-
actlywith a near-linear number of gates.

Theorem 4 For everyn there exists a quantum circuit
that exactly computes the QFT modulo2n that has sizeO(n(logn)2 log logn) and depthO(n).



Theorem 4 is based on a nonstandard recursive description
of the QFT [10] combined with an asymptotically fast mul-
tiplication algorithm [32].

While it is sufficient to use the QFT with respect to
power-of-2 moduli in Shor’s algorithm, one may wish to
perform the QFT with respect to other moduli when consid-
ering other problems. By exploiting a relationship among
QFTs of different moduli noted by Hales and Halgren [21],
we prove that the QFT for an arbitrary modulus can be per-
formed in poly-logarithmic depth.

Theorem 5 For anym and" there is a quantum circuit ap-
proximating the QFT modulom with precision" that has
depthO((log logm)(log log(1="))) and size polynomial inlogm+ log(1=").

The remainder of this paper is organized as follows. In
Section 2, we review some definitions and introduce nota-
tion used in subsequent sections. In Section 3 we prove the
depth and size bounds for quantum circuits approximating
the QFT for any power-of-2 modulus as claimed in Theo-
rem 1. In Section 4 we prove Theorem 2 by demonstrating
how Shor’s factoring algorithm can be arranged so as to re-
quire only logarithmic-depth quantum circuits. In Section5
we prove the lower bound for the QFT in Theorem 3. In
Section 6 we prove the size bound claimed in Theorem 4
for exactly performing the QFT. In Section 7 we discuss the
situation when the modulus for the QFT is not necessarily a
power of 2, and in Section 8 we discuss the special case of
“smooth” moduli considered in Shor’s original method for
performing the QFT. We conclude with Section 9, which
mentions some open questions relating to this paper.

2. Definitions and notation

Notation for special quantum states:For a given modu-
lusm, we will identify eachx 2 Zm with its binary repre-
sentationxn�1 : : : x1x0 2 f0; 1gn, for n = dlogme. Forx 2 Zm, the statejxi = jxn�1 : : : x1x0i is acomputational
basis state, and the statej xi = 1pm Pm�1y=0 (e2�i=m)x�yjyi
is aFourier basis state(with phase parameterx). As noted
in [11], whenm = 2n, j xi can be factored as followsj xn�1::: x1x0i= 1p2n (j0i+ e2�i(0:x0)j1i)(j0i+ e2�i(0:x1x0)j1i) � � �� � � (j0i+ e2�i(0:xn�1::: x1x0)j1i): (2)

For convenience, we definej��i = 1p2 (j0i + e2�i�j1i) for
each� 2 R. Using this notation, we can rewrite Eq. 2 asj xn�1:::x0i = j�0:x0ij�0:x1x0i � � � j�0:xn�1::: x1x0i: (3)

Definition of the QFT: The quantum Fourier transform
(QFT) (with modulusm) is the unitary operation that mapsjxi to j xi (for all x 2 Zm).

Mappings related to the QFT: A quantum Fourier state
computation (QFS)is any unitary operation that mapsjxij0i to jxij xi (for all x 2 Zm). We refer to approxi-
mations of a QFS asFourier state estimation. A quantum
Fourier phase computation (QFP)is any unitary operation
that mapsj xij0i to j xijxi (for all x 2 Zm). We refer
to approximations of a QFP asFourier phase estimation.
As pointed out by Kitaev [24], the QFT can be computed
by composing a QFS and the inverse of a QFP as follows:jxij0i 7! jxij xi 7! j0ij xi.
Quantum gates: All of the quantum circuits that we con-
struct will be composed of three types of unitary gates. One
is the one-qubitHadamardgate,H , which mapsjxi to1p2 (j0i + (�1)xj1i) (for x 2 f0; 1g). Another is the one-

qubit phase shiftgate,P (�), where� is a parameter of the
form x=2n (for x 2 Z2n). P (�) mapsjxi to e2�i�xjxi (forx 2 f0; 1g). Finally, we use the two-qubitcontrolled-phase
shift gate, c-P(�), which mapsjxijyi to e2�i�xyjxijyi (forx; y 2 f0; 1g). Note that controlled-NOT and Toffoli gates
can be composed of these gates.

3. New depth bounds for the QFT

The main purpose of this section is to prove Theorem 1.
First, we review the approach of Kitaev [24] for perform-

ing the QFT for an arbitrary modulusm. By linearity, it is
sufficient to give a circuit that operates correctly on com-
putational basis states. Given a computational basis statejxi, first create the Fourier basis state with phase parame-
ter x (which can be done easily ifjxi is not erased in the
process). The system is now in the statejxij xi. Now, by
performing Fourier phase estimation, the statejxij xi can
be approximated from the statej0ij xi. Therefore, by per-
forming the inverse of Fourier phase estimation on the statejxij xi, a good estimate of the statej0ij xi is obtained.

The particular phase estimation procedure used by Ki-
taev does not readily parallelize, but, in the case where the
modulus is a power of 2, we give a new phase estimation
procedure that does parallelize. This procedure requires
several copies of the Fourier basis state rather than just one.
To insure that the entire process parallelizes, we must also
parallelize the creation of the Fourier basis state as well as
the process of copying and uncopying this state.

The basic steps of our technique are as follows:

1. Create the Fourier basis state, which is the QFS map-
ping jxij0i 7! jxij xi.

2. Copy the Fourier basis state, which is the mappingj xij0i � � � j0i 7! j xij xi � � � j xi.
3. Erase the computational basis state by estimating the

phase of the Fourier basis state, which is the mappingjxij xij xi � � � j xi 7! j0ij xij xi � � � j xi.



4. Reverse step 2, which corresponds to the mappingj xij xi � � � j xi 7! j xij0i � � � j0i.
Each of these components is discussed in detail in the sub-
sections that follow. Throughout we assume the modulus ism = 2n.

3.1. Fourier state computation and estimation

The first step is the creation of the Fourier basis state cor-
responding to a given computational basis statejxi. This
corresponds to the QFS mappingjxij0i 7! jxij xi: (4)

First let us consider a circuit that performs this transfor-
mation exactly. By Eq. 2 (equivalently, Eq. 3), it suffices to
compute the statesj�0:x0i; j�0:x1x0i; : : : ; j�0:xn�1::: x1x0i
individually.

The circuit suggested by Figure 1 performs the required
transformation forj�0:xj ::: x0i.ssss
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Figure 1. Quantum circuit for preparation ofj�0:xj ���x0i.

In this figure we have not labelled the controlled phase
shift gates, c-P(�) (such gates are defined in Section 2),
which are the gates in the center drawn as two solid cir-
cles connected by a line. For each such gate, the phase�
depends onj and on the particular qubit ofjxn�1 : : : x1x0i
on which the gate acts. The value of� for the controlled
phase shift acting onjxii is 2i�j�1 (for i 2 f0; 1; : : : ; jg).
The remaining gates consist of a Hadamard gate and several
controlled-NOT gates. The depth of this circuit isO(logn)
and the size isO(n).

If such a circuit is to be applied forj = 0; : : : ; n � 1,
in order to perform the mapping in Eq. 4, then the qubitsjxn�1i; : : : ; jx1i; jx0i must first be copied several times
(n � i times for jxii) to allow the controlled phase shift
gates to operate in parallel. This may be performed (and
inverted appropriately) in sizeO(n2) and depthO(logn) in
the most obvious way. Thus we have that a QFS transform
can be performed exactly by circuits of depthO(logn) and
sizeO(n2).

For our purposes, we need to reduce the size of the
QFS circuit, which is possible if we only require an ap-
proximate QFS circuit with error bounded by". This is
achieved by constructing a circuit similar to the exact QFS
circuit, except that controlled phase shift gates are not in-
cluded whenever the phase� is O("=n2). Thus, forj =0; 1; : : : ; n�1, only the controlled phase shifts correspond-
ing to the wiresjxji; : : : ; jxj�k+1i are performed, wherek 2 2 log(n=") +O(1). This results in the following depth
and size bound.

Theorem 6 For anyn and" there is a quantum circuit that
approximates a QFS mapping modulo2n with precision"
that has depthO(log log(n=")) and sizeO(n log(n=")).
3.2. Copying a Fourier state

In this section, we show how to efficiently produce sev-
eral copies of ann-qubit Fourier basis state from one copy.
This is a unitary operation that acts onk n-qubit regis-
ters (thuskn qubits in all) and mapsj xij0ni � � � j0ni toj xij xi � � � j xi for all x 2 f0; 1gn. The copying circuit
will be exact and have sizeO(kn) and depthO(log(kn)).
The setting ofk will be O(log(n=")).

Consider the problem of producing two copies of a
Fourier state from one. Define the(reversible) addition
and (reversible) subtractionoperations as the mappingsjxijyi 7! jxijy + xi and jxijyi 7! jxijy � xi (respec-
tively), wherex; y 2 f0; 1gn and additions and subtrac-
tions are performed as integers modulo2n. By appealing to
classical results about the complexity of arithmetic (a good
exposition can be found in Chapter 29 of [14]), one can con-
struct quantum circuits of sizeO(n) and depthO(logn)
for these operations (using an ancilla of sizeO(n)). It is
straightforward to show that applying a subtraction opera-
tion to the statej xij yi results in the statej x+yij yi.
The statej 0i can be obtained fromj0ni by applying a
Hadamard transform independently to each qubit. There-
fore, the copying operation can begin with a state of the
form j0nij xi and consist of these two steps: (i) ApplyH to each of the firstn qubits, and (ii) apply the subtrac-
tion operation to the2n qubits. The resulting state will bej xij xi.

An obvious method for computingk copies of a Fourier
state is to repeatedly apply the above doubling operation.
This will result in a quantum circuit of sizeO(kn); how-
ever, its depth will beO((log k)(logn)), which is too large
for our purposes.

The depth bound can be improved toO(log(kn)) by
applying other classical circuit constructions to efficiently
implement the(reversible) prefix additionand (reversible)
telescoping subtractionoperations, which are the mappingsjx1ijx2i � � � jxki 7! jx1ijx1 + x2i � � � jx1 + � � �+ xkijx1ijx2i � � � jxki 7! jx1ijx2 � x1i � � � jxk � xk�1i



(respectively), wherex1; x2; : : : ; xk 2 f0; 1gn. Before ad-
dressing the issue of efficiently implementing these oper-
ations, let us note that the copying operation can be per-
formed by starting with the statej0ni � � � j0nij xi and per-
forming these two steps: (i) ApplyH to all of the first(k � 1)n qubits, and (ii) apply the telescoping subtrac-
tion operation to thekn qubits. The resulting state will bej xi � � � j xi.

Now, to implement the prefix addition and telescoping
subtraction, note that they are inverses of each other. This
means that it is sufficient to implement each one efficiently
by a classical (nonreversible) circuit, and then combine
these to produce a reversible circuit by standard techniques
in reversible computing [5]. The telescoping subtraction
clearly consists ofk � 1 subtractions that can be performed
in parallel, so the nonreversible size and depth bounds areO(kn) andO(logn) respectively.

The prefix addition is a little more complicated. It relies
on a combination of well-known tools in classical circuit de-
sign. One of them is the following general result of Ladner
and Fischer [26] about parallel prefix computations.

Theorem 7 (Ladner and Fischer) For any associative bi-
nary operationÆ, the mapping(x1; x2; : : : ; xk) 7! (x1; x1 Æ x2; : : : ; x1 Æ � � � Æ xk)
can be computed by a sizeO(k) and depthO(log k) circuit
consisting of gates of the form(x; y) 7! (x; x Æ y).

Another tool is the so-calledcarry-save adder, which is a
circuit that takes threen-bit integersx; y; z as input and pro-
duces twon-bit integerss; 
 as output, such thatx+y+z =s + 
 (recall that addition is in modulo2n arithmetic). It
is remarkable that a carry-save adder can be implemented
with constant depthand sizeO(n) (see [14]). By combin-
ing two carry-save adders, one can implement a sizeO(n)
and depthO(1) four-two adder, that performs the mapping(x; y; z; w) 7! (x; y; s; 
), wherex+y+z+w = s+
. Now,
consider thepairwise representationof eachn-bit integerz
as a pair of twon-bit integers(z0; z00) such thatz = z0+z00.
This representation is not unique, but it is easy to convert to
and from the pairwise representation: the respective map-
pings arez 7! (z; 0n) and(z0; z00) 7! z0 + z00. The useful
observation is that the four-two adder performs integer ad-
dition in the pairwise representation scheme, and it does so
in constant depth and sizeO(n).

Now, the following procedure computes prefix addition
in sizeO(kn) and depthO(log k + logn) = O(log(kn)).
The input is(x1; x2; : : : ; xk). (i) Convert thek integers
into their pairwise representation. (ii) Apply the parallel
prefix circuit of Theorem 7 to perform the prefix additions
in the pairwise representation scheme. (iii) Convert thek
integers from their pairwise representation to their standard

form. The output will be(x1; x1+x2; : : : ; x1+ � � �+xk),
as required.

Note that step 4 of the main algorithm has a circuit of
identical size and depth to the one just described, as it is
simply its inverse.

3.3. Estimating the phase of a Fourier state

Finally, we explain the third step of the main algorithm,
which corresponds to the mappingj xij xi � � � j xijxi 7! j xij xi � � � j xij0i (5)

for x 2 f0; 1gn. The number of copies ofj xi required
for this step depends on the error bound"; we will requirek 2 O(log(n=")) copies.

First note that, by Eq. 3,k copies ofj xi comprisek
copies ofj�0:xj ::: x0i for eachj 2 f0; 1; : : : ; n � 1g. Our
approach can be explained intuitively by considering the
problem of how to measure thesekn qubits in order to ob-
tain a good estimator of the stringxn�1 : : : x1x0. A so-
lution to this can then be translated via standard techniques
into a quantum circuit that computes the inverse of the map-
ping in Eq. 5.

It should be noted that, in general,xj cannotbe esti-
mated well by measuring thek copies ofj�0:xj ::: x0i alone.
For example, whenxn�1 : : : x1x0 = 100 : : : 0, measur-
ing j�0:100::: 0i will yield little information aboutxn�1,
sincej�0:100::: 0i is exponentially close toj�0:011::: 1i (even
thoughj100 : : : 0i is orthogonal toj011 : : : 1i).

The approach that we follow is to perform measurements
on thek copies ofj�0:xj::: x0i in order to obtain information
aboutxj as a function ofxj�1. After this is performed in
parallel for eachj > 0, andx0 is determined (easily by
measuringj�0:x0i), the information can be combined to de-
terminexn�1 : : : x1x0.

Two types of measurements are used here. For half of
thek copies ofj�0:xj ::: x0i, a so-called�z measurementis
performed. This is a measurement with respect to the basisf 1p2 j0i + 1p2 j1i; 1p2 j0i � 1p2 j1ig = fj�0:0i; j�0:1ig. For

the remaining copies ofj�0:xj::: x0i, a �y measurementis
performed, which is a measurement with respect to the basisf 1p2 j0i+ ip2 j1i; 1p2 j0i � ip2 j1ig = fj�0:01i; j�0:11ig.

Let us now examine what these measurements reveal
when they are applied to a state of the formj�0:xj::: x0i.
It is helpful to think of the number0:xj : : : x0 2 [0; 1)
as a point on a circle with unit circumference (with0
identified with 1). A �z measurement ofj�0:xj ::: x0i
has outcome probabilities12 + 12 
os(2�(0:xj : : : x0)) (forj�0:0i), and 12 � 12 
os(2�(0:xj : : : x0)) (for j�0:1i). If0:11 < 0:xj : : : x0 < 1 or 0 � 0:xj : : : x0 < 0:01, thenxj = xj�1 and the outcome is biased towardsj�0:0i. If0:01 < 0:xj : : : x0 < 0:11 thenxj 6= xj�1 and the out-
come is biased towardsj�0:1i. At the boundary points,0:01



and0:11, the distribution is unbiased. Thus, if a statisti-
cally significant bias among thek=2 outcomes of the�z
measurements occurs thenxj can be inferred in terms ofxj�1. Let P (propagate) denote the conditionxj = xj�1
and letN (negate) denote the conditionxj 6= xj�1. When0:xj : : : x0 is at or near one of the two boundary points, the
two outcomes of a�z measurement have nearly the same
probability and are hard to distinguish. In these cases, the
outcomes of the�y measurements are needed.

For a �y measurement the outcome probabilities are12 � 12 sin(2�(0:xj : : : x0)) and the properties are similar to
those of a�z measurement, except that the two ranges that
are distinguished are:0 < 0:xj : : : x0 < 0:1, which corre-
sponds toxj = 0; and,0:1 < 0:xj : : : x0 < 1, which corre-
sponds toxj = 1. A statistically significant bias among thek=2 outcomes of the�y measurements enables an inferencexj = 0 or xj = 1 to be made. Let0 and1 denote these two
conditions.

For thej�0:xj ::: x0i states, the most frequent of thek out-
comes among the�z and �y measurements is taken (re-
solving ties arbitrarily). The result will be the condition
P, N, 0, or 1. The probability that the condition is an
incorrect one is exponentially small with respect tok. To
see why this is so, recall the following result about indepen-
dent Bernoulli trials (see, e.g., [17]). Leta1; : : : ; at be in-
dependent Bernoulli trials with probabilityp of success andb1; : : : ; bt be independent Bernoulli trials with probabilityq of success, wherep > q. ThenPr hPti=1 ai �Pti=1 bii < 2e�(p�q)2 t=2:
When this is applied in our context, the value ofp � q is12 j 
os(2�(0:xj : : : x0))j � 12 j sin(2�(0:xj : : : x0))j � 12
and t = k=2, so the probability of an error is less than2e�k=16 for eachj 2 f0; 1; : : : ; n�1g. The circuit comput-
ing then conditions has depthO(log k) = O(log log(n="))
and sizeO(nk) = O(n log(n=")).

Now, assume thatLn�1; : : : ; L1; L0 2 fP;N;0;1g
are correct conditions forxn�1; : : : ; x1; x0 (respectively),
and thatL0 is 0 or 1. From these values, the bits ofxn�1 : : : x1x0 can be deduced by tracing through the con-
ditions. For example, the string of conditions1P1NNPP0
corresponds to the binary string11101000. The simplest
way to trace through the conditions is to start at the right
side and proceed left, one condition at a time—this is a se-
quential process that takesn steps.

However, these deductions can also be computed in par-
allel. A method for doing this can be seen by identifying
each condition with a2� 2 matrix as follows

P = � 1 00 1�; N = � 0 11 0�; 0 = � 1 10 0 �; 1 = � 0 01 1 �:
Then, tracing through the conditions is equivalent to com-
puting products of the matrices. To obtain all the bits of

xn�1 : : : x1x0, all suffix products of the string of conditions
must be computed, which can be performed in parallel by
the parallel prefix method of Theorem 7. The depth of the
circuit for this isO(logn) and the size isO(n).

It follows from the above that there is circuit of depthO(logn + log log(n=")) = O(logn + log log(1=")) and
sizeO(n log(n=")) that estimates the stringxn�1 : : : x1x0.
What remains is to show how to convert this into a quantum
circuit without measurements that approximates the map-
ping in Eq. 5. This follows from standard results based on
ideas in [6] about converting quantum circuits that perform
measurements and produce classical information with small
error probability into unitary operations (without measure-
ments) that can operate on data in superposition. It should
be noted that a statej xi can be conserved throughout the
computation to ensure that errors corresponding to different
values ofx are orthogonal.

4. Factoring via logarithmic-depth quantum
circuits

In this section we discuss a simple modification of Shor’s
factoring algorithm that factors integers in polynomial time
using logarithmic-depth quantum circuits. It is importantto
note that we are not claiming the existence of logarithmic-
depth quantum circuits that take as input some integerN
and output a non-trivial factor ofN with high probability—
the method will require (polynomial time) classical pre-
processing and post-processing that is not known to be par-
allelizable. The motivation for this approach is that, under
the assumption that quantum computers can be built, one
may reasonably expect that quantum computation will be
expensive while classical computation will be inexpensive.

The main bottleneck of the quantum portion of Shor’s
factoring algorithm is the modular exponentiation. Whether
or not modular exponentiation can be parallelized is a
long-standing open question that is not resolved here. In-
stead, we show that sufficient classical pre-processing al-
lows parallelization of the part of the quantum circuit asso-
ciated with the modular exponentiation. Combined with our
logarithmic-depth circuits for the QFT, we obtain the result
claimed in Theorem 2.

In order to describe our method, let us briefly review
Shor’s factoring algorithm, including the reduction from
factoring to order-finding. It is assumed the input is an-
bit integerN that is odd and composite.

1. (Classical) Randomly selecta 2 f2; : : : ; N � 1g. Ifg
d(a;N) > 1 then outputg
d(a;N), otherwise con-
tinue to step 2.

2. (Quantum) Attempt to find information about the order
of a in Z�N:

a. Initialize a2n-qubit register and ann-qubit register
to statej0ij0i.



b. Perform a Hadamard transform on each qubit of the
first register.

c. (Modular exponentiation step.) Perform the unitary
mappingjxij0i 7! jxijax mod Ni.

d. Perform the quantum Fourier transform on the first
register and measure (in the computational basis).
Let y denote the result.

3. (Classical) Use the continued fraction algorithm to find
relatively prime integersk andr, 0 � k < r < N , such
that jy=22n � k=rj � 2�2n. If ar � 1 (mod N) then
continue to step 4, otherwise repeat step 2.

4. (Classical) Ifr is even, computed = g
d(ar=2 � 1; N)
and outputd if it is a nontrivial factor ofN . Otherwise
go to step 1.

The key idea is to use the fact (noted in [34]) that much
of the work required for the modular exponentiation step
can be shifted to the classical computation in step 1 of the
procedure. In step 1, the numbersb0 = a; b1 = a2; : : : ; b2n�1 = a22n�1(modN)
can be computed in polynomial-time. With this informa-
tion available in step 2, the modular exponentiation step
reduces to applying a unitary operation mappingjxij0i tojxijbx00 � bx11 � � � bx2n�12n�1 mod Ni. This is essentially an iter-
ated multiplication problem, where one is given2n n-bit in-
tegersbx00 ; bx11 ; : : : ; bx2n�12n�1 as input and the goal is to com-
pute their product. The most straightforward way to do this
is to perform pairwise multiplications following the struc-
ture of a binary tree with2n leaves. Each multiplication
can be performed with depthO(logn) and sizeO(n2). The
underlying binary tree has depthlog(2n) and2n� 1 inter-
nal nodes. Thus, the entire process can be performed with
depthO((log n)2) and sizeO(n3).

There are alternative methods for performing iterated
multiplication achieving various combinations of depth and
size. In particular, it was recently proved by Chiu, Davida,
and Litow [9] (improving on results in [4]) that a prod-
uct such as we have above can be computed byO(logn)
depth boolean circuits of polynomial size. While the size
is likely to exceed theO(n3) bound obtained above, the re-
sult has an interesting consequence regarding simulations
of logarithmic-depth quantum circuits: if logarithmic-depth
quantum circuits can be simulated in polynomial time, then
factoring can be done in polynomial time as well.

5. Lower bounds

Logarithmic-depth lower bounds forexact computations
with two-qubit gates are fairly easy to obtain, based on the
fact that the state of some output qubit (usually) critically
depends on every input qubit. Since, by Eq. 3, the last qubit

of j xn�1::: x1x0i is in state 1p2 (j0i+e2�i(0:xn�1::: x1x0)j1i),
its value depends on alln qubits of the corresponding input
statejxn�1 : : : x1x0i. The depth of the circuit must be at
leastlogn for this to be possible. This lower bound proof
applies not only to the QFT, but also to QFS computations
(defined in Section 2). This is because the output of a QFS
on inputjxij0i includes the statej xi.

On the other hand,approximatecomputations can some-
times be performed with much lower depth than their exact
counterparts. For example, we have already seen in Theo-
rem 6 (Section 3.1) that a QFS can be computed with pre-
cision" by a quantum circuit with depthO(log log(n=")).
Thus, for" 2 1=nO(1), the QFS circuit depth need only beO(log logn). Although this suggests that it is conceivable
for a sub-logarithmic-depth circuit to approximate the QFT
with precision1=nO(1), Theorem 3 implies that this is not
possible. We now prove this theorem.

LetC be a quantum circuit that approximates theinverse
QFT with precision110 . In this section, since we will need to
consider distances between mixed states, we adopt thetrace
distanceas a measure of distance (see Chapter 9 of [29] for
an excellent discussion of distance measures between quan-
tum states, and for further references). The trace distance
between two states with respective density operators� and� is given asD(�; �) = 12Trj�� �j, where, for an operatorA, jAj = pAyA. For a pair of pure statesj�i andj�0i, their
trace distance is

p1� jh�j�0ij2, which is upper bounded
by their Euclidean distance.

On input j xn�1::: x1x0i, the output state ofC contains
an approximation ofjxn�1 : : : x1x0i. In particular, one of
the output qubits ofC should be in a state that is an ap-
proximation ofjxn�1i within 110 . Let us refer to this as the
high-orderoutput qubit ofC. If the depth ofC is less thanlogn then the high-order output qubit ofC cannot depend
on all n of its input qubits. Letk 2 f0; 1; : : : ; n � 1g be
such that the high-order output qubit does not depend on thekth input qubit (where we index the input qubits right to left
starting from 0). Letr = n� k � 1.

Setz = 2n�1, which is11 : : :1 = 1n in binary. Follow-
ing Eq. 3, we havej zi = j�0:1ij�0:11i � � � j�0:1ni. Con-
sider the statej z+2r i. As z + 2r = 0n�r1r (mod 2n), we
see thatj z+2r i= j�0:1i� � �j�0:1r ij�0:01r ij�0:001r i� � �j�0:0n�r1r i:
Note that, on inputj zi, the high-order output qubit ofC approximatesj1i with precision 110 ; whereas, on inputj z+2r i, the high-order output qubit ofC approximatesj0i
with precision 110 .

Now, we consider a statej 0zi, which has an interesting
relationship with bothj zi andj z+2r i. Definej 0zi = j�0:1i � � � j�0:1rij�0:01r ij�0:1r+2i � � � j�0:1ni:



The statesj 0zi and j zi are identical, except in theirkth qubit positions (which are orthogonal:j�0:01ri vs.j�0:1r+1i). Since the high-order output qubit ofC does not
depend on itskth input qubit, it is the same for inputj 0zi as
for input j zi. Therefore, the state of the high-order output
qubit ofC on inputj 0zi is within 110 of j1i.

On the other hand, the trace distance betweenj 0zi andj z+2r i can be calculated to be below 0.7712, as follows.
The two states are identical in qubit positionsn � 1; n �2; : : : ; k. In qubit positionk� 1, the two states differ by an
angle of�4 , in qubit positionk � 2 the two states differ by
an angle of�8 , and so on. Therefore,h 0z j z+2r i = h�0:1r+2 j�0:021r i � � � h�0:1n j�0:0n�r1r i= 
os( �22 ) 
os( �23 ) � � � 
os( �2n�k�1 )> 
os( �22 ) 
os( �23 ) 
os( �24 ) � � �> 0:6366:
This implies that the trace distance betweenj 0zi andj z+2r i is less than

p1� (0:6366)2 < 0:7712. Since
the trace distance is contractive, it follows that the stateof
the high-order output ofC on inputj 0zi has trace distance
less than 0.7712 from the state of high-order output ofC
on input j z+2r i. But, by the triangle inequality, this im-
plies that the trace distance betweenj0i andj1i is less than110+0:7712+ 110 < 1, which is a contradiction, sincej0i andj1i are orthogonal. This completes the proof of Theorem 3.

6. New size bounds for the QFT

In this section, we prove Theorem 4. LetF2n denote the
Fourier transform modulo2n, which acts onn qubits.

The standard quantum circuit forF2n can be described
recursively as follows (where the controlled-phase shift
gates c-P(�) are defined in Section 2).

Standard recursive circuit description for F2n :

1. ApplyF2n�1 to the firstn� 1 qubits.

2. For eachj 2 f1; : : : ; n� 1g, apply c-P(1=2n�j+1) to
thej th andnth qubit.

3. ApplyH to thenth qubit.

The resulting circuit consists ofn(n� 1)=2 two-qubit gates
andn one-qubit gates.

Below is a more general recursive circuit description forF2n , parameterized bym2f1; : : : ; n� 1g (based on [10]).
This coincides with the above circuit whenm = 1. Whenm > 1, it can be verified that the circuit does not change
very much. It has exactly the same gates, though the relative
order of the two-qubit gates (which all commute with each
other) changes.

Generalized recursive circuit description forF2n :

1. ApplyF2n�m to the firstn�m qubits.

2. For eachj 2 f1; : : : ; n � mg andk 2 f1; : : : ;mg,
apply c-P(1=2k�j+1) to thej th and(n�m+k)th qubit.

3. ApplyF2m to the lastm qubits.

Our new quantum circuits are based on this general-
ized recursive construction withm = bn=2
, except that
they use a more efficient method for performing the trans-
formation in Step 2. Step 2 consists of(n � m)m (or
approximatelyn2=4) two-qubit gates. The key observa-
tion is that Step 2 computes the mapping that, forx 2f0; 1gn�m andy 2 f0; 1gm, takes the statejxijyi to the
state(e2�i=2n)x�yjxijyi, wherex � y denotes the product ofx and y interpreted as binary integers. From this, it can
be shown that Step 2 can be computed using any classical
method for integer multiplication in conjunction with some
one-qubit phase shift gates (of the formP (�), defined in
Section 2).

Currently, the best known asymptotic circuit size for in-
teger multiplication, due to Schönhage and Strassen [32],
is O(n logn log logn). This can be translated into a re-
versible computation of the same size that we will denote
asS. For x 2 f0; 1gn�m andy 2 f0; 1gm, S maps the
statejxijyij0ni to jxijyijx � yi. (There areO(n) additional
ancilla qubits that are not explicitly indicated. Each of these
begins and ends in statej0i.)
Improved Step 2 in general circuit description forF2n :

2a. ApplyS to the2n qubits.

2b. For eachk 2 f1; : : : ; ng, apply P (1=2k) to the(n+ k)th qubit.

2c. ApplyS�1 to the2n qubits.

Using this improved Step 2 in the generalized recursive
circuit description forF2n results in a total number of gates
that satisfies the recurrenceTn = Tdn=2e + Tbn=2
 +O(n logn log logn);
which implies thatTn 2 O(n(logn)2 log logn). It is
straightforward to also show that the circuit has depthO(n)
and widthO(n).
7. Arbitrary moduli

In this section we sketch a proof of Theorem 5, which
states that it is possible to approximate the QFT with re-
spect to an arbitrary modulusm in parallel with high ac-
curacy. This can be done using our circuits for the QFT
modulo2k for k = blogm
 + O(1). The depth of the cir-
cuit isO(logn log log(1=")) and the size is polynomial inn+ log(1=").



The method exploits a relation between QFTs with dif-
ferent moduli that was used by Hales and Hallgren [21] in
regard to the so-calledFourier Samplingproblem (see also
Høyer [22] for an extension and simplified proof).

The basic components of the technique are as follows:

1. Create a Fourier state with modulusm, which is the
mappingjxij0i 7! jxij xi.

2. Copy the Fourier state, which corresponds to the map-
ping jxij xij0i � � � j0i 7! jxij xij xi � � � j xi.

3. Apply the inverse Fourier transform modulo2k on
each statej xi, which is the mappingjxij xi � � � j xi 7! jxi�F y2k j xi� � � ��F y2k j xi� :

4. Computebym2�k + 1=2
 mod m for each computa-
tional basis statey occurring among the collections of
qubits on whichF y2k was performed. An observation

of F y2k j xi in the computational basis yields somey
with bym2�k + 1=2
 = x with probability exceeding1=2 + Æ for some constantÆ, which implies that with
high probability the most frequent value obtained forbym2�k + 1=2
 mod m will be x. XOR this result to
the qubits in statejxi, and reverse the computation of
eachbym2�k +1=2
 andy. With high probability the
mappingjxi �F y2k j xi� � � ��F y2k j xi�7! j0i�F y2k j xi� � � ��F y2k j xi�
has been performed.

5. Reverse steps 3 and 2, giving the mappingj0i�F y2k j xi� � � ��F y2k j xi� 7! j0ij xij0i � � � j0i:
Unfortunately some of the methods used in the power of 2
case (such as using carry-save adders and approximating the
individual qubits of the Fourier basis states) do not seem to
work in this case, which results in the slightly worse depth
bound. The overall size bound increases as well, but is still
polynomial.

It is interesting to note that this method does not re-
quire the larger modulus to be a power of 2—effectively
the method shows that the QFT modulom for any modulusm can be efficiently approximated given a black box that
approximates the QFT modulom0 for any sufficiently largem0. Further technical details regarding this method will ap-
pear in the final version of this paper.

8 Shor’s “mixed-radix” QFT

We conclude with a brief discussion of Shor’s original
“mixed radix” method for computing the QFT, as it too can
be parallelized (although to our knowledge not as efficiently
as the power-of-2 case discussed previously in this paper).

Shor’s original method for computing the QFT is based
on the Chinese Remainder Theorem and its consequences
regardingZm for given modulusm. Here the modulus
is m = m1m2 � � �mk for m1; : : : ;mk pairwise relatively
prime andmj 2 O(logm). Thusk 2 O(logm= log logm)
is somewhat less than the number of bits ofm, and eachmj has length logarithmic in the length ofm. Takingmj
to be thej th prime results in a sufficiently dense collection
of moduli m for factoring [33] (see Rosser and Schoen-
feld [31] for explicit bounds and a detailed analysis of such
bounds).

Although stated somewhat differently by Shor, the mixed
radix QFT method may be described as follows:

1. For eachj = 1; : : : ; k definefj = m=mj and setgj 2 Zmj such thatgj � f�1j (mod mj).
2. DefineC to be the (reversible) operator acting as fol-

lows for eachx 2 f0; : : : ;m� 1g:C : jxi 7! j(x mod m1); : : : ; (x mod mk)i
3. DefineA to be the (reversible) operator such thatA : jx1; : : : ; xki 7! jg1x1; : : : ; gkxki

for each(x1; : : : ; xk) 2 Zm1 � � � � �Zmk.
4. Let Fm andFmj denote the QFT for modulim andmj , j = 1; : : : ; k, respectively. Then the following

relation holds:Fm = Cy(Fm1 
 � � � 
 Fmk )AC: (6)

Thus, to perform the QFT modulom on jxi, first con-
vert x to its modular representation(x1; : : : ; xk) us-
ing the operatorC, multiply eachxj by gj (modulomj), perform the QFT modulomj independently on
coefficientj (for eachj), then apply the inverse ofC
to convert back to the ordinary representation of ele-
ments inZm.

The numbers computed in step 1 are used in the stan-
dard proof of the Chinese Remainder Theorem: givenx1; : : : ; xk , we have that forx = Pkj=1 fjgjxj mod m,
the congruencex � xj (modmj) is satisfied for eachj.
Thus the operatorC can be implemented efficiently, since
the mappingx 7! ((x mod m1); : : : ; (x mod mk))



and its inverse are efficiently computable (e.g., with sizeO(log2m) circuits [2]). In the present caseC can be par-
allelized to logarithmic depth, since each of the moduli are
small. Similarly, the operatorA can be parallelized to loga-
rithmic depth.

To see that Eq. 6 holds, we may simply examine the ac-
tion of the operator on the right hand side on computational
basis states:Cy(Fm1 
 � � � 
 Fmk )ACjxi= Cy(Fm1 
 � � � 
 Fmk )jg1x1; : : : ; gkxki= 1pmCy Xy1;::: ;yk exp(2�iPkj=1 fjgjxjyj=m)jy1; : : : ; yki= 1pmXy exp(2�ixy=m)jyi= Fmjxi:

Finally, the QFTs modulom1; : : : ;mk can be done
simultaneously in order to parallelize the entire process.
Originally, Shor suggested implementing each of these op-
erations by circuits of sizemj , since any quantum operation
can be computed by circuits with exponential-size quantum
circuits [3]. This results in a linear-depth circuit overall,
although the circuit will be exact.

However, we may try to compute eachFmj more effi-
ciently. There are a few possibilities for how to do this, all
(apparently) requiring approximations of eachFmj . First,
we may apply the method of Kitaev [24] to approximate
these QFTs. Alternately, we may use the arbitrary modulus
method we have proposed in Section 7. Finally, we have
noted that this method works for any two moduli (not just
for the larger modulus a power of 2) so we could recurse us-
ing the mixed-radix method to approximate eachFmj . In all
cases, our analysis has revealed that the mixed radix method
results in worse size and/or depth bounds than the power of
2 method presented in Section 3.

9. Conclusion

We have proved several new bounds on the circuit complex-
ity of approximating the quantum Fourier transform, and
have applied these bounds to the problem of factoring using
quantum circuits. There are several related open questions,
a few of which we will now discuss.

First, is it possible to perform the quantum Fourier trans-
form exactlyusing logarithmic- or poly-logarithmic-depth
quantum circuits? The best currently known upper bound
on the depth of the exact QFT is linear in the number of
input qubits.

Next, can the efficiency of our techniques be improved
significantly? We have concentrated on asymptotic analyses
of our circuits, and we believe it is certain that our circuits
can be optimized significantly for “interesting” input sizes
(perhaps several hundred to a few thousand qubits).

Finally, the fact that the quantum Fourier transform can
be performed in logarithmic depth suggests the following
question: are there interesting natural problems in BQNC
(bounded-error quantum NC) not known to be in NC or
RNC? For instance, computing the greatest common di-
visor of two n-bit integers and computingab mod 
 anda�1 mod 
 for n-bit integersa, b, and 
 is not known
to be possible using polynomial-size circuits with depth
poly-logarithmic inn in the classical setting. Are there
logarithmic- or poly-logarithmic-depthquantum circuitsfor
these problems? Greenlaw, Hoover and Ruzzo [18] list sev-
eral other problems not known to be classically paralleliz-
able, all of which are interesting problems to consider in the
quantum setting.
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